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Motivating example

Micro-array gene expression data

Can we identify which genes are good predictors of certain diseases?

Given samples containing:

class label y indicating the type of disease (e.g., cancer)

feature vector x containing gene expression values

How do we cope with P ≈ 104 genes but only N ≈ 102 samples?
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Linear classification and feature selection

Linear classification: learn a weight matrix Ŵ ∈ R
P×C from training data{

yn ∈ {1, ..., C},xn ∈ R
P
}N

n=1
such that

yn ≈ argmax
i

[Ŵ
T
xn]i,

and classification of unknown x0 via

ŷ0 = argmax
i

[Ŵ
T
x0]i

has minimal error rate.

Accurate classification when N ≪ P if “true” W is sufficiently sparse.

Feature selection from largest elements in Ŵ .

How to design Ŵ ?
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Multinomial logistic regression

One well known approach to multiclass linear classification is multinomial logistic
regression (MLR).

Ŵ = argmax
W

N∑

n=1

log q(yn |xn,W ) +G(W )

where

q(y |x,W ) =
exp([W Tx]y)∑C
c=1

exp([W Tx]c)

and G(W ) is some concave regularization term, e.g., −λ‖W ‖1.
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Bayesian approach to MLR

Actual objective: minimize test-label error-rate

=⇒ equivalent to finding test-label posterior p(y0 |y;X).

Assume ∃ “true” W and y corresponding to X s.t.

wp ∼ p(wp)

yn |W
Txn ∼ q(yn |W

Txn).

We can write the joint distribution of y and W as

p(y,W ;X) ∝
N+T∏

n=1

q(yn |W
Txn)

P∏

p=1

p(wp),

where yn, n ≤ N are known, yn, n > N are unknown, and wp is a row of W .
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Factor graph representation

p(y,W ;X) ∝

N+T∏

n=1

q(yn |W
T
xn)

P∏

p=1

p(wp)

m

yn q(yn|W
Txn) wp p(wp)

y0

We could apply loopy belief propagation
(based off the Sum-Product (SP)
algorithm) to get approximate marginal
posteriors (approximate due to loops in
the factor graph), but...

LBP is intractable due to the form of
our distributions.

Could try expectation-propagation, but
infeasible due to large N and P .

However, we can use previously
developed approximate message passing
(AMP) algorithms.
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Approximate message passing

AMP is derived from a simplification of message passing (sum-product or
min-sum) that holds in the large system limit.

CLT to approximate messages as Gaussian.

Taylor series to reduce to O(N+P ) messages.

The evolution of AMP:

AMP: for the linear model [Donoho, Maleki, Montanari 09].

Generalized-AMP (GAMP): for the generalized linear model with scalar
variables [Rangan 11].

Hybrid-GAMP (HyGAMP): vector-valued extension of GAMP [Rangan,
Fletcher, Goyal, Schniter 12].

Since HyGAMP also approximates the Min-Sum (MS) algorithm, we can
use it to solve the original MAP formulation of MLR.
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Our contributions

1 Sparse multinomial logistic regression via HyGAMP.

1 SP-HyGAMP: approximate minimum probability of error classifier.

2 MS-HyGAMP: regularized MAP estimate Ŵ (focus on ℓ1 case).

2 Simplified variants of both SP and MS-HyGAMP that are competitive with
state-of-the-art algorithms w.r.t. algorithm runtime and test-error-rate.

3 Expectation-maximization (EM) and Stein’s unbiased risk estimate (SURE)
based methods to tune the model parameters online.
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The HyGAMP algorithm for MLR

Via approximate message passing, breaks one P×C -dimensional inference
problem into N+P C-dimensional inference problems (but iterative).

Messages take the form of C-dim normal distributions.

Approximates the posterior of wp and ‘hidden’ zn , W Txn as product of

Gaussian and p(wp) or q(yn |W
Txn), respectively.

Each iteration is a series of linear steps and inference steps.

SP and MS-HyGAMP have identical linear steps.

Inference steps find mean/mode of approx. posteriors.
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The HyGAMP algorithm for MLR

Require: Mode ∈ {Sum-Prod, Min-Sum}, y, X, prior p(w), inits. ŵp, Q
w
p .

Ensure: t←0; ŝn(0)←0.
repeat
∀n : Qp

n ←
∑

p X2
npQ

w
p(t)

∀n : p̂n ←
∑

p Xnpŵn −Qp
nŝn

if Min-Sum then
∀n : ẑn ← argmax

z
log q(yn |z)N (z; p̂n,Qp

n)

∀n : Qz
n ←

[
− ∂2

∂z
2

log q(yn | ẑn)N (ẑn; p̂n,Qp
n)

]
−1

else if Sum-Prod then
∀n : ẑn ← E

{
q(yn | z)N (z; p̂n,Qp

n)
}

∀n : Qz
n ← Cov

{
q(yn | z)N (z; p̂n,Qp

n)
}

end if
∀n : Qs

n ←
[
Qp

n

]
−1 −

[
Qp

n

]
−1

[
Qz

n

][
Qp

n

]
−1

∀n : ŝn ←
[
Qp

n

]
−1(ẑn − p̂n)

∀ p : Qr
p ←

[∑
n X2

npQ
s
n

]
−1

∀ p : r̂p ← ŵp + Qr
p

∑
n Xnpŝn

if Min-Sum then
∀ p : ŵp ← argmax

w
log p(w)N (w; r̂p,Q

r
p)

∀ p : Qw
p ←

[
− ∂2

∂w
2

log p(ŵp)N (ŵp; r̂p,Q
r
p)

]
−1

else if Sum-Prod then
∀ p : ŵp ← E

{
p(w)N (w; r̂p,Q

r
p)

}

∀ p : Qw
p ← Cov

{
p(w)N (w; r̂p,Q

r
p)

}

end if
until Terminated

}
inference steps

}
inference steps
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Simplified HyGAMP (SHyGAMP)

HyGAMP for MLR is computationally costly.

We simplify by constraining message covariance matrices to be diagonal.

Leads to:

faster matrix inversions

greatly simplifies inference steps

enables use of existing GAMPmatlab software
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Online parameter tuning

Model parameters require tuning.

SP: Bernoulli-Gaussian prior parameters {α, µ, σ2}.

MS: ℓ1 regularization parameter λ.

We tune the SP parameters using EM [Vila, Schniter 13].

We tune the MS parameter using a method based on Stein’s unbiased risk
estimate (SURE) [Mousavi, Maleki, Baraniuk 13].
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SURE method to tune λ

Basic idea: select λ to min Stein’s unbiased risk estimate of the MSE.

Recall: ŵp = argmaxw logN (w; r̂p,Q
r
p)p(w;λ).

Assume r̂ = w + σ v where r̂ and σ are known.

Then, E{S(r̂;σ, λ)} = E{|ŵ −w|2}.

Choose λ̂ = argminλ S(r̂;σ, λ).

However... the objective S(·) is non-smooth and has many local minima.

Prior work proposed approximate gradient descent, but too slow.

We replaced an empirical average with a statistical average.

Smooth, easy to compute gradient.

Can now efficiently minimize via bisection.
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Experimental validation of SURE

Synthetic data

C = 4, N = 300, P = 30 000

xn | (yn = c) ∼ N (µc, vI)

Orthonormal {µc}
C
c=1

K = 25 discriminatory
features

Ran MS-SHyGAMP with
fixed λ, then with SURE
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Numerical Results

Metrics

Classification accuracy
Algorithm runtime

Target regime

High dimensional, and data-starved, i.e., N ≪ P

Multiclass, C ≈ 10

Applications

Microarray gene-expression analysis
Text classification
Handwritten digit classification

Competing algorithms

SBMLR [Cawley, Talbot, Girolami 07]
GLMNET [Friedman, Hastie, Tibshirani 10]
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Gene-expression data

Sun et al

Classes represent different types of glioma.

N = 179, P = 54 613, C = 4

Algorithm % Error (SD) Runtime (s) K̂99 ‖Ŵ ‖0

SP-SHyGAMP 32.0 (14.8) 7.68 10.29 218 452
MS-SHyGAMP 30.9 (16.5) 12.33 31.04 49.25
SBMLR 32.3 (16.6) 24.10 48.41 72.41
GLMNET 31.1 (15.9) 32.30 24.79 39.28

Bhattacharjee et al

Classes represent different types of lung carcinoma.

N = 203, P = 12 600, C = 5

Algorithm % Error (SD) Runtime (s) K̂99 ‖Ŵ ‖0

SP-SHyGAMP 8.0 (8.0) 3.50 14.64 63 000
MS-SHyGAMP 6.2 (8.1) 8.04 40.62 66.29
SBMLR 6.6 (8.1) 7.36 46.55 79.68
GLMNET 6.6 (8.1) 13.96 53.17 93.50
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Text classification

Reuter’s Corpus Volume 1
(RCV1)

Classes are the article’s topic

Features are frequency of
keywords

Sparse and non-zero mean X

N = 14 147, P = 47 236,
C = 25

Tested on 469 571 samples

Plot test-error-rate vs
algorithm runtime

10
1

10
2

10
3

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

 

 
SP SHyGAMP
MS SHyGAMP
SBMLR

T
es
t
E
rr
or

R
at
e

Cumulative Runtime [sec]

Evan Byrne SMLR AMP September 25th, 2015 18 / 27



Handwritten digit recognition

Mixed National Institute of
Standards and Technology
(MNIST)

Classes are the digits 0-9

Features pixels of an image
(P = 784)

We had in total N = 70 000
samples

Varied N from 70 to 10000
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Summary

Motivated by multiclass problems where N ≪ P , want feature selection.

Novel approach to sparse MLR by using message passing to break high
dimensional inference problem into many smaller inference problems.

SP yields approximate marginal test label posteriors.

MS solves traditional ℓ1-regularized objective.

Automatically tune model parameters using EM and SURE techniques.

Numerical results show we are competitive/superior to state-of-the-art.
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Thank you

Questions?
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SP-HyGAMP for MLR

Marginal posteriors are approximated as

“weights”: p(wp | r̂p;Q
r
p) ∝ p(wp)N (wp; r̂p,Q

r
p)

“scores”: p(zn | yn, p̂n;Q
p
n) ∝ q(yn | zn)N (zn; p̂n,Q

p
n) for zn , W Txn

Inference of weight vector ŵp

Sparsity-promoting prior: p(wp) = α0N (µ0,Σ0) + (1− α0)δ(wp)

Must compute ŵp = E{p(wp | r̂p;Q
r
p)}, also covariance Qw

p

Inference of score ẑn

Must compute ẑn = E{p(zn | yn, p̂n;Q
p
n)}, also covariance Qz

n.

Intractable due to form of P (yn | zn) (recall multinomial logistic function)
Solve via numerical integration (slow) or importance sampling (inaccurate)
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MS-HyGAMP for MLR

Inference of weight vector ŵp

Compute ŵp = argmaxw log p(wp) + logN (wp; r̂p,Q
r
p)

Under ℓ1 regularization, i.e., Laplacian p(wp)

ŵp = argmax
w

−
1

2
(w − r̂p)

T[Qr
p]

−1(w − r̂p)− λ‖w‖1

No CF solution, but can be solved iteratively using, e.g.,
minorization-maximization

Inference of score ẑn

ẑn = argmax
z

log q(yn | z)−
1

2
(z − p̂n)

T[Qp
n]

−1(z − p̂n)

Convex, solved via Newton’s method
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GM approximation details

We expand on

1

1 + exp(−z)
≈

L∑

l=1

Φ
(z − µl

σl

)
.

Change of variables:

q(y | z) =
1

1 +
∑

c 6=y exp(−γ
y
c )

, γy
c = zy − zc.

Gaussian mixture approximation:

1

1 +
∑

c 6=y exp(−γ
y
c )

≈
L∑

l=1

αl

∏

c 6=y

Φ
(γc − µcl

σcl

)
.
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SURE details

Input soft thresholding:

ŵpc = f(r̂pc, q
r;λ) = sign(r̂pc)max{0, |r̂pc| − λqr}.

Shifted estimation function

g(r̂, qr;λ) = f(r̂, qr;λ)− r.

Stein’s result

E{|ŵ − w|2} = qr + E{g2(r, qr;λ) + 2qrg′(r, qr;λ)}.

We know E{S(r, qr;λ} = MSE(λ), so we choose λ to minimize E{S(r, qr;λ)}.
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SURE details con’t

Minimize empirical average

λ̂ = argmin
λ

P∑

p=1

C∑

c=1

g2(r̂pc, q
r;λ) + 2qrg′(r̂pc, q

r;λ).

Above is difficult, so instead solve

λ̂ = argmin
λ

E{g2(r, qr;λ) + 2qrg′(r, qr;λ)},

where p(r) =
∑L

l=1
αlΦ

(
r−µl

σl

)
.
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