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Abstract— The constant modulus (CM) criterion has be-
come popular in the design of blind linear estimators of
sub-Gaussian i.i.d. processes transmitted through unknown
linear channels in the presence of unknown additive interfer-
ence. The existence of CM local minima, however, makes it
difficult for CM-minimizing schemes to generate estimates
of the desired source (as opposed to an interferer) in mul-
tiuser environments. In this paper, we present three suffi-
cient conditions under which gradient descent (GD) mini-
mization of CM cost will locally converge to an estimator
of the desired source at a particular delay. The sufficient
conditions are expressed in terms of statistical properties
of the initial estimates, specifically, CM cost, kurtosis, and
signal to interference-plus-noise ratio (SINR).

I. INTRODUCTION

Minimization of the so-called constant modulus (CM)
criterion [1], [2] has become perhaps the most studied and
implemented means of blind equalization for data com-
munication over dispersive channels (see, e.g., [3] and the
references within) and has also been used successfully as
a means of blind beamforming. The CM criterion is de-
fined below in terms of the estimates {y,} and a design
parameter 7.

Je(yn) = E{(jyal? —7)"}. (1)

The popularity of the CM criterion is usually attributed
to (i) the existence of a simple adaptive algorithm (known
as the CM algorithm or CMA [1], [2]) for estimation and
tracking of the CM-minimizing estimator f.(z), and (ii) the
excellent MSE performance of CM-minimizing estimates.
The second of these two points was first conjectured in the
original works [1], [2] and recently proven by the authors
for arbitrary linear channels and additive interference [4].
Perhaps the greatest challenge facing successful appli-
cation of the CM criterion in arbitrary interference envi-
ronments results from the difficulty in determining CM-
minimizing estimates of the desired source (as opposed to
mistakenly estimating an interferer). The potential for “in-
terference capture” is a direct consequence of the fact that
the CM criterion exhibits multiple local minima in the es-
timator parameter space, each corresponding to a CM es-
timator of a particular source at a particular delay.
Various “multiuser” modifications of the CM criterion
have been proposed to jointly estimate all sub-Gaussian
sources (e.g., [5], [6]). These methods, however, often re-
quire knowledge of the number of interfering sources, result
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in significant increase in computational complexity when
the number of sources is large, and generate estimates with
questionable MSE performance. In contrast, we focus on
the standard CM (or “Godard” [1]) criterion and consider
desired-source convergence as an outcome of proper initial-
ization.

Closed-form expressions for CM estimators do not gener-
ally exist, and thus gradient descent (GD) methods provide
the typical means of solving for these estimators. Because
exact gradient descent requires statistical knowledge of the
received process that is not usually available in practical
situations, stochastic GD algorithms such as CMA are used
to estimate and track the (possibly time-varying) CM es-
timator. It is widely accepted that small step-size stochas-
tic GD algorithms exhibit mean transient and steady-state
behaviors very close to those of exact GD under typical op-
erating conditions [7]. Hence, we circumvent the details of
stochastic adaptation by restricting our attention to (ex-
act) GD minimization of the CM cost. An important prop-
erty of GD minimization is that the location of algorithm
initialization completely determines the stationary point
to which the GD trajectory will eventually converge.

In this paper, we derive three sufficient conditions under
which CM-GD minimization will generate an estimator for
the desired source. The conditions are expressed in terms
of statistical properties of the initial estimates, specifically,
CM cost, kurtosis, and signal to interference-plus-noise ra-
tio (SINR). Earlier attempts at describing the interference
capture or “local convergence” properties of CMA have
been made by Treichler and Larimore in [8] and Li and
Ding in [9].
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Fig. 1. Linear system model with K sources of interference.

II. BACKGROUND

In this section, we give more detailed information on the
linear system model and the CM criterion. The following



notation is used throughout: () denotes transpose, (-)¥
hermitian, and E{-} expectation. Also, I denotes the iden-
tity matrix, R the field of non-negative real numbers, and

[[x]l,, the p-norm defined by Y lp
A. Linear System Model

First we formalize the linear time-invariant multi-
channel model illustrated in Fig. 1. Say that the de-
sired symbol sequence {s{”} and K sources of interfer-
ence {s("},...,{s{O} each pass through separate linear
“channels” before being observed at the receiver. In addi-
tion, say that the receiver uses a sequence of P-dimensional
vector observations to estimate (a possibly delayed version
of) the desired source sequence, where the case P > 1
corresponds to a receiver that employs multiple sensors
and/or samples at an integer multiple of the symbol rate.
The P x 1 received signal samples r,, can be written r,, =
ZkK:o Yo hiVs . where {h"} denote the impulse re-
sponse coefﬁc1ents of the linear time-invariant (LTT) chan-
nel h®(z). The only assumptions placed on h™®(z) are
causality and bounded-input bounded-output (BIBO) sta-
bility. Note that such h™(z) admit infinite impulse re-
sponse (ITR) channel models.

From the vector-valued observation sequence {ry}, the
receiver generates a sequence of linear estimates {y,} of
{s” ,}, where v is a fixed integer. Using {f,} to denote
the impulse response of the linear estimator f(z), the esti-
mates are formed as y,, = Z;’i o le r,—;. We will assume
that the linear system f(z) is BIBO stable, though not nec-
essarily causal nor FIR.

In the sequel, we will focus almost exclusively on the K
combined channel-estimators ¢ (2) := £ (2)h® (z). The
impulse response coefficients of ¢*(z) can be written

o0
H
Q;zk) = Z f; hizk)zv (2)
1=—00
allowing the estimates to be written as vy, =

S diasVs .. Adopting the following vector notation
helps to streamline the remainder of the paper.

q(k)::(---ngcl),q(()k)ngk)y---)ty
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s(k)(n)::(...,sslkll,sglk),s;kll,...)t,
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For instance, the estimates can be rewritten concisely as

K
— Z q(’“)ts(“(n)
k=0

We now point out two important properties of q. Let
¢1(CP) denote the set of absolutely-summable vector se-
quences, defined as follows

& Y Il <o
%

= q's(n). 3)

{fl} S fl ((CP) fl S (CP. (4)

BIBO stable f(z) and h®(z) imply that {f;},{h{"} €
¢1(C?), which ensures that {g{"'} € ¢1(C). This, in turn,
implies that |g||, < oo (for any a > 1).

Next, it is important to recognize that placing a particu-
lar structure on the channel and/or estimator will restrict
the set of admissible channel-estimator responses, which
we will denote by Q,. For example, when the estimator is
FIR, (2) implies that ¢ € Q, = row(H), where

. hg))---hg() h<10> . h<K> h(‘” ~h§K)
o 0--- 0 hE)O) . h<K> h(‘” 'h(lK)
o---0 O0--- 0 h(‘” 'hBK)m

Restricting the estimator to be causal IIR, for example,
would generate a different admissible set Q,. In general,
we allow any channel/estimator restrictions which ensure
that Q, is a linear subspace of ¢1(C).

Throughout the paper, we make the following assump-
tions on the K + 1 source processes:
Sl) For all k, {s{"} is zero-mean i.i.d.

S2) For k # K {sM} is statlstlcally independent of {s{}.

S3) For all k, E{|s®|?} = o2

S4) K(s) < 0, where £(-) denotes kurtosis:

K(sn) = Bjsn*} — 2E2{|s,2} — |[E{2}[*.  (5)

S5) If, for any k, ¢*(z) or {s{"} is not real-valued, then
E{s®?} = 0 for all k.

B. Signal to Interference-plus-Noise Ratio

Given channel-estimator response g, we can decompose
the estimate into signal and interference terms:

yn =a,"s,", +q'5(n), (6)
where @ denotes g with the ¢/ term removed and 3(n)
denotes s(n) with the s!’ , term removed.

The signal to interference-plus-noise ratio (SINR) asso-
ciated with y,,, an estimate of s . is then defined

SINR(y,) = AP h P (7)
E{|a's(n)P*} lall3

where the equality invokes assumptions S1)-S3). Note that
SINR = ¢2/UMSE, where UMSE denotes (conditionally)

unbiased mean-squared error.

C. The Constant Modulus Criterion

The CM criterion, introduced independently in [1] and
[2], was defined in (1) in terms of the estimates {y,}. For
sources, channels, and estimators allowed in Section II-A,
the authors have shown [4] that

UMSE,. < UMSE,, + A - UMSEZ? + O(UMSE?)),

where UMSE,,, denotes to Wiener estimates of the desired
source at a particular delay, UMSE, denotes to the CM-
minimizing estimates of the desired source at the same
delay, and A is a constant that depends on source kurtoses.

For example, A = 1/202 when K(s(”) < K(s®) < 0 Vk.



III. SUFFICIENT CONDITIONS FOR LOCAL
CONVERGENCE OF CM-GD

A. The Main Idea

The set of channel-estimators associated with the desired
source (k = 0) at estimation delay v will be denoted Q%
and defined as follows.

© ._ ©) ()

Q) : {q st gy | > o hax lgs I}- (8)
Note that under S1)-S3), the previous definition associates
an estimator with a particular {source, delay} combination
if and only if that {source, delay} contributes more energy
to the estimate than any other {source, delay}. Choosing,
as a reference set, the channel-estimator responses on the
boundary of @ with minimum CM cost,

Je(q), 9)

min

{a,} = arg
gebndr(Q{)

we will denote the set of all channel-estimators in Q" with
CM cost no higher than J.(q,) by

Qc(q,) = {q st. Je(q) < Je(g)} N QY.

The main idea is this. Since all points in a CM gradient de-
scent (CM-GD) trajectory have CM cost less than or equal
to the cost at initialization, a CM-GD trajectory initialized
within Q.(g,) must be entirely contained in Q.(q,) and
thus in Q. In other words, when a particular channel-
estimator q yields sufficiently small CM cost, CM-GD ini-
tialized from g will preserve the source/delay combination
associated with g. Note that initializing within Q.(q,) is
sufficient, but not necessary, for eventual CM-GD conver-
gence to a stationary point in Q.

Since the size and shape of Q.(q,) are not easily charac-
terizable, we find it more useful to derive sufficient CM-GD
initialization conditions in terms of more well-known sta-
tistical quantities such as kurtosis or SINR. It has been
shown that CM cost and kurtosis are closely related [9],
thus we expect that translation between these two quan-
tities will be relatively straightforward. Translation of the
initial CM-cost condition into an initial SINR condition is
more difficult, but can be accomplished with the definition

SINR i := ming s.t.

{Vq : SINR(q) > z, 3 a« s.t. ﬁ2 € Qc(q,r)}7

(10)

which says that an initialization in the set {q : SINR(q) >
SINRin} can be scaled so that the resulting CM-GD tra-
jectory remains within Q.(q,) and hence within Q. In
other words, when a particular channel-estimator g yields
sufficiently high SINR, CM-GD initialized at a properly
scaled version of g will preserve its {source, delay} combi-
nation. The SINR condition is formalized below.

Since Q.(q) and SINR(q) are all invariant to phase ro-
tation of q (i.e., scalar multiplication by e/? for ¢ € R), we

can (w.l.o.g.) restrict the our attention to the “de-rotated”
set of channel-estimator responses {q s.t. ¢ € RT}. Such
g allow parameterization in terms of gain a = ||q||, and in-
terference response q (defined in Section II-B). In terms
of the pair (a, q), the SINR (7) can be written

a? — ||q|;
4l
so that (10) becomes
SINRpin := ming s.t.
{V(a, q) : % >z, 3 ax s.t. (ax, ET*‘?) c Qc(qr)}- (11)
2

Under particular conditions (made explicit later), there
exists a maximum interference gain, specified as a function
of system gain a, below which all § are contained in Q.(q,):

bmax(@) = max st {¥@: l, < (@), (0.@) € Qe(a)}.  (12)

For an illustration of a, byax(a), and Q.(q,), see Fig. 2.
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Fig. 2. Illustration of maximum interference gain bmax(a) below
which all channel-estimator responses of gain a are contained in
the CM cost region Qc(q,). Note that SINR(a, bmax) = CotQ(G).

Now, consider the quantity

a?—-0v2,. (a
SINR(G, bmax) = Wa,)()

max

Since SINR(a,bmax) is a decreasing function of byax(a)
(over its valid domain), definition (12) implies that

112
a® — ||l

—5 > SINR(a, bpmax) =
||Q||2

(auq) € QC(qr)
Using the previous expression to minimize SINR in accor-
dance with (11) yields

SINRumin = minSINR(a, bmax)

arg min SINR(a, bpax)-

ax =



B. Statement of Sufficient Conditions

In this section we formalize the previously-described ini-
tialization conditions for CM-GD desired-source conver-
gence. The main results are presented as theorems whose
proofs can be found in [10].

It is convenient to now define the normalized kurtosis
(not to be confused with K(+) in (5)):

E (k) |4
k® = M (15)
E*{lsn"[?}
Under the following definition of kg,
3, Vk,n: h® R” and s € R
gy = 4 N . (2) € and s € (16)
2, otherwise,

our results will hold for both real-valued and complex-
valued models. Note that, under S1) and S5), k, repre-
sents the normalized kurtosis of a Gaussian source. It can
be shown that the normalized and un-normalized kurtoses
are related by K(s) = (k) — k,)o? under S3) and S5).

Next we define the minimum and maximum (normal-
ized) interference kurtoses.

3 k 3 0
omin ming<x<i £, dim(q®) > 1, (17)
s ’ ; ®_ i ®) =1
mlnlngK Ks N miq 5
max ,__ (k)
K =  max Ky . 18
. max kg (18)

Note that the second case of (17) applies only when the de-

sired source contributes zero intersymbol interference (IST).
Before statement of the main results, we introduce three

more kurtosis-based quantities that will appear later.

K _Kmin

Pmin = —— (19)
Kg — Ks
K. — max

pmax = G (20)
Kg — Ks

4
2 —
Uy‘crit =7 (Kéo) 4 Hgnin + 2/19) : (21)

Theorem 1: If {y,} are initial estimates of the desired
source at delay v (i.e., y, = ql,;;8(n) for g, € OV N Q)
with CM cost

JC(yn) < 72 1- (0) (22)
)

4
+ kD0 4 25, )
then estimators resulting from subsequent CM-minimizing
gradient descent will also yield estimates of the desired
source at delay v.

Theorem 2: If {y,} are initial estimates of the desired
source at delay v (i.e., y, = g}, s(n) for g;;, € QL N Q,)
with variance o7 = ag‘ " and normalized kurtosis
© < lcr1

Ky < KU o= = (n(so) + Ry 4+ 2/19),

e o (23)

then estimators resulting from subsequent CM-minimizing
gradient descent will also yield estimates of the desired
source at delay v.

Theorem 3: If k© < (k™% +2k,)/3, and if {y,,} are ini-

tial estimates with 05 = 05’ N and SINR(y,) > SINRyin,
< < Icrl
SINRmin =
+Pmin max
T RIS g,

(24)

% when pmax = —1, else

~Pmin max

Pmax‘i’\/l*(l‘FﬂmaX)(S*Pmin)/‘l » Ks > Kg,
1—+/1=(1+pmax) (3= Pmin) /4

then estimators resulting from subsequent CM-minimizing
gradient descent will also yield estimates of the desired
source at delay v.

IV. NUMERICAL EXAMPLES

In Fig. 3, CM-GD minimization trajectories conducted
in estimator space are plotted in channel-estimator space
(g € R?) to demonstrate the key results of this paper. In all
experiments, a two-tap FIR channel with P = 2 was cho-
sen, corresponding to channel matrix H = ({ Toge o osns’ )
of condition number 3. The subplots of Fig. 3 correspond
to different source kurtoses, as described in the caption.

First observe that all trajectories entering into Q.(q,)
(denoted by the shaded region between the dash-dotted
lines) converge to an estimator for the desired source, con-
firming Theorem 1. Next, observe that all trajectories ini-
tialized with small enough kurtosis (indicated by the re-
gion between the dotted lines) and proper gain (indicated
by the fat shaded arc) converge to an estimator for the de-
sired source, thus confirming Theorem 2. Finally, observe
that all trajectories initialized with high enough SINR (in-
dicated by the region between the dashed lines) and proper
gain (again indicated by the fat shaded arc) converge to es-
timators for the desired source, confirming Theorem 3.

From Fig. 3 it is evident that initial kurtosis or SINR
is not sufficient for desired local convergence; initial esti-
mator gain plays an important role. Though recognized in
[8], this fact was overlooked in the work of Li and Ding [9],
rendering incorrect some of their claims about the conver-
gence behavior of CMA.

In Fig. 4 we examine probability of CM-GD convergence
to desired source/delay versus SINR for higher-dimensional
estimators. CM gradient descents randomly initialized in
a ball around f,, (and subsequently normalized according
to Theorem 3) were conducted using random channel ma-
trices {H} € R*! with zero-mean Gaussian elements.
Every data point in Fig. 4 represents an average of 500 CM-
GD simulations. Fig. 4(a) demonstrates £ = 1 and ten
interfering sources with k(" = 1; Fig. 4(b) demonstrates
k) = 2, five interfering sources with £’ = 1, and five with
k" = 2; while Fig. 4(c) demonstrates x{” = 2, five inter-
fering sources with £ = 2, and five with k(¥ = 4. Fig. 4
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Fig. 3. CM-GD trajectories in channel-estimator space (q € R?) for
(a) k& =1 and & =1, (b) & = 2 and £{" = 1, and (c)
n(so) = 2 and n(sl) = 4. Also shown are Q,(,O) boundaries (dash-
dotted), SINRpin boundaries (dashed), H?Cfit boundaries (dot-
ted), and Jc(q) < Jc(q,) regions (shaded). Channel-estimators
resulting in 05 of (21) shown by the fat shaded arcs.

also confirms the claim of Theorem 3: all properly-scaled
CM-GD initializations with SINR greater than SINR,i,
converge to the desired source.

V. CONCLUSIONS

In this paper we have derived, under a general linear
model and general source properties, three sufficient con-
ditions for the convergence of CM-minimizing gradient de-
scent to an linear estimator for a particular source at a
particular delay. The sufficient conditions are expressed
in terms of statistical properties of initial estimates, i.e.,
estimates generated under a parameterization from which
CM-GD is initialized. More specifically, we have shown
that when initial estimates result in sufficiently low CM
cost, or sufficiently low kurtosis and a prescribed variance,
CM-GD will preserve the source/delay combination associ-
ated with the initial estimator. In addition, we have shown
that when the SINR of the initial estimates (with respect to
a particular source/delay combination) is sufficiently high
and the estimates have a prescribed variance, CM-GD will
converge to an estimator for that source/delay.
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Fig. 4. Estimated probability of convergence to desired source/delay
for random channels and random initializations scaled according
to (21) as a function of initialization SINR. In (a) ) = 1 with
interfering £ € {1,3}, in (b) k% = 2 with interfering x{* €
{1,2}, and in (c) %? = 2 with interfering k) e {2,4}. SINRmin
from (24) shown by dashed lines.
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