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ABSTRACT
In this paper we propose a novel method for communication
over underwater acoustic channels for which the product of
delay-spread and Doppler-spread is large, such as those per-
taining to the surf zone. In particular, we propose the use
of pulse-shaped multicarrier modulation to convert the dou-
bly dispersive channel into an inter-carrier interference (ICI)
channel with small ICI spread. We then propose a novel
joint ICI-estimation/data-detection strategy which performs
near optimally yet at low complexity, due to the use of an
efficient tree search algorithm and the ability to leverage
sparseness in the delay-power profile. The delay-power pro-
file, which itself varies in time, can be readily tracked via
pilots. Numerical simulations show that our technique gives
performance close to genie-aided bounds over highly spread
channels.

Categories and Subject Descriptors
C.3 Computer Systems Organization [SPECIAL-

PURPOSE AND APPLICATION-BASED

SYSTEMS]: Signal processing systems

General Terms
Algorithms, Design, Theory, Performance

1. INTRODUCTION
Underwater networks are becoming increasingly impor-

tant in facilitating systems that perform remote measure-
ment, autonomous monitoring, littoral anti-submarine war-
fare, mine countermeasure, and other functions. The im-
practicality of cables and the impossibility of radio trans-
mission imply that communication between network nodes
must take place acoustically. The difficulty of this task
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should not be underestimated, since experts consider the
underwater acoustic channel (UAC) to be “quite possibly
nature’s more unforgiving wireless medium” [2]. In fact, re-
liable high-rate underwater acoustic communication remains
a principal challenge in the construction of underwater net-
works.

The physical characteristics of the UAC are highly de-
pendent on the distance and relative movement between the
transmitter and receiver; the proximity, roughness, and mo-
tion of the scattering surfaces; and the presence of ambient
interference. However, the UAC characteristics that pose
the primary challenges for data communication can be sum-
marized as simultaneously large delay- and Doppler-spreads,
limited bandwidth, and limited receiver complexity. These
challenges can be understood as follows. High delay-spread
implies that single-carrier communication will be plagued
by inter-symbol interference (ISI) that, for practical sig-
nal bandwidths, spans hundreds of symbols. High Doppler-
spread then implies that this ISI response will change quickly
in time. Since optimal mitigation of this long and quickly-
varying ISI response becomes computationally infeasible,
practitioners have resorted to simple sub-optimal strategies
such as the adaptive decision-feedback equalization (DFE)
[19, 25]. However, these implementable single-carrier tech-
niques perform far short of optimal and fail altogether in
very highly spread environments such as the surf zone [20].

As an alternative, multi-carrier modulation (MCM) has
been proposed to increase the symbol interval and thereby
decrease the ISI span. While a number of MCM proposals
for the UAC have been made over the years (see, e.g., the
references in [13, 18, 24]), none seem to have been success-
ful enough to displace single-carrier/DFE as the practical
method of choice. The primary difficulty in applying MCM
to the doubly dispersive UAC is that, as the symbol interval
is increased (to reduce ISI span), the subcarrier spacing must
be decreased (to preserve data rate), making the system
more susceptible to Doppler-spread-induced inter-carrier in-
terference (ICI). While ISI and ICI could be simultaneously
reduced via long symbols and distant subcarriers, this would
necessitate low spectral efficiency, which is impractical given
the UAC’s already limited bandwidth.

The MCM proposals recently presented at the IEEE/MTS
OCEANS-2006 conference help to illuminate the challenges
in applying MCM to the UAC. For example, in [13, 24],
the authors proposed the use of classical ZP-OFDM sig-
naling schemes and assumed Doppler-spreads small enough
to induce negligible ICI. For these schemes, the universal



ICI bound1 in [15] implies that an ICI power of −25 dB
(which we consider “negligible”) occurs when fDTs = 0.03,
where fD denotes single-sided Doppler-spread and Ts sym-
bol duration. Since Ts was chosen as 7Th (as 3.4Th) in [13]
(in [24]), where Th denotes channel delay-spread, we deduce
that these schemes can handle UACs with delay/Doppler
spreading products of at most fDTh = 0.004 (fDTh = 0.009).
The surf-zone channels described in [20], however, yield
fDTh ≈ 0.05, which is more than 10 times (5 times) as se-
vere. As another example, in the non-traditional MCM ap-
proach [18], the symbol length was chosen shorter than that
needed for perfect ISI-suppression, in order to tolerate high
Doppler-spread while keeping ICI negligible. The resulting
ISI-span was short enough to enable the use of sophisticated
joint estimation/detection techniques (i.e., LMS/Viterbi per-
survivor processing [21]), which were shown to significantly
outperform the traditional adaptive DFE. But [18] only dem-
onstrated the ability to handle fDTh = 0.0035 via simulation
and fDTh ≈ 0.002 experimentally, which are over 10 times
milder than the surf-zone channels discussed in [20].

Communication over doubly dispersive channels, i.e., those
with large delay/Doppler-spread product, is a challenging
problem that has received significant attention from research-
ers over the last two decades. Most researchers have ap-
proached this problem through the design of MCM pulse-
shapes which minimize total ISI/ICI power [11, 12, 16, 26],
with the goal that ISI/ICI is rendered negligible. But even
with optimized pulses, ISI/ICI remains non-negligible for
surf-zone-like channels unless the pulses are designed to sac-
rifice about 50% in spectral efficiency, a fundamental con-
sequence of the Balian-Low theorem [26]. Given the band-
width limitations of the UAC, such sacrifices should be
avoided. An alternative approach, suggested by the au-
thors, is to allow a small ICI span (e.g., 2-3 subcarriers)
and design pulses which minimize residual ISI/ICI power
[4, 22]. Here, near-perfect residual-ISI/ICI suppression can
be accomplished without loss of spectral efficiency, and high-
performance dominant-ICI mitigation can be accomplished
with low complexity. We propose to employ these ICI-
shaping pulses for communication over the UAC.

The aforementioned ISI/ICI mitigation schemes require
(implicitly or explicitly) accurate channel state information
(CSI). Maintaining this CSI is especially difficult when the
channel is doubly dispersive, due to the number and rate-
of-change of the channel coefficients. Pilot-aided transmis-
sion (PAT) is a practical means of aiding data reception
in the presence of channel uncertainty [27]. When PAT is
used with decoupled estimation/detection (DED) schemes,
a channel estimate is first obtained via pilots and later used
for coherent data detection. With DED, it is important to
keep the channel estimates free of interference from unknown
data (especially at high SNR), though doing so with a dou-
bly dispersive channel requires time/frequency guard-bands
which reduce spectral efficiency [10]. When PAT is used
with joint estimation/detection (JED), there is no need to
keep pilots and data separate, allowing the overall system
to achieve the high-SNR ergodic capacity of the doubly dis-
persive channel, i.e., (1 − 2fDTh) log2 SNR bits/sec/Hz [10].
The bandwidth-limited nature of the UAC motivates us to
consider PAT with JED.

As one would expect, the complexity of optimal JED is

1 [15] confirms that this bound is tight for fDTs = 0.3.

prohibitive. Hence, practical JED is often based on the
Viterbi algorithm (VA) with per-survivor processing (PSP),
whereby a separate channel estimate is calculated for each
surviving path in the trellis [21]. Because the number of
trellis states (and hence paths) can be quite large, PSP
channel estimation is often accomplished using the simple
LMS algorithm. With rapidly varying channels, however,
PSP-VA-LMS performance floors at medium SNR, and en-
hancements based on the list-Viterbi algorithm (LVA) and
Kalman channel tracking are needed to keep PSP perform-
ing well throughout the practical SNR range [3].

Motivated by the high complexity of PSP-LVA-Kalman,
the authors recently proposed a block-based technique, based
on a tree-search algorithm which leverages a basis-expansion
model (BEM) for the time-varying channel, that was found
to outperform PSP-LVA-Kalman at much lower complex-
ity [8]. In particular, the per-symbol complexity of this JED

scales as O(N2
hD2), where Nh = Th

Ts/N
denotes the delay-

spread (in chips) and D = ⌈fDTs⌉ the single-sided Doppler
spread (in subcarriers). But with surf-zone UAC parame-
ters, even the complexity of even this tree-search JED may
be prohibitive. For example, if 256 subcarriers were used to
transmit a 24 kHz bandwidth signal over the surf-zone UAC
from [20], one can expect Nh ≈ 168 and fDTs ≈ 0.15, for
which the N2

h dependence becomes problematic.
The solution to the complexity riddle may lie in the sparse

nature of realistic UAC responses [5, 6, 14]. For example, if
only 1/3 of the channel’s Nh delay taps are significant, then
a reception algorithm whose complexity is quadratic in the
active delay taps will save in processing by a factor of 9.
But the design of a high-performance system which lever-
ages sparseness is non-trivial. For example, most sparseness-
leveraging algorithms are based on single-carrier transmis-
sion with adaptive DFE reception (e.g., [14]), whose per-
formance is known to fall far short of optimal, and it is
not clear how to exploit sparseness in the recently proposed
MCM schemes [13, 18, 24]. To further complicate matters,
there exists the challenge of accurately tracking the sparse-
ness structure. In UACs, for example, it has been observed
that the tap delay locations can change almost as quickly as
the tap gains [20]. While clever order-recursive matching-
pursuit algorithms have been proposed to track the struc-
ture of sparse UACs (e.g., [14]), their complexity remains
quadratic in the dictionary length (i.e., Nh), which is no
better than our non-sparse tree-search algorithm. So, we
need a tracking algorithm that is much less complex.

In this paper, we propose a tree-search-based JED strat-
egy, building on our earlier work [8], that operates on pulse-
shaped MCM transmissions and that takes full advantage
of sparseness in the channel delay profile. In addition, we
propose a simple yet accurate means of tracking the chan-
nel’s quickly-varying delay-power profile (DPP). The perfor-
mance of our algorithm is ascertained numerically using sim-
ulated channels whose sparseness and overall delay/Doppler-
spread product fDTh mimic those of the surf-zone channels
in [20]. The proposed scheme is found to exhibit BER per-
formance close to genie-aided bounds while maintaining high
spectral efficiency and low computational complexity.

Notation: We use (·)T to denote transpose, (·)∗ conjugate,
and (·)H conjugate transpose, and we use [B]m,n to denote
the element in the mth row and nth column of matrix B,
where row/column indices begin with zero. We also use
D(b) to denote the diagonal matrix created from vector b,



IK the K × K identity matrix, and {δk} the Kronecker
delta sequence. Finally, we use ⊙ to denote element-wise
multiplication and E{·} expectation.

2. SYSTEM MODEL

2.1 Pulse-Shaped MCM
We consider discrete-time complex-baseband multi-carrier

modulation (MCM) with N subcarriers, where the ith MCM

symbol is composed of QAM symbols {s(i)
k }N−1

k=0 drawn from
the finite alphabet S. As shown in (1), the transmitted
sequence {tn} is generated by transforming the ith QAM
symbol vector via N -point inverse discrete Fourier transform
(DFT), applying an Nα-point modulation pulse {αn}Nα−1

n=0

to its cyclic extension, and superimposing the result N sam-
ples behind the contribution from the (i−1)th MCM symbol.

tn =
∞

X

i=−∞

αn−iN · 1√
N

N−1
X

k=0

s
(i)
k ej 2π

N
k(n−iN). (1)

(See [4] for details.) A noisy linear time-varying channel
then produces the received samples

rn =

Nh−1
X

l=0

hn,ltn−l + vn, (2)

where {hn,l}Nh−1
l=0 denotes the length-Nh discrete impulse

response at time n, and where {vn} is zero-mean circular
white Gaussian noise (CWGN) with covariance σ2. Focusing

on demodulation of the ith MCM symbol, we define r
(i)
n :=

riN+n, v
(i)
n := viN+n, and h

(i)
n,l := hiN+n,l and rewrite (2) as

r(i)
n =

Nh−1
X

l=0

h
(i)
n,l

∞
X

ℓ=−∞

αℓN+n−l

× 1√
N

N−1
X

k=0

s
(i−ℓ)
k ej 2π

N
k(n−l+ℓN) + v(i)

n . (3)

For demodulation, the receiver applies the length-Nβ pulse

{βn}Nβ−1

n=0 prior to an N -point DFT, eventually yielding the

frequency-domain observations {x(i)
d }N−1

d=0 :

x
(i)
d =

1√
N

Nβ−1
X

n=0

r(i)
n βne−j 2π

N
dn. (4)

Putting (1)-(4) together, it is straightforward to show that

x
(i)
d =

∞
X

ℓ=−∞

N−1
X

k=0

H
(i,ℓ)
d−k,ks

(i−ℓ)
k + w

(i)
d , (5)

where

H
(i,ℓ)
d,k :=

1

N

Nβ−1
X

n=0

Nh−1
X

l=0

h
(i)
n,lβnαℓN+n−le

−j 2π
N

[dn+k(l−ℓN)]

(6)

w
(i)
d :=

1√
N

Nβ−1
X

n=0

βnv(i)
n e−j 2π

N
dn. (7)

In writing (5), we used the fact that H
(i,ℓ)
d,k is N -cyclic in the

indices d and k. Defining x(i) := [x
(i)
0 , . . . , x

(i)
N−1]

T , s(i) :=

[s
(i)
0 , . . . , s

(i)
N−1]

T , and w(i) := [w
(i)
0 , . . . , w

(i)
N−1]

T , (5) can be
written in vector form as

x
(i) =

∞
X

ℓ=−∞

N−1
X

k=0

Dk(s(i−ℓ))H
(i,ℓ)
−k + w

(i) (8)

H
(i,ℓ)
d := [H

(i,ℓ)
d,−d, H

(i,ℓ)
d,−d+1, . . . , H

(i,ℓ)
d,N−1−d]T ∈ C

N , (9)

where Dk(·) denotes the diagonal matrix created from the
k-place cyclic downward shift of its vector argument.

The techniques in [4] can be used to design pulses {αn}
and {βn} that yield both negligible ISI:

H
(i,ℓ)
d,k ≈ 0 for ℓ 6= 0, (10)

as well as negligible ICI beyond a radius of D := ⌈fDTcN⌉
subcarriers:

H
(i,ℓ)
d,k ≈ 0 for D < d < N − D. (11)

Here, fD denotes the single-sided Doppler spread in Hz and
Tc denotes the sampling (or “chip”) interval in seconds. Un-
der these conditions, the system model (8) simplifies to

x
(i) =

D
X

k=−D

Dk(s(i))H
(i)
−k + w

(i) (12)

H
(i)
d := [H

(i,0)
d,−d, H

(i,0)
d,−d+1, . . . , H

(i,0)
d,N−1−d]T ∈ C

N . (13)

2.2 A Sparse BEM
We now develop a sparse basis expansion model (BEM) for

the frequency-domain channel (13) and use it to rewrite the
system model in a form convenient for sequential detection.

Using (6), H
(i)
d can be written as

H
(i)
d = F θ̆

(i)

d (14)

θ̆
(i)

d := D(f ∗
d

√
N)(H(i) ⊙ P)T

f
d
∈ C

N , (15)

where F ∈ C
N×N , H

(i) ∈ C
Nβ×N , and P ∈ C

Nβ×N are
defined element-wise as

[F ]n,m :=
1√
N

e−j 2π
N

nm (16)

[H(i)]n,l := h
(i)
n,l (17)

[P ]n,l := βnαn−l, (18)

where f d ∈ C
N denotes the dth column of the DFT matrix

F , and f
d
∈ C

Nβ denotes its Nβ-length (cyclic) extension:

f
d

:= [e−j 2π
N

0, e−j 2π
N

1, . . . , e−j 2π
N

(Nβ−1)]T . (19)

Equation (14) can be recognized as an N th-order (i.e., exact)

BEM for the channel vector H
(i)
d : the columns of F are the

basis vectors and elements of θ̆
(i)

d are the basis coefficients.
We now show how sparseness in the impulse response can

be leveraged to reduce the BEM order. Notice that if only

Na < Nh taps of the impulse response {h(i)
n,l}

Nh−1
l=0 are non-

zero over the time duration n ∈ {0, . . . , Nβ − 1}, then only

Na columns of H
(i) will be non-zero, implying that only Na

BEM coefficients in θ̆
(i)

d will be non-zero. In this case, the
BEM order can be reduced to Na without loss. To make
this more precise, let L(i) denote the set of taps which are
active during the ith multicarrier symbol interval,

L(i) =
˘

l : h
(i)
n,l 6= 0 for some n ∈ {0, . . . , Nβ − 1}

¯

(20)



where |L(i)| = Na. Constructing B(i) ∈ C
N×Na from the

columns of F with indices in L(i), and constructing θ
(i)
d ∈

C
Na from the corresponding elements of θ̆

(i)

d , equation (14)
can be restated as

H
(i)
d = B

(i)
θ

(i)
d . (21)

Using this sparse BEM, (12) can be rewritten as

x
(i) =

h

DD(s(i))B(i), · · · ,D−D(s(i))B(i)
i

θ
(i) + w

(i)

(22)

θ
(i) := [θ

(i)T
−D , . . . , θ

(i)T
D ]T . (23)

2.3 Modifications for Sequence Detection
In Section 3, we will describe how tree-search can be

used to recover the data symbols s(i) from the frequency-
domain observations x(i). Before describing the tree-search,
we place a few restrictions on the model (22).

From (22), it can be seen that every element in x(i) sees
contributions from 2D + 1 unknown data symbols. For tree
search, we would like that the first observation contains a
contribution from only one unknown symbol, the second
contains contributions from only two unknown symbols, the
third from only three unknown symbols, and so on. An easy

way to ensure this is to set {s(i)
k }D−1

k=−D+1 = 0, i.e., “to turn
off” the first and last D subcarriers—a technique commonly
used to prevent adjacent-channel interference. Note that the
loss in spectral efficiency will be small when 2D ≪ N .

To proceed further, we find it convenient to define the D-

shifted quantities s̆
(i)
k = s

(i)

〈k+D〉N
and s̆(i) := [s̆

(i)
0 , . . . , s̆

(i)
N−1]

T ,

noticing that the last 2D elements in s̆(i) constitute a zero-
valued guard interval. Since Dk(s̆(i)) = Dk+D(s(i)) for any
k, we can rewrite (22) as

x
(i) = A

(i)
θ

(i) + w
(i) (24)

A
(i) :=

h

D2D(s̆(i))B(i), . . . ,D0(s̆
(i))B(i)

i

(25)

and see that, for each k ∈ {0, . . . , N − 1}, the observations

{x(i)
d }k

d=0 depend only on {s̆(i)
d }k

d=0. The now “causal” na-
ture of the ICI channel allows us to write the partial obser-

vation vector x
(i)
k := [x

(i)
0 , . . . , x

(i)
k ]T as

x
(i)
k = A

(i)
k θ

(i) + w
(i)
k , (26)

where w̆
(i)
k := [w

(i)
0 , . . . w

(i)
k ]T and where A

(i)
k appends a new

row with each k:

A
(i)
k =

2

6

6

4

a
(i)H
0

...

a
(i)H
k

3

7

7

5

(27)

a
(i)H
k = [s̆

(i)
k−2Db

(i)H
k , . . . , s̆

(i)
k b

(i)H
k ]. (28)

In (28), the k-indexing on s̆
(i)
k is performed modulo-N and

b
(i)H
k denotes the kth row of B(i).

We now investigate R
(i)
θm,θn

:= E{θ(i)
m θ

(i)H
n }, a key pa-

rameter in tree-search. If we assume that the channel obeys
the wide-sense stationary uncorrelated scattering (WSSUS)
assumption over the duration of one MCM symbol, i.e.,

E{h(i)
n,lh

(i)∗
n−k,l−m} = ρkσ2

l δm for n ∈ {0, . . . , Nβ − 1},
(29)

where {σ2
l }Nh−1

l=0 denotes the delay-power profile (DPP) and
{ρk} denotes the tap autocorrelation sequence (normalized

so that ρ0 = 1), then R
(i)
θm,θn

is a diagonal matrix with

h

R
(i)
θm,θn

i

ν,ν
= σ2

l
(i)
ν

Nβ−1
X

k=−Nβ+1

ρkγ
(i)
m,n,k,ν . (30)

In (30), l
(i)
ν denotes the index of the νth sparse tap (i.e.,

L(i) = {l(i)0 , l
(i)
1 , . . . , l

(i)
Na−1}) and

γ
(i)
m,n,k,ν =

1

N

X

p,q:p−q=k

βpᾰ
m,p−l

(i)
ν

β∗
q ᾰ∗

n,q−l
(i)
ν

ᾰm,p := αpe−j 2π
N

mp.

The autocovariance matrix R
(i)
θm

:= E{θ(i)
m θ

(i)H
m } is also di-

agonal with

h

R
(i)
θm

i

ν,ν
=

σ2

l
(i)
ν

N

Nβ−1
X

k=−Nβ+1

ρk

X

p,q:p−q=k

βpα
p−l

(i)
ν

β∗
q α∗

q−l
(i)
ν

e−j 2π
N

mk

(31)

which corresponds to the power spectral density of the pulse-
shaped channel.

3. SEQUENCE DETECTION
In this section, we describe a fast algorithm to decode s̆(i)

from the observations x(i) assuming knowledge of the sparse
basis B(i), but not of the BEM coefficients θ(i). Estimation
of B(i) (i.e., tracking of active taps) will be discussed in Sec-
tion 4.1. Our algorithm is sequential in that it estimates the

partial sequence s̆
(i)
k := [s̆

(i)
0 , . . . , s̆

(i)
k ]T for k = 0, 1, 2, . . . ,

eventually estimating the full sequence s̆(i) = s̆
(i)
N−1. In

deriving our algorithm, we employ the sparse model (26)

and assume that θ(i) is zero-mean circular Gaussian with a
full-rank autocovariance matrix R

(i)
θ := E{θ(i)θ(i)H} whose

contents can be inferred from (23) and (30). To keep the
development concise, we drop the symbol index i.

3.1 The Noncoherent Metric
The MLSD estimate is defined as

ŝML,k = arg max
s̆k

p(xk|s̆k), (32)

where, marginalizing over the channel (26),

p(xk|s̆k)

=

Z

θ

p(xk|s̆k, θ)p(θ)dθ

=

Z

θ

1

(πσ2)k
exp



− 1

σ2
‖xk − Akθ‖2

ff

p(θ)dθ.

Since θ ∼ CN (0, Rθ), we can write

p(xk|s̆k)

= C1

Z

θ

exp



− 1

σ2
‖xk − Akθ‖2 − θ

H
R

−1
θ θ

ff

dθ

= C2

Z

θ

exp



− 1

σ2

‚

‚θ − Σ
−1
k A

H
k xk

‚

‚

2

Σk

ff

dθ

× exp



− 1

σ2

“

x
H
k xk − x

H
k AkΣ

−1
k A

H
k xk

”

ff

=
C3

det(σ−2Σk)
exp



− 1

σ2

“

x
H
k xk − x

H
k AkΣ

−1
k A

H
k xk

”

ff



where

Σk := A
H
k Ak + σ2

R
−1
θ , (33)

and where {Ci} are constants irrelevant to the maximization
in (32). Using the monotonicity of log(·), we can write

ŝML,k = arg max
s̆k

n

σ−2
x

H
k

`

AkΣ
−1
k A

H
k − Ik+1

´

xk

− log det(σ−2
Σk)

o

. (34)

As reported elsewhere (e.g., [8, 17]), the maximization in
(34) can be simplified by ignoring the bias term
log det(σ−2Σk), yielding the quasi-ML detection rule

ŝk = arg max
s̆k

x
H
k AkΣ

−1
k A

H
k xk. (35)

We will now show that the detection rule (35) performs
implicit minimum mean-squared error (MMSE) estimation

of θ. Using θ̂k to denote the MMSE estimate of θ from xk

under hypothesis s̆k, we have

θ̂k = E{θx
H
k |s̆k}E{xkx

H
k |s̆k}−1

xk (36)

= RθA
H
k Φkxk, (37)

where we used the definition

Φk := E{xkx
H
k |s̆k}−1

=
“

AkRθA
H
k + σ2

Ik+1

”−1

(38)

= σ−2
“

Ik+1 − AkΣ
−1
k A

H
k

”

, (39)

where (39) follows from the matrix inversion lemma. Plug-
ging (39) into (37), and then applying (33), we find

θ̂k = σ−2
Rθ

“

ΣkΣ
−1
k A

H
k − A

H
k AkΣ

−1
k A

H
k

”

xk (40)

= Σ
−1
k A

H
k xk. (41)

Comparing (41) to (35), it is clear that the noncoherent

search (35) involves implicit estimation of θ̂k. This obser-
vation will help in deriving a fast search algorithm.

3.2 Fast Metric Update
Since the sequence detector (35) must evaluate the metric

µ(s̆k) = x
H
k AkΣ

−1
k A

H
k xk (42)

at least once per k, a fast algorithm to compute Σ−1
k from

Σ−1
k−1 is clearly of interest. Due to the rank-one update

Σk = Σk−1 + akaH
k , the matrix inversion lemma yields

Σ
−1
k = Σ

−1
k−1 − ηkdkd

H
k (43)

with

dk := Σ
−1
k−1ak (44)

ηk := (1 + a
H
k dk)−1. (45)

The partitions xk = [xT
k−1, xk]T and Ak = [AH

k−1, ak]H

then allow the recursive metric update

µ(s̆k) = (akxk + A
H
k−1xk−1)

H
Σ

−1
k (akxk + A

H
k−1xk−1)

= µ(s̆k−1) + x∗
ka

H
k Σ

−1
k akxk − ηkθ̂

H

k−1aka
H
k θ̂k−1

+ 2ℜ{x∗
ka

H
k θ̂k−1 − ηkx∗

ka
H
k dka

H
k θ̂k−1} (46)

= µ(s̆k−1) + u
H
k M kuk, (47)

with

uk :=

»

xkak

θ̂k−1

–

(48)

M k :=

»

Σ−1
k INaNb

− ηkdkaH
k

INaNb
− ηkakdH

k −ηkakaH
k

–

, (49)

where Nb := 2D + 1. Notice that θ̂k can also be calculated
recursively. Plugging (43) into (41), we get

θ̂k = (INaNb
− ηkdka

H
k )θ̂k−1 + (1 − ηkd

H
k ak)xkdk. (50)

Thus, initializing with
ˆ

µ(s̆k), Σ
−1
k , θ̂k

˜

k=−1
=

ˆ

0, σ−2
Rθ, 0

˜

, (51)

we can efficiently compute {µ(s̆k),Σ−1
k , θ̂k} using the inputs

{xk, ak} and the previously calculated quantities

{µ(s̆k−1),Σ
−1
k−1, θ̂k−1} at each time k ∈ {0, . . . , N −1}. It is

straightforward to show that this update can be performed
using 2(2D + 1)2N2

a + 9(2D + 1)Na + 8 multiplications.

3.3 Suboptimal Tree Search
Because exact maximization of (35) is computationally

challenging, we propose to perform approximate maximiza-
tion of (35) via tree search. While many options exist, we
choose breadth-first search via the M-algorithm [1] since it
offers a reasonably good performance/complexity tradeoff
while keeping its complexity invariant of SNR and chan-
nel realization (unlike, e.g., sphere decoders [9]). We now
briefly summarize the M-algorithm assuming that the sym-
bols {s̆k}N−1

k=0 are all unknown; a modification to handle pi-
lot/guard symbols will be described in Section 3.4.

At the kth detection stage, the M-algorithm has a record
of the M “best” surviving length-k partial paths, where M
is a design parameter. The M-algorithm then computes the
metric (42) for each length-(k + 1) extension of these M
paths and keeps only the best M of these extensions as
survivors for the next stage. At the final stage, the best
survivor is chosen as the full sequence estimate. From this
description, it can be seen that M |S| metrics need to be
computed at each stage k. Thus, using the fast algorithm of
Section 3.2, the total number of multiplications required to
compute ŝN−1 is only ≈ 2NM |S|(2D + 1)2N2

a .

3.4 Incorporating Pilot Symbols
With the previously described noncoherent sequence de-

tector, a single pilot symbol is sufficient to resolve gain/phase
ambiguities (e.g., [7]). But the judicious use of several pi-
lots can dramatically improve the performance/complexity
tradeoff of suboptimal tree-search. For example, if (2D +
1)Na pilot symbols are placed at the beginning of the se-
quence s, they can be used to compute a reasonable initial
estimate of θ before the M-algorithm is forced to discard
partial paths, allowing high performance with even small
M . In fact, the same approach can be taken with an ar-
bitrarily placed block of contiguous pilots after cyclically
shifting both s and x so that the pilot block appears at the
beginning of the data sequence. The possibility of cyclic

shifts can be recognized from (5) and the fact that H
(i,ℓ)
d,k is

N -cyclic in the indices d and k.
Note that a simple modification of the M-algorithm suf-

fices to handle the presence of pilot/guard symbols: When
the M-algorithm encounters a known symbol, each surviving
path is given a single (rather than |S|-ary) extension.



4. TRACKING SPARSENESS
So far, we have assumed that the “active-tap” locations

L(i) are known. Since, in practice, these locations must be
learned/tracked, Section 4.1 suggests an efficient means of
doing so. We have also assumed that the inactive taps are
zero-valued. Since, in practice, they will be small but non-
zero, Section 4.2 suggests a simple means of compensation.

4.1 Active-Tap Identification
To estimate the locations of active taps, we first compute

a pilot-aided MMSE estimate of the BEM coefficient vector

θ̆
(i)

:= [θ̆
(i)H

−D , . . . , θ̆
(i)H

D ] for each symbol index i, as detailed
below. Next, we estimate each component of the delay-
power profile (DPP) {σ2

l }Nh−1
l=0 by summing the energies of

the 2D + 1 Doppler coefficients. In particular, the lth DPP
element during the ith MCM symbol interval is estimated as

σ̂2
l
(i) =

PD
d=−D

˛

˛[θ̆
(i)

d ]l
˛

˛

2
. Note that this approach permits

accurate DPP estimation even when the channel gains {h(i)
n,l}

vary significantly over the MCM symbol interval. Once the
DPP for a given symbol index has been estimated, there are
several ways to assign Na “active” channel taps from it. If
a fixed receiver complexity was important, then Na could
be fixed and L(i) could be set as the largest Na taps in the
DPP. If, instead, a fixed performance was preferred, then
all taps in the DPP above a particular threshold could be
assigned to L(i). Note that the orthogonality of the basis F

in (14) makes possible the simple assignment of L(i) from
the DPP; a matching-pursuit approach [14] is not needed.

For pilot-aided BEM-coefficient estimation, we chose the
pilot pattern illustrated in Fig. 1, which repeats every P
MCM symbols. There, each MCM symbol has a contigu-
ous block of Np = N/P subcarriers dedicated to pilots and
separated from the data by D zero-valued guard subcarriers
on either side. The location of the pilot block is rotated
so that every subcarrier is used as a pilot once every P
MCM symbols. The role of the guard interval is twofold.
First, it facilitates tree-search by making the ICI channel
(24) “causal,” as described in Section 2.3. Second, it ensures

that Np elements in x(i) contain contributions from pilots
and not from (unknown) data. In this case, the MMSE es-

timator of θ(i) from the “pilot-only” observations can be
implemented with a fixed matrix multiplication. In con-
trast, decision-directed MMSE estimation of θ(i) would re-
quire the inversion of data-dependent matrices, which would
be much more expensive. Recall that the role of the pi-
lots are also twofold. First, they improve the performance-
complexity tradeoff of suboptimal tree-search, as discussed
in Section 3.4. Second, they facilitate tracking of active
taps, which is the subject of this section. Though not inves-
tigated here, pilots could also be used for bulk adjustment
of timing clock offsets and carrier frequency offsets (e.g., by
keeping the delay and Doppler spreads within the window
of interest). Small time/frequency offsets are subsumed by
the doubly dispersive channel response, obviating the need
for adjustement.

We now detail the MMSE estimation step. In our ap-
proach, the pilot-only observations from {x(i), . . . , x(i+P−1)}
are used to estimate the coefficients {θ̆(i+1)

, . . . , θ̆
(i+P−2)}.

Notice that estimates of {θ̆(i)
, θ̆

(i+P−1)} are not computed
from these observations because it is difficult to do so accu-

rately. Instead, an estimate of θ̆
(i)

will have been generated

using the group of P observation vectors shifted back in
time by P − 2 symbol indices, i.e., {x(i−P+2), . . . , x(i+1)}
while an estimate of θ̆

(i+P−1)
will be generated using the

group of P observation vectors shifted forward in time by
P−2 symbol indices, i.e., {x(i+P−2), . . . , x(i+2P−3)}. Notice
that, in each estimation step, a total of P · N

P
= N scalar

observations are used to estimate (P − 2)(2D + 1)Nh scalar
BEM coefficients. Since MMSE estimation boils down to a
(P − 2)(2D + 1)Nh × N matrix multiplication, the cost of
channel estimation is only (2D+1)NhN multiplications per
MCM symbol. Note that this is smaller than the cost of
noncoherent decoding by the factor 2N2

a (2D + 1)/Nh.
The MMSE estimation matrix can be designed as fol-

lows. Say that we collect the pilot-only observations from
{x(i), . . . , x(i+P−1)} into the vector x(i), and that we col-
lect all impulse-response coefficients {hn,l} and noise sam-

ples {vn} affecting these observations into the vectors h(i)

and v(i), respectively. Then, as seen from (5)-(7), we can

write x(i) = Ch(i) + Dv(i), where C contains pilots and
MCM pulse coefficients and where D contains MCM pulse
coefficients, Likewise, we stack the BEM coefficient vectors

{θ̆(i+1)
, . . . , θ̆

(i+P−2)} into the vector θ(i) and see from (6),

(13), and (14) that it is possible to write θ(i) = Gh(i) for

some matrix G. The MMSE estimate of θ(i) from x(i) is

then θ̂
(i)

= GRhCH
`

CRhCH +σ2DDH
´−1

x(i), where the

channel statistics Rh := E{h(i)h(i)H} are given by the WS-
SUS model (29) under the a-priori uniform DPP: σ2

l = N−1
h

for l ∈ {0, . . . , Nh−1}. We note that this pilot-aided MMSE
channel estimation procedure is the same as that used in [23]
except that the pilot pattern is different.

data

pilot

guard

. . .. . .

timefr
eq

Figure 1: Illustration of multicarrier pilot pattern

with N = 16, P = 4, Np = 2 and D = 2.

4.2 Residual-Tap Compensation
Since non-active taps are not considered by the sparse

BEM, they effectively add to the background noise. Be-
cause the total power of these residual (i.e., non-active) taps
varies with symbol index i, it too should be tracked by the
detection algorithm and lumped in with the noise power
“σ2,” which would then also vary with i. Doing so is rel-
atively easy. For example, after the noncoherent sequence
detection algorithm has estimated A(i) and θ(i), the resid-

ual ŵ(i) := x(i) − Â
(i)

θ̂
(i)

can be computed and its energy
calculated to retrieve an estimate of σ2. This estimate could
then be employed when decoding the (i+1)th MCM symbol.

5. NUMERICAL RESULTS



We used two types of channel for our simulations: a “per-
fectly sparse” channel and “sparse” channel. The “perfectly
sparse” channel had Ns < Nh nonzero impulse response co-
efficients, each of which varied randomly according to the
Jakes autocorrelation ρn = J0(2πfDTcn), where J0(·) de-
notes the 0th-order Bessel function of the first kind, and with
fDTc = 0.0025. Here, the nonzero impulse response trajec-
tories were uncorrelated but had the same energy, N−1

s . In
addition, the delays of each trajectory were varied over time
as described below. To generate the more realistic “sparse”
channel model, we started with the “perfectly sparse” model
but then leaked the energy of each active tap into four neigh-
boring taps. We accomplished this by convolving the im-
pulse response, at each time, with the truncated sinc se-
quence [−0.0721, 0.0739, 0.9893, 0.0739,−0.0721]. As a re-
sult, 2% of the dominant coefficient energy was leaked to
residual coefficients.

For both channel types, the discrete delays of the active
taps were varied in time as follows. We used Ns = 4 princi-
pal impulse response coefficients. The first and second had
delays that were fixed at 2 and 5 chips, the delay of the
third switched between 7 and 8 chips every 225 symbol in-
tervals, and the delay of the fourth changed from 15 to 16
to 17 chips, and then back, stopping at each delay for 20
symbol intervals. Thus, the delay spread of the perfectly
sparse channel was Nh = 16 and that of the sparse channel
was Nh = 20. Note that this delay/Doppler-spread product
equaled fDTh = fDTcNh = 0.05, which matches that of the
surf-zone channel from [20].

In all experiments, we used MCM with N = 64 QPSK
subcarriers. (Coding and larger constellations will be exam-
ined in future work.) For the MCM pulses, we used the
“transmitter optimized max-SINR (TOMS)” design from
[4], which specifies a smooth modulation pulse of length
Nα = 1.5N and a rectangular demodulation pulse of length
Nβ = N . With the ICI radius D = ⌈fDTcN⌉ = 1, the
TOMS pulses are known for excellent suppression of ISI
and out-of-band ICI without introducing noise correlation
or wasting bandwidth through the use of a prefix. We used
random constant modulus pilot sequences with pilot period
P = 4, implying the use of Np = N/P = 16 pilots per MCM
symbol and a total spectral efficiency of N−P−2D

N
= 0.72

scalar-symbols/sec/Hz. Since Np > (2D + 1)Ns, the nonco-
herent M-algorithm was able to generate a robust estimate
of θ(i) before discarding partial paths, allowing us to choose
M = 8. Finally, by assuming Na = 8 active delay taps
during reception, we guaranteed fixed receiver complexity.

We compared the BER of the proposed noncoherent M-
algorithm to a genie-aided reference: coherent MLSD based
on an MMSE estimate of θ(i) computed from 100% (genie-
provided) training symbols. This genie-aided MLSD upper
bounds the performance of any noncoherent sequence detec-
tion algorithm, but gives a tighter bound than does coherent
MLSD under a perfectly known channel. Fig. 2 shows BER
versus SNR for the “perfectly sparse” channel, where SNR
equals σ2 since the transmitted signal was unit-power and
the channel was energy preserving. Note that the perfor-
mance of the noncoherent M-algorithm is very close to the
optimal genie-aided MLSD; less than 2 dB SNR loss (at
10−4 BER) can be observed. It can also be seen that detec-

tion under estimated L(i) performed nearly as well as detec-
tion under perfectly known L(i). The BER slopes suggest
that a diversity of order-2 is extracted from the ICI; coding

and interleaving could be used to extract delay diversity as
well, as demonstrated by [4].

Fig. 3 shows BER performance for the “sparse” channel.
With Na = 8, some residual channel taps are left unmod-
eled, and so even the best selection of L(i) loses about 0.7%
of the channel energy. These unmodeled residual taps lead
to an unavoidable BER error floor, even for the genie-aided
MLSD. However, this error floor could be suppressed by in-
creasing Na (at the expense of complexity). Again, the pro-
posed noncoherent M-algorithm performs about 2 dB worse
than the genie-aided detector before both schemes succumb
to the error floor. The detectors suffer only a bit when L(i)

is estimated from pilots.
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Figure 2: BER versus SNR for a “perfectly sparse”

channel.
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Figure 3: BER versus SNR for a “sparse” channel.

6. CONCLUSION
In this paper we presented a novel multicarrier strategy for

communication over UACs with large delay-spread/Doppler-
spread products. A multicarrier scheme was chosen to trans-



form an ISI span with tens or hundreds of taps to an ICI span
with no more than a few taps. In doing so, a careful choice
of multicarrier pulses eliminated the need for bandwidth-
consuming time-domain guards. A near-ML symbol detec-
tion metric was then derived assuming knowledge of the ICI
statistics, but not the ICI realizations, and the M-algorithm
was employed to search for the metric-minimizing symbol
sequence. Because the metric has a fast recursive update
and simplifies under a (known) sparse delay-power profile,
the search requires only about 2M |S|(2D + 1)2N2

a multi-
plications per scalar symbol. We found that small values
of the search parameter M could be tolerated when several
subcarriers were dedicated as pilots, even though, strictly
speaking, a single pilot subcarrier suffices. Finally, a pilot-
aided means of tracking variations in the power-delay profile
was suggested. Simulations on highly spread channels (e.g.,
fDTh = 0.05) showed that the performance of the proposed
algorithm was less than 2 dB away from coherent ML de-
tection using genie-estimated ICI. To prevent an error floor,
however, the algorithm must ensure that the power of resid-
ual taps remains below that of the noise.

In future work, we plan to incorporate channel coding and
the use of multiple transducers, and to test our approach
experimentally in highly-spread underwater channels.
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