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Abstract

We address the current approaches to radar signal processing, which model radar

signals with several assumptions (e.g., sparse or synchronized signals) that limit their

performance and use in practical applications. We propose deep learning approaches

to radar signal processing which do not make such assumptions. We present well-

designed deep networks, detailed training procedures, and numerical results which

show our deep networks outperform current approaches.

In the first part of this thesis, we consider synthetic aperture radar (SAR) im-

age recovery and classification from sub-Nyquist samples, i.e., compressive SAR. Our

approach is to first apply back-projection and then use a deep convolutional neural

network (CNN) to de-alias the result. Importantly, our CNN is trained to be agnos-

tic to the subsampling pattern. Relative to the basis pursuit (i.e., sparsity-based)

approach to compressive SAR recovery, our CNN-based approach is faster and more

accurate, in terms of both image recovery MSE and downstream classification accu-

racy, on the MSTAR dataset.

In the second part of this thesis, we consider the problem of classifying multiple

overlapping phase-modulated radar waveforms given raw signal data. To do this, we

design a complex-valued residual deep neural network and apply data augmentations

during training to make our network robust to time synchronization, pulse width, and
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SNR. We demonstrate that our optimized network significantly outperforms the cur-

rent state-of-the-art in terms of classification accuracy, especially in the asynchronous

setting.
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Chapter 1: Introduction

In this thesis we investigate how deep neural networks (DNN), which currently

provide state-of-the-art results in many domains, can be used to improve radar signal

processing. There are two types of radar systems considered. The first is “actively

sensing” radars, in which a radar system transmits a known signal, listens for the

reflections, and analyzes those reflections in order to learn information about the

surrounding environment. The second is “passively sensing” radar signals, in which

a sensor is “listening” to the electromagnetic spectrum in order to identify signals of

interest.

A synthetic aperture radar (SAR) operates as an active sensor, moving a radar

through space while transmitting radar pulses at a given target and creating an image

from the reflections, or echos. If these echos are measured at the Nyquist rate or

higher, constructing the SAR image is straightforward and classification algorithms

can be trained to recognize the target. However, for SAR imaging, we often work with

sub-Nyquist sampled scenes, which is known as compressive SAR. The challenges now

are, given compressive SAR measurements, can the true scene be well-estimated? If

so, can the target still be recognized from our estimated scene? In Chapter 2 we

develop a deep learning approach to address both of these challenges and show our

approach outperforms the standard in compressed sensing.
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In the passive sensing case, a sensor begins sampling incoming signals over time

and attempts to classify the radar waveforms present in the collected samples. How-

ever, these samples will be corrupted with additive white Gaussian noise (low SNR),

the received radar waveforms will have been transmitted at an unknown carrier fre-

quency and will arrive at an unknown time, and there may be several radar systems

simultaneously transmitting. Thus, detecting and classifying each waveform from just

the collected samples is quite challenging.

Our experiments assume the transmitted radar waveforms are phase-modulated

and on the same carrier frequency; we do not make assumptions on the time of

arrival of the waveforms and consider classification of up to 4 simultaneously received

waveforms. In Chapter 3 we design and extensively optimize a deep network, showing

state-of-the-art classification accuracy.

We present concluding remarks in Chapter 4. First, we summarize the main

contributions of this thesis and then identify several suggestions for future work.
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Chapter 2: Compressive SAR Image Recovery and

Classification via CNNs

2.1 Introduction

Synthetic aperture radar (SAR) uses a moving radar platform to transmit electro-

magnetic pulses and then uses the received echoes to estimate the scene reflectivity.

We focus on spotlight SAR [1], where the radar continuously points at a given ground

patch while transmitting and receiving pulses.

After demodulation, the sampled radar returns r ∈ C
M can be expressed as [1]

r = Ag +w,

where g ∈ C
N is a vector of 2D scene reflectivity samples that we aim to recover,

A ∈ C
M×N is a linear operator, andw contains additive noise and clutter. With linear

FM chirps, a uniform pulse repetition interval, and uniform sampling, A generates

uniformly spaced samples along equi-spaced radial lines in 2D Fourier space, i.e.,

“polar format” samples [1].

When the samples r are taken at the Nyquist rate or above, A has full column

rank, and thus g can be recovered using the least-squares approach

ĝ = (AHA)−1AHr. (2.1)
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In fact, ĝ from (2.1) would perfectly estimate g in the absence of noise. In practice,

it is common to approximate (2.1) by interpolating the polar-format samples r onto

a Cartesian grid and then applying a 2D IFFT to the result.

Recently, it has been proposed to sample r below the Nyquist rate (i.e., use

M < N), which is known as compressive SAR [2, 3]. For example, one may choose

to transmit and receive only a (possibly random) subset of the usual pulses, known

as “slow-time subsampling.” There are several motivations for doing this. For one,

there is less information to store and/or transmit back to the ground station. An-

other is that the radar could simultaneously image multiple targets. Several other

applications, include increased robustness to jamming, are discussed in [2].

In the compressive case, A is a fat matrix, in which case SAR image recovery is

more challenging. In particular, A has a non-trivial nullspace, and all components

of g in that nullspace are lost when collecting the measurements r. Likewise, the

inverse in (2.1) does not exist.

The traditional approach to compressive SAR recovery exploits image sparsity in

an appropriate basis [2,3], i.e., applies compressive sensing [4,5]. For example, if g is

sparse in the canonical basis (i.e., g is itself sparse), then one may attempt to recover

g from r by solving the convex problem

ĝ = argmin
g

‖g‖1 s.t. ‖r −Ag‖2 ≤ Mσ2, (2.2)

which is known as basis pursuit (BP) denoising [6]. This optimization problem (2.2)

is convex and first-order algorithms like SPGL1 [7] can efficiently solve it. Still, these

methods are computationally intensive for practical image sizes, and the sparsity

model on which they are based may not fully exploit the structure of SAR images.
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Thus, one may wonder whether compressive SAR recovery can be performed using

methods that are faster and/or more accurate.

2.2 CNN-Based SAR Image Recovery

We propose a convolutional neural network (CNN)-based approach to compressive

SAR image recovery. In particular, we propose to first back-project the radar returns,

yielding

z , AHr. (2.3)

With sub-Nyquist sampling, the back-projected scene z will be heavily aliased. We

propose to then de-alias z using a CNN. Among the plethora of CNN architectures,

we chose a U-Net [8], because of its excellent performance in other image-recovery

tasks [9].

For simplicity, we input only the magnitudes of the elements in z to the CNN.

We do this because, in our experience, image phase information in z does not im-

prove classification accuracy, at least with the MSTAR dataset that we used for our

experiments. Altogether, our image-recovery approach can be summarized as

ĝ = f(|z|; θ̂), (2.4)

where f(·; θ̂) is the CNN, θ̂ is a vector of trained CNN parameters, and |z| denotes

the vector composed of the element-wise magnitudes of z. The output ĝ of our CNN

is also non-negative, and thus should be considered as estimate of |g| rather than of

complex-valued g.

A similar approach was proposed for compressive magnetic resonance imaging

(MRI) in [10], but—to the best of our knowledge—no CNN-based methods have been
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proposed for compressive SAR image recovery. However, CNNs have previously been

proposed for other SAR tasks, such as image segmentation [11], image de-speckling

[12], and automatic target recognition (ATR) [13,14].

By training our CNN to de-alias the results of many different slow-time sub-

sampling patterns (for a given sampling rate δ = M/N), it learns to be agnostic to

the specific choice of the sub-sampling pattern. This way, we do not need to retrain

the CNN when the sub-sampling pattern changes. We did train a different CNN

for each sampling rate δ ∈ {1/2, 1/3, 1/4, 1/5, 1/10}, however. To learn the CNN

parameters θ̂, we minimized ℓ1 loss in the image space, i.e.,

θ̂ = argmin
θ

T1∑

t1=1

T2∑

t2=1

∥∥f
(
|AH

t1
At1

g
t2
|;θ

)
− |g

t2
|
∥∥
1
, (2.5)

using stochastic gradient descent. In (2.5), {g
t
} are scene reflectivities from a training

database and {At} are slow-time randomly sub-sampled Fourier matrices. We used

the ℓ1 loss, as opposed to the ℓ2 loss, because it is a more typical choice when training

CNNs to perform image recovery tasks [15].

2.3 CNN-Based Automatic Target Recognition

In the previous section, our goal was to recover the SAR image g. Often, the

recovered image is subsequently fed to an image classifier for automatic target recog-

nition (ATR). In this case, the resulting classification performance is the primary

metric of interest.

To evaluate our compressive SAR image recovery method from the perspective

of ATR, we trained a ResNet-18 image classifier [16] to perform classification. Our

choice of ResNet-18 was inspired by the excellent performance previously reported
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in [14]. For example, we found that a ResNet-18 gave 99.06 % classification accuracy

with noiseless, fully sampled MSTAR images.

We experimented with two different approaches to training the ResNet classifier.

We used either

1. noiseless, fully sampled MSTAR images, or

2. reconstructed MSTAR images produced by either BP or the U-Net, as described

in Section 2.2, at a given value of δ = M/N .

In both cases, we used the standard cross-entropy loss when training the classifier.

In the latter case, the images used for training are reconstructed after randomly sub-

sampling a fully sampled image, thus, many training examples for the classifier are

generated from one MSTAR image; i.e., many unique recoveries, ĝ, may be generated

from a single image, g. This substantially increases the number of training examples

relative to the former approach and likely contributes, as we will see in the next

section, the classification from compressive samples is much more accurate when the

classifier is trained on compressively recovered images.

2.4 Numerical Results

For our numerical results, we assumed noiseless measurements, i.e.,

r = Ag. (2.6)

with images g taken from the 10-class MSTAR dataset [17]. We used the 17◦-

inclination subset for training, which had 3 671 images and the 15◦-inclination subset

for testing, which had 3 203 images. Because the images are of various sizes, we first
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center-cropped them to size 128 × 128. To implement the polar-format Fourier op-

erator A, we quantized each point on each radial line to the nearest point on the

128 × 128 Cartesian grid. This allows us to approximate A ≈ MF , where M is a

random masking operator and F is the 2D FFT operator. Various sampling ratios

δ ,
M

N
(2.7)

were tested. Figure 2.1 shows an example of a mask at δ = 1/3. Note the random

subset of radial lines, with dense sampling across each line.

2.4.1 Image Recovery

As a baseline, we compare the proposed CNN-based method to BP recovery (i.e.,

equation (2.2) with σ2 = 0) implemented using the SPGL1 algorithm [7]. We used

the public MATLAB implementation of SPGL11 with default parameters.

Figure 2.1 shows an example of a Fourier-domain sub-sampling mask at sampling

ratio δ = 1/3, and Figure 2.2 shows an example of an MSTAR image. Figure 2.3 shows

the result of backprojection, Figure 2.4 shows the SPGL1 recovery, and Figure 2.5

shows the U-Net recovery. The SPGL1 recovery loses many details in the target

that are visible in Figure 2.2, while the U-Net recovery preserves those details. It

is interesting to observe that the U-Net recovery has suppressed most of the speckle

artifacts that are present in the original MSTAR image Figure 2.2.

Table 2.1 shows the normalized mean squared error (NMSE) on the recovered

image magnitudes, averaged over the test data {g
t
}T
t=1

, i.e.,

NMSE =
1

T

T∑

t=1

∥∥ĝ
t
− |g

t
|
∥∥2

2

‖g
t
‖2
2

, (2.8)

1MATLAB implementation of SPGL1 was downloaded from

https://www.cs.ubc.ca/~mpf/spgl1/index.html
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Figure 2.1: Fourier-domain sampling mask at δ = 1/3.

Figure 2.2: Example of original MSTAR image |g|.

Figure 2.3: Back-projection image z at δ = 1/3.
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Figure 2.4: SPGL1 reconstruction ĝ at δ = 1/3. Note that a lot of detail in the target
has been lost relative to Fig. 2.2.

Figure 2.5: U-Net reconstruction ĝ at δ = 1/3. Note that target details have been
preserved relative to Fig. 2.2 while speckle artifacts have been suppressed
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Table 2.1: Average NMSE

δ SPGL1 U-Net
1/2 −7.04 dB −10.63 dB
1/3 −4.68 dB −10.12 dB
1/4 −3.46 dB −8.43 dB
1/5 −2.69 dB −8.11 dB
1/10 −1.01 dB −6.92 dB

Table 2.2: Reconstruction time

δ SPGL1 U-Net
1/2 2.64 sec 0.00451 sec
1/3 2.76 sec 0.00496 sec
1/4 2.94 sec 0.00460 sec
1/5 2.96 sec 0.00445 sec
1/10 3.25 sec 0.00472 sec

where a different random subsampling mask was used for every test image. The table

shows that the proposed U-Net recovery method greatly outperformed SPGL1 for all

tested sub-sampling rates δ. We attribute the relatively poor performance of SPGL1

to the large amounts of speckle present in the original MSTAR images (see, e.g.,

Figure 2.2), which detract from the sparsity of the image.

Table 2.2 shows the reconstruction time on a Linux server with 24 Intel Xeon(R)

Gold 5118 CPUs and a single Tesla V-100 GPU. The table shows that the proposed

method ran more than 500 times faster than SPGL1.
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Table 2.3: Average test classification accuracy using the ResNet classifier trained on
fully sampled images

δ SPGL1 Proposed
1/2 86.11 % 87.42 %
1/3 76.58 % 88.29 %
1/4 65.41 % 86.73 %
1/5 54.70 % 85.76 %
1/10 32.19 % 74.37 %

Table 2.4: Average test classification accuracy using the ResNet classifier trained on
reconstructed images

δ SPGL1 U-Net
1/2 96.85 % 99.38 %
1/3 94.01 % 98.38 %
1/4 90.67 % 97.80 %
1/5 86.58 % 97.00 %
1/10 70.12 % 91.10 %

2.4.2 Automatic Target Recognition

Table 2.3 shows test classification accuracy at different sub-

sampling ratios δ for the ResNet classifier that was trained on noiseless, fully sam-

pled MSTAR images. This table shows that the U-Net-reconstructed images lead

to much better classification accuracy than the SPGL1-reconstructed images, but in

both cases the classification accuracy is far from the 99% achieved by the ResNet on

fully sampled test images (i.e., non-compressive SAR).

Table 2.4 shows classification accuracy at different sub-sampling ratios δ for the

ResNet classifiers trained on reconstructed images. Note that a different classifier

12



was trained for SPGL1 and for the U-Net at each sub-sampling rate δ. This table

shows that, as before, U-Net image reconstruction leads to much better classification

accuracy than SPGL1 image reconstruction. However, differently from before, Ta-

ble 2.4 shows that the U-Net recoveries from compressive SAR lead to classification

accuracies on par with fully sampled SAR. In fact, at a sampling rate of δ = 1/2,

U-Net recovery yields a classification accuracy of 99.38%, which is slightly better than

that achieved in the fully sampled case.

2.5 Conclusion

In this chapter, we proposed a new approach to compressive SAR image recovery

that used a convolutional neural network (CNNs) to de-alias sub-Nyquist sampled

back-projection images. Importantly, by training with randomly subsampled images,

our CNNs learned to become agnostic to the subsampling pattern. We showed for

a given sampling rate, our CNN-based recoveries were at least 500 times faster and,

in terms of normalize mean squared error, at least 3.59 dB better than standard BP.

Furthermore, we showed CNN-based recoveries of compressive SAR measurements

could be used to train a deep neural network (DNN) for automatic target recognition

with accuracies similar to or outperforming a DNN trained with fully-sampled images.
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Chapter 3: Phase-Modulated Radar Waveform Classification

Using Deep Networks

3.1 Introduction

We consider the problem of classifying phase-modulated radar waveforms given

raw signal data. Waveform classification is an important capability for cognitive

radar. To train a classifier, we assume the availability of a dataset containing many

examples of radar waveforms (i.e., sequences of complex-valued time-domain samples)

with corresponding class labels in {1, . . . , K}. In this work, we focus on deep neural

network (DNN) classifiers, as they are state-of-the-art.

Several challenges are faced when designing DNN classifiers of raw radar wave-

forms, commonly referred to as “pulses.” First, the pulse duration can span a

very wide range (e.g., from hundreds to thousands of samples) even within a given

class. Most DNNs, however, assume a fixed input dimension. Second, the pulses

are complex-valued, whereas most DNNs are configured to support real-valued sig-

nals. Third, when applying the classifier, one cannot assume that the pulse will be

time-synchronized, especially in passive sensing applications. Fourth, practical radar

systems must operate over a wide range of signal-to-noise ratios (SNRs), including
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SNRs far below 0 dB. To be practical, all of these challenges must be simultaneously

addressed.

Early approaches to radar waveform classification first converted the raw wave-

forms to hand-crafted, low-dimensional features, to which classic machine-learning

techniques could be applied. For example, [18] designed auto-correlation function

(ACF) features of dimension 20 that were robust to time and frequency shifts, and

trained a Fisher’s linear discriminant classifier. These ACF features were later used

in [19] with a support vector machine (SVM) classifier and in [20] with a shallow

neural-network classifier.

It was recently demonstrated in [20] that significantly better classification accuracy

could be obtained by training a DNN to operate on raw time-domain radar waveforms.

This is not surprising, since the early DNN layers can learn a feature representation

that outperforms hand-crafted ones, which is then classified by the final DNN layers.

Still, several assumptions were made in [20] that limited both the performance and

practicality of the methodology. First, the DNN input dimension in [20] was chosen

to be greater than the longest pulse in the training dataset. We will show that it is

better to truncate or pad the pulses to an optimized input length. Second, the DNN

in [20] ignored the quadrature (Q) input to avoid complex-valued operations. We show

that a well-designed complex-valued DNN has advantages over a real-valued DNN.

Third, the training and test waveforms in [20] were assumed to be time-synchronized,

which is impractical. We train our DNN to be robust to time-asynchronous inputs.

Fourth, the DNN architecture in [20] is far from optimal. We make an effort to

optimize our DNN architecture (e.g., input dimension, depth, width, kernel size)

and training procedure (e.g., batch size, learning rate). Additionally, we use data
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augmentation (i.e., random noise and delay realizations) to effectively increase the

size of the training dataset. Fifth, [20] assumed a single radar pulse, whereas we also

consider the problem of classifying multiple overlapping radar pulses.

3.2 Network Architecture

Like in [20], we focus on feed-forward convolutional DNNs. (Although we ex-

perimented with recursive networks, our initial results were not competitive.) In

particular, we focus on deep residual networks (ResNets) [16] due to their excellent

performance on related tasks. Although ResNets were originally proposed for classi-

fication of images, they can be easily adapted to one-dimensional signals by changing

the two-dimensional convolutions to one-dimensional convolutions and appropriately

modifying the kernel sizes and numbers-of-channels.

For single-pulse classification, we train with the standard cross-entropy (CE) loss.

For multi-pulse classification, we use the same network architecture, but train using

binary cross-entropy (BCE) loss on each of the K outputs.

3.2.1 Complex Arithmetic

Most DNNs support only real-valued arithmetic, which is sufficient when the data

is real-valued. But our radar waveforms are complex-valued. The question is then

how to best handle these complex waveforms.

Many approaches have been proposed to handle complex-valued signals with real-

valued DNNs. Whether or not they are successful or not depends largely on the

application. One of the simplest approaches is to feed the magnitude of the complex-

valued signal to the DNN. Although this was successfully used in [21] to classify
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synthetic aperture radar (SAR) images, we found that it did not work well for clas-

sification of phase-modulated radar waveforms. Another simple approach is to feed

only the real part of the complex-valued signal to the DNN. Although was success-

fully used in [20] to classify phase-modulated radar waveforms, we show in the sequel

that it can be improved upon. Another approach is to stack the real and imaginary

parts of the waveform into a real-valued 2-row “image” and feed it to a real-valued

DNN with 2-dimensional convolutions [22]. Yet another approach is to feed the real

and imaginary components into two separate input channels of a real-valued DNN,

similar to how RGB image data is typically fed into three separate input channels.

An alternative is to design a complex-valued DNN. Such networks have led to

improved performance in, e.g., audio classification [23] and magnetic resonance image

(MRI) reconstruction [24] tasks. To understand what we mean by a “complex-valued

DNN,” consider the multiplication of a learnable parameter k = kr + iki ∈ C with a

feature x = xr + ixi ∈ C, where kr, xr ∈ R represent real parts, ki, xi ∈ R represent

imaginary parts, and i ,
√
−1. Such multiplications arise in DNNs when implement-

ing convolution and when linearly combining the convolution outputs. The complex-

valued multiplication of k and x can be written using four real-valued multiplications

as

kx = (krxr − kixi) + i(kixr + krxi). (3.1)
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The key point is that (3.1) is a two-input/two-output operation with only two learn-

able parameters: kr, ki ∈ R. By contrast, a 2-channel real-valued DNN would imple-

ment

y1 = k11x1 + k12x2 (3.2)

y2 = k21x1 + k22x2, (3.3)

with x1 , xr and x2 , xi, which involves four learnable parameters: k11, k12, k21, k22 ∈

R. Reducing the number of learnable parameters helps to mitigate overfitting.

With regards to the construction of complex-valued activation functions (which are

essentially two-input/two-output memoryless nonlinearities), there are many options,

as discussed in [23,24]. Since both papers suggest that

CReLU(x) , max{0, xr}+ imax{0, xi} (3.4)

for x = xr + ixi

outperforms other complex-valued activations in many applications, we use (3.4)

in our network.

Complex-valued implementations of batch-norm have also been developed (see,

e.g., [24]). In our implementation, for simplicity, we apply standard batch-norm

separately to the real and imaginary outputs.

3.3 Data Augmentation: Noise Padding, Truncation, and
Delay

As mentioned earlier, our raw radar waveforms differ in duration from hundreds

to thousands of samples, even within a single class. However, the ResNet DNN forces

us to choose a fixed input dimension for minibatch training. The usual approach
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(e.g., routinely used in image classification) is to set the input dimension equal to the

longest samples (e.g., largest images) and zero-pad the shorter samples as needed.

With noisy radar waveforms, it would be more appropriate to noise-pad rather

than zero-pad. Thus, in [20], the waveforms were symmetrically padded with white

Gaussian noise whose variance was selected to match the noise content of the original

sample. An example is shown in Fig. 3.1.

There are several issues with the approach from [20]. First, as a consequence of

symmetric padding, the padded waveforms will all be time-centered, i.e., synchro-

nized. But since time synchronization is not expected in practice, it is not advanta-

geous to train on time-synchronized waveforms. Second, noise-padding reduces SNR.

In particular, if a sample is P× longer after noise-padding, then its SNR will change

by the factor 1/P . Third, the approach in [20] was to pad each training sample with

a fixed noise waveform. In this case, the DNN could attempt to classify based on this

noise realization, which leads to overfitting. This latter problem is exacerbated by

the very low SNRs encountered in radar.

Our approach is to noise-pad or truncate the training waveforms as needed to

obtain a fixed input length of D, where D is optimized. This approach recognizes

that noise-padding decreases SNR, while truncation discards discriminative features,

and so the optimal approach must balance between these extremes. To avoid injecting

time-synchronization bias into the training procedure, we randomly delay the training

waveform whenever noise-padding or truncating that waveform. We can describe this

more precisely using N to denote the duration of the original training waveform and

U to denote a random integer uniformly distributed from 0 and |N −D|. When

N < D, we noise-pad the front of the waveform using U samples and noise-pad the
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back of the waveform using D − N − U samples. (See Fig. 3.2.) When N > D,

we keep D consecutive samples of the training waveform starting at index U . To

avoid (over)fitting the DNN to particular training noise waveforms or training delays

U , we draw new realizations of these quantities in every training minibatch (e.g.,

in the DataLoader of PyTorch [25]). This approach can be recognized as a form of

“data augmentation” [26] that increases the effective number of the training samples.

Finally, we optimized the input dimension D over a grid of possibilities, as described

in the sequel.

3.4 Experimental Results

For our experiments, we use the SIDLE dataset, which was also used in [18–20].

This dataset contains 23 classes of phase-modulated radar pulses with 10000 examples

of single pulses from each class. The details of each modulation type are given in

Table 3.1. Furthermore, each pulse in the dataset was generated with a random initial

phase and random intermediate frequency between 120 and 200 megahertz, although

the individual pulses are not labeled with this information. For a fair comparison

to [20], we omitted classes 6 and 19–23 in the original dataset and used only the

remaining K = 17 classes to train and test our DNN. For these 17 classes, the dataset

contains complex-valued waveforms with lengths from between 131 and 8925 samples

and SNRs between –12 and +12 dB. For each experiment, we used a random subset

of 80% of the dataset for training and the remaining 20% for testing. We used the

Adam optimizer with default parameters β1 = 0.9 and β2 = 0.999. In what follows,

we discuss classification of single pulses in Sections 3.4.1 and 3.5 and multiple pulses

in Section 3.6.
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Figure 3.1: Example synchronous noise-padded waveform, at SNR=10.8dB, waveform
length N = 2261, and DNN input length D = 5000.
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Figure 3.2: Example asynchronous noise-padded waveform, at SNR=10.8dB, wave-
form length N = 2261, DNN input length D = 5000, delay U = 2700.
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Table 3.1: Phase modulation types, code lengths, and pulse width range for each class
in the SIDLE dataset

Class # Modulation Code Pulse Width
Type Length Ranges (µsec)

1 Barker 7 ∈ [0.875, 7]
2 Barker 11 ∈ [1.375, 11]
3 Barker 13 ∈ [1.625, 13]
4 Combined Barker 16 ∈ [1, 8]
5 Combined Barker 49 ∈ [3.08, 21.1]
6 Combined Barker 169 ∈ [10.58, 84.6]
7 Max. Length Pseudo Random 15 ∈ [1, 4.5]
8 Max. Length Pseudo Random 31 ∈ [0.235, 10.5]
9 Max. Length Pseudo Random 63 ∈ [4.221, 18.9]
10 Min. Peak Sidelobe 7 ∈ [1.05, 4.2]
11 Min. Peak Sidelobe 25 ∈ [1.25, 10]
12 Min. Peak Sidelobe 48 ∈ [2.4, 19.2]
13 T1 N/A ∈ [2, 16]
14 T2 N/A ∈ [1.5, 12]
15 T3 N/A ∈ [1, 8]
16 Polyphase Barker 7 ∈ [0.875, 7]
17 Polyphase Barker 20 ∈ [1, 8]
18 Polyphase Barker 40 ∈ [2, 16]
19 P1 N/A ∈ [5, 20]
20 P2 N/A ∈ [3.2, 25.6]
21 P3 N/A ∈ [3.2, 25.6]
22 P4 N/A ∈ [5, 20]
23 Minimum Shift Key 63 ∈ [2, 18.9]

3.4.1 Baseline

As a baseline, we first investigate the performance of the 9-layer real-valued convo-

lutional DNN from [20] on the task of single-pulse classification. As described earlier,

this network uses an input dimension of 11000, discards the imaginary part of the

input, and noise-pads each training pulse with a fixed noise waveform. To train the

network, we used the synchronous noise-padding approach described in Section 3.3
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and illustrated in Fig. 3.1, and saw that the network converged to 0% training error.

We then tested the network using synchronous noise-padded data from the test set,

and observed 3.57% test error, similar to what was reported in [20].

Next, to evaluate how well this DNN performs in the practical asynchronous

setting, we re-trained it using the asynchronous noise-padding approach proposed in

Section 3.3 and illustrated in Fig. 3.2. When testing with similarly processed (i.e.,

asynchronous) test data, we observed a test error of 18.29%. This relatively poor

performance motivates the design of an improved DNN for asynchronous single-pulse

classification.

3.5 Improvements

3.5.1 ResNet

As a first step, we swap the DNN from [20] with a 30-layer ResNet, but still use

input dimension 11000 and only the real part of the radar waveform. We configured

the ResNet using PyTorch’s default parameters, but with a one-dimensional kernel

rather than a two-dimensional kernel. Training and testing this ResNet-30 using the

asynchronous noise-padding approach from Section 3.3 gave 2.14% test error, which

significantly improves upon the 9-layer DNN from [20].

3.5.2 Optimized Input Dimension

To better understand how we might be able to improve the ResNet performance,

we plot the classification outcome (i.e., correct or incorrect) versus pre-padded wave-

form length and SNR in Fig. 3.3. The figure shows that pulses with both short length

and low SNR are most likely to be misclassified. This is consistent with the discus-

sion in Section 3.3, which described how noise-padding by factor P causes the SNR
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Table 3.2: ResNet-30 vs. Input Length

Input Length 1000 1821 3317 6040 11000
Test Error 8.50% 2.16% 1.32% 1.35% 2.14%

to change by the factor 1/P . Thus, when the network input dimension is very large,

short pulses will suffer a large SNR reduction that, when combined with an already

low SNR, will likely result in misclassification.

To circumvent this problem, we allow smaller network input dimension D and

either truncate or noise-pad each N -length raw waveform as needed (as described in

Section 3.3). Table 3.2 reports test error rate for several values of D. The table shows

that D = 3317 was best among the tested values for the ResNet-30. As a consequence

of this D-optimization, the test error improved from 2.14% to 1.32%.

3.5.3 Complex-valued DNN

To improve the DNN further, we incorporate the complex-valued operations from

Section 3.2.1 in the ResNet and refer to it as the “CResNet.” We also show results

for the real-valued DNN utilizing both in-phase and quadrature radar waveform data

from (3.3), which we call the “IQ-ResNet.” For a fair comparison, we adjusted the

number of channels in the CResNet-30 and the IQ-ResNet-30 so that the number of

trainable parameters is approximately equal to that in the (real-valued) ResNet-30.

The resulting test error rates are shown in Table 3.3 for input length 3317, which

shows the improvement brought by the CResNet.
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Table 3.3: ResNet-30 vs. CResNet-30

Model Test Error Trainable Parameters
ResNet-30 1.52% 1782193

IQ-ResNet-30 0.39% 1782417
CResNet-30 0.36% 1690189

Table 3.4: Fine-tuned CResNet Results vs. Network Depth

Model Test Error # Parameters Width Kernel
CResNet-22 0.16% 7721041 32 11
CResNet-26 0.16% 1818161 16 7
CResNet-30 0.14% 659233 8 9
CResNet-34 0.15% 670945 8 9
CResNet-38 0.16% 2228913 16 7

3.5.4 Network Fine-Tuning

As a final step, we performed an extensive fine-tuning of the CResNet. This

included a simultaneous search over network depth, network width, kernel width,

batch size, and learning rate. For network and kernel width, we adjusted the 1st and

2nd layers respectively, and scaled the remaining layers in the same way as done in

the default ResNets in PyTorch. The test error (averaged over 100 random delays

and noise realizations) and # of trainable parameters for the optimized network and

kernel widths of the fine-tuned CResNet are given in Table 3.4. A batch size of 512,

learning rate of 0.001, and first-layer kernel width of 11 sufficed for all widths and

depths. Each network was trained for 90 epochs, but stopped early if the test loss did

not improve for 15 consecutive epochs. In the end, with fine-tuning, the test error

rate dropped to 0.14%.
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3.6 Classification of multiple overlapping pulses

We now use the fine-tuned network architecture to classify multiple overlapping

pulses. For this purpose, we retrained the network to minimize binary cross-entropy

(BCE) loss on each of the K = 17 outputs, rather than cross-entropy (CE) loss. The

resulting network outputs a real-valued vector for which a positive entry in the kth

location indicates that a pulse from the kth class is believed to be present, while a

negative entry indicates that no pulse is believed to be present.

Our experiments consider L ∈ {1, 2, 3, 4} simultaneously overlapping waveforms.

For a given L, multi-pulse waveforms were generated by first creating one asyn-

chronous noise-padded waveform (as described in Section 3.3) and then adding L− 1

additional asynchronous noiseless zero-padded waveforms. This way, the SNRs of

the multi-pulse waveforms remained between –12 and +12 dB. A single network was

trained by sampled L uniformly over {1, 2, 3, 4}.

There are two common ways to define the error-rate of multi-label classification:

“absolute error” (Eabs) refers to the error on the binary predictions, whereas “subset

error” (Esub) refers to the error on the K-ary prediction vector as a whole. If the

binary prediction errors are i.i.d., then Esub = 1 − (1 − Eabs)
K ≈ KEabs using the

binomial approximation, which is accurate for small Eabs.

Our test error-rate results for fixed L ∈ {1, 2, 3, 4} overlapping pulses (using

an 80/20% training/testing split) are presented in Fig. 3.4. There we see that

both logEabs and logEsub grow approximately linearly with logL. We also see that

Esub ≈ KEabs. Furthermore, we see that the single-pulse network (from Section 3.5)

outperformed the multipulse network in the special case of L=1 test pulses, but this
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is not surprising because it was trained for this special case. Still, with 4 overlapping

pulses, the multi-L network achieves an absolute error of only 4.0%.

3.7 Conclusion

In this chapter we considered the classification of phase-modulated radar wave-

forms, focusing on the practical asynchronous scenario. We designed a complex-valued

ResNet and extensively optimized the network architecture and training procedure.

Altogether, our contributions improved the state-of-the-art test error on single-pulse

asynchronous SIDLE pulses to 0.14% from the 18.29% achieved with the network

designed in [20]. We then modified our complex-ResNet for multi-pulse classification,

training the network to classify up to 4 pulses simultaneously and achieved only 4.0%

absolute error with 4 overlapping pulses.
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Chapter 4: Conclusions

4.1 Summary of Original Work

In Chapter 2 of this thesis, we proposed a novel approach to compressive SAR

image recovery that used a convolutional neural network (CNN) to de-alias back-

projected images estimates. We showed the CNN-based recovery outperformed the

standard BP approach in terms of both recovery speed and normalized mean squared

error. The CNN-recovered images were also used to train ResNet classifiers that

performed on-par or better than a classifier trained on fully sampled SAR images.

In Chapter 3, we considered both single-pulse and multi-pulse classification of

phase-modulated radar waveforms from raw signal data, focused on the practical

asynchronous setting. We designed a new complex-valued ResNet and data augmen-

tations for this. For single-pulse classification, we showed our design improved the

state-of-art error rate on asynchronous SIDLE pulses to 0.14% from the 18.29% of the

network designed in [20]. We then modified our single-pulse network for multi-pulse

detection of up to 4 pulses, and achieved an absolute error rate of only 4.% with 4

overlapping pulses.
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4.2 Potential Future Work

Future experiments of the SAR image recovery and classification approaches de-

veloped in Chapter 2 include training one CNN to be agnostic to the degree of sub-

sampling. We could attempt this by training with back-projected scenes of images

sampled at different rates. A second possible extension of this work would be to

jointly optimize the recovery and classification networks as a single CNN. A third

experiment could address that in practice, the imaged target may not belong to one

of the classes used to train the CNNs. In this case, we still wish to estimate the image

from compressive measurements. We can test the recovery network’s performance in

this scenario by training a CNN with a random subset of the training classes (e.g., 8

of 10 MSTAR classes). Then we can generate compressive SAR measurements from

the classes that were unused during training, input these examples to our trained

CNN, and measuring the NMSE of the recovery as done previously. The final step of

this experiment is to repeat this procudure several times, randomly leaving out the

same number of classes during training time, and averaging the results.

In Chapter 3, our experiments assumed that each pulse was transmitted on similar

carrier frequencies. This assumption is unrealistic in a practical application of our

CNN, especially in the mulit-pulse case. If there are several transmitters operating

simultaneously, then it is likely each will be operating on a unique carrier frequency

and often in different frequency bands. A more realistic experiment could be created

by assuming knowledge of the carrier frequency of one pulse. This pulse could be

down-converted to complex-baseband, while the remaining pulses will be located at

some random and unknown frequencies. The CNN would now be trained to classify

only the complex-baseband pulse, considering the others as interference.
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Another approach to multi-pulse classification is to reformulate the CNN to act as

a “waveform detection” network, analogous to “object detection” in computer vision

literature. Using the raw signal data of radar pulses, one could approach this by

attempting to training a deep neural network which predicts the class of each pulse

while also “localizing”, i.e., predicting the time-of-arrival and time-of-departure each

pulse.
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