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/Introduction: \

Goal: Communication over large-delay/Doppler-spread channels that is
reliable, spectrally efficient, and computationally efficient.

Prior Art:
e single-carrier/DFE  [Stojanovic/Proakis JOE 95], [Preisig JASA 05]

— unsatisfactory in surf zone (2fp7), ~ 0.1) [Preisig/Deane JASA 04]
e /P-OFDM [Li/Zhou/et al. OCEANS 06], [Stojanovic OCEANS 06]
negligible ICl (-25dB 2fpls = 0.06
_ ) e (-25dB) = 2/o — 2/5T), = 0.008
T, =71y

e MCM (ICl-free but ISI-inducing) [Morozov/Preisig OCEANS 06]
— 2fp1}, = 0.007 simulated, 2 fp7}, = 0.004 experimental

Conclusion: Need a new approach to the problem.
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/Our approach to comm over highly spread channels: \

e Suppressing both ISI and ICl mandates a low spectral efficiency
(Balien-Low theorem) [Strohmer/Beaver TCOM 03]. Solution: allow a
small span of ICI [Schniter Allerton 03].

e \When channel-estimation and data-dection are decoupled,
guardbands are required for good performance, thereby decreasing
spectral efficiency. Solution: joint estimation/detection, which can
achieve the high-SNR capacity (1 — 2fpT}) log, SNR [Kannu/Schniter
Allerton 06].

e For joint estimation/detection, PSP-VA /Kalman is complex and
PSP-VA/LMS is poor performing. Solution: use fast tree-search.

e Channel sparseness is complicated to track (e.g., O(N7) [Li/Preisig
OCEANS 06]) and seldom combined with MCM. Solution: to be
described. . .
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/Summary of our approach: \

We use. ..
1. multicarrier modulation that allows a small ICl span,
2. joint estimation/detection (i.e., noncoherent decoding)
3. fast tree-search (i.e., sequential decoding),

4. a novel means of tracking/exploiting delay-domain channel
sparseness.

In the near future, we plan to incorporate

4. bit-interleaved coded modulation and soft tree search.

\I\Iext, we detail our approach. .. /
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/Multicarrier Modulation: \

Modulation:

oo N-—1

0 = 3 3 [otn)] alt — T

n=—oo k=0

Doubly dispersive channel:

Demodulation:

[:B(n)]k = /_OO x(t) B (t — nTS>e—j27TkiFs(t—nTS)
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/ Discrete-time Vector Representation: \
noise z(t)
x(n
symbols — ™| s(t) LTV z(t) ™| equalize/ [™ symbols
ys(n) — mod | channel demod ol decode | yé(n)

x(n) = Z H(n,m)s(n —m) + w(n)

m=—oco

“ISI4+ICI channel”

s(n)e€ CV  multi-carrier symbol vector

H (n,m) e CN* sub-carrier coupling matrix at time-n and lag-m

(
(

wn

- /

x(n) € CV  multi-carrier observation vector

c CN  noise vector
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/Quasi-Banded Model: \

With properly chosen pulse shapes «(t) and 5(t), and with a smoothly
varying channel, we can make the ISI-free approximation

z(n) = Y  H(n,m)s(n—m)+w(n)

m=—-oo

~ H(n,0)s(n) + w(n)

where H (n,0) is quasi-banded with 2D + 1 active diagonals:

x(n) H(n,0) s(n) w(n)

In other words, ISI becomes negligible and ICI is effectively limited to a
radius of D subcarriers. (Typically D = 1.)

- /
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Example pul
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/In fact, with D > 0, the pulses {«(t), 3(t)} can be designed to make \
the approximation accurate without compromising spectral efficiency.
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/Corresponding ISI/1CI Energy Profiles (same for each subcarrier): \
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for Ny = 64, foT,=T7.6x 1074, 2fpT}, = 0.1, D=1, SNR = 15dB

\(e.g., Ty, = Tms, fp = THz, BW = 9.2kHz) /
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/A Sparse Basis-Expansion Model: \

From multicarrier model

x(n) = H(n,0)s(n) + w(n)
= S(n)h(n) + w(n) h(n) € CEPHIN |C| coefs

we can use a basis-expansion model (BEM)

h(n) = BO(n) 0(n) € CEPTUN: delay/Doppler coefs

F
B = ( ) F ¢ CY*Ne Fourier basis matrix
F

to rewrite the observation as
x(n) = S(n)BO(n)+ w(n)

where sparseness in the delay profile implies sparseness in 6(n).

\\Thus, ignore negligible coefs in @(n) and corresponding columns in B! /
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/Noncoherent ML Decoding: \

Treating (non-negligible) delay/Doppler coefs 6 as nuisance parameters,

AN

svyL = argmax p(x|s)
S

argmax/p(w\s,@)p(@)d@
s Je
Assuming 8 ~ CN (0, Ry),
suL = argmax{z”"SBEX'B"S"x — ¢°log|Z|}
A~ argmax {wHSBE_lBHSHm} for SNRs of interest
> .= B"S"SB +¢’R,".

where it is interesting to note that QMM5E|3 = > 'BiSH,.

But how do we avoid an exhaustive search for symbols s?

- /
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-
\/|

(for BPSK)

/Fast Sequential Decoding:

By turning off the first and last D subcar-
riers, the ICl model becomes “causal,” fa-
cilitating the use of tree-search.

S2 = [807 S1, 52]

s3 = [s0, 51, 52, 53] =

The important thing here is that the partial ML metric
u(sy) = xS BX. ' B S} ),

can be computed recursively. Thus, total search complexity via the
M-algorithm is only about

2M|S|(2D + 1)* N} pase mults per scalar-symbol!!

- /
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/Complexity Reduction via Pilots: \

e With noncoherent decoding, only a single pilot subcarrier is required
to resolve gain/phase ambiguity.

e But, as number of pilots increase, the initial channel estimate 0
improves, allowing more aggressive branch pruning (i.e., smaller M)
without a sacrifice in performance.

10°

- g»- joint est/det‘

= ¥ = genie-chan+MLSD
—©— joint est/det, genie-sparse
107 —4— genie-chan+MLSD, genie-sparse

e Example: M-algorithm
(BPSK, 25% npilots, 107
M=8) compared to

coherent MLSD with
genie-aided O\ visk: 107

BER

107k

10°F
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ﬂl’racking the Sparseness Pattern: \

e To apply the sparse BEM, need to know “active tap” locations.

e To learn active taps, we can use pilots to estimate the delay-power
profile (DPP), then

1. choose Ny, sparse largest taps (for fixed complexity), or
2. choose all taps above a threshold (for fixed performance).
e Note: the same pilots are used for DPP and tree-search
initialization.
Example pilot/data pattern:

sis=h RERCRER" 0 data
..:::!:::!... M pilot
OB HEENE O guard
JEboHebnn
é’T!:::!:::time
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/ResiduaI-Tap Compensation: \

e Since the interference from residual (i.e., non-active) taps is treated
as additive noise, the effective noise power is unknown and
time-varying.

e Solution: estimate noise power from

AN

w(n) = x(n) — S(n)BO(n).

15
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/Simulation Setup: \
Channel:

e 4 paths with Rayleigh-fading gains and slowly varying delays.

delay spread NV, = 20
’ { Doppler spread 2 fp1,. = 0.005
BW=T"1| T, | 2fo
which corresponds to  10kHz 2ms | 50Hz

5kHz 4ms | 25Hz
1kHz 20ms | bHz

} = 2fpT), = 0.1 (surf zone).

Transmitter:

e max-SINR pulse, N=64 carriers, 18 pilots, n=0.72 Ssyer:/blfl's, QPSK.

Receiver:

e rectangular pulse, ICl radius D = 1, M-alg parameter M = 8§,
Nh—sparse = 8.

.
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s N

imulation Results (Perfectly Sparse Channel):

“Non-active” taps are zero-valued.

T T e s
SRR RS R SRR IR -B-jointest/det ]
........................................... - % = genie-chan+MLSD
""""""""" _e_jointest/det, genie-sparse

107 R R —}— genie-chan+MLSD, genie-sparse |3

BER
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‘s

.

imulation Results (Nearly Sparse Channel):

2% of “active tap” energy leaked to “non-active” taps.

0

10 e I I e S S S TS (e e S A A A S ST ST ]

bit error rate

10 '

- IB,- joint est/dét

= % = genie-chan+MLSD
—©— joint est/det, genie-sparse |
—}— genie-chan+MLSD, genie-sparsg;

5 10 15 20 25 30
SNR (dB)
Note: Can lower BER-floor by increasing NVj,_sparse- /

~
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/Possible Improvements from Coding: \

e With 3 ICl taps, the uncoded system will achieve a diversity order of
at most 3 (and simulations indicate diversity order ~ 2).

e Through the use of coding, an MCM system can extract additional
diversity from the channel’s delay-spread.

e One option would be to use bit-interleaved coded modulation
(BICM) in conjunction with turbo reception. We expect significant
gains from this approach.

19
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/Conclusions: \

We proposed a multi-carrier scheme for communication over highly
spread underwater acoustic channels that

e allows ICI from neighboring subcarriers, eliminating the need for
time-domain guards,

e estimates symbols and sparse-channel-parameters jointly using a

fast tree-search algorithm that requires only about
2M|S|(2D + 1)° Ny .. Multiplications per QPSK symbol,
e uses pilots to reduce search complexity (i.e., tolerate low M)
e uses the same pilots to track the sparseness pattern.
For surf-zone-like channels (i.e., 2fpT), = 0.1), simulations indicate

e performance approximately 1dB away from genie-channel MLSD.

- /
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