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Abstract

Magnetic resonance imaging (MRI) is an essential medical diagnostic tool that

produces high-quality soft-tissue images without harmful ionizing radiation. MRI

acquisition, however, is an inherently slow process, which limits patient throughput

and comfort. Accelerated MRI seeks to reduce the acquisition time by collecting

fewer measurements. This results in undersampled data that requires non-trivial

reconstruction techniques to recover diagnostic-quality images. Yet, the reconstruction

problem is fundamentally ill-posed, meaning that many plausible images can correspond

to the same set of measurements and a given prior. This distribution of plausible

reconstructions is known as the posterior. Despite the ill-pose nature, most existing

MRI reconstruction methods are designed to provide only a single point estimate,

ignoring the intrinsic uncertainty of the problem This dissertation addresses the

critical need for uncertainty quantification (UQ) in accelerated MRI by proposing

three methods, each quantifying the uncertainty from a different perspective.

First, we design a novel conditional normalizing flow (CNF) to approximate the

posterior distribution. Then, by generating multiple reconstructions for a given

measurement, we create a pixel-wise uncertainty map that highlights areas of the

image with more variability. This informs practitioners about the trustworthiness of

accelerated reconstructions on a pixel level.
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In our second approach, we propose to quantify the uncertainty introduced when

using accelerated reconstructions instead of the true image for a downstream task like

pathology classification. Utilizing conformal prediction, this approach constructs a

prediction interval in the task-output space that is statistically guaranteed to contain

the task output given to the true image with a user-specified probability. The width of

these intervals serves as a measure of the uncertainty contributed by the measurement-

and-reconstruction process and offers a more direct understanding of the reliability of

the reconstructed images for the downstream task.

Our final method addresses the uncertainty in evaluating the quality of recon-

structed images in the absence of a ground truth. We propose to use conformal

inference to construct bounds on full-reference image quality metrics such as Peak

Signal-to-Noise Ratio (PSNR). These bounds come with probabilistic guarantees, thus

allowing one to assess the image quality of accelerated reconstructions without relying

on direct comparisons to true images.

In all, this research addresses an essential gap in the field of accelerated MRI by

quantifying the uncertainty in the acceleration process through several different lenses.

By providing diverse uncertainty estimates, our proposed methods aim to improve the

reliability and clinical utility of accelerated MRI.
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Chapter 1: Introduction

Magnetic resonance imaging (MRI) is a standard diagnostic imaging tool that has

become widely used in the medical field. As it provides high-quality images of soft

tissue without exposing patients to harmful ionizing radiation, it is often the preferred

choice over other imaging tools such as computational tomography (CT). Despite its

advantages, MRI exams can be a very slow process. For example, a standard MRI

scan can take anywhere from 30 minutes to over an hour depending on the resolution,

number of contrasts, and different views required. This prolonged acquisition time

increases the chance of motion artifacts from patient movement, reduces patient

comfort, and decreases patient throughput.

Scan times can be reduced by simply collecting fewer measurements while the

patient is in the scanner, often below the Nyquist rate. However, this acceleration

introduces severe aliasing and can result in an image with little to no diagnostic value.

A well-designed estimation method is thus required in order to recover diagnostic-

quality images. The design of these estimation methods has become an active area of

research [75, 55]. Figure 1.1 illustrates the pipeline of the conventional, fully-sampled

MRI and the accelerated version.

Early approaches took advantage of new hardware improvements, which incorpo-

rated multiple receiver coils into the scanners. After estimating coil-sensitivity maps

1



Figure 1.1: A high-level visualization of the MRI recovery problem. A fully-sampled
scan recovers a high-quality, reliable image but is time consuming. Accelerated MRI
reduces the scan time by only collecting a fraction of the necessary data but requires an
estimation method to recover a quality image. These accelerated reconstructions can
differ from the true image in subtle but meaningful ways as shown by the zoomed-in
regions in blue.
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or interpolation kernels, methods like SENSE [95] and GRAPPA [52] use subsampled

data from multiple coils to remove aliasing artifacts in the final reconstruction. Known

as parallel imaging, these reconstruction techniques are available on most modern

commercial scanners but typically only enable a two- to three- fold acceleration of

the acquistion process. For higher acceleration, methods based on compressed-sensing

(CS) have been proposed [86]. The CS methods are framed to iteratively minimize

the sum of a data-fidelity and regularization term, where the regularization term

incorporates prior knowledge about the images. Prior knowledge may dictate sparsity

of true images in some transform domain, as in traditional CS, or that the true

images are preserved by some denoising function, as in “plug-and-play” recovery [3].

Deep neural networks have also been proposed for MRI recovery, based on end-to-end

approaches [125, 47, 107] or algorithmic unrolling [54]. Yet another approach, known

as compressed sensing with a generative model (CSGM) [24], trains a deep image

generator and then optimizes its input to give the image that, after application of the

forward model, best matches the measurements.

Although they achieve high reconstruction quality, the aforementioned methods

provide only a single point estimate. Yet, accelerated MRI is an ill-posed inverse

problem, where many possible reconstructions exist that are consistent with a given

prior and set of subsampled measurements. This distribution of feasible reconstructions

is known as the posterior. Despite this, point estimate methods do not provide any

information regarding the variation in reconstructions from the posterior distribution.

Since different recovery methods may be biased towards different plausible image

hypotheses, this can lead to important differences in reconstruction quality. For

example, modern deep-network approaches can sometimes hallucinate [35, 18, 59, 89,
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21, 51, 113], i.e., generate visually pleasing recoveries that differ in important ways

from the true image. An example hallucination is shown in Fig. 1.1. Since small

variations in image content can impact the final diagnosis, it is crucial for radiologists

to know whether a visual structure is truly reflective of the patient anatomy or

merely an imaging artifact. Problems of this form fall into the realm of uncertainty

quantification (UQ) [1], and their solutions are increasingly essential for the adoption

of machine learning approaches in safety-critical medicine [32, 13].

The absence of a comprehensive UQ framework remains a major barrier for the

integration of highly accelerated MRI. This dissertation aims to provide such a

framework by proposing three diverse approaches, each quantifying the uncertainty of

the measurement-and-reconstruction (acceleration) process from a different perspective.

A description of each perspective and our proposed solutions is as follows:

1. Pixel-based (Ch. 3): We propose to construct a map indicating the amount of

uncertainty in the prediction of each pixel. Using a novel conditional normalizing

flow (CNF), we draw many reconstructions from the estimated posterior distri-

bution and use the pixel-wise standard deviation map of these reconstructions

to quantify the uncertainty on an individual pixel level.

2. Task-based (Ch. 4): We aim to evaluate how a downstream task (e.g. pathology

classification) behaves differently when supplied with a reconstructed image

versus the true image. Using conformal prediction, we construct an interval

in the task-output space that is guaranteed to contain the task-output of the

true image up to a user-specified probability. The width of the prediction

interval provides a natural way to quantify the uncertainty contribution of the

acceleration process on the downstream task output.
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3. Image-Quality-Based (Ch. 5): Given a reconstruction, we look to quantify the

uncertainty on a full-reference image-quality metric like the Peak-Signal-to-Noise

Ratio (PSNR) by constructing bounds on the metric when the true image is

unknown. By utilizing conformal prediction, these bounds are valid with high

probability.

In the proceedings chapters, we describe our methodologies in detail and discuss how

each perspective provides a different insight into the uncertainty present in accelerated

MRI. By providing a more complete understanding of the associated uncertainty,

our approach promises to allow practitioners to better assess the trustworthiness of

accelerated images, which we hope supports fewer misdiagnoses and a wider adoption

of accelerated MRI.
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Chapter 2: Background

2.1 Magnetic Resonance Imaging

We provide a brief background on MRI in order to clarify certain domain-specific

terms and concepts. MRI is a widely-used medical imaging technique that is often

preferred due to its reputation in safety. Rather than relying on ionizing radiation,

MRI exploits the magnetic properties of hydrogen protons within the body. These

protons are aligned by a strong magnetic field within the scanner. Then, protons

in the area of interest are temporarily excited into a high-energy state by a radio

frequency pulse, and as they relax to equilibrium, they induce an electromagnetic

signal in a receiver coil. These signals are later processed to generate an image. The

use of multiple receiver coils is described as “multi-coil” or “parallel” MRI.

The measured signals correspond to spatial frequency information within a mul-

tidimensional spatial Fourier domain known as the “k-space”. To resolve spatial

localization, the k-space is filled iteratively with each new excitation-and-relaxation

cycle (pulse sequence) acquiring data for a particular area of k-space. For example,

Cartesian sampling, the most commonly used sampling strategy, collects an entire

line of k-space at each iteration. For a given spatial resolution, a certain number of

k-space lines must be collected to satisfy the Nyquist theorem. When all of these

6



k-space measurements are collected, the acquisition is said to be “fully-sampled”, and

the image can be recovered by simply performing a multidimensional inverse Fourier

transform.

However, MRI acquisitions can be time-consuming due to the sequential filling of

the k-space. Accelerated MRI aims to the reduce scan time by acquiring only a fraction

of the fully-sampled k-space, but the application of a simple inverse Fourier transform

then results in aliasing artifacts. Thus, the central challenge of accelerated MRI is to

recover diagnostic-quality reconstructions from highly subsampled measurements.

2.2 Inverse Imaging Problems

Mathematically, accelerated MRI falls under the broader class of inverse imaging

problems where the goal is to recover a true image x from noisy, distorted, and/or

incomplete measurements y = A(x) [12]. These problems can be non-linear as with

phase-retrieval, de-quantization, low-light imaging, and image-to-image translation or

linear as in the case of accelerated MRI, limited-angle computed tomography, denoising,

deblurring, inpainting, and super-resolution. Due to a partial loss of the original

signal, these problems are generally ill-posed, in that it is impossible to perfectly infer

x from y. For this dissertation, we focus on the linear case with an emphasis on the

accelerated MRI problem but note that the methods described in Ch. 4 and 5 can

also be applied more generally to non-linear problems as well.

Linear inverse problems are commonly expressed as

y = Ax+ ϵ (2.1)

where A is a known forward operator and ϵ is measurement noise. For multi-coil

accelerated MRI in particular, we consider the case when x is a true multi-coil image

7



and observed measurement y is an aliased multi-coil estimate corrupted by only

collecting a 1/R fraction of the scan data required by the Nyquist sampling theorem.

The integer R is known as the “acceleration rate”, and when R > 1, the inverse problem

is ill-posed. This formulation is made more explicit in the following section.

2.3 The Accelerated MRI Inverse Problem

As mentioned, MRI measurements of the D-pixel true image ιtrue ∈ CD are collected

in the spatial Fourier domain known as the k-space. In a multi-coil system with B

coils, measurements from the bth coil can be written as

κ(b) = PFS(b)ιtrue + ε(b) ∈ CM , (2.2)

where P ∈ RM×D is a sampling matrix containing M rows of the D×D identity matrix

I, F is the D ×D 2D unitary discrete Fourier transform (DFT) matrix, S(b) ∈ CD×D

is the coil-sensitivity map of the bth coil, and ε(b) ∈ CM is measurement noise. We

will assume that {S(b)}Bb=1 have been obtained from ESPIRiT [115], in which case
∑B

b=1 S
H
(b)S(b) = I. In the case of single-coil MRI, B = 1 and S1 = I.

To recover the form of (2.1), we can rewrite the model in terms of the “coil

images” x(b) ≜ S(b)ιtrue and their corresponding “zero-filled” estimates y(b) ≜ FHP⊤κ(b),

and stack all the coils together via x ≜ [x⊤(1), . . . , x
⊤
(B)]

⊤ and y ≜ [y⊤(1), . . . , y
⊤
(B)]

⊤.

Expressing the forward operator as

A = blkdiag
{
FHP⊤PF, . . . , FHP⊤PF

}
(2.3)

with measurement noise ϵ = [(FHP⊤ε(1))
⊤, . . . , (FHP⊤ε(B))

⊤]⊤, we arrive at the

previous formulation of a linear inverse problem (2.1).
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To perform image recovery, one can first compute y from the k-space measurements,

then estimate x̂ = [x̂⊤(1), . . . , x̂
⊤
(B)]

⊤ from y. This multi-coil estimate can be either

“coil-combined” to yield a complex-valued image estimate

ι̂ = [SH
1 , . . . , S

H
B]x̂, (2.4)

or one can compute the root-sum-of-squares (RSS) reconstruction [96] to obtain a

magnitude-only image estimate

|̂ι| =
√∑B

b=1 |x̂(b)|2. (2.5)

In the fully-sampled case, M = D and so y = x + ϵ. As previously mentioned,

fully sampled acquisition is very slow, so we are interested in accelerating the scan

by collecting M < D measurements per coil. This gives an “acceleration rate” of

R ≜ D/M , but it makes A rank deficient. In this latter case, accurate recovery of x

requires the use of prior information about x, such as the knowledge that x is a vector

of MRI coil images.

2.4 Data

To facilitate the study of accelerated MRI estimation, the fastMRI [125] dataset

was collected and made publicly available by the NYU fastMRI initiative. Since its

release, the dataset has become a primary standard for training, evaluating, and

comparing recovery methods; thus, we utilize the dataset extensively for the majority

of our experiments. The dataset contains scans of two different anatomies: the knee

and the brain. The knee set contains 1594 scans of fully-sampled multi-coil knee MRIs,

nearly half of which have fat-suppression. The brain set contains 6970 fully-sampled
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Figure 2.1: A visual illustration of simulating accelerated MRI. Given the fully sampled
k-space κ(b) highlighted in blue, we obtain the ground truth x(b) by applying the inverse
Fourier transform FH. The zero-filled image y(b) is acquired by applying the sampling
mask P⊤P to fully sampled κ(b) and then taking the inverse Fourier Transform FH.

scans of multi-coil brain MRIs and can be broken down further as axial T1 weighted,

T2 weighted, and FLAIR images.

Since the fastMRI datasets only contain the raw fully-sampled k-space data,

i.e. {κ(b)}Bb=1 with M = D, we simulate the acceleration process by retrospectively

subsampling the k-space measurements. More explicitly, the zero-filled images {y(b)}Bb=1

are obtained by masking the fully-sampled k-space measurement κ(b) and taking the

inverse Fourier transform, i.e., y(b) = FHP⊤Pκ(b), wherein we assume that the noise

ϵ(b) in (2.2) is negligible. Here, P⊤P is known as the sampling mask. This mask

indicates which points in the k-space are sampled. In a similar fashion, the ground

truth coil-images {x(b)}Bb=1 are computed by taking the inverse Fourier transform of the

fully sampled k-space measurement, i.e., x(b) = FHκ(b) This procedure is illustrated in

Fig. 2.1. In real-world accelerated MRI, the data acquisition process would collect

masked k-space Pκ(b) directly. We specify the details of the sampling mask utilized

for each of our methods explicitly in the respective chapters.
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Chapter 3: Conditional Normalizing Flows for Accelerated

Multi-coil MRI

As previously mentioned, existing point estimate methods for accelerated MRI

[95, 52, 86, 125, 107] only provide a single estimate x̂ without any consideration

for the uncertainty inherent in the ill-posed recovery problem. One approach that

facilitates UQ is Bayesian imaging, where the goal is not to compute a single “good”

image estimate but rather to sample from the posterior distribution. The availability

of a large batch of posterior samples enables many forms of UQ. For example, we

demonstrate the generation of a pixel-wise standard-deviation map, which quantifies

which pixels are more trustworthy. This gives a visual representation of the uncertainty

at the individual pixel level. The generation of posterior samples also forms the basis

for other methods of uncertainty quantification (Ch. 4 and 5) and facilitates future

work that may use those samples for applications like adaptive sampling [100] or

counterfactual diagnosis [28]. Thus, we focus on the task of sampling from the

posterior in this chapter as a foundational base.

There exist several deep-learning based approaches to sample from the posterior,

including those based on conditional generative adversarial networks (CGANs) [61,

2], conditional variational autoencoders (CVAEs) [43, 114], conditional normalizing

flows (CNFs) [11, 121], and score/Langevin/diffusion-based approaches [64, 78, 58].
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Here, we focus on the CNF approach. Compared to the other methods, CNFs yield

rapid inference and require only simple, likelihood-based training. In a recent super-

resolution (SR) contest [84], a CNF (by Song et al. [106]) won, beating all CGAN,

CVAE, and diffusion-based competitors.

Inspired by the success of CNFs in SR, we design the first CNF for accelerated

multi-coil MRI. Previous applications of CNFs to MRI [37] showed competitive results

but were restricted to single-coil recovery of magnitude images. As the vast majority

of modern MRI scanners capture multi-coil data, the extension to multi-coil, complex-

valued data is crucial for real-world adoption. However, the order-of-magnitude

increase in dimensionality makes this transition non-trivial. For this purpose, we

propose a novel CNF that infers only the signal component in the nullspace of the

measurement operator and combines its output with the measured data to generate

complete images. Using fastMRI brain and knee data, we demonstrate that our

approach outperforms existing posterior samplers based on CGANs [2] and MRI-

specific score/Langevin-based approaches [62, 34] in almost all accuracy metrics, while

retaining fast inference and requiring minimal hyperparameter tuning.

3.1 Background

In the case of MRI, the posterior distribution that we would ultimately like to

sample from is pιtrue|κ(·|κ), where κ ≜ [κ⊤(1), . . . , κ
⊤
(B)]

⊤. Equivalently, we could consider

pιtrue|y(·|y) since y and κ contain the same information. Another option is to sample

from px|y(·|y) and then use (2.4) or (2.5) to combine coil images into a single image.

We take the latter approach.
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For CNFs and CGANs, posterior sampling is accomplished by designing a neural

network that maps samples from an easy-to-generate latent distribution (e.g., white

Gaussian) to the target distribution (i.e., the distribution of x given y, with density

px|y). Once that network is trained, sample generation is extremely fast. For Langevin

dynamic and score-based methods, an algorithm is run for hundreds or thousands of

iterations to generate each sample, and each iteration involves calling a neural network.

Consequently, the inference time is much longer than that of CNFs and CGANs.

Normalizing flows (NF) [40, 41, 73, 92] have emerged as powerful generative models

capable of modeling complex data distributions. Normalizing flows learn an invertible

mapping between a target data distribution and a simple latent distribution, generally

a Gaussian. More concretely, for a latent sample v drawn from the latent distribution

pv, the normalizing flow defines an invertible transformation hθ(·) : RQ → RQ. This

transformation is parameterized by θ, and x = hθ(v) defines a sample in the target

data domain. This mapping of the latent distribution induces a distribution in the

target data domain with a probability density derived from the change-of-variable

formula

p̂x(x; θ) = pv(h
−1
θ (x))

∣∣∣∣ det
(
∂h−1

θ (x)

∂x

)∣∣∣∣, (3.1)

where det(·) denotes the determinant. The goal of the normalizing flow is to approxi-

mate the underlying data distribution px with p̂x(·; θ). Given a set of data samples

{xi}ntrain
i=1 , the parameters θ can be fit using a maximum likelihood loss

L(θ) =

ntrain∑

i=1

ln p̂x(xi; θ) (3.2)

=

ntrain∑

i=1

ln pv(h
−1
θ (xi)) + ln

∣∣∣∣ det
(
∂h−1

θ (xi)

∂x(i)

)∣∣∣∣ (3.3)
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Once the training is complete, samples from the target distribution can be rapidly

generated by drawing samples from the latent distribution and passing them through

the normalizing flow hθ.

It is worth noting that maximizing L(θ) is equivalent to minimizing the Kullback-

Leibler (KL) divergence between p̂x(·; θ) and px [92], which aligns with the goal of

approximating px with p̂x(·; θ). The maximum-likelihood loss provides stable training

with minimal hyperparameter tuning and has been shown to be robust to mode

collapse.

Conditional normalizing flows (CNFs) [9] generalize normalizing flows by adding a

conditioning signal y. With the CNF denoted as hθ(·, ·) : RQ ×RQ → RQ, the forward

process from the latent domain to the data domain is given by x = hθ(v, y). For

complex-valued, multi-coil MRI, we have Q = 2BD. The inclusion of y alters the ob-

jective of the CNF to approximating the unknown posterior distribution px|y(·|y) with

p̂x|y(·|y; θ). As before, the change-of-variable formula implies the induced distribution

p̂x|y(x|y; θ) = pv(h
−1
θ (x, y))

∣∣∣∣det
(
∂h−1

θ (x, y)

∂x

)∣∣∣∣, (3.4)

where h−1
θ refers to the inverse mapping of hθ with respect to its first argument.

Given a dataset {(xi, yi)}ntrain
i=1 , the maximum likelihood loss can be utilized to

optimize the parameters θ

L(θ) =

ntrain∑

i=1

ln p̂x|y(xi|yi; θ) (3.5)

=

ntrain∑

i=1

ln pv(h
−1
θ (xi, yi))+ln

∣∣∣∣det
(
∂h−1

θ (xi, yi)

∂xi

)∣∣∣∣. (3.6)

CNFs have shown promising performance in solving inverse problems, such as super-

resolution [85, 72, 106], making it an exciting avenue of exploration for accelerated
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MRI. Denker et al. [37] developed a CNF for single-coil, magnitude-only knee images.

This study showed promising initial results, but the limited scope did not demonstrate

performance in the more realistic multi-coil, complex-valued domain. As this transition

increases the dimensionality by an order of magnitude, non-trivial architectural changes

are required. We build on the latest advances in CNFs to create a method that is

capable of generating high-quality posterior samples of multi-coil, complex-valued

MRI images.

3.2 Proposed Method

Our CNF consists of two networks, a conditioning network h(cond)
θ1

and a conditional

flow model h(flow)
θ2

. The conditioning network takes the vector of zero-filled (ZF) coil-

images y as input and produces features that are used as conditioning information

by the flow model h(flow)
θ2

. Aided by the conditioning information, h(flow)
θ2

learns an

invertible mapping between samples in the latent space and those in the image space.

Using the notation of Sec. 3.1, our overall CNF takes the form

hθ(v, y) ≜ h
(flow)
θ2

(v, h
(cond)
θ1

(y)) (3.7)

where θ = [θ1, θ2].

Recently, advancements of CNFs in the super-resolution literature have revealed

useful insights for more general inverse problems. First, Lugmayr et al. [85] suggested

the use of a pretrained, state-of-the-art point-estimate network for the conditioning

network h(cond)
θ1

. This network is then trained jointly with h(flow)
θ2

using the loss in (3.6).

This approach provides a functional initialization of h(cond)
θ1

and allows the conditioning

network to learn to provide features that are useful for the maximum-likelihood

training objective. We utilize a UNet from Zbontar et al. [125] for h(cond)
θ1

since it has
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Figure 3.1: The architecture of our CNF. The conditioning network h(cond)
θ1

takes in
multi-coil zero-filled image estimates y and outputs features used by the flow model
h
(flow)
θ2

. The flow learns an invertible mapping between Gaussian random samples vi
and images ui that are the projections of the training images xi onto the non-measured
subspace. During inference, data consistency (3.10) is applied so the final prediction
x̂ is consistent with the observed measurements.

been shown to perform well in accelerated MRI. We first pre-train h
(cond)
θ1

for MRI

recovery, and later we jointly train h(cond)
θ1

and h(flow)
θ2

together.

Song et al. [106] demonstrated the benefits of using “frequency-separation" when

training a CNF for super-resolution. The authors argue that the low-resolution

conditional image already contains sufficient information about the low-frequency

components of the image, so the CNF can focus on recovering only the high-frequency

information. The CNF output is then added to an upsampled version of the conditional

image to yield an estimate of the full image.

We now generalize the frequency-separation idea to arbitrary linear models of the

form y = Ax+ ϵ from (2.1) and apply the resulting procedure to MRI. Notice that
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(2.1) implies

A+y = A+Ax+ A+ϵ (3.8)

where (·)+ denotes the pseudo-inverse. Here, A+Ax is recognized as the projection of

x onto the row-space of A, which we will refer to as the “measured space.” Then

u ≜ (I − A+A)x (3.9)

would be the projection of x onto its orthogonal complement, which we refer to as the

“nullspace.” Assuming that the nullspace has dimension > 0, we propose to construct

an estimate x̂ of x with the form

x̂ = gθ(v, y) = (I − A+A)hθ(v, y) + A+y, (3.10)

where gθ(v, y) is the complete estimation model, hθ(v, y) is our CNF-generated estimate

of u and the (I − A+A) in (3.10) strips off any part of hθ(v, y) that has leaked into

the measured space. A similar approach was used in [105] for point estimation. Given

training data {(xi, yi)}ntrain
i=1 , the CNF hθ(·, ·) is trained to map code vectors vi ∼ pv to

the nullspace projections

ui ≜ (I − A+A)xi (3.11)

using the measured data yi as the conditional information. As a result of (3.10), the

reconstructions x̂ agree with the measurements y in that Ax̂ = y. However, this

also means that x̂ inherits the noise ϵ corrupting y, and so this data-consistency

procedure is best used in the low-noise regime. In the presence of significant noise,

the dual-decomposition approach [29] may be more appropriate.
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In the accelerated MRI formulation (2.2)-(2.3), the matrix A is itself an orthogonal

projection matrix, so that, in (3.10),

I − A+A = blkdiag
{
FHP̃⊤P̃F, . . . , FHP̃⊤P̃F

}
, (3.12)

where P̃ ∈ R(D−M)×D is the sampling matrix for the non-measured k-space. Also, y is

in the row-space of A, so

A+y = y (3.13)

in (3.10). Figure 3.1 illustrates the overall procedure, using “data consistency” to

describe (3.10) and “nullspace projection” to describe (3.11). In Sec. 3.3.2, we quanti-

tatively demonstrate the improvements gained from designing our CNF to estimate

only the nullspace component.

3.2.1 Architecture

The backbone of h(cond)
θ1

is a UNet [98] that mimics the design in Zbontar et al.

[125], with 4 pooling layers and 128 output channels in the first convolution layer. The

first layer was modified to accept complex-valued coil images. The inputs have 2B

channels, where B is the number of coils each with a real and imaginary component.

The outputs of the final feature layer of the UNet are processed by a feature-extraction

network with ϑlayers convolution layers. Together, the feature extraction network and

the UNet make up our conditioning network h(cond)
θ1

. The output of each convolution

layer is fed to conditional coupling blocks of the corresponding layer in h(flow)
θ2

.

For the flow model h(flow)
θ2

, we adopt the multi-scale RealNVP [41] architecture.

This construction utilizes ϑlayers layers and ϑsteps flow steps in each layer. A flow

step consists of an activation normalization [73], a fixed 1× 1 orthogonal convolution
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[11], and a conditional coupling block [9]. Each layer begins with a checkerboard

downsampling (squeeze layer) [41] and a transition step made up of an activation

normalization and 1 × 1 convolution. Layers end with a split operation that sends

half of the channels directly to the output on the latent side. For all experiments, we

use ϑlayers = 3 and ϑsteps = 20. The full architecture of gθ is specified in Fig. 3.1.

Although the code that accompanies Denker et al. [37] gives a built-in mechanism

to scale their flow architecture to accommodate an increased number of input and

output channels, we find that this mechanism does not work well (see Sec. 3.3.2).

Thus, in addition to incorporating nullspace learning, we redesign several aspects of

the flow architecture and training. First, to prevent the number of flow parameters

from growing unreasonably large, our flow uses fewer downsampling layers (3 vs 6) but

more flow steps per downsampling layer (20 vs 5), and we utilize one-sided (instead

of two-sided) affine coupling layers. Second, to connect the conditioning network to

the flow, Denker et al. [37] used a separate CNN for each flow layer and adjusted its

depth to match the flow-layer dimension. We use a single, larger CNN and feed its

intermediate features to the flow layers with matched dimensions, further preventing

an explosion in the number of parameters. Third, our conditioning network uses a

large, pretrained UNet, whereas Denker et al. [37] used a smaller untrained UNet.

With our modifications, we grow the conditional network more than the flow network,

which allows the CNF to better handle the high dimensionality of complex-valued,

multi-coil data.
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3.2.2 Data

We apply our network to two datasets: the fastMRI knee and fastMRI brain

datasets [125]. For the knee data, we use the non-fat-suppressed subset, giving 17286

training and 3592 validation images. We compress the measurements to B = 8 complex-

valued virtual coils [127] and crop the images to 320× 320 pixels. The sampling mask

is generated using the golden ratio offset (GRO) [63] Cartesian sampling scheme with

an acceleration rate R = 4 and autocalibration signal (ACS) region of 13 pixels.

With the brain data, we use the T2-weighted images and take the first 8 slices of

all volumes with at least 8 coils. This provides 12224 training and 3352 validation

images. The data is compressed to B = 8 virtual coils [127] and cropped to 384× 384

pixels. The GRO sampling scheme is again used with an acceleration rate R = 4 and

a 32-wide ACS region. For both methods, the coil-sensitivity maps are estimated from

the ACS region using ESPIRiT [115]. All inputs to the network are normalized by

the 95th percentile of the ZF magnitude images.

3.2.3 Training

For both datasets, we first train the UNet in h
(cond)
θ1

with an additional 1 × 1

convolution layer to get the desired 2B channels. We train the UNet to minimize

the mean-squared error (MSE) from the nullspace projected targets {ui}ntrain
i=1 for 50

epochs with batch size 8 and learning rate 0.003. Then, we remove the final 1 × 1

convolution and jointly train h(cond)
θ1

and h(flow)
θ2

for 100 epochs to minimize the negative

log-likelihood (NLL) loss of the nullspace projected targets. For the brain data, we

use batch size 8 and learning rate 0.0003. For the knee data, we use batch size 16

with learning rate 0.0005. All experiments use the Adam optimizer [74] with default
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parameters β1 = 0.9 and β2 = 0.999. The full training takes about 4 days on 4 Nvidia

V100 GPUs.

3.2.4 Comparison Methods

We compare against other methods that are capable of generating posterior samples

for accelerated MRI. For the fastMRI brain data, we present results for the CGAN

from Adler & Öktem [2] and the Langevin method from Jalal et al. [62]. For the

fastMRI knee data, we present results for the “Score” method from Chung & Ye [34]

and the “sCNF” method from Denker et al. [37].

For the CGAN, we utilize a UNet-based generator with 4 pooling layers and 128

output channels in the initial layer and a 5-layer CNN network for the discriminator.

The generator takes y concatenated with a latent vector v as input. The model is

trained with the default loss and hyperparameters from the authors’ implementation

[2] for 100 epochs with a learning rate of 0.001. For the Langevin method, we use the

authors’ implementation [62] but with the GRO sampling mask described in Sec. 3.2.2.

The Score method is different than the other methods in that it assumes that the k-

space measurements κ are constructed from true coil images x with magnitudes affinely

normalized to the interval [0, 1] and phases normalized to [0, 1] radians. Although this

normalization cannot be enforced on prospectively undersampled MRI data, Score

fails without this normalization. So, to evaluate Score, we normalize each κ(b) using

knowledge of the ground-truth x(b), run Score, and un-normalized its output x̂(b) for

comparison with the other methods. Since the Score paper [34] used RSS combining

to compute |̂ι|, we do the same. For the Score method, we use T = 200 iterations

and not the default value of T =2000. This is because, when using posterior-sample
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averaging (see Sec. 3.2.5), the PSNR computed using 200 iterations is better than

with 2000.

The sCNF method works only on single-coil magnitude data, and so we convert

our multi-coil data to that domain in order to evaluate sCNF. To do this, we apply

RSS (2.5) to ZF coil-images y and repeat the process for the true coil images x. Using

those magnitude images, we train sCNF for 300 epochs with learning rate 0.0005 and

batch size 32.

3.2.5 Evaluation

We report results for several different metrics, including peak-signal-to-noise ratio

(PSNR), structural-similarity index (SSIM) [120], Fréchet Inception Score (FID) [57],

and conditional FID (cFID) [104]. PSNR and SSIM were computed on the average of

p posterior estimates {ι̂(j)}pj=1, i.e.,

ι[p] ≜
1

p

p∑

j=1

ι̂(j) (3.14)

to approximate the posterior mean, while FID and cFID were evaluated on individ-

ual posterior samples |̂ι(j)|. By default, we compute all metrics using magnitude

reconstructions |̂ι| rather than the complex-valued reconstructions ι̂, in part because

competitors like sCNF generate only magnitude reconstructions, but also because this

is typical in the MRI literature (e.g., the fastMRI competition [125]). So, for example,

PSNR is computed as

PSNR ≜ 10 log10

(
Dmaxd |[ιtrue]d|2∥∥|ι[p]| − |ιtrue|

∥∥2

2

)
, (3.15)

where [·]d extracts the dth pixel. For FID and cFID, we use the embeddings of VGG-16

[103] as Kastryulin et al. [67] found that this helped the metrics better correlate with

the rankings of radiologists.
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Figure 3.2: Mean images and pixel-wise standard-deviation maps computed from
8 and 32 posterior samples for the brain images and knee datasets, respectively.
The standard-deviation maps show which pixels have the greatest reconstruction
uncertainty. The corresponding PSNR is shown on each reconstruction.
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Model PSNR (dB) ↑ SSIM ↑ FID1 ↓ FID2 ↓ cFID1 ↓ cFID2 ↓ Time
Score 34.15 ± 0.19 0.8764 ± 0.0036 4.49 — 4.49 — 15 min
sCNF 32.93 ± 0.17 0.8494 ± 0.0047 7.32 5.78 8.49 6.51 66 ms
Ours 35.23 ± 0.22 0.8888 ± 0.0046 4.68 2.55 3.96 2.44 108 ms

Table 3.1: Average performance on non-fat-suppressed fastMRI knee data, with
standard error reported after the ±. PSNR, SSIM, FID1, and cFID1 are computed for
72 test images and p = 8 posterior samples. FID2, and cFID2 are computed for 2188
test samples and p = 8 posterior samples. Time marks the generation time for one
posterior sample.

For the brain data, we compute all metrics on 72 random test images in order to

limit the Langevin image generation time to 4 days. We generate complex-valued

images using the coil-combining method in (2.4) before computing the magnitude and

use p = 32 posterior samples to calculate cFID1, FID1, PSNR, and SSIM. (For the

reference statistics of FID, we use the entire training dataset.) Because FID and cFID

are biased by small sample sizes, we also compute FID2 and cFID2 with 2484 test

samples and p = 8 for our method and the CGAN.

With the knee data, we follow a similar evaluation procedure except that, to

comply with the evaluation steps of Score, we generate magnitude-only signals using

the root-sum-of-square (RSS) combining from (2.5). Also, we computed metrics on 72

randomly selected slices in order to bound the image generation time of Score to 6

days with p = 8. We use p = 8 for all metrics, but for FID2 and cFID2, we use 2188

test samples.

When computing inference time for all methods, we use a single Nvidia V100 with

32GB of memory and evaluate the time required to generate one posterior sample.
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Figure 3.3: Examples of posterior samples and standard-deviation maps for the
knee data. The samples show important structural variations. This demonstrates
the advantages of generating multiple reconstructions and computing a pixel-wise
standard-deviation map.

3.3 Results

Tab. 3.1 reports the quantitative metrics for the knee dataset. It shows that our

method outperforms sCNF by a significant margin in all metrics except inference

time. By using information from multiple coils and a more advanced architecture,
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Figure 3.4: Examples of posterior samples and standard-deviation maps for the brain
images, both with zoomed regions.
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Model PSNR (dB) ↑ SSIM ↑ FID1 ↓ FID2 ↓ cFID1 ↓ cFID2 ↓ Time
Langevin 37.88 ± 0.41 0.9042 ± 0.0062 6.12 — 5.29 — 14 min
CGAN 37.28 ± 0.19 0.9413 ± 0.0031 5.38 4.06 6.41 4.28 112 ms
Ours 38.85 ± 0.23 0.9495 ± 0.0012 4.13 2.37 4.15 2.44 177 ms

Table 3.2: Average performance on T2-weighted fastMRI brain data, with standard
error reported after the ±. PSNR, SSIM, FID1, and cFID1 are computed for 72 test
images and p = 32 posterior samples. FID2 and cFID2 are computed using 2484 test
samples and p = 8. Time marks the generation time for one posterior sample.

our method shows the true competitive potential of CNFs in realistic accelerated MR

imaging.

Tab. 3.1 also shows that our method surpasses Score in all metrics except FID1,

even though Score benefited from impractical ground-truth normalization. Compared

to Score, our method generated posterior samples 8000× faster. Furthermore, our

method (and sCNF) will see a speedup when multiple samples are generated because

the conditioning network h
(cond)
θ1

needs to be evaluated only once per p generated

samples for a given y. For example, with the knee data, we are able to generate p = 32

samples in 1.41 seconds, corresponding to 44 milliseconds per sample, which is a 2.5×

speedup over the value reported in Tab. 3.1.

Tab. 3.2 reports the quantitative results for the brain dataset. The table shows that

we outperform the Langevin and CGAN methods in all benchmarks except inference

time. While our method is a bit slower than the CGAN, it is orders of magnitude

faster than the Langevin approach.

We show the mean images and standard-deviation maps for the fastMRI knee and

brain experiments in Fig. 3.2. For the knee data, our method captures texture more

accurately than the sCNF method and provides a sharper representation than the
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Score method. All of the brain methods provide a visually accurate representation to

the ground truth, but the Langevin method provides a more diffuse variation map,

with energy spread throughout the image.

In Fig. 3.3 and Fig. 3.4, we plot multiple posterior samples, along with zoomed-in

regions, to illustrate the changes across independently drawn samples for each method.

The standard-deviation maps are generated using p = 8 posterior samples, three of

which are shown. From the zoomed-in regions, it can be seen that several samples

are consistent with the ground truth while others are not (although they may be

consistent with the measured data). Regions of high posterior variation can be flagged

from visual inspection of the standard-deviation map and further investigated through

viewing multiple posterior samples for improved clinical diagnoses.

Our method presents observable, realistic variations of small anatomical features

in the zoomed-in regions. The variations are also registered in the standard-deviation

map, which illustrates the pixel-wise uncertainty. Both the posterior samples and

the standard-deviation map could be used by clinicians to assess their findings.

Comparatively, our method demonstrates variation that is spread across the entire

knee image, while in the Score method, the variation is mostly localized to small

regions. The sCNF also demonstrates variation, but it is mostly driven by residual

aliasing artifacts. For the brain images, the Langevin method again gives a very diffuse

standard-deviation map with no discernible features. Both our method and the CGAN

highlight particular regions of high variation although the CGAN map indicates much

larger standard-deviation values. Since it is difficult to say which standard-deviation

map is more useful or correct, the interpretation of these maps could be an interesting

direction for future work.
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Figure 3.5: The gain in (magnitude) PSNR and complex PSNR of the p-sample mean
estimate ι[p] versus p, for both brain and knee data. Note the ≈ 3 dB increase as p
grows from 1 to infinity.

3.3.1 PSNR Gain versus Number of Posterior Samples

It is well known that the minimum mean-squared error (MMSE) estimate of ι

from y equals the conditional mean E{ι|y}, i.e., the mean of the posterior distribution

pι|y(·|y). Thus, one way to approximate the MMSE estimate is to generate many

samples from the posterior distribution and average them, as in (3.14). Bendel et al.
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[19] showed that the MSE

Ep ≜ E
[
∥ι[p] − ιtrue∥22

∣∣y
]

(3.16)

of the p-posterior-sample average ι[p] obeys E1/Ep = 2p/(p+ 1). So, for example, the

SNR increases by a factor of two as p grows from 1 to ∞. The same thing should

happen for PSNR, as long as the PSNR definition is consistent with (3.16). For

positive signals (i.e., magnitude images) the PSNR definition from (3.15) is consistent

with (3.16), but for complex signals we must use “complex PSNR”

cPSNR ≜ 10 log10

(
Dmaxd |[ιtrue]d|2
∥ι[p] − ιtrue∥22

)
. (3.17)

As RSS combining provides only a magnitude estimate, we compute the coil-combined

estimate for our method and Score to evaluate cPSNR behavior for the knee dataset.

One may then wonder whether a given approximate posterior sampler has a PSNR

gain versus p that matches the theory. In Fig. 3.5, we answer this question by

plotting the PSNR gain and the cPSNR gain versus p ∈ {1, 2, 4, 8, 16, 32} for the

various methods under test (averaged over all 72 test samples). There we see that our

method’s cPSNR curve matches the theoretical curve well for both brain and knee

data. As expected, our (magnitude) PSNR curve does not match the theoretical curve.

The cPSNR curves of the Score and CGAN methods fall short of the theoretical curve

by a large margin, but interestingly, the Langevin method’s cPSNR curve matches

ours almost perfectly. sCNF’s PSNR gain curve matches the theoretical one almost

perfectly, which provides further empirical evidence that CNF methods accurately

sample from the posterior distribution.
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Model PSNR (dB) ↑ SSIM ↑ FID2 ↓ cFID2 ↓
Denker et al. [37] 17.61 ± 0.20 0.6665 ± 0.0072 16.02 16.68
+ Data Consistency 27.27 ± 0.21 0.7447 ± 0.0061 16.92 18.56
+ Architectural Changes 33.87 ± 0.23 0.8715 ± 0.0049 4.48 4.50
+ Nullspace Learning 35.23 ± 0.22 0.8888 ± 0.0046 2.55 2.44

Table 3.3: Ablation Study: Performance on non-fat-suppressed fastMRI knee data,
with standard error reported after the ±. Each line adds a new contribution to the
model of the previous line. Metrics are computed as described in Sec. 3.2.5

3.3.2 Ablation Study

To evaluate the impact of our contributions to CNF architecture and training

design, we perform an ablation study using the fastMRI knee dataset. We start with

the baseline model in Denker et al. [37], modified to take in 16 channels instead of

1, and scale it up using the built-in mechanism in the author’s code. We train this

model for 300 epochs with batch size 32 and learning rate 0.0001 to minimize the

NLL of the multi-coil targets {xi}ntrain
i=1 , since higher learning rates were numerically

unstable. Table 3.3 shows what happens when we add each of our contributions. First,

we add data consistency (3.10) to the evaluation of the baseline. We then add the

architectural changes described in Sec. 3.2.1, and finally we add nullspace learning to

arrive at our proposed method. From Tab. 3.3, it can be seen that each of our design

contributions yielded a significant boost in performance, and that nullspace learning

was a critical ingredient in our outperforming the Score method in Tab. 3.1. For this

ablation study, all models were trained following the procedure outlined in Sec. 3.2.3

(except for the learning rate of the baseline).
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Figure 3.6: Examples of a ground-truth image, one posterior sample, an average of
p = 8 posterior samples, and a MAP estimate. The log posterior density in units of
bits-per-dimension is shown in the bottom right corner of each image.

3.3.3 Maximum a Posteriori (MAP) Estimation

Because CNFs can evaluate the posterior density of a signal hypothesis (recall

(3.4)), they can be used for posteriori (MAP) estimation, unlike CGANs.

Due to our data-consistency step (3.10), we find the MAP estimate of x using

x̂MAP = ûMAP + A+y (3.18)

ûMAP = arg max
u∈null(A)

ln p̂u|y(u|y). (3.19)

Note the CNF output u is constrained to the nullspace of A. From (3.12), this

nullspace is spanned by the columns of

W ≜ blkdiag
{
FHP̃⊤, . . . , FHP̃⊤}, (3.20)
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which are orthonormal, and so ûMAP = Wκ̃MAP with

κ̃MAP = argmax
κ̃

ln p̂u|y(Wκ̃|y; θ) (3.21)

= argmax
κ̃

[
ln pv(h

−1
θ (Wκ̃, y))

+ ln

∣∣∣∣det
(
∂h−1

θ (ũ, y)

∂ũ

∣∣∣∣
ũ=Wκ̃

)∣∣∣∣

]
. (3.22)

For this maximization, we use the Adam optimizer with 5000 iterations and a learning

rate of 1× 10−8. Above, κ̃ can be recognized as the unmeasured k-space samples.

In Figure 3.6, we show an example of a MAP estimate along with the ground

truth image, one sample from the posterior, a p = 8 posterior-sample average, and

their corresponding log-posterior-density values. As expected, the MAP estimate has

a higher log-posterior-density that the other estimates. Visually, the MAP estimate is

slightly sharper than the sample average but contains less texture details than the

single posterior sample.

3.4 Conclusion

In this work, we present the first conditional normalizing flow for posterior sample

generation in multi-coil accelerated MRI. To do this, we designed a novel conditional

normalizing flow (CNF) that infers the signal component in the measurement operator’s

nullspace, whose outputs are later combined with information from the measured space.

In experiments with fastMRI brain and knee data, we demonstrate improvements over

existing posterior samplers for MRI. Compared to score/Langevin-based approaches,

our inference time is four orders-of-magnitude faster. We also illustrate how the

posterior samples can be used to quantify uncertainty in MR imaging on an individual

pixel level. This provides radiologists with additional tools to enhance the robustness
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of clinical diagnoses and serves as a foundational component for the methods presented

in the subsequent chapters.
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Chapter 4: Task-based UQ via Conformal Prediction

Pixel-wise uncertainty quantification has been a very common presentation of

uncertainty in inverse imaging problems. As seen in Ch. 3, posterior sampling

methods [42, 2, 10, 43, 62, 33] allow one to easily draw many samples from the

distribution p(x|y) of plausible x given y and construct a pixel-wise uncertainty map.

This quantifies the uncertainty that the measurement process imposes on x, known

as aleatoric uncertainty. Another approach is to utilize Bayesian Neural Networks

(BNNs), which treat the reconstruction network parameters as random variables

[71, 122, 14, 44, 90]. This allows one to quantify epistemic (i.e., model) uncertainty

by measuring the variation over reconstructions generated by different draws from

the parameter distribution. It’s possible to combine BNNs with posterior sampling

as well, as in Ekmekci & Cetin [45]. Recently, conformal prediction [117, 5] has also

been shown to be a promising avenue as it computes pixel-wise uncertainty intervals

with particular statistical guarantees [7, 60, 111, 77].

However, the value of these pixel-wise uncertainty maps is not clear. For example,

when recovering images, we are usually concerned about many-pixel visual structures

(e.g., lesions in MRI, hallucinations) that single-pixel statistics say little about. Sec-

ondly, uncertainty maps are not easy to interpret. They often convey little beyond the

notion that there is less pixel-wise uncertainty in smooth regions as compared to near
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edges (see, e.g., Figure 4.8). Lastly, it’s not clear how pixel-wise uncertainty relates

to the overall imaging goal, which is often task-oriented, such as detecting whether a

tumor is present or not.

One approach to assess multi-pixel uncertainty is Bayesian Uncertainty Quantifica-

tion by Optimization (BUQO) [110], which aims to test whether a particular “structure

of interest” in the maximum a-posteriori (MAP) reconstruction is truly present. How-

ever, inpainting is used to hypothesize what the image would look like without the

structure, the correctness of which is difficult to guarantee. Alternatively, Belhasin et

al. [17] compute conformal prediction intervals on the principal components of the

posterior covariance matrix. This allows for the visualization of the uncertainty on

multi-pixel structures, but it is challenging to know if such structures are relevant to

an imaging task like pathology detection.

In this work, we propose a novel UQ framework for imaging inverse problems

that aims to provide a more impactful measure of uncertainty. In particular, we

aim to quantify to what extent a downstream task behaves differently when supplied

with the reconstructed image versus the true image. Our framework supports any

measurement-and-reconstruction procedure and any downstream task that outputs a

real-valued scalar. Our contributions are as follows.

1. We propose to construct, using conformal prediction, an interval in the task-

output space that is guaranteed to contain the true task output up to a user-

specified probability. The prediction interval width provides a natural way to

quantify the uncertainty that measurement-and-reconstruction contributes to

the downstream task output. (See Figure 4.1.)
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Pr(Z → Cω̂(Dcal)
(X̂)) ↑ 1 ↓ ω

Figure 4.1: High-level overview of our approach: For true image x, measurement
y = A(x), recovery x̂ = gθ(y), and task output ẑ = f(x̂), we use conformal prediction
to construct an interval Cλ̂(dcal)(x̂) ⊂ R that is guaranteed to contain the true task
output z = f(x) in the sense that Pr(Z ∈ Cλ̂(Dcal)

(X̂)) ≥ 1 − α for some chosen
error-rate α.

2. For posterior-sampling-based image reconstruction, we propose to construct

adaptive uncertainty intervals that shrink when the measurements offer more

certainty about the true output of the downstream task. (See Figure 4.2.)

3. We propose a multi-round acquisition protocol whereby measurements are accu-

mulated until the task uncertainty is acceptably low.

4. We demonstrate our approach on accelerated MRI with the task of soft-output-

classifying a meniscus tear. Several conformal predictors are evaluated and

compared.

4.1 Background

Conformal prediction [117, 5] is a framework for generating uncertainty sets with

prescribed statistical guarantees. Notably, it can be applied to any black-box predictor

without making any distributional assumptions about the data.
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We now explain the basics of conformal prediction or, more precisely, the common

variant known as split conformal prediction [91, 79]. Say that we have a black-box

model f : X → Z that predicts a target z ∈ Z from features x ∈ X . Say that we also

have a calibration dataset dcal ≜ {(xi, zi)}ncal
i=1 that was unseen when training f , as well

as a test feature x0 and an unknown test target z0. In split conformal prediction, we

define a prediction set Cλ(x0) ⊂ 2Z that grows in size as the parameter λ increases

and then use the calibration data to select a value of λ that provides the “marginal

coverage” [80] guarantee

Pr
(
Z0 ∈ Cλ̂(Dcal)

(X0)
)
≥ 1− α, (4.1)

where α ∈ [0, 1] is a user-specified error rate. In (4.1) and the remainder of the chapter,

we use capital letters to denote random variables and lower-case to denote their

realizations. Thus (4.1) can be interpreted as follows: When averaged over random

calibration dataDcal and test data (X0, Z0), the set Cλ̂(Dcal)
(X0) is guaranteed to contain

the correct target Z0 with probability no less than 1− α. Although we would prefer a

“conditional coverage” guarantee of the form Pr
(
Z0 ∈ Cλ̂(Dcal)

(X0)
∣∣X0 = x0

)
≥ 1− α,

this is generally impossible to achieve [116, 80].

We now describe the standard recipe for constructing a prediction set

Cλ̂(dcal)(x0) and selecting λ̂(dcal), a process known as calibration. First one chooses a

nonconformity score s(x, z; f) ∈ R that assigns higher values to worse predictions.

Then one computes the empirical quantile

λ̂(dcal) ≜ EmpQuant
(

⌈(1−α)(n+1)⌉
n

; s1, . . . , sncal

)
(4.2)

from the calibration scores si = s(xi, zi; f). Finally one constructs

Cλ̂(dcal)(x0) = {z : s(x0, z; f) ≤ λ̂(dcal)}. (4.3)
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Under these choices, it can be proven [118, 79] that the marginal coverage guarantee

(4.1) holds when (X1, Z1), . . . , (Xn, Zn), (X0, Z0) are i.i.d., and even under the weaker

condition that they are exchangeable [117].

There are many ways to construct the nonconformity score s(x, z; f). For real-

valued targets z, the simplest choice would be the absolute residual

s(x, z; f) = |z − f(x)| ⇒ Cλ̂(dcal)(x) =
[
f(x)− λ̂(dcal), f(x) + λ̂(dcal)

]
, (4.4)

which gives an x-invariant interval length of |Cλ̂(dcal)(x)| = 2λ̂(dcal). We will discuss

a few other choices in the sequel. For more on conformal prediction, we suggest the

excellent overviews [117, 5].

4.2 Proposed Method

Suppose that we collect measurements y = A(x) of a true image x as in a standard

inverse imaging problem. Using an arbitrary recover method gθ, we can compute an

image recovery x̂ = gθ(y). Ideally, we would like that x̂ = x, but this is impossible

to guarantee with an ill-posed inverse problem. Although there are many ways to

quantify the difference between x̂ and x (e.g., PSNR, SSIM [120], LPIPS [126], DISTS

[39]), we will instead assume that we are primarily interested in using x̂ for some

downstream task f(x̂) ∈ R. As a running example, we consider x to be a medical

image, y to be accelerated MRI measurements, and f(·) ∈ [0, 1] to be the soft output

of a classifier that aims to detect the presence or absence of a pathology. For example,

when f(x̂) = 0.7, the classifier believes that there is a 70% chance that the pathology

exists.

When image recovery is imperfect (i.e., x̂ ≠ x), we expect the task output to also

be imperfect, in the sense that ẑ = f(x̂) ̸= f(x) = z. We are thus strongly motivated
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to understand how close ẑ is to the true z or, even better, to construct a prediction

interval Cλ(x̂) ⊂ R that contains the true z with some guarantee. The interval width

|Cλ(x̂)| would then quantify the uncertainty that the measurement-and-reconstruction

process contributes to predicting the true task output z.

We emphasize that our approach makes no assumptions about the task f(·) beyond

it producing a real number. For example, if f(·) is a soft-output classifier, we do not

assume that it is accurate or even calibrated [53]. Likewise, our approach does not aim

to assess the uncertainty implicit in the task, but rather the additional uncertainty that

measurement-and-reconstruction contributes to the task. For a soft-output classifier,

a (true) output of z = f(x) = 0.7 would express considerable uncertainty about the

presence of a pathology in x. But if the true z could be perfectly predicted from x̂, then

the measurement-and-reconstruction process would bring no additional uncertainty.

To construct the interval Cλ(x̂), we use conformal prediction. Adapting the

methodology from Section 4.1 to the current setting, we use a calibration set dcal =

{(x̂i, zi)}ncal
i=1 of (recovered-image, true-task-output) pairs, and we expect to satisfy the

marginal coverage guarantee

Pr
(
Z0 ∈ Cλ̂(Dcal)

(X̂0)
)
≥ 1− α (4.5)

when (X̂1, Z1), . . . , (X̂n, Zn), (X̂0, Z0) are exchangeable. In (4.5) and in the sequel, we

explicitly denote the dependence of Cλ̂(dcal)(x̂0) on the calibration data. To construct the

calibration set dcal, we assume access to ground-truth examples {xi}ncal
i=1, a measurement

model A(·), a reconstruction model gθ(·), and a task function f(·). From these, we

can construct yi = A(xi), x̂i = gθ(yi), and zi = f(xi) for i = 1, . . . , ncal.

In some cases we may instead have access to a posterior-sampling-based image

reconstruction model (as in Ch. 3) that generates c recoveries {x̂(j)i }cj=1 from every
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Figure 4.2: Detailed overview of our approach: For true image x, measurement
y = A(x), reconstructions {x̂(j)}cj=1, and task outputs ẑ(j) = f(x̂(j)), we use conformal
prediction with a calibration set dcal = {({x̂(j)i }cj=1, zi)}ncal

i=1 to construct an interval
Cλ̂(dcal)({x̂

(j)}) = [bl, bh] that is guaranteed to contain the true task output z = f(x) in
the sense that Pr(Z ∈ Cλ̂(Dcal)

({X̂(j)})) ≥ 1− α for some chosen error-rate α.

measurement yi via x̂
(j)
i = gθ(v

(j)
i , yi), where {v(j)i }cj=1 are i.i.d. code vectors and,

typically, v(j)i ∼ N (0, I). In this case, the prediction interval becomes Cλ̂(dcal)({x̂
(j)
i }cj=1).

As we will see, posterior sampling facilitates locally adaptive prediction sets.

Next we describe different ways to construct the prediction intervals Cλ̂(dcal)(x̂)

and Cλ̂(dcal)({x̂
(j)
i }cj=1), and later we describe a multi-round measurement protocol that

exploits locally adaptive prediction intervals. See Figure 4.2 for a detailed overview of

our approach.

4.2.1 Method 1: Absolute Residuals (AR)

We first consider the case where image recovery yields a point-estimate x̂ = gθ(y)

of the true x. As described in Section 4.1, a simple way to construct a nonconformity

score is through the absolute residual (recall (4.4))

s(x̂, z; f) = |z − f(x̂)|. (4.6)
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Evaluating this score on the calibration set dcal gives {si}ncal
i=1, whose empirical quantile

λ̂(dcal) can be computed as in (4.2) and used to construct the prediction interval

Cλ̂(dcal)(x̂) =
[
f(x̂)− λ̂(dcal), f(x̂) + λ̂(dcal)

]
, (4.7)

which then provides the marginal coverage property (4.5) [79].

Note that, with this choice of score, the interval width |Cλ̂(dcal)(x̂)| = 2λ̂(dcal) varies

with the calibration set dcal but not with x̂. Thus, for a fixed dcal, the score (4.6)

provides no way to tell whether one x̂ will yield more task-output uncertainty than a

different x̂.

4.2.2 Method 2: Locally-Weighted Residuals (LWR)

We now consider the case where we have a posterior-sampling-based recovery

method that yields c recoveries {x̂(j)}cj=1 per measurement y. We make no assump-

tion on how accurate or diverse these c samples are, other than assuming that the

corresponding task outputs ẑ(j) = f(x̂(j)) are not all identical.

Suppose that we choose the nonconformity score

s({x̂(j)}, z; f) = |z − z|
σz

with

{
z ≜ 1

c

∑c
j=1 f(x̂

(j))

σz ≜
√

1
c

∑c
j=1

(
f(x̂(j))− z

)2 , (4.8)

evaluate it on the calibration set dcal to get scores {si}ncal
i=1, and compute their empirical

quantile λ̂(dcal) as in (4.2). Then the prediction interval

Cλ̂(dcal)({x̂
(j)}) =

[
z − σzλ̂(dcal), z + σzλ̂(dcal)

]
(4.9)

of this “locally weighted residual” (LWR) method provides the marginal coverage

property in (4.5) [79].

In words, this method first computes (approximate) posterior samples ẑ(j) ∼ Z|Y =

y, which are then averaged to approximate the conditional mean ẑmmse ≜ E(Z|Y =
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y) ≈ z and square-root conditional covariance
√

cov(Z|Y = y) ≈ σz. When exactly

computed, the conditional covariance gives a meaningful uncertainty metric on how

well the true Z can be estimated from measurements y, because cov(Z|Y = y) =

E((Z − ẑmmse)
2|Y = y). However, the σz that we compute is merely an approximation.

So, with the aid of the calibration set, σz is adjusted by the scaling λ̂(dcal) to yield a

prediction interval
[
z − σzλ̂(dcal), z + σzλ̂(dcal)

]
that satisfies the marginal coverage

criterion (4.5).

Importantly, the interval width |Cλ̂(dcal)({x̂
(j)})| now varies with {x̂(j)}cj=1 through

σz. This latter property is known as “local adaptivity” [79].

4.2.3 Method 3: Conformalized Quantile Regression (CQR)

Another popular locally adaptive method is known as conformalized quantile

regression (CQR) [97]. The idea is to construct the nonconformity score using two

quantile regressors [76], one which estimates the α
2
th quantile of Z|Y = y and the

other which estimates the (1− α
2
)th quantile.

To compute these quantile estimates, we will once again assume access to a posterior-

sampling-based recovery method that yields c recoveries {x̂(j)}cj=1 per measurement

y. From the corresponding task-outputs ẑ(j) = f(x̂(j)), we compute the empirical

quantiles q̂(α
2
) and q̂(1− α

2
) using

q̂(ω) ≜ EmpQuant
(
ω; ẑ(1), . . . , ẑ(c)

)
. (4.10)

From these quantile estimates, we construct the nonconformity score

s({x̂(j)}, z; f) = max
{
q̂(α

2
)− z, z − q̂(1− α

2
)
}
, (4.11)
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Figure 4.3: Proposed multi-round measurement protocol. In each round, measurements
are collected and reconstructions and conformal intervals are computed. If the length
of the interval falls below a user-set threshold τ , the procedure stops. Otherwise, more
measurements are collected, and the process repeats until the threshold has been met.

evaluate it on the calibration set dcal to obtain {si}ncal
i=1, and compute their ⌈(1−α)(n+

1)⌉/n-empirical quantile λ̂(dcal) as in (4.2). Then the prediction interval

Cλ̂(dcal)({x̂
(j)}) =

[
q̂(α

2
)− λ̂(dcal), q̂(1− α

2
) + λ̂(dcal)

]
(4.12)

provides the marginal coverage in (4.5) [97]. Like (4.9), this interval is locally adaptive.

We will compare these three conformal prediction methods in Section 4.3.

4.2.4 Multi-Round Measurement Protocol

In many applications, there is a significant cost to collecting a large number of

measurements (i.e., acquiring a high-dimensional y). One example is MRI as discussed

in Ch. 1. For these applications, we propose to collect measurements over multiple

rounds, stopping as soon as the task uncertainty falls below a prescribed level τ . The

goal is to collect the minimal number of measurements that accomplishes the task

with probability of at least 1− α.

Our approach is to use the prediction interval width |Cλ̂(dcal)({x̂
(j)})| as the metric

for task uncertainty. This requires the interval to be locally adaptive, as with LWR
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and CQR above. The details are as follows. First, a sequence of K > 1 nested

measurement configurations is chosen, so that the resulting measurement sets obey

Y [1] ⊂ Y [2] ⊂ · · · ⊂ Y [K]. Then, for each configuration k = 1, . . . , K, a calibration set

d
[k]
cal is collected, from which the set-valued function C

λ̂(d
[k]
cal )

(·) is constructed. At test

time, we begin by collecting measurements y ∈ Y [1] according to the first (i.e., minimal)

configuration. From y we compute the reconstructions {x̂(j)}cj=1 and, from them, the

task uncertainty |C
λ̂(d

[1]
cal)

({x̂(j)})|. If this uncertainty falls below the desired τ , we stop

collecting measurements. If not, we would collect the additional measurements in

Y [2] \Y [1], and repeat the procedure. Figure 4.3 summarizes the proposed multi-round

protocol.

4.3 Numerical Experiments

We now demonstrate our task-based uncertainty quantification framework on MRI

[75]. As before, we are interested in accelerated MRI, which speeds up the acquisition

process by collecting a fraction 1/R of the measurements specified by the Nyquist

sampling theorem. This comes at the expense of making the inverse problem ill-posed

when R > 1.

In MRI, a typical task is to diagnose the presence or absence of a pathology.

Although this task is typically performed by a radiologist, neural-network-based

classification is expected to play a significant role in aiding radiologists [23]. Thus,

in our experiments, we implement the task f(·) using a neural network. Details are

given below.

Data: We use the multi-coil fastMRI knee dataset [124] and in particular the

non-fat-suppressed subset, which includes 484 training volumes (17286 training slices,
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Figure 4.4: Sampling masks in the 2D spatial Fourier domain for each acceleration
rate R. Each white line indicates the subset of collected samples. The masks are
nested, in that the mask at a given R contains all samples in all masks at higher R.

or images) and 100 validation volumes. For the validation set, we use the central

80% of slices in a volume, which provides 2188 validation images. We use pathology

labels from fastMRI+ [128]. For knee-MRI, meniscus tears yield the largest fastMRI+

label set, and so we choose meniscus-tear-detection as our task. In total, there are

1921 training images and 324 validation images that contain a meniscus tear. To

collect measurements, we retrospectively subsample the fastMRI data in the k-space

using a set of random nested masks (shown in Figure 4.4) that yield acceleration

rates R ∈ {16, 8, 4, 2}. The details for the generation of these masks are described in

App. A.1.

Image Recovery: We consider two recovery networks gθ(·). As a point estimator,

we use the state-of-the-art E2E-VarNet from Sriram et al. [107] and, as a posterior

sampler, we use the conditional normalizing flow (CNF) from Ch. 3. Both were

specifically designed around the fastMRI dataset. Another option would be the MRI

diffusion sampler [34], but its performance is a bit worse than the CNF and its sampling
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Table 4.1: Number of images in each data fold.

Training Validation
Calibration Testing Total

17286 1531 656 2188

speed is 8000× slower. The E2E-VarNet and CNF were each trained to handle all

four acceleration rates with a single model.

Task Network: We used a ResNet50 [56] for the task network f(·). Starting from an

ImageNet-based initialization, we pretrained the weights to minimize the unsupervised

SimCLR loss [31] and later minimized binary-cross-entropy loss using the fastMRI+

labels. See App. A.2 for details on all of the networks.

Empirical Validation: Recall that the marginal coverage guarantee (4.5) holds

on average over random test samples (X̂0, Z0) and random calibration data Dcal =

{(X̂1, Z1), . . . , (X̂n, Zn)}. To empirically validate marginal coverage and evaluate

other average-performance metrics, we perform Monte-Carlo averaging over T = 10000

trials as follows. In each trial t, we randomly partition the 2188-sample validation

dataset into a 70% calibration fold with indices i ∈ Ical[t] and a 30% test fold

with indices i ∈ Itest[t], construct conformal predictors using the calibration data

dcal[t] = {({x̂(j)i }cj=1, zi)}i∈Ical[t], and evaluate performance on the test fold of trial t.

Finally, we average performance over the T trials. The dataset splits are summarized

in Table 4.1. Further details are given below.
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4.3.1 Effect of Acceleration Rate and Conformal Prediction
Scheme

We have seen that the interval length |Cλ̂(dcal)({x̂
(j)})| provides a way to quantify

the uncertainty that the measurement-and-reconstruction scheme contributes to the

meniscus-classification task. So a natural question is: How is the interval length

affected by the MRI acceleration R? We study this question below.

For a fixed acceleration R, the interval length is also affected by the choice of

conformal predictor. All else being equal, better conformal predictors yield smaller

uncertainty sets [5]. So another question is: How is the interval length affected by

selecting among the AR, LWR, or CQR conformal methods?

To answer these questions, we compute the “average mean interval length” MIL ≜

1
T

∑T
t=1 MIL[t] using the trial-t mean interval length

MIL[t] ≜
1

|Itest[t]|
∑

i∈Itest[t]

∣∣Cλ̂(dcal[t])
(
{x̂(j)i }cj=1

)∣∣. (4.13)

Figure 4.5a plots the average mean interval length versus R for the AR, LWR, and

CQR conformal predictors using T = 10000 trials, c = 32 posterior samples, and

error-rate α = 0.05. The figure shows that, as expected, the average mean interval

length decreases as more measurements are collected (i.e., as R decreases). The

figure also shows that, as expected, the locally adaptive LWR and CQR methods give

consistently smaller average mean interval lengths than the non-adaptive AR method.

In this sense, posterior sampling is advantageous over point sampling.

4.3.2 Effect of Number of Posterior Samples

Above, we saw that the measurement process and conformal method both affect

the prediction-interval length. We conjecture that the image reconstruction process
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Figure 4.5: a) Average mean interval length versus acceleration R with c = 32 samples.
b) Mean interval length versus c with acceleration R = 16. All results use error-rate
α = 0.05 and T = 10000 trials.

will also affect the prediction-interval length. To investigate this, we vary the number

of samples c produced by the posterior-sampling scheme, reasoning that smaller

values of c correspond to less accurate recoveries (e.g., a less accurate posterior mean

approximation).

Figure 4.5b plots the average mean interval length versus c for the LWR and CQR

conformal predictors using T = 10000 trials, acceleration R = 16, and error-rate

α = 0.05. As expected, the interval length decreases as the posterior sample size c

grows. But interestingly, LWR is much more sensitive to small values of c than CQR.

One implication is that small values of c may suffice when used with an appropriate

conformal prediction method.
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Figure 4.6: For the AR, LWR, and CQR conformal methods, each subplot shows
the histograms of the empirical and theoretical empirical-coverage samples {EC[t]}Tt=1

across T = 10000 Monte-Carlo trials using α = 0.05, R = 8, and c = 32. The subplots
are also labelled with the empirical mean of {EC[t]}Tt=1, which is very close to the
target value of 1− α = 0.95.

4.3.3 Empirical Validation of Coverage

To verify that the marginal coverage guarantee (4.5) holds, we compute the

empirical coverage of Monte-Carlo trial t as

EC[t] ≜
1

|Itest[t]|
∑

i∈Itest[t]

1{zi ∈ Cλ̂(dcal[t])({x̂
(j)
i })}, (4.14)

where 1{·} denotes the indicator function. Existing theory (see, e.g., [5]) says that

when ({X̂(j)
i }, Zi) and Dcal[t] in (4.14) are exchangeable pairs of random variables,

EC[t] is random and distributed as

EC[t] ∼ BetaBin(ntest, ncal + 1− lcal, lcal) for lcal ≜ ⌈(ncal + 1)α⌉, (4.15)

where ntest ≜ |Itest[t]| and ncal ≜ |Ical[t]|.

For each of the three conformal methods, Figure 4.6 shows the histogram of

{EC[t]}Tt=1 from (4.14) for T = 10000, error-rate α = 0.05, acceleration R = 8, and

c = 32 posterior samples. The figure shows that this histogram is close to the histogram

created from T samples of the theoretical distribution in (4.15). Figure 4.6 also prints

50



the average empirical coverage 1
T

∑T
t=1 EC[t] for each method, which is very close to

the target value of 1− α = 0.95. Thus, we see that, in practice, conformal prediction

behaves close to the theory.

4.3.4 Multi-Round Measurements

We now investigate the application of the multi-round measurement protocol

from Section 4.2.4 to accelerated MRI. For this, we simulated the collection of MRI

slices over rounds k = 1, . . . , 5, stopping as soon as the α = 0.01 interval width

|C
λ̂(d

[k]
cal )

({x̂(j)})| falls below the threshold of τ = 0.1. The first round collects k-space

measurements at acceleration rate R[1] = 16, and the remaining rounds each collect

additional k-space measurements to yield R[2] = 8, R[3] = 4, R[4] = 2, and R[5] = 1

respectively. For quantitative evaluation, we randomly selected 8 multi-slice volumes

from the 100-volume fastMRI validation set to act as test volumes (half of which were

labeled as meniscus tears and half of which were not), and we used the remaining 92

volumes for calibration. We will refer to the corresponding index sets as Itest and Ical.

We begin by discussing the AR conformal prediction method, which uses the

point-sampling E2E-VarNet [107] for image recovery. The AR method produces

prediction intervals C
λ̂(d

[k]
cal )

(x̂) that are x̂-invariant (i.e., not locally adaptive). Thus,

immediately after calibration, it is known that k = 4 measurement rounds (i.e., R = 2)

are necessary and sufficient to achieve the τ = 0.1 threshold at error-rate α = 0.01.

The LWR and CQR conformal prediction methods both use the CNF from Ch.

3 with c = 32 posterior samples and yield locally adaptive prediction intervals

C
λ̂(d

[k]
cal )

({x̂(j)}). This allows them to evaluate the interval length for each {x̂(j)} and

stop the measurement process as soon as that length falls below the threshold τ . For
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test image i ∈ Itest, we denote the final measurement round as

ki ≜ min
{
k : |C

λ̂(d
[k]
cal )

({x̂(j)i })| < τ
}
. (4.16)

(Note that {x̂(j)i } also changes with the measurement round k, although the notation

does not explicitly show this.) The average acceleration is then

R =

(
1

|Itest|
∑

i∈Itest

1

R[ki]

)−1

. (4.17)

Table 4.2 shows the average acceleration R for the AR, LWR, and CQR conformal

methods. We see that R = 2 for the AR method because it always uses four

measurement rounds. The LWR and CQR methods achieve higher average accelerations

R because fewer measurement rounds suffice in a large fraction of cases. Table 4.2

also shows that the empirical coverage is close to what we would expect given this

relatively small test set.

Figure 4.7 plots the distribution of final-round {ki}i∈Itest for the AR, LWR, and

CQR conformal methods. It too shows that the AR method always uses four rounds

(i.e., R = 2), while the LWR and CQR methods typically use fewer rounds. However,

this plot also shows that the LWR method sometimes uses five measurement rounds.

This may seem counter-intuitive but can be explained as follows. At k = 4, the AR

method is calibrated so that the true score z lands in the prediction interval in all but

α = 1% of the cases, where the length of that interval is small enough to meet the

τ = 0.1 threshold. Meanwhile, the LWR (and CQR) methods adapt the prediction

interval based on the difficulty of {x̂(j)}. In most cases, the LWR prediction interval

is smaller than the AR interval, but for a few “difficult” cases the LWR prediction

interval is wider, and in fact too wide to meet the τ = 0.1 threshold. For these difficult

cases, the LWR method moves on to the fifth measurement round.
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Figure 4.7: Fraction of slices accepted
after a given acceleration rate.

Table 4.2: Average metrics for the multi-round
MRI simulation (± standard error).

Method Average
Acceleration

Empirical
Coverage

Average
Max

Center
Error

AR 2.000 0.991± 0.008 0.032± 0.017
LWR 5.157 0.992± 0.005 0.020± 0.002
CQR 6.762 0.987± 0.008 0.044± 0.009

Based on the previous discussion, one might conjecture that the prediction intervals

accepted by the AR method at round k = 4 will be somehow worse than those accepted

by LWR at k = 4, even though their lengths all meet the threshold. We can confirm

this by interpreting the midpoint of the prediction interval as an estimate of z and

evaluating the absolute error on that estimate, which we call the “center error” (CE):

CE({x̂(j)}, z) ≜
∣∣∣∣z −

bl + bu
2

∣∣∣∣ where [bl, bu] = Cλ̂(dcal)({x̂
(j)}). (4.18)

When evaluating the center error, we take the maximum over the slices in each volume.

Table 4.2 lists the average maximum center error and confirms that it is smaller for

LWR than for AR.

Figure 4.8 shows examples of image reconstructions, pixel-wise standard deviation

maps, and CQR prediction intervals for a test image labeled with a meniscus tear. At

higher accelerations like R = 16, relatively large variations across posterior samples

{x̂(j)} result in relatively large variations across classifier outputs {ẑ(j)}, which result

in a large prediction interval, i.e., high uncertainty about the ground-truth classifier
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Figure 4.8: MR image reconstructions and CQR prediction intervals at accelerations
R = 16 and R = 4 with error-rate α = 0.01 and a total of c = 32 posterior samples. The
fastMRI+ bounding box around the meniscus tear is magnified in red. The prediction
intervals shrink as the posterior samples become more consistent in the meniscus
region. The standard-deviation maps show areas of high pixel-wise uncertainty but
are difficult to connect to the downstream task. Note, image brightness was increased
to better highlight the tear. Best viewed when zoomed.

output z. At lower accelerations like R = 4, relatively small variations across posterior

samples yield smaller prediction intervals, i.e., less uncertainty about z. While the pixel-

wise standard-deviation maps also show reduced variation across posterior samples,

it’s difficult to draw conclusions about uncertainty in the downstream task from them.

For example, the same pixel-wise variations could result from a set of reconstructions

that show clear evidence for a tear in some cases and clear evidence to the contrary

in others, or from a set of reconstructions that show clear evidence for a tear in all

cases but are corrupted by different noise realizations. Our uncertainty quantification

methodology circumvents these issues by focusing on the task itself. Furthermore,

by leveraging the framework of conformal prediction, it ensures that the uncertainty

estimates are statistically meaningful.
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As far as practical implementation is concerned, for each slice in a volume, the

CNF reconstructions, ResNet-50 classifier outputs, and conformal prediction intervals

can be computed in 414 milliseconds for c = 32 samples, or 7.4 milliseconds for c = 2

samples, on a single NVIDIA A100 GPU.

4.4 Discussion

A number of works on uncertainty quantification for MRI have been proposed

based on Bayesian neural networks and posterior sampling, e.g., [102, 43, 37, 62,

44, 90, 34, 20]. They produce a set of possible reconstructions {x̂(j)}, from which

a pixel-wise uncertainty map is typically computed. Conformal prediction methods

have also been proposed to generate pixel-wise uncertainty maps for MRI and other

imaging inverse problems [7, 77, 111, 60], but with statistical guarantees. However,

when imaging is performed with the eventual goal of performing a downstream task,

pixel-wise uncertainty maps are of questionable value. In this work, we construct

a conformal prediction interval that is statistically guaranteed to contain the task

output from the true image. We focus on tasks that output a real-valued scalar, such

as soft-output binary classification.

Other works have applied conformal prediction to MRI tasks. Lu et al. [83] consider

a dataset {(xi, zi)} with MRI images xi and discrete ordinal labels zi ∈ {1, . . . , K}

that rate the severity of a pathology. They design a predictor that, given test x,

outputs a set Z(x) ∈ 2K that is guaranteed to contain the true label z with probability

1− α. Different from our work, Lu et al. [83] involves no inverse problem and aims

to quantify the uncertainty in a discrete z. Sankaranarayanan et al. [101] compute

uncertainty intervals on the presence/absence of semantic attributes in images, and
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mention that one application could be pathology detection in MRI (although they do

not pursue it). Although their high-level goal is similar to ours, their solution requires

a trained “disentangled” generative network that, in the case of MRI, would generate

MRI images from pathology probabilities. To our knowledge, no such networks exist

for MRI. In contrast, our method requires only a trained pathology classifier f(·),

which should be readily available.

Limitations: First, our method requires a downstream task, which is not always

available. Second, we demonstrated our method on only a single inverse problem

and task; validation on other applications is needed. Third, our MRI application

ideas are preliminary and not ready for clinical use. Since we use the conformal

prediction interval width as a proxy for the diagnostic value of the reconstructed

image(s), several aspects of our design (e.g., the choice of classifier f(·), recovery

algorithm gθ(·), conformal prediction method, threshold τ , and error-rate α) would

need to be tuned and validated through rigorous clinical studies. Fourth, for ease

of exposition, the conformal methods that we use (AR, LWR, CQR) are somewhat

simple. More advanced methods, like risk-controlling prediction sets (RCPS) [16], may

perform better. Fifth, we considered only tasks that output a single real-valued scalar,

such as soft-output binary classification. Extensions to more general tasks would be

useful. Lastly, our posterior sampler only considers aleatoric uncertainty. In principle,

epistemic uncertainty could be included by sampling the generator’s weights from a

distribution, as in Ekmekci & Cetin [45], but more work is needed in this direction.
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4.5 Conclusion

For imaging inverse problems, we proposed a method to quantify how much

uncertainty the measurement-and-reconstruction process contributes to a downstream

task, such as soft-output classification. In particular, we use conformal prediction

to construct an interval that is guaranteed to contain the task-output from the true

image with high probability. We showed that, with posterior-sampling-based image

recovery methods, the prediction intervals can be made adaptive, and we proposed

a multi-round measurement protocol that stops acquiring new data when the task

uncertainty is sufficiently small. We applied our method to meniscus-tear detection in

accelerated knee MRI and demonstrated significant gains in acceleration rate.
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Chapter 5: Conformal Bounds on Full-Reference Image Quality

for Inverse Problems

While the methodology in Ch. 4 presents one option to provide UQ beyond the

pixel level, it requires a downstream task of interest, which outputs a real-valued

scalar. In some contexts, a suitable downstream task may be difficult to identify. For

example, a denoising algorithm on a consumer camera may just need to provide the

best “quality” image since the resulting output is not used to perform a particular

task. This notion of quantifying “quality”, or better yet “accuracy” in the setting of

medical image recovery, is a much more general objective that is relevant in almost all

inverse problems. Thus, we now consider how one may quantify the uncertainty on

the “accuracy” of a reconstruction.

In image recovery, “accuracy” can be defined in different ways. Classical metrics

like mean-squared error (MSE), or its scaled counterpart peak signal-to-noise ratio

(PSNR), are convenient for theoretical analysis but do not always correlate well with

human perceptions of image quality. This fact inspired the field of full-reference

image-quality (FRIQ) assessment [81, 119], which led to the well-known Structural

Similarity Index Measure (SSIM) [120] that is still popular today. However, progress

continues to be made. Most recent methods leverage the internal features of deep

neural networks, which are said to mimic the processing architecture of the human
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visual cortex [123, 82]. A popular example of the latter is Learned Perceptual Image

Patch Similarity (LPIPS) [126]. In the end though, the best choice of metric may

depend on the application. For example, in magnetic resonance imaging (MRI), the

goal is to provide the radiologist with an image recovery that leads to an accurate

diagnosis. A recent clinical MRI study [68] found that, among 35 tested metrics, Deep

Image Structure and Texture Similarity (DISTS) [39] correlated best with radiologists’

perceptions.

In this chapter, our goal is to provide rigorous bounds on the FRIQ m(x̂0, x0)

of a recovery x̂0 = gθ(y0) relative to the true image x0. Here, gθ(·) is an arbitrary

image-recovery scheme and m(·, ·) is an arbitrary FRIQ metric. The key challenge is

that x0 is unknown. To our knowledge, there exists no prior work on providing FRIQ

guarantees in image recovery. Our contributions are as follows.

1. We propose a framework to bound the FRIQ m(x̂0, x0) of a recovered image x̂0

without access to the true image x0. Our framework uses conformal prediction

[117, 5] to construct bounds that hold with probability at least 1 − α under

certain exchangeability assumptions and where α ∈ (0, 1) is chosen by the user.

2. We show how posterior-sampling-based image recovery can be used to construct

conformal bounds that adapt to the measurements y0 and reconstruction x̂0.

3. We demonstrate our approach on two linear inverse problems: denoising of FFHQ

faces [66] faces and recovery of fastMRI knee images [125] from accelerated multi-

coil measurements.
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5.1 Background

We now describe split CP [91, 79] from a slightly different but equivalent perspective.

This new description aligns more clearly with the formulation of our proceeding

methodology. Given features w0 ∈ W , the goal of CP is to construct a set Cλ(ẑ0) that

contains an unknown target z0 ∈ Z with high probability. Here, Cλ(·) is constructed so

that |Cλ(ẑ0)| is monotonically non-decreasing in λ ∈ R for any fixed ẑ0, and ẑ0 = f(w0)

is some prediction from a black-box model f(·). Split CP accomplishes this goal by

calibrating λ using a dataset of feature and target pairs {(wi, zi)}ncal
i=1 that has not been

used to train f(·). In particular, it first constructs the set dcal ≜ {(ẑi, zi)}ncal
i=1 using

ẑi = f(wi) and then finds a λ̂(dcal) to provide the marginal coverage guarantee [80]

Pr
{
Z0 ∈ Cλ̂(Dcal)

(Ẑ0)
}
≥ 1− α, (5.1)

where α is a user-chosen error rate. Here and in the sequel, we use capital letters to

denote random variables and lower-case letters to denote their realizations. In words,

(5.1) guarantees that the unknown target Z0 falls within the interval Cλ̂(Dcal)
(Ẑ0) with

probability at least 1−α when averaged over the randomness in the test data (Z0, Ẑ0)

and calibration data Dcal.

While there are a number of ways to describe CP calibration of λ [117, 5], we

utilize the method from Angelopoulos et al. [6], which applies to general risk control.

It starts by defining the risk as the empirical miscoverage

r̂n(λ; dcal) ≜
1

n

n∑

i=1

1{zi /∈ Cλ(ẑi)}, (5.2)

where 1{·} is the indicator function. The empirical miscoverage measures the pro-

portion of targets zi that land outside of Cλ(ẑi) in the calibration set dcal. Note the
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dependence on λ, which controls the size of the prediction interval. The calibration

procedure then sets λ at

λ̂(dcal) = inf
{
λ : r̂n(λ; dcal) ≤ α− 1−α

n

}
, (5.3)

which can be found using a simple binary search. Intuitively, the λ chosen in (5.3) yields

an empirical miscoverage that is slightly more conservative than the desired α in order

to handle the finite size of the calibration set. When {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)}

are exchangeable (a weaker condition than i.i.d.), (5.3) ensures that (5.1) holds [6].

5.2 Proposed Method

Consider an imaging inverse problem, where we observe incomplete and/or noisy

measurements y0 = A(x0) of a true image x0. Suppose that x̂0 = gθ(y0) is a reconstruc-

tion of x0 provided by some image recovery method gθ(·) and that z0 = m(x̂0, x0) ∈ R

is some FRIQ metric on x̂0 with respect to the true x0. We would like to know z0,

especially in safety critical applications. For example, if z0 was unacceptable, then

perhaps we could use a different recovery method gθ(·) or collect more measurements

y0. But z0 cannot be directly computed because x0 is unknown.

Our key insight is that it’s possible to construct a set Cλ(ẑ0) that is guaranteed

to contain the unknown FRIQ z0 with high probability. This can be done using

CP, at least when one has access to calibration data {(xi, yi)}ncal
i=1 of true image and

measurement pairs that agrees with the test (x0, y0) in the sense that the resulting

FRIQ pairs {(ẑi, zi)}ncal
i=0 are statistically exchangeable.

Our general approach is as follows. Using {(xi, yi)}ncal
i=1 , we compute the image

recovery x̂i = gθ(yi) and the corresponding true FRIQ zi = m(x̂i, xi) for each i =

1, . . . , n. Then we construct an estimator f(·) that produces an FRIQ estimate
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ẑi = f(wi) for some choice of wi. Several choices of f(·) and wi will be described in

the sequel. We then collect the results into the set dcal = {(ẑi, zi)}ncal
i=1 and calibrate

the λ parameter of the FRIQ prediction interval Cλ(ẑi) using CP.

We now describe our choice of prediction interval Cλ(·). In the sequel, we will refer

to those metrics m(·, ·) for which a higher value indicates better image quality (e.g.,

PSNR, SSIM) as Higher-Preferred (HP) metrics, and those for which a lower value

indicates better image quality (e.g., LPIPS, DISTS) as Lower-Preferred (LP) metrics.

We choose to construct the prediction set for the i-th sample as

Cλ(ẑi) = [β(ẑi, λ),∞) for HP metrics and Cλ(ẑi) = (−∞, β(ẑi, λ)] for LP metrics,
(5.4)

where we choose the lower/upper bound β(·, ·) as

β(ẑi, λ) = ẑi − λ for HP metrics and β(ẑi, λ) = ẑi + λ for LP metrics. (5.5)

By calibrating the bound parameter λ as λ̂(dcal) using (5.3), we obtain the following

marginal coverage guarantee for the test sample (Ẑ0, Z0):

Pr
{
Z0 ∈ Cλ̂(Dcal)

(Ẑ0)
}
≥ 1− α, (5.6)

which holds when {(Z0, Ẑ0), (Z1, Ẑ1), . . . , (Zn, Ẑn)} are exchangeable [6]. In particular,

β(Ẑ0, λ̂(Dcal)) lower-bounds the unknown true HP metric value Z0, or upper-bounds

the unknown true LP metric value Z0, with probability at least 1 − α, where α

is selected by the user. A smaller error-rate α will tend to yield a looser bound,

but—importantly—the coverage guarantee (5.6) will hold for any chosen α ∈ (0, 1).

In the sequel, we will refer to β(ẑ0, λ̂(dcal)) as the “conformal bound” on z0. Note that

the conformal bound can “adapt” to the test measurements y0 and reconstruction x̂0

through ẑ0 = f(w0) for appropriate choices of f(·) and w0.
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Figure 5.1: Overview of method: Given a recovery x̂0 of true image x0, approximate
posterior samples {x̃(j)0 }cj=1, and a calibration set dcal, we construct a prediction interval
Cλ̂(dcal)

(
ẑ0
)

that is guaranteed to contain the unknown true FRIQ z0 = m(x̂0, x0) with
probability at least 1− α.

Below we describe different ways to construct f(·) and w0, which in turn yield

conformal bounds with different properties. Appendix D.4 investigates violations of

the exchangeability assumption.

5.2.1 A Non-adaptive Bound on Recovered-image FRIQ

As a simple baseline, we start with the choice f(·) = 0. In this case, w0 is

inconsequential and ẑ0 = 0, and so the conformal bound β(ẑ0, λ̂(dcal)) will depend on

the calibration set dcal but not the test measurements y0 or reconstruction x̂0. We

refer to such bounds as “non-adaptive.” As we demonstrate in Sec. 5.3, non-adaptivity

leads to conservative bounds. Still, this non-adaptive bound is valid in the sense of

guaranteed marginal coverage (5.6) under the exchangeability assumption.
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5.2.2 Intuitions on Constructing Adaptive FRIQ Bounds

Our approach to constructing adaptive FRIQ bounds is based on the following

probabilistic viewpoint. Conditioned on the observed measurements y0, we can model

the unknown FRIQ as Z0 = m(x̂0, X0) for x̂0 = gθ(y0) and X0 ∼ pX0|Y0(·|y0). The

distribution pX0|Y0(·|y0) is often referred to as the posterior distribution on X0 given

the measurements Y0 = y0.

Let us first consider the ideal and unrealistic case that the y0-conditional FRIQ

distribution pZ0|Y0(·|y0) is known. And let’s consider the case of HP metrics, noting

that similar arguments can be made for LP metrics. If pZ0|Y0(·|y0) was known, then

constructing a lower-bound β on Z0 that holds with probability 1−α could be directly

accomplished by finding the β ∈ R that satisfies Pr{Z0 ≥ β|Y0=y0} = 1− α, which is

known as the αth quantile of Z0|Y0=y0.

Now suppose that the distribution of Z0|Y0= y0 was unknown, but instead one

had access to an infinite number of perfect posterior image samples {x̃(j)0 }∞j=1. By

“perfect” we mean that x̃(j)0 are independent realizations of X0|Y0= y0. From them,

one could construct posterior FRIQs {z̃(j)0 }cj=1 using z̃(j)0 ≜ m(x̂0, x̃
(j)
0 ). Importantly,

{z0, z̃(1)0 , z̃
(2)
0 , z̃

(3)
0 , . . . } are i.i.d. realizations of Z0|Y0=y0. Thus, to construct a lower

bound β on Z0|Y0=y0 that holds with probability 1− α, one could use the empirical

quantile of {z̃(j)0 } , i.e.,

β = lim
c→∞

EmpQuant
(
α, {z̃(j)0 }cj=1

)
, (5.7)

which converges to the αth quantile of Z0|Y0=y0 [50].

In practice, one will not have access to an infinite number of perfect posterior image

samples. However, it is not difficult to obtain a finite number of approximate posterior
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samples {x̃(j)0 }cj=1. From them, one could estimate the αth quantile of Z0|Y0=y0 and

subsequently calibrate that (imperfect) estimate using conformal prediction. Two such

strategies are described below.

5.2.3 An Adaptive Bound on Recovered-image FRIQ

Suppose that, for each i ∈ {0, 1, . . . , n}, we have access to c ≥ 1 approximate

posterior image samples {x̃(j)i }cj=1 produced by a black-box posterior image sampler

such as those listed in Ch. 3. Guided by the intuitions from Sec. 5.2.2, we propose the

following for HP metrics. For each i, we first compute the corresponding approximate

posterior FRIQs {z̃(j)i }cj=1 using z̃(j)i = m(x̂i, x̃
(j)
i ) and then set ẑi at their empirical

quantile

ẑi = EmpQuant
(
α, {z̃(j)i }cj=1

)
= f(wi) for

{
f(·) = EmpQuant(α, ·)
wi = [z̃

(1)
i , . . . , z̃

(c)
i ]⊤ ∈ Rc.

(5.8)

We then use dcal = {(ẑi, zi)}ncal
i=1 to calibrate the bound parameter λ using (5.3), yielding

λ̂(dcal). Finally, we plug this λ and ẑ0 into (5.5) to get β(ẑ0, λ̂(dcal)), which is our

conformal bound on the true FRIQ z0. From Sec. 5.1, we know that this conformal

bound satisfies the coverage guarantee (5.6) under the exchangeability assumption.

Furthermore, it adapts to the measurements y0 and reconstruction x̂0 through their

effect on ẑ0 and {z̃(j)0 }cj=1, unlike the non-adaptive bound from Sec. 5.2.1. We refer to

these conformal bounds as the “quantile” bounds.

Recalling Sec. 5.2.2, one could interpret ẑ0 as a rough estimate of the αth quantile

of Z0|Y0 = y0 and λ̂(dcal) as an additive correction that accounts for the finite and

approximate nature of the posterior image samples {x̃(j)0 }cj=1 used to construct ẑ0.

For LP metrics, we would instead compute the (1 − α)-empirical quantile in (5.8).

Figure 5.1 illustrates the overall methodology.
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5.2.4 A Learned Adaptive Bound on Recovered-image FRIQ

In Sec. 5.2.2, we reasoned that the αth quantile of Z0|Y0= y0 yields a valid HP

FRIQ bound, but we noted that this quantile is not directly observable. Thus, in

Sec. 5.2.3, we used the αth empirical quantile of {z̃(j)i }cj=1 as a rough estimate “ ẑi” of

the desired quantile, after which we used CP to correct this estimate and obtain a

valid HP FRIQ conformal bound. However, it is well known from the CP literature

that inaccurate base estimators cause loose conformal bounds [5]. Thus, in this section,

we aim to improve our estimate of the αth quantile of Z0|Y0=y0.

Inspired by conformalized quantile regression [97], we propose to estimate the αth

quantile of Z0|Y0 = y0 using

ẑi = f(wi; ξ) with wi = [z̃
(1)
i , . . . , z̃

(c)
i ]⊤ ∈ Rc, (5.9)

where ξ are predictor parameters trained using quantile regression (QR) [76]. An

example f(·; ξ) is given in App. C.1. In the case of an HP metric, this manifests as

argmin
ξ

ncal+ntrain∑

i=ncal+1

(
αmax(0, zi − ẑi(ξ)) + (1− α)max(0, ẑi(ξ)− zi)

)
+ γρ(ξ), (5.10)

using a training set dtrain = {(wi, zi)}ncal+ntrain
i=ncal+1 that is independent of the calibration

samples {(wi, zi)}ncal
i=1 and test sample (w0, z0).

The first term in (5.10) is the pinball loss [76], which encourages an α-fraction

of training samples to violate the HP bound ẑi ≤ zi. The ρ(·) term in (5.10) is

regularization that avoids overfitting ξ to the training set. The regularization weight

γ can be tuned using k-fold cross-validation. The ξ-dependence of ẑi is made explicit

in (5.10).

Once the predictor f(·; ξ) is trained, it can be used to obtain the quantile estimates

{ẑi}ncal
i=0. Then dcal ≜ {(ẑi, zi)}ncal

i=1 can be used to calibrate the bound parameter λ
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Figure 5.2: Scatter plots show the non-adaptive (purple) and quantile (green) bounds
β(ẑk, λ̂(dcal[t])) versus the true FRIQ zk over FFHQ test indices k ∈ Itest[t]. The black
line shows where β = z, and a fraction α = 0.05 of samples are on the side of the line
that violates the bound. The quantile bound tracks the true zk much better than the
non-adaptive bound. The red and blue stars correspond to the images in the red and
blue boxes: the red recovery represents better FRIQs and blue represents worse.

using (5.3). As before, the resulting conformal bound β(ẑ0, λ̂(dcal)) will enjoy the

coverage guarantee (5.6) under the exchangeability assumption. To handle LP metrics,

we would swap α with 1− α in (5.10). Note that any estimation function f(·; ξ) can

be used in (5.9), and the best choice will vary with the application. Through the

remainder of the paper, we describe these bounds as the “regression” bounds.

5.3 Numerical Experiments

We now consider two imaging inverse problems: image denoising and accelerated

MRI. For each, we evaluate the proposed bounds using the PSNR, SSIM [120], LPIPS

[126], and DISTS [39] metrics.
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Figure 5.3: Examples from the FFHQ denoising experiment. Top row: true image
and low-LPIPS recovery. Bottom row: true image and high-LPIPS recovery. True
LPIPS reported in blue and quantile upper-bound in red. (Recall that LPIPS assigns
lower values to better recoveries.)

5.3.1 Denoising

Data: For true images, we use a random subset of 4000 images from the Flickr

Faces HQ (FFHQ) [66] validation dataset, to which we added white Gaussian noise of

standard deviation σ = 0.75 to create the measurements y0. The first 1000 images

were used to train the predictor f(·; ξ) in (5.9) and the remaining 3000 were used for

calibration and testing.

Recovery: To recover x̂0 from y0, a denoising task, we use the Denoising Diffusion

Restoration Model (DDRM) [69]. Following [69], we run DDRM with a Denoising

Diffusion Probabilistic Model (DDPM) [58] pretrained on the CelebA-HQ dataset

[65]. To increase sampling diversity, we used η = 1 and ηb = 0.5 but set all other

hyperparameters at their default values. For each measurement yi, we use one DDRM

sample for the image estimate x̂i and c independent samples for {x̃(j)i }cj=1.
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Conformal bounds: We evaluate the proposed bounding methods from Secs. 5.2.1,

5.2.3, and 5.2.4, which we refer to as the non-adaptive, quantile, and regression

bounds, respectively. For the regression bound, we use a quantile predictor f(·, ξ) that

takes the form of a linear spline with two knots (see Appendix C.1 for more details).

Validation procedure: Because the coverage guarantee (5.6) involves random

calibration data and test data, we evaluate our methods using T Monte-Carlo trials.

For each trial t ∈ {1, . . . , T}, we randomly select 70% of the 3000 non-training samples

to create the calibration set dcal[t] with indices i ∈ Ical[t], and we use the remaining

30% of the non-training samples for a test fold with indices k ∈ Itest[t]. In particular,

we compute λ̂ using dcal[t] and then, for each sample index k ∈ Itest[t], we compute

the bound β(ẑk, λ̂(dcal[t])). Finally, we compute performance for each test fold t and

average the results across all T trials. Unless specified otherwise, we used error rate

α = 0.05, T = 10 000, and c = 32 samples for the adaptive bounds.

Bound versus true metric: To be useful for individual sample assessment,

the bounds should ideally track the true FRIQ such that the bounds are small when

the true FRIQ is small and large when the true FRIQ is large. Figure 5.2 shows

scatter plots of the non-adaptive and quantile bounds β(ẑk, λ̂(dcal[t])) versus the true

FRIQ zk for the test indices k ∈ Itest[t] of a single Monte Carlo trial, along with

the true image xk and recovery x̂k for two test samples. The sample highlighted

in red has better subjective visual quality compared to the one in blue, and this is

reflected in both the true FRIQ metrics zk and the corresponding quantile bounds,

but not the non-adaptive bound. In Fig. 5.3, we show six additional samples from

the FFHQ denoising experiment, three with low (true) LPIPS and three with high

(true) LPIPS, along with the respective true images. The quantile upper-bound on
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Table 5.1: Mean empirical coverage for all bounds with α = 0.05 and T = 10 000 on
the FFHQ denoising task (± standard error). Quantile and regression bounds are
computed with c = 32.

Bound DISTS LPIPS PSNR SSIM

Non-adaptive 0.95000± 0.00009 0.95016± 0.00009 0.95004± 0.00009 0.95010± 0.00009
Quantile 0.95002± 0.00009 0.95013± 0.00009 0.95003± 0.00009 0.95006± 0.00009

Regression 0.95013± 0.00009 0.95026± 0.00009 0.95001± 0.00009 0.95006± 0.00009

LPIPS is superimposed on each recovery. We see that the bounds are valid in the

sense that they did not under-predict the true LPIPS, and adaptive in the sense that

the bounding value is lower when the true LPIPS is lower.

Empirical Coverage: To verify the coverage guarantee in (5.6) is satisfied, we

compute the empirical coverage as

EC[t] ≜
1

|Itest[t]|
∑

k∈Itest[t]

1{zk ∈ Cλ̂(Dcal)
(ẑk)}, (5.11)

for each Monte Carlo trial t. In Table 5.1, we report the average empirical coverage

and standard error across T = 10 000 trials for all three methods on the FFHQ data

using α = 0.05. For all methods, the average empirical coverage is very close to

the theoretical coverage 1− α = 0.95 regardless of the metric, demonstrating close

adherence to the theory. In Appendix D.1, we further demonstrate that this adherence

holds independent of the choice of c.

MCB versus bounding method and number of posterior samples c: To

assess the tightness of the conformal bounds, we average the bound β(ẑk, λ̂(dcal[t])) over

the test indices k ∈ Itest[t] and the Monte Carlo trials t to yield the “mean conformal

bound” (MCB). Figure 5.4 plots MCB versus the number of posterior samples c used

for the adaptive bounds. The figure shows that the non-adaptive bound is looser (i.e.,
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Figure 5.4: Mean conformal bound versus number of posterior samples c for FFHQ
denoising.

smaller for the HP metrics PSNR and SSIM and larger for the LP metrics DISTS and

LPIPS) than the two adaptive bounds. For both adaptive bounds, Fig. 5.4 shows only

minor bound improvement with increasing c, suggesting that the adaptive bounds are

robust to the choice of c, and that small values of c could suffice if sample-generation

was computationally expensive.

Interestingly, Fig. 5.4 shows relatively little improvement when going from the

quantile bound to the regression bound. This may be due to our choice of a linear

spline with two knots for f(·; ξ), but experiments with higher spline orders and/or

more knots did not yield improved results, and neither did experiments with XGBoost

[30] models for f(·; ξ). Additional experiments that hold the number of test samples

at 900 and vary ntrain and ncal such that ntrain + ncal = 3100 (see Appendix D.2) also

show little change in the performance of the quantile and regression bounds. Thus,

for our experimental data, the effort to train the estimation function f(·; ξ) from (5.9)

may not be justified, given the good performance of the simple empirical-quantile

estimation function f(·) from (5.8). But the behavior may be different with other

datasets.
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Computation time: Computing a single DDRM sample takes approximately

2.73 seconds. Once the calibration constant λ̂(dcal) is known, computing c = 32 FRIQ

samples {z̃(j)0 }cj=1 and β(ẑ0, λ̂(dcal)) takes around 217ms, 320ms, 5ms, and 6ms for

DISTS, LPIPS, PSNR, and SSIM, respectively. All times pertain to a single NVIDIA

V100 with 32GB of memory.

5.3.2 Accelerated MRI

We now simulate our methods on accelerated multi-coil MRI [75, 55]. As before,

when the acceleration rate R > 1, the inverse problem may become ill-posed, in which

case one may be interested in bounding the FRIQ of the recovered image.

Data: We utilize the non-fat-suppressed subset of the multi-coil fastMRI knee

dataset [125], yielding 17286 training images and 2188 validation images. To simulate

the imaging process, we retrospectively sub-sample in the spatial Fourier domain (the

“k-space”) using random Cartesian masks that give acceleration rates R ∈ {16, 8, 4, 2}.

We use the same nested sampling masks as Sec. 4.3.

Recovery: For the recovery network gθ(·) of all methods, we use the well-known

E2E-VarNet [107], which is a deterministic reconstruction approach. To generate

approximate posterior samples for the adaptive bounds, we utilize the conditional

normalizing flow (CNF) from Ch. 3 with the modifications in Appendix A.2. Both

networks are trained to work well with all four acceleration rates R. (See App. A.2

for training details.) To work with multi-coil MRI, we first compute the magnitude

images using the RSS (2.5) before computing any metric. Since DISTS and LPIPS

require a 3-channel image, we repeat the magnitude image for all three channels and

normalize the values to be between 0 and 1 before computing either metric. Similar to
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Figure 5.5: Scatter plots show the non-adaptive (blue) and quantile (orange) bounds
β(ẑk, λ̂(dcal[t])) versus the true FRIQ zk over MRI test indices k ∈ Itest[t] at acceleration
R = 8. The black line shows where β = z. A fraction of α = 0.05 samples are on the
side of the line that violates the bound. Note that the quantile bound tracks the true
zk much better than the non-adaptive bound.

Sec. 5.3.1, we found that the regression bound did not provide significant gain over the

quantile bound and so, to streamline our discussion, we consider only the quantile and

non-adaptive bounds for MRI. As before, we evaluate performance over T = 10 000

Monte Carlo trials with a random 70% calibration and 30% test split of the validation

data. All experiments use an error-rate α = 0.05. Methods are separately calibrated

for each acceleration rate.

Bound versus true-metric: Figure 5.5 shows scatter plots of the true FRIQ

zk versus the non-adaptive and quantile bounds β(ẑk, λ̂(dcal[t])) for the test indices

k ∈ Itest[t] in a single Monte-Carlo trial t. The results are shown for R = 8 acceleration

and c = 32 samples in the adaptive bounds. Except for a few outliers, the quantile

bound closely tracks the true FRIQ zk, demonstrating good adaptivity, while the

non-adaptive bounds remain constant with zk.

Multi-round Measurement: To showcase the practical impact of our bounds,

we adapt the multi-round measurement protocol from Ch. 4, where measurements are

collected over multiple rounds until the uncertainty bound falls below a threshold. In
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Figure 5.6: Fraction of accepted slices
versus final acceleration rate for multi-
round MRI using DISTS with τ = 0.16.
Error bars show standard deviation.

Table 5.2: Average results for a multi-
round MRI simulation where measurement
collection stop once bounds are below a
user-set threshold τ . Results shown for
T = 10 000 trials using the DISTS metric
with α = 0.05, τ = 0.16, and c = 32 (±
standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000± 0.000 0.9504± 0.0001
Quantile 3.973± 0.001 0.9323± 0.0001

our setting, measurements are first collected at acceleration R = 16, an image recovery

is computed, and a conformal upper-bound on its DISTS is computed. If the bounding

value is lower than a pre-determined threshold τ , signifying that the recovery is (with

probability 1− α) of sufficient diagnostic quality [68], then measurement collection

stops. If not, additional measurements are collected and combined with the previous

ones to yield an acceleration of R = 8, and the process repeats. We allow up to five

measurement rounds, corresponding to final accelerations of R ∈ {16, 8, 4, 2, 1}.

Once again, we report average results across T = 10 000 trials. We set τ = 0.16,

which is where we find the non-adaptive approach requires all slices to be collected at

R = 2. Figure 5.6 plots the fraction of test image slices accepted by the multi-round

protocol at each acceleration rate R with τ = 0.16. With the quantile bound, the

measurements stop after three of fewer rounds (i.e., R ≥ 4) in more than 80% of

the cases. With the non-adaptive bound, the measurements stop after four rounds

74



Figure 5.7: Examples of the multi-round MRI measurement procedure with DISTS
at α = 0.05, τ = 0.16, and c = 32. Error images at each acceleration R are shown
with the quantile bound (orange) and true metric (white). The red box indicates
the measurement round at which the bound falls below the threshold τ and the
measurement procedure concludes.

(i.e., R = 2) in all cases. Table 5.2 shows that, with the quantile bound, the multi-

round protocol attains an average acceleration of R = 3.973, which far surpasses

the R = 2 acceleration achieved with the non-adaptive bound. Table 5.2 also shows

that the empirical coverage of the multi-round accepted slices is very close to 1− α,

despite having only coverage guarantees (5.6) for a single-round measurement at each

acceleration rate. Figure 5.7 shows examples of the image-error, the true DISTS, and

its quantile upper-bound for each measurement round. With the threshold set at

τ = 0.16, the example on the top would collect two rounds of measurements (i.e.,

R = 8) while the example at the bottom would collect three rounds of measurements

(i.e., R = 4), as demarcated by the red squares. See App. D.3 for additional qualitative

results.
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Figure 5.8: Fraction of accepted slices
versus final acceleration rate for multi-
round MRI using PSNR with τ = 33dB.
Error bars show standard deviation.

Table 5.3: Average results for a multi-
round MRI simulation where measurement
collection stop once bounds are above a
user-set threshold τ . Results shown for
T = 10 000 trials using the PSNR metric
with α = 0.05, τ = 33dB, and c = 32 (±
standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000± 0.000 0.9503± 0.0001
Quantile 4.048± 0.001 0.9514± 0.0001

As PSNR is often a more recognized metric, we additionally perform the multi-

round experiments using PSNR as our metric of interest and instead cease measurement

collection once the conformal lower-bound exceeds the threshold τ . We set τ = 33dB,

which we find as a threshold value that requires the non-adaptive approach to collect

all slices at R = 2. Following a similar trend as with DISTS, we see a large proportion

of the slices collected at R ≥ 4 for the quantile bounds in Fig. 5.8. In Tab. 5.3, we see

that this results in an average accepted acceleration rate of R = 4.048, over twice the

acceleration achieved with the non-adaptive bounds.

Computation time: The E2E-VarNet takes approximately 104ms to generate a

single posterior sample, while the CNF take about 1.22 seconds to generate 32 posterior

samples (corresponding to c = 32) on a single NVIDIA V100. The computation time of

the metrics and bounds is on par with the times reported for the FFHQ experiments.

Limitations: We acknowledge multiple limitations in our proposed methodology.

1) Our methods require access to calibration data {(xi, yi)}ncal
i=1 that is similar enough
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to the test data (x0, y0) for the FRIQ pairs {(ẑi, zi)}ncal
i=0 to be modeled as statistically

exchangeable. More work is required to make our methods robust to distribution shift

(see App. D.4), although several works [112, 15, 27] have proposed modifications to

the conformal procedure that may suggest some paths forward. 2) Our methods will

be most impactful when there exists evidence that the FRIQ metric is well matched

to the application (e.g., DISTS for MRI [68]). For some applications, additional

work is required to determine which metrics are more appropriate. 3) Our MRI

application ideas are preliminary and not ready for practical use; rigorous clinical

trials are needed to tune and validate the methodology on a much larger and diverse

cohort of data. 4) The learned adaptive bound from Sec. 5.2.4 requires training a

quantile regression model, and our FFHQ denoising experiment suggests that it may

not be easy to significantly outperform the simpler adaptive bound from Sec. 5.2.3. 5)

The posterior samplers that we considered in our numerical experiments target only

aleatoric uncertainty, and sharper conformal bounds might be attained if epistemic

uncertainty was also considered (e.g., Ekmekci et al. [45]). 6) Because our methods

are based on CP (or, equivalently, conformal risk control under the indicator loss [6]),

the marginal guarantee (5.6) holds with probability 1− α over random test data (e.g.,

Ẑ0, Z0) and calibration sets Dcal. A more fine-grained coverage could be achieved via

the Risk-Controlling Prediction Sets (RCPS) framework from Bates et al. [16], which

employs two user-selected error rates α, δ ∈ (0, 1) to yield coverage guarantees like

Pr
[
Pr

{
Z0 ∈ Cλ̂(Dcal)

(
Ẑ0

)∣∣Dcal

}
≥ 1− α

]
≥ 1− δ (5.12)

in place of (5.6). In (5.12), α controls the Dcal-conditional error while δ controls the

error over Dcal.
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5.4 Conclusion

For imaging inverse problems, we used conformal prediction to construct bounds on

the FRIQ of a recovered image relative to the unknown true image. When constructed

using a calibration set that is statistically exchangeable with the test sample, our

bounds are guaranteed to hold with high probability. Two of our methods leveraged

approximate-posterior-sampling schemes to yield tighter conformal bounds that adapt

to the measurements and reconstruction. Our approaches were demonstrated on image

denoising and accelerated multi-coil MRI, illustrating the broad applicability of our

work.

78



Chapter 6: Final Thoughts

6.1 Future Work

The methods presented in this dissertation should serve as a solid foundation

for future works in UQ for accelerated MRI. For one, our task-based (Ch. 4) and

image-quality-based (Ch. 5) approaches construct a single prediction set that contains

a single target with high probability. A natural extension would be to construct

multiple prediction sets that bound multiple targets simultaneously with statistical

guarantees. This could be prediction sets for multiple soft-output pathology classifiers,

multiple FRIQ metrics, or a mix of both. Several works [87, 88, 49, 93, 99] on multi-

target conformal prediction may give insight into how this may be best performed.

Integrating adaptive sampling [100] within our multi-round measurement protocol

could be a promising direction as well. This would not only provide an uncertainty-

based stopping criterion but also actively choose which measurements to collect next to

best reduce the uncertainty. With proper implementation, one would expected to see

even further accelerations enabled while maintaining sufficient uncertainty levels. As

mentioned previously, the application of any of our proposed methods to safety-critical

domains like MRI requires substantially more validation to ensure high performance

across protected attributes and scenarios. In the case of medical imaging, this would
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take the form of rigorous clinical trials to tune hyperparameters and assess real-world

performance.

6.2 Conclusion

Advancements in accelerated magnetic resonance imaging hold promise in reducing

MRI scan times by a significant margin without reducing the diagnostic utility.

However, due to the consequential nature of medical imaging, the lack of understanding

in the uncertainty of the recovered images remains a major barrier for the adoption

of highly-accelerated MRI. To fill this gap, we proposed a multi-faceted approach to

tackle uncertainty quantification in multi-coil accelerated magnetic resonance imaging.

In Ch. 3, we designed a novel conditional normalizing flow to generate many

posterior sample estimates for a given measurement. By computing a pixel-wise

standard-deviation map across several estimates, we could visualize which areas of

the image contain more certainty and are more trustworthy for diagnostic conclusions.

Our CNF demonstrated fast inference speeds while outperforming existing posterior-

sampling-based methods in almost all metrics on the fastMRI brain and knee datasets.

In Ch. 4, we quantified the additional uncertainty contributed by the acceleration

process to a downstream task like soft-output pathology classification. This assessed

how well the downstream task could be performed given posterior estimates relative

to having access to the true fully-sampled image. Using conformal prediction, we

constructed a prediction interval from posterior estimates that was guaranteed to

contain the task-output assigned to the true image with high probability. From

this, we introduced a multi-round measurement protocol to collect data until the

task uncertainty fell below a desired level. Following this protocol, we showed high
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acceleration rates could often be utilized while limiting the uncertainty on meniscus-

tear classification.

Lastly, Ch. 5 detailed our approach to quantify the uncertainty on the image

quality of an accelerated reconstruction without access the true image. With only

posterior estimates, we construct bounds on quality metrics like PSNR, which hold

with conventional conformal guarantees. Applying the multi-round protocol, we

demonstrated high acceleration rates could be achieved while ensuring the image

quality was beyond a sufficient level with high probability.

By representing the uncertainty from three different perspectives, we provide a

more comprehensive understanding of the uncertainty inherent in accelerated MRI.

This provides radiologist with more information to better assess the diagnostic validity

and trustworthiness of accelerated reconstructions. By establishing more confidence

on the side of practitioners, our hope is that highly-accelerated MRI may be safely

adopted, giving patients better access to critical imaging tests without sacrificing

quality-of-care.
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Appendix A: Task-based UQ Details

A.1 Mask Details

In Section 4.3.4, we simulate a multi-round measurement process whereby, in round

k = 1, . . . , 5, k-space samples are collected so that the accumulated samples up to

round k correspond to acceleration rate R[k] ∈ {16, 8, 4, 2, 1}. The pattern of collected

2D samples is known as the “sampling mask,” and the choice of the mask can have a

great impact on recovery quality.

In our work, we use Cartesian masks, where the sampling pattern consists of entire

lines in 2D k-space. For round k = 1, we use a Golden Ratio Offset (GRO) mask

[63] designed for rate R[1] = 16 with the “α” and “s” parameters from Joshi et al.

[63] chosen as s = 15 and α = 8 (not to be confused with the meanings of α and s

elsewhere in this paper). This provides a densely sampled rectangle in the center of

the k-space, known as the autocalibration signal (ACS) region, which is 9 lines wide.

For round k = 2, we first collect 7 additional lines in the center of k-space, yielding

an ACS region of width 16. We then sample additional k-space lines, using a sampling

probability that is inversely proportional to the distance from the center, until an

accumulated acceleration rate of R[2] = 8 is achieved. In the next two rounds, this

procedure is repeated to obtain ACS regions of width 24 and 32, respectively, and
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accumulated accelerations of R[3] = 4 and R[4] = 2, respectively. The four resulting

masks are shown in Figure 4.4. The last round samples everywhere in k-space,

achieving acceleration R[5] = 1.

A.2 Network and Training Details

For all models, we use an Adam optimizer [74] with the default parameters, β1 = 0.9

and β2 = 0.999. We train each reconstruction network with all four accelerations.

More specifically, one of the four sampling masks is drawn uniformly at random for

every sample in each epoch. This allows the model to see each training sample at a

different acceleration during training.

For the E2E VarNet, we utilize the author’s implementation at [108]. We keep the

default parameters listed for the fastMRI knee leaderboard and train to minimize the

structural similarity (SSIM) [120] loss for 50 epochs with a learning rate of 0.0001 and

batch size of 16. This takes around 38 hours on a single NVIDIA V100 with 32GB of

memory.

For the CNF, we modify the parameters and architecture from Ch. 3 slightly. To

better handle multiple accelerations, we increase the size of the conditioning network

to have 256 initial channels. We also add an iMAP [109] invertible attention module

to the end of each flow step, and use 2 layers and 10 flow steps per layer. The CNF is

trained to minimize the negative log-likelihood for 150 epochs with a learning rate of

0.0001 and batch size of 8. On a single NVIDIA V100, this takes around 335 hours.

For the soft-output binary classification network, we start with a ResNet50 [56]

that is initialized with weights from a network trained on ImageNet [36]. This task

network takes in 3-channel images, so we convert the multi-coil image to a magnitude
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image using RSS (2.5) and feed the magnitude image into all three input channels of

the classifier. We pretrain the network with self-supervision using SimCLR [31] for 500

epochs with a learning rate of 0.0002 and batch size of 128. Next, we train the network

in a supervised fashion to minimize the binary cross-entropy loss for 100 epochs.

During the supervised training, we use an ℓ2-bounded projected gradient descent

attack with 10 steps and a perturbation budget of 1.5 in order to make our network

robust to ℓ2-bounded adversarial attacks. The adversarial training is implemented

using the robustness package [46]. The classifier is trained using a learning rate of

0.0001 and batch size of 128 with a weight decay of 0.01. To prevent overfitting to the

training data, we early-stop at the epoch that maximizes the area-under-the-receiver-

operating-characteristic (AUROC) on the validation data.

All networks were implemented with PyTorch [94] and PyTorch Lightning [48].

Code is available at https://github.com/jwen307/TaskUQ.
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Appendix B: Task-based UQ Additional Results

B.1 Conditional Coverage Experiments

As described in Section 4.1, conformal prediction typically provides only marginal

coverage guarantees. As a result, a conformal-based approach may under or over

cover test samples with certain attributes; thus, it is important to evaluate conformal

methods under different conditioning scenarios. In this section, we empirically evaluate

different forms of conditional coverage. To do this, we use the Monte-Carlo testing

procedure described in Section 4.3 with T = 10000, R = 8, c = 32, and α = 0.05.

First, we evaluate the class-conditional coverage

Pr
(
Z0 ∈ Cλ̂(Dcal)

({X̂(j)
0 })

∣∣X0 labeled as l
)

(B.1)

for l = 0 (no pathology) and l = 1 (pathology). This amounts to calculating the

empirical coverage for all images of class 0 (no pathology) and class 1 (pathology)

separately, so we can analyze if the coverage drops severely for either of the classes.

Figure B.1a shows that, although all three methods provide close to the desired

coverage of 95%, the AR method shows the worst under-coverage, which is ≈ 93% for

class 1. Since a missed detection may carry higher consequence than a false alarm,

under-coverage of class 1 should be considered carefully. Better class-conditional

coverage could likely be attained using class-conditional conformal prediction [116].
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Figure B.1: Coverage conditioned on a) class and b) interval-size for T = 10000, R = 8,
c = 32, and α = 0.05. Empirical coverage is close to 1− α = 0.95 across both classes
for each method. LWR maintains higher coverage across interval-sizes compared to
CQR.

Next we evaluate the size-stratified coverage [8]

Pr
(
Z0 ∈ Cλ̂(Dcal)

({X̂(j)
0 })

∣∣ |Cλ̂(Dcal)
({X̂(j)

0 })| ∈ S
)

(B.2)

for size intervals S ∈ {[0, 0.05], [0.05, 0.1], [0.1, 0.15], [0.15, 0.2], [0.2, 1]}. Figure B.1b

shows that LWR demonstrates much more consistent size-stratified coverage than

CQR. However, in cases such as multi-round sampling with τ ≤ 0.05, one may be

concerned only with the coverage of small intervals, such as those with lengths ≤ 0.05,

where Figure B.1b suggests that CQR’s coverage is very good.

B.2 Image Recovery Performance

Since our method focuses on uncertainty metrics like prediction-interval length, one

may wonder how well the E2E-VarNet and CNF recovery approaches work according

to traditional image-recovery metrics like peak-signal-to-noise ratio (PSNR), structural
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similarity index (SSIM) [120], and Fréchet Inception Score (FID) [57]. We provide

those details in this section.

When computing these metrics, we used the RSS magnitude approximation from

(2.5). Also, following the approach of the fastMRI paper [124], we compute PSNR

and SSIM across entire volumes, rather than for each image slice separately. For the

CNF method, PSNR and SSIM are computed on the posterior-mean approximation

computed by averaging c = 32 posterior samples. When computing FID, we use the

VGG-16 embedding [103] and c = 1 samples for the CNF, and we compute reference

statistics using the entire training set.

Table B.1 shows the PSNR, SSIM, and FID performance of the E2E-VarNet and

the CNF evaluated on the entire validation set at several accelerations R. There we see

that the E2E-VarNet slightly outperforms the CNF in PSNR and SSIM, but not FID.

Because the models were trained to handle four different accelerations, the results in

Table B.1 are slightly below those reported in the original E2E-VarNet paper [107]

and Ch. 3.

Figure B.2 shows example reconstructions from the E2E-VarNet and CNF ap-

proaches, as well as standard-deviation maps for the CNF. As expected, the posterior

standard deviation decreases with the acceleration factor R.

B.3 Performance of Classifier

One may also wonder about the performance of our soft-output meniscus-tear

classifier according to standard classification metrics. Table B.2 shows the accuracy,

precision, recall, and AUROC evaluated on the validation set described in Section 5.3

with meniscus tear annotations from fastMRI+ [128]. From the table, we see that our

87



Figure B.2: Example MRI reconstructions and standard-deviation maps for several
accelerations R.
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Table B.1: Image-recovery metrics (± standard error) versus acceleration R.

R Network PSNR ↑ SSIM ↑ FID ↓
2 E2E-VarNet 42.341± 0.273 0.966± 0.002 2.847

CNF 41.366± 0.248 0.960± 0.002 2.575

4 E2E-VarNet 38.700± 0.238 0.937± 0.003 4.048
CNF 37.974± 0.216 0.926± 0.003 3.349

8 E2E-VarNet 36.120± 0.212 0.906± 0.003 5.680
CNF 35.593± 0.196 0.892± 0.004 4.346

16 E2E-VarNet 32.911± 0.194 0.859± 0.004 9.668
CNF 32.684± 0.177 0.842± 0.004 6.233

Table B.2: Validation performance of the meniscus-tear classifier

Accuracy Precision Recall AUROC
0.775 0.391 0.929 0.922

classifier exhibits relatively high recall but low precision, which may be preferable in

the context of meniscus-tear diagnosis, where missed detections might be more costly

than false alarms. Given that the dataset used to train the classifier was relatively

small, we conjecture that these performance metrics could be greatly improved with

more data and a better balancing across classes. That said, we believe that this

classifier suffices as a task-based uncertainty evaluation tool.
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Appendix C: Image-quality-based UQ Details

C.1 Training/Model details

For the regression bound in Sec. 5.2.4, where wi ∈ Rc, we use a quantile predictor

of the form

f(wi; ξ) = ψ(wi)
⊤ξ1 + ξ2 with ξ = [ξ1, ξ2]

⊤, , (C.1)

where ψ(·) is a linear spline with two knots, t1 and t2, implemented via the truncated

power basis

ψ(wi) = [wi; (wi − t11)+; (wi − t21)+] ∈ R3c, (C.2)

with 1 the c-dimensional vector of ones and (x)+ ≜ max(x, 0). The two knots were

placed at the 1
3

and 2
3

empirical quantiles of the mean training feature computed as

{1
c

∑c
j=1 z̃

(j)
i }ncal+ntrain

i=ncal+1 , respectively. Essentially, for each feature in wi, (C.1) imple-

ments a piece-wise-linear regression function with three distinct pieces. To promote

consistency in wi = [z̃
(1)
i , z̃

(2)
i , . . . , z̃

(c)
i ]⊤ across different i, the spline function ϕ(·) first

sorts the values {z̃(j)i }cj=1 within each wi. For ρ(ξ) in (5.10), we use ridge regularization

on the weights w. The resulting (5.10) is a quadratic program, which can be optimized

using any convex solver. To tune the regularization weight γ, we use K-fold cross
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validation with K = 5 folds and select the weight that provides the lowest mean

pinball loss across the 5 folds.

For DDRM, we use the author’s implementation [70], which is publicly available

under an MIT license.

To compute the quadratic program for Sec. 5.3.1, we use the qpsolver [26] package

under a LGPL 3.0 license along with the CVXOPT [4] package under a GNU General

Public License.

We use the TorchMetrics [25] package under the Apache 2.0 license to compute

PSNR, SSIM, and LPIPS. We use the author’s code at [38] for DISTS under a MIT

license.

All models use the PyTorch [94] framework with a custom license allowing open

use. The E2E-VarNet and CNF are implemented using PyTorch Lightning [48] under

an Apache 2.0 license.
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Appendix D: Image-quality-based UQ Additional Results

D.1 Empirical coverage

In Sec. 5.3.1, we empirically demonstrated that the coverage guarantees in (5.6)

are met for the non-adaptive, quantile, and regression bounds in the FFHQ denoising

experiments. Here, we further demonstrate that these guarantees hold regardless of

the number of posterior samples c used to compute the adaptive bounds. Tables D.1

and D.2 show the average empirical coverage for the quantile and regression method,

respectively, across T = 10 000 trials for different values of c and α = 0.05. The same

number of posterior samples c is used during calibration and to compute the adaptive

bounds during testing. Again, we observe that the average empirical coverage is very

close to the desired 1−α in all cases though there are very slight deviations as a result

of finite trials, number of calibration samples, and number of testing samples.

In Table D.3, we report the mean empirical coverage for the quantile method in

the MRI experiments with α = 0.05, c = 32, and acceleration rate R ∈ {2, 4, 8, 16}

across T = 10 000 trials. For any value of R, we see the empirical coverage is very

close to the theoretical 1− α = 0.95 coverage; thus, once again, our method shows

close compliance to the theory.
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Table D.1: Mean empirical coverage for the quantile method with α = 0.05 and
T = 10 000 on the FFHQ denoising task (± standard error)

c DISTS LPIPS PSNR SSIM

1 0.95002± 0.00009 0.94997± 0.00009 0.95013± 0.00009 0.94989± 0.00009
2 0.95006± 0.00009 0.95003± 0.00009 0.95001± 0.00009 0.95022± 0.00009
4 0.94997± 0.00009 0.95008± 0.00009 0.94986± 0.00009 0.94999± 0.00009
8 0.95020± 0.00009 0.95015± 0.00009 0.95019± 0.00009 0.94991± 0.00009
16 0.94998± 0.00009 0.94999± 0.00009 0.95009± 0.00009 0.95008± 0.00009
32 0.95002± 0.00009 0.95013± 0.00009 0.95003± 0.00009 0.95006± 0.00009

Table D.2: Mean empirical coverage for the regression method with α = 0.05 and
T = 10 000 on the FFHQ denoising task (± standard error)

c DISTS LPIPS PSNR SSIM

1 0.94994± 0.00009 0.94970± 0.00009 0.95009± 0.00009 0.95014± 0.00009
2 0.95011± 0.00009 0.94953± 0.00009 0.94985± 0.00009 0.95004± 0.00009
4 0.94996± 0.00009 0.94946± 0.00009 0.95003± 0.00009 0.94995± 0.00009
8 0.95004± 0.00009 0.94964± 0.00009 0.94999± 0.00009 0.95017± 0.00009
16 0.94986± 0.00009 0.94964± 0.00009 0.95007± 0.00009 0.94987± 0.00009
32 0.95013± 0.00009 0.95026± 0.00009 0.95001± 0.00009 0.95006± 0.00009

D.2 Additional FFHQ denoising experiments

Effect of training and calibration set size: For FFHQ denoising, we now

investigate how the amount of training and calibration data affect the mean conformal

bound. Following the same Monte Carlo procedure as Sec. 5.3.1, we fix the number of

testing samples to 900 but change the proportion of ntrain versus ncal for the remaining

3100 samples. In Fig. D.1, we show the mean conformal bounds as the proportion

of training samples varies, starting with 0.1 and going up to 0.95, for T = 10 000,
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Table D.3: Mean empirical coverage for the quantile method across accelerations with
α = 0.05, c = 32, and T = 10 000 on the accelerated MRI task (± standard error).
All coverages are above the expected coverage of 1− α = 0.95

R DISTS LPIPS PSNR SSIM
2 0.9503± 0.0001 0.9503± 0.0001 0.9504± 0.0001 0.9504± 0.0001
4 0.9504± 0.0001 0.9503± 0.0001 0.9505± 0.0001 0.9504± 0.0001
8 0.9503± 0.0001 0.9504± 0.0001 0.9503± 0.0001 0.9503± 0.0001
16 0.9504± 0.0001 0.9504± 0.0001 0.9505± 0.0001 0.9506± 0.0001

c = 32, and α = 0.05. Both adaptive methods still provide noticeable gains over the

non-adaptive bound. Even with additional training samples, however, the regression

bounds show relatively little improvement over the quantile bounds. Based on (5.3),

the conformal bounds should grow more conservative as the number of calibration

points decreases for the non-adaptive and quantile bounds. However, this effect is not

evident until very small calibration set sizes (e.g., when the fraction of calibration

samples is 0.05).

Correlation between conformal bound and true FRIQ: Figure 5.2 visually

demonstrates that the quantile bound tracks the true FRIQ much better than the

non-adaptive bound. To quantify this tracking behavior, we compute the Pearson

correlation coefficient between each conformal bound β(ẑk, λ̂(dcal[t])) and the true

FRIQ zk over the test indices k ∈ Itest[t] for each Monte-Carlo trial t. In Fig. D.2, we

plot the mean (across T = 10000 trials) Pearson correlation coefficient versus c for

each bound. Since the non-adaptive bound is constant with zk, its correlation equals

0. However, the two adaptive approaches demonstrate a correlation coefficient above

0.5, and up to 0.7, depending on the metric. These correlation coefficients quantify

the adaptivity of our bounds and explain, in part, why the adaptive bounds led to
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Figure D.1: Mean conformal bound versus the proportion of training samples for
FFHQ denoising with ntrain + ncal = 3100 samples.
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Figure D.2: Mean Pearson correlation coefficient between each conformal bound and
the true FRIQ versus the number of posterior samples c for FFHQ denoising.

better average acceleration rates than the non-adaptive bound in the multi-round

measurement experiment of Sec. 5.3.2.

D.3 Additional MRI experiments

Effect of number of posterior samples c in conformal bound: For the case

of FFHQ denoising, Sec. 5.3.1 demonstrated the number of posterior samples c has a

limited effect on the conformal bounds for the FFHQ experiments. We now investigate

whether the same occurs with MRI. Figure D.3 plots the percent improvement in

MCB as c increases relative to the MCB for c = 1. From the figure, we see less than a
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Figure D.3: Percent improvement in MCB versus number of samples c used in the
quantile bound for the accelerated MRI experiments.

1.5% improvement over c = 1 for any metric, suggesting that the quantile method is

indeed robust to the choice of c for both experiments.

Multi-round measurement samples: In Fig. D.4, we show the zero-filled

measurement, recovered image, and absolute-error map at each acceleration rate.

The conformal bound is imposed on the reconstructions for the case when α = 0.05,

τ = 0.16, and c = 32. Following the multi-round measurement protocol described in

Sec. 5.3.2, the reconstruction at R = 8 (marked in red) would be deemed sufficient

(βi < τ), and the measurement collection would end.

D.4 Empirical investigation of distribution shift

As previously mentioned, a general limitation of CP methods like [6] is the

requirement of exchangeability, which in our case applies to the pairs {(Ẑi, Zi)}ni=0.

This requirement may be violated when there is a distributional shift between the test

data (x0, y0) and the calibration data {(xi, yi)}ni=1, which can then cause a distributional

shift between the corresponding FRIQ quantities (ẑ0, z0) and {(ẑi, zi)}ni=1.

In the case of MRI, such distributional shifts may arise for various reasons, some

of which would be easy to prevent while others would be more difficult. For example,
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Figure D.4: Qualitative example of the multi-round MRI experiment with DISTS at
α = 0.05, τ = 0.16, and c = 32. The measurement, recovery, and absolute error are
shown for all accelerations. The quantile bound (orange) and true DISTS (white) are
imposed on the reconstructions. The red box indicates the accepted reconstruction
where the bound first falls below the threshold τ .
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Figure D.5: Qualitative examples of images from different slice locations. Slice location
0 indicates the center slice of a volume while larger slice locations are further towards
the edges of a volume.
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Figure D.6: Histograms of the difference between
the true FRIQ zk and the FRIQ estimate ẑk for
test indices k in the test fold Itest[t] of a single
trial. Histograms are shown for test slice locations
l = 0, 5, 10. Note the increasing shift in distribution
from the calibration set as l increases.
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Figure D.7: The average empiri-
cal coverage across T = 10000
trials for test sets at different
slice locations. All trials are cal-
ibrated with images from slice
location 0 with α = 0.1, R = 8,
and c = 32.

if the CP method was calibrated on knee images, one would not want to immediately

test on brain images, but instead recalibrate a CP method on brain images. Likewise,

if the CP method was calibrated with data from one manufacturer and/or strength of

scanner, then it would be best to test on data from the same manufacturer and/or

strength of scanner. Still, due to limited calibration data, situations may arise where

a distribution shift is inevitable. Thus, we perform a study to analyze the sensitivity

of our proposed method to distribution shifts.

For this study, we use the validation fold of the non-fat-suppressed multi-coil

fastMRI knee dataset [125], which contains 100 3D volumes. A volume contains all

the images collected for a single patient, with each image showing a different slice of
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the knee (from front to back). To induce a realistic yet controllable distribution shift,

we choose calibration images from only the center slices of these volumes, and refer to

the center slices as “location l = 0.” We then create one test set with images from

slice locations l = 0, another test set with images from slice location l = 1, and so

on, until slice location l = 10 (which typically corresponds to an edge slice). Example

images from various slice locations are shown in Fig. D.5.

We first evaluate the coverage of the quantile bound using T = 10 000 Monte

Carlo trials, error-rate α = 0.1, acceleration R = 8, an E2E-VarNet [107] sample for

x̂i, and c = 32 posterior samples for wi. For each trial t ∈ {1, . . . , T}, we construct

the calibration set by randomly sampling 70 of the 100 center slices. For the same t,

we form the test data at location l = 0 using the remaining 30 slices, and we form

the test data at locations l > 0 by randomly sampling 30 of the 200 available slices.

Figure D.7 plots the mean empirical coverage over the T trials as a function of test

slice location l. As expected, the desired 1− α coverage is met when l = 0. However,

the behavior of the empirical coverage for l > 0 varies depending on the metrics. The

coverage for LPIPS tends to decrease slightly as the slice location l increases, and the

coverage for PSNR only falls below 1− α after l = 7. Surprisingly, for the DISTS and

SSIM metrics, the coverage remains well above 1− α for all slice locations, suggesting

the bounds remain valid, but become slightly over-conservative for l > 0. Overall, the

results demonstrate our bounds are quite robust to small distributional shifts with

only a minor loss in coverage for certain metrics.

To visualize the distribution shift versus test location l, we consider the difference

between the true FRIQ zk and the FRIQ estimate ẑk for each test index k ∈ Itest[t] in

a single trial t. This difference is zk − ẑk for LP metrics and ẑk − zk for HP metrics.
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Figure D.6 shows the histogram of this difference for test locations l ∈ {0, 5, 10}. As

expected, these histograms deviate more as the test location l increases, although the

amount of deviation depends on the FRIQ metric. For PSNR, we see the histogram

shifting slightly to the right, while for SSIM, the histogram starts to shrink in width.

Figure D.7 suggests that one could select a more conservative α to ensure sufficiently

high coverage under small distributional shifts, but at the cost of more conservative

bounds. In fact, this is largely the mechanism behind distributionally robust CP

extensions like Cauchois et al. [27]. We leave such generalizations to future work.

D.5 Posterior averaging for image estimates

As described above in Secs. 5.2.2–5.2.4, a posterior-sampling-based image recovery

method allows one to construct adaptive bounds using image samples {x̃(j)i }cj=1. But,

as we now discuss, a posterior-sampling-based image recovery method also provides

flexibility in how x̂i itself is constructed.

For example, when one is interested in constructing x̂i with high PSNR, or

equivalently low MSE, it makes sense to set x̂i as the minimum MSE (MMSE) or

conditional-mean estimate E{Xi|Yi=yi}. This can be approximated by the empirical

mean of p posterior samples, i.e.,

x̂i =
1

p

c+p∑

j=c+1

x̃
(j)
i , (D.1)

with large p. The indices on j in (D.1) are chosen to avoid the samples {x̃(j)i }cj=1 used

for the adaptive bounds. However, because the MMSE estimate can look unrealistically

smooth, smaller values of p are appropriate when constructing an x̂i with good SSIM,

DISTS, or LPIPS performance. For example, Bendel et al. [20] found that, for

multi-coil brain MRI at acceleration R = 8 with a particular posterior sampler, the
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Table D.4: Mean empirical coverage for the quantile method with α = 0.05, c = 32,
and T = 10 000 on the R = 8 accelerated MRI task (± standard error). All coverages
are above the expected coverage of 1− α = 0.95

p DISTS LPIPS PSNR SSIM
1 0.9503± 0.0001 0.9503± 0.0001 0.9505± 0.0001 0.9504± 0.0001
2 0.9505± 0.0001 0.9503± 0.0001 0.9504± 0.0001 0.9505± 0.0001
4 0.9503± 0.0001 0.9503± 0.0001 0.9505± 0.0001 0.9504± 0.0001
8 0.9505± 0.0001 0.9504± 0.0001 0.9504± 0.0001 0.9505± 0.0001
16 0.9505± 0.0001 0.9502± 0.0001 0.9504± 0.0001 0.9504± 0.0001
32 0.9504± 0.0001 0.9506± 0.0001 0.9504± 0.0001 0.9505± 0.0001

best choice of p is 8 for SSIM and 2 for both DISTS and LPIPS. This is can explained

by the perception-distortion tradeoff [22], which says that, as p increases and the MSE

distortion decreases, the perceptual quality must also decrease. In the end, each FRIQ

metric prefers a particular tradeoff between perceptual quality and distortion.

To assess the flexibility this affords, we now use p additional posterior samples from

the CNF in Ch. 3 to construct the image estimate x̂ and utilize the same Monte Carlo

validation as before to compute the mean empirical coverage and mean conformal

bounds (MCB) over T = 10000 trials.

Empirical Coverage: Table D.4 reports the average empirical coverage for the

quantile bounds with different values of p. As with all previous experiments, the

coverage is above and very close to the desired 1− α value for all values of p.

Effect of acceleration rate R and choice of recovery method: Figure D.8

plots the quantile MCB with c = 32 versus the acceleration rate R for different image

estimates x̂i. The image estimate x̂ is computed using either the E2E-VarNet point

estimate or a p-sample average from the CNF with different values of p. In all cases,

MCB improves as the acceleration R decreases, as expected. However, as discussed
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Figure D.8: Mean conformal bound versus acceleration R for accelerated MRI. Results
shown for the quantile bound with x̂ computed from the E2E-VarNet point estimate
(shown in pink) or the p-sample average from CNF posteriors. Various p shown.

in Sec. D.5, each metric benefits from a different choice of p. DISTS and LPIPS

prefer p ∈ {2, 4} while PSNR and SSIM prefer p = 32. The figure also shows that

the MCB for the p-optimized CNF-based method is better than the MCB for the

E2E-VarNet-based method with both DISTS and LPIPS but not with PSNR and

SSIM. Thus, the recovery method that yields the tightest bounds may depend on the

metric of interest.

Multi-round MRI: Since Figure D.8 reveals the tightest bounds on DISTS are

obtained when the CNF posterior average with p = 4 is used for the image estimate

x̂, we repeat the multi-round experiment from Sec. 5.3.2 to see how this translates

practically. Again, we set α = 0.05 and c = 32. The threshold is set at τ = 0.11

where the non-adaptive approach requires R = 2 for acceptance. In Figure D.9, we

plot the distribution of slices that were collected at each acceleration rate. Here,

the non-adaptive approach always accepts slices at R = 2 while the quantile bound

accepts nearly 50% of the slices at R = 4. Table D.5 shows that this equates to an

average accepted acceleration rate of 2.596 with an empirical coverage of 0.9434 at

acceptance. This demonstrates that the multi-round performance difference between
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Figure D.9: Fraction of accepted slices
versus final acceleration rate for multi-
round MRI using DISTS. Both meth-
ods use a p-posterior average for the
recovery with p = 4, c = 32, α = 0.05,
and τ = 0.11. Error bars show stan-
dard deviation.

Table D.5: Average results for a multi-
round MRI simulation where measurement
collection stop once bounds are below a
user-set threshold τ . Results shown for
T = 10 000 trials using the DISTS metric
with α = 0.05, τ = 0.11, p = 4, and c = 32
(± standard error).

Method Average
Acceleration

Acceptance
Empirical
Coverage

Non-adaptive 2.000± 0.000 0.9504± 0.0001
Quantile 2.596± 0.001 0.9434± 0.0001

bound types varies with the recovery model, and thus, the modularity of our proposed

method allows improvements along multiple dimensions (i.e. the recovery model, the

posterior sampler, the conformal bound) all of which can be easily swapped to suit

the particular problem.

Distribution Shift: We repeat the distribution shift analysis from Appendix D.4

using a single CNF posterior sample as the image estimate x̂, i.e. p = 1, with α = 0.1,

c = 32, and R = 8. As before, we can visualize the distribution shift by looking at

the histograms of the difference between the true FRIQ zk and FRIQ estimate ẑk

for each test index k ∈ Itest[t] as the test location l increases. Figure D.10 shows

the histograms for test locations l ∈ {0, 5, 10}. We see more distinct distributional

shifts compared to Appendix D.4 as the histogram for PSNR noticeably shifts to the

right and widens while the histogram for LPIPS becomes bimodal as l increases. Not

104



DISTS

LPIPS

PSNR

SSIM

De
ns
ity

<latexit sha1_base64="gapFKdwz4rj/6oAwHmMnmbmqpQ8=">AAACEHicbVDLSsNAFJ3UV62vaJduBovgxpKIVJdFNy4r2Ae0IUwmk3bI5MHMRElDfsIfcKt/4E7c+gf+gN/hpM3Cth64cDjnXu7hODGjQhrGt1ZZW9/Y3Kpu13Z29/YP9MOjnogSjkkXRyziAwcJwmhIupJKRgYxJyhwGOk7/m3h9x8JFzQKH2QaEytA45B6FCOpJFuvT20fnsPRE3XJBMlsmtu+rTeMpjEDXCVmSRqgRMfWf0ZuhJOAhBIzJMTQNGJpZYhLihnJa6NEkBhhH43JUNEQBURY2Sx8Dk+V4kIv4mpCCWfq34sMBUKkgaM2AyQnYtkrxP+8YSK9ayujYZxIEuL5Iy9hUEawaAK6lBMsWaoIwpyqrBBPEEdYqr4WvriiiJbXVDHmcg2rpHfRNFvN1v1lo31TVlQFx+AEnAETXIE2uAMd0AUYpOAFvII37Vl71z60z/lqRStv6mAB2tcvEPSdIA==</latexit>

zk → ẑk
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Figure D.10: Histograms of the difference between
the true FRIQ zk and the FRIQ estimate ẑk for
test samples k in the test fold of a single trial. His-
tograms are shown for test slice locations l = 0, 5, 10.
Note the increasing shift in distribution from the
calibration set as l increases.
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Figure D.11: The average empir-
ical coverage across T = 10000
trials for test sets at different
slice locations. All trials are cal-
ibrated with images from slice
location 0 with α = 0.1, R = 8,
p = 1, and c = 32.

surprisingly, the more dramatic shifts lead to a decrease in coverage for all metrics in

Fig. D.11 as l increases. We do note, however, that both SSIM and PSNR retain a

coverage at or above 1− α until l = 4, demonstrating a level of robustness.

D.6 Average fastMRI reconstruction performance

To get a sense of the average reconstruction performance for the accelerated MRI

task, we report the average metrics for both the E2E-VarNet and CNF on the non-

fat-suppressed subset of the fastMRI knee validation set. Results for acceleration

rates R = 16, 8, 4, and 2 are shown in Tables D.6, D.7, D.8, D.9, respectively. The

E2E-VarNet outperforms the CNF in PSNR and SSIM across all accelerations. The
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Table D.6: Average reconstruction performance on the fastMRI [125] knee validation
set for R = 16 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.209± 0.001 0.354± 0.001 30.301± 0.043 0.807± 0.001
CNF (p = 1) 0.183± 0.001 0.312± 0.001 28.244± 0.039 0.688± 0.002
CNF (p = 2) 0.167± 0.001 0.292± 0.001 29.091± 0.039 0.730± 0.001
CNF (p = 4) 0.165± 0.001 0.287± 0.001 29.588± 0.039 0.755± 0.001
CNF (p = 8) 0.173± 0.001 0.296± 0.001 29.862± 0.039 0.770± 0.001
CNF (p = 16) 0.184± 0.001 0.314± 0.001 30.006± 0.039 0.777± 0.001
CNF (p = 32) 0.193± 0.001 0.333± 0.001 30.080± 0.039 0.781± 0.001

Table D.7: Average reconstruction performance on the fastMRI [125] knee validation
set for R = 8 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.151± 0.001 0.262± 0.001 33.459± 0.047 0.864± 0.001
CNF (p = 1) 0.136± 0.000 0.248± 0.001 30.796± 0.044 0.761± 0.002
CNF (p = 2) 0.118± 0.000 0.225± 0.001 31.754± 0.044 0.799± 0.001
CNF (p = 4) 0.119± 0.000 0.219± 0.001 32.329± 0.043 0.821± 0.001
CNF (p = 8) 0.128± 0.001 0.228± 0.001 32.650± 0.043 0.834± 0.001
CNF (p = 16) 0.138± 0.001 0.243± 0.001 32.819± 0.043 0.840± 0.001
CNF (p = 32) 0.145± 0.001 0.255± 0.001 32.907± 0.043 0.843± 0.001

CNF, on the other hand, provides lower DISTS and LPIPS values in all cases other

than for LPIPS at acceleration R = 2.

106



Table D.8: Average reconstruction performance on the fastMRI [125] knee validation
set for R = 4 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.110± 0.001 0.181± 0.001 36.030± 0.053 0.905± 0.001
CNF (p = 1) 0.100± 0.000 0.191± 0.001 33.090± 0.048 0.826± 0.001
CNF (p = 2) 0.087± 0.000 0.170± 0.001 34.073± 0.048 0.856± 0.001
CNF (p = 4) 0.090± 0.000 0.166± 0.001 34.666± 0.048 0.873± 0.001
CNF (p = 8) 0.099± 0.000 0.171± 0.001 34.998± 0.047 0.882± 0.001
CNF (p = 16) 0.106± 0.001 0.178± 0.001 35.174± 0.047 0.887± 0.001
CNF (p = 32) 0.110± 0.001 0.184± 0.001 35.265± 0.047 0.889± 0.001

Table D.9: Average reconstruction performance on the fastMRI [125] knee validation
set for R = 2 (± standard error)

Network DISTS ↓ LPIPS ↓ PSNR ↑ SSIM ↑
E2E-VarNet 0.059± 0.000 0.094± 0.001 39.692± 0.060 0.947± 0.001
CNF (p = 1) 0.059± 0.000 0.118± 0.000 36.810± 0.054 0.907± 0.001
CNF (p = 2) 0.054± 0.000 0.105± 0.000 37.667± 0.054 0.923± 0.001
CNF (p = 4) 0.055± 0.000 0.100± 0.000 38.171± 0.054 0.931± 0.001
CNF (p = 8) 0.058± 0.000 0.099± 0.000 38.448± 0.054 0.935± 0.001
CNF (p = 16) 0.060± 0.000 0.099± 0.000 38.593± 0.054 0.937± 0.001
CNF (p = 32) 0.061± 0.000 0.099± 0.000 38.668± 0.054 0.939± 0.001
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