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Motivating example

Micro-array gene expression data

@ Can we identify which genes are good predictors of certain diseases?

@ Given samples containing:

@ class label y indicating the type of disease (e.g., cancer)

o feature vector & containing gene expression values

@ How do we cope with P ~ 10% genes but only N ~ 102 samples?
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Linear classification and feature selection

Linear classification: learn a weight matrix W € R”*® from training data
N
{yn € {1,...,C}, @, € RP}n:1 such that

—~T
Yn R arg maX[W )i,
1

and classification of unknown x¢ via

T
Yo = argmax[W xg);
i

has minimal error rate.

@ Accurate classification when N < P if “true” W is sufficiently sparse.
@ Feature selection from largest elements in W.

@ How to design W?
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Multinomial logistic regression

One well known approach to multiclass linear classification is multinomial logistic
regression (MLR).

N
W = arg maxz log ¢(yn | Tn, W) + G(W)
w n=1
where T
exp(|[W'x

S exp((W ' z].)

and G(W) is some concave regularization term, e.g., —A||W/|;.
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|
Bayesian approach to MLR

Actual objective: minimize test-label error-rate
= equivalent to finding test-label posterior p(yo | y; X).

Assume 3 “true” W and y corresponding to X s.t.

wy, ~ p(wy)

Yn | WTmn ~ q(yn | WTmn)-

We can write the joint distribution of y and W as

N+T P
Py, W; X) o< [ alyn | WT=,) [] plw,),
n=1 p=1

where y,,n < N are known, y,,n > N are unknown, and w,, is a row of W.
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Factor graph representation

p(y, W; X) o

N4T . P @ We could apply loopy belief propagation
II awniw m")pl;llp(“’f“) (based off the Sum-Product (SP)
1} algorithm) to get approximate marginal

posteriors (approximate due to loops in
the factor graph), but...

@ LBP is intractable due to the form of
our distributions.

@ Could try expectation-propagation, but
infeasible due to large NV and P.

@ However, we can use previously
developed approximate message passing
(AMP) algorithms.

Yo
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Approximate message passing

@ AMP is derived from a simplification of message passing (sum-product or
min-sum) that holds in the large system limit.

o CLT to approximate messages as Gaussian.
o Taylor series to reduce to O(N + P) messages.

@ The evolution of AMP:

o AMP: for the linear model [Donoho, Maleki, Montanari 09].

o Generalized-AMP (GAMP): for the generalized linear model with scalar
variables [Rangan 11].

o Hybrid-GAMP (HyGAMP): vector-valued extension of GAMP [Rangan,
Fletcher, Goyal, Schniter 12].

@ Since HyGAMP also approximates the Min-Sum (MS) algorithm, we can
use it to solve the original MAP formulation of MLR.
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Our contributions

@ Sparse multinomial logistic regression via HyGAMP.
©® SP-HyGAMP: approximate minimum probability of error classifier.
© MS-HyGAMP: regularized MAP estimate W (focus on ¢ case).

@ Simplified variants of both SP and MS-HyGAMP that are competitive with
state-of-the-art algorithms w.r.t. algorithm runtime and test-error-rate.

© Expectation-maximization (EM) and Stein's unbiased risk estimate (SURE)
based methods to tune the model parameters online.
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The HyGAMP algorithm for MLR

@ Via approximate message passing, breaks one P x C'-dimensional inference
problem into N+ P C-dimensional inference problems (but iterative).

@ Messages take the form of C-dim normal distributions.

@ Approximates the posterior of w,, and ‘hidden’ z,, £ W T, as product of
Gaussian and p(w,,) or q(yn | W'x,,), respectively.

@ Each iteration is a series of linear steps and inference steps.
@ SP and MS-HyGAMP have identical linear steps.

o Inference steps find mean/mode of approx. posteriors.
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The HyGAMP algorithm for MLR

Require: Mode € {Sum-Prod, Min-Sum}, y, X, prior p(w), inits. Wy, Qz.
Ensure: t < 0; 3, (0) <+ 0.
repeat
Vo QP T, X2 QN(t)
Vn: p, Zp KnpWn — Qfﬁn
if Min-Sum then
Vn: Zn < argmax; logq(yn | 2)N(2; By, QF)
2 - ~ ~ —
Vi Q[ = Zzloga(yn | 2n)N (ZniBn, Q)] 71 )
else if Sum-Prod then inference steps
Vn: Z2, < E {q(yn | 2)N(z; Dy » Q';L)}
Vn: an <+ Cov {q(yn | 2)N(z; Py, » Q';L)}
end if
Vi @ e [QR]T - [QR] T @)@ !
Vn: 8, [Q0] 7N (En — By
. 2 —1
Vp: Q) [, X5,Q5]
Vp: Tp Wy + Q;D > Xnp8n
if Min-Sum then
Vp: Wp « arg max,, log p(w)N (w;7p, Q},)
2 Py PN _
Vp: QY [ gy log p(@p)N (@p; Tp, Q)]
else if Sun-Prod then inference steps
Vp: wp + E {p(w)N(w, Tp, Qrp)}

Vp: Qp + Cov {p(w)N(w;7p, Q})}
end if
until Terminated
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Simplified HyGAMP (SHyGAMP)

@ HyGAMP for MLR is computationally costly.
@ We simplify by constraining message covariance matrices to be diagonal.

@ Leads to:

o faster matrix inversions
o greatly simplifies inference steps
@ enables use of existing GAMPmatlab software
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Online parameter tuning

@ Model parameters require tuning.

o SP: Bernoulli-Gaussian prior parameters {a, u1, 02}
@ MS: ¢y regularization parameter A.

@ We tune the SP parameters using EM [Vila, Schniter 13].

@ We tune the MS parameter using a method based on Stein’s unbiased risk
estimate (SURE) [Mousavi, Maleki, Baraniuk 13].
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SURE method to tune \

Basic idea: select A to min Stein’s unbiased risk estimate of the MSE.
@ Recall: w, = arg max,, log N (w; 7}, Q,)p(w; \).
@ Assume ¥ = w + o v where 7 and ¢ are known.
o Then, E{S(7;0,)\)} = E{|w — w|*}.
o Choose \ = argmin, S(7; 0, \).
@ However... the objective S(-) is non-smooth and has many local minima.
@ Prior work proposed approximate gradient descent, but too slow.

@ We replaced an empirical average with a statistical average.

@ Smooth, easy to compute gradient.

o Can now efficiently minimize via bisection.
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Experimental validation of SURE

Synthetic data

o
w
[

@ C' =4, N =300, P=30000 0.37 |
® @ | (yn = c) ~ N(p,vI)
@ Orthonormal {u }, @ 0%
3]
@ K = 25 discriminatory o 0%
features L%’ 024}
@ Ran MS-SHyGAMP with o2z
[

fixed \, then with SURE

10
Regularization Parameter A
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Numerical Results

@ Metrics
o Classification accuracy
@ Algorithm runtime
@ Target regime
o High dimensional, and data-starved, i.e., N < P
e Multiclass, C' = 10
@ Applications
@ Microarray gene-expression analysis
o Text classification
o Handwritten digit classification
@ Competing algorithms
@ SBMLR [Cawley, Talbot, Girolami 07]
@ GLMNET [Friedman, Hastie, Tibshirani 10]
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Gene-expression data

Sun et al

@ Classes represent different types of glioma.
@ N=179, P =54613, C =4

Algorithm % Error (SD) | Runtime (s) | Koo W |lo
SP-SHyGAMP 32.0 (14.8) 7.68 10.29 | 218452
MS-SHyGAMP | 30.9 (16.5) 12.33 31.04 | 49.25
SBMLR 32.3 (16.6) 24.10 48.41 72.41
GLMNET 31.1 (15.9) 32.30 24.79 | 39.28
Bhattacharjee et a/

@ Classes represent different types of lung carcinoma.

@ N =203, P=12600, C =5
Algorithm % Error (SD) | Runtime (s) | Koo | [[Wlo
SP-SHyGAMP 8 0 (8.0) 3.50 14.64 | 63000
MS-SHyGAMP 2 (8.1) 8.04 40.62 | 66.29
SBMLR 6 6 (8.1) 7.36 46.55 | 79.68
GLMNET 6.6 (8.1) 13.96 53.17 | 93.50
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Text classification

Reuter’s Corpus Volume 1
(RCV1)

024} : —+— SP SHyGAMP |{
—6— MS SHyGAMP
—A— SBMLR

@ Classes are the article's topic

@ Features are frequency of
keywords

@ Sparse and non-zero mean X

@ N =14147, P = 47236,
C=25

@ Tested on 469571 samples

@ Plot test-error-rate vs

Test Error Rate

algorithm runtime o o o
Cumulative Runtime [sec]
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Handwritten digit recognition

Mixed National Institute of
Standards and Technology

(MN'ST) ! ‘ e 5P SHyGAWP
07l —©— MS SHYGAMP ||
—#A— SBMLR

@ Classes are the digits 0-9 0.6
[

@ Features pixels of an image § 05

(P =1784) 5 0al
® We had in total N = 70000 4

samples é e

@ Varied N from 70 to 10000 o2

0.1

10° 10° 10
Number of Training Samples N
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Summary

@ Motivated by multiclass problems where N < P, want feature selection.

@ Novel approach to sparse MLR by using message passing to break high
dimensional inference problem into many smaller inference problems.

@ SP yields approximate marginal test label posteriors.

o MS solves traditional ¢1-regularized objective.

@ Automatically tune model parameters using EM and SURE techniques.

@ Numerical results show we are competitive/superior to state-of-the-art.
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Thank you

Questions?
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SP-HyGAMP for MLR

Marginal posteriors are approximated as
“weights”: p(w, [7p; Q}) o< p(wp) N (wp: 7y, Q))

“scores”: p(zn | Yn, P Q) % 4(Yn | 20)N (203 By, QF) for 2, & W,
Inference of weight vector w,
@ Sparsity-promoting prior: p(w,) = aoN (g, o) + (1 — ag)d(wy)
® Must compute w, = E{p(w, |7,;Q},)}, also covariance Q}
Inference of score z,,

@ Must compute Z,, = E{p(zy | yn, P,,; Q%) }, also covariance Q7.

@ Intractable due to form of P(yx. |zx) (recall multinomial logistic function)
@ Solve via numerical integration (slow) or importance sampling (inaccurate)
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MS-HyGAMP for MLR

Inference of weight vector w,
@ Compute w), = arg max,, log p(w,) + log N (w,; 7, Q)

@ Under ¢y regularization, i.e., Laplacian p(w,)
. 1 _ _ _
Wy = argmax — (w — 7)) '[Q}] 7} (w — 7)) = A|w]h

@ No CF solution, but can be solved iteratively using, e.g.,
minorization-maximization

Inference of score z,,
~ 1 ~ \TrHp1-1 ~
zZn = argmaxlog q(yn [ 2) — 5(z = P,) Q7] (2 = Pn)
z

@ Convex, solved via Newton's method
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GM approximation details

We expand on
1

o = 250,

g,
= !

—

Change of variables:

1
, v =z, — 2.
L+ exp(—d) @ ™ 7

Gaussian mixture approximation:

q(y| =) =

L
1 Z " <I>( /icz)
1437, exp(— = Ol
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SURE details

Input soft thresholding:
Wpe = f(Tpe, ¢ A) = sign(Tpe) max{0, [Fpe| — A¢"}.
Shifted estimation function
9T 4" A) = f(T. ¢ A) — .
Stein’s result

E{|@ — w[*} = ¢" + E{g°(r,¢"; \) +2¢"¢'(r, ¢"; M) }.

We know E{S(r, ¢"; A\} = MSE()), so we choose A to minimize E{S(r,¢";\)}.
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SURE details con't

Minimize empirical average
P C
A=argmin ¥ Y g% (Fpe, 43 N) + 209 (Ppes 45 V).
A p=1c=1
Above is difficult, so instead solve

A= argmin E{¢?(r,¢"; \) + 2¢"¢'(r, ¢"; M)},
A

where p(r) = El 1al<I>(T ‘“)
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