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Abstract

In recent years, there have been massive increases in both the dimensionality and

sample sizes of data due to ever-increasing consumer demand coupled with relatively

inexpensive sensing technologies. These high-dimensional datasets bring challenges

such as complexity, along with numerous opportunities. Though many signals of

interest live in a high-dimensional ambient space, they often have a much smaller

inherent dimensionality which, if leveraged, lead to improved recoveries. For example,

the notion of sparsity is a requisite in the compressive sensing (CS) field, which

allows for accurate signal reconstruction from sub-Nyquist sampled measurements

given certain conditions.

When recovering a sparse signal from noisy compressive linear measurements, the

distribution of the signal’s non-zero coefficients can have a profound effect on recov-

ery mean-squared error (MSE). If this distribution is apriori known, then one could

use computationally efficient approximate message passing (AMP) techniques that

yield approximate minimum MSE (MMSE) estimates or critical points to the maxi-

mum a posteriori (MAP) estimation problem. In practice, though, the distribution is

unknown, motivating the use of robust, convex algorithms such as LASSO–which
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is nearly minimax optimal–at the cost of significantly larger MSE for non-least-

favorable distributions. As an alternative, this dissertation focuses on empirical-

Bayesian techniques that simultaneously learn the underlying signal distribution us-

ing the expectation-maximization (EM) algorithm while recovering the signal. These

techniques are well-justified in the high-dimensional setting since, in the large system

limit under specific problem conditions, the MMSE version of AMP’s posteriors con-

verge to the true posteriors and a generalization of the resulting EM procedure yields

consistent parameter estimates.

Furthermore, in many practical applications, we can exploit additional signal

structure beyond simple sparsity for improved MSE. In this dissertation, we inves-

tigate signals that are non-negative, obey linear equality constraints, and exhibit

amplitude correlation/structured sparsity across its elements. To perform statistical

inference on these structured signals, we first demonstrate how to incorporate these

structures into our Bayesian model, then employ a technique called “turbo” approx-

imate message passing on the underlying factor graph. Specifically, we partition the

factor graph into the Markov and generalized linear model subgraphs, the latter of

which can be efficiently implemented using approximate message passing methods,

and combine the subgraphs using a “turbo” message passing approach. Numerical

experiments on the compressive sensing and hyperspectral unmixing applications con-

firm the state-of-the-art performance of our approach, in both reconstruction error

and runtime, on both synthetic and real-world datasets.
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Chapter 1: Introduction

“Big Data” has become a popular term associated with the recent explosion of

dimensionality and sample sizes of modern day datasets. As of March 2014, it was

estimated that 90% of all data was generated the previous two years with a grand total

of 2.5 billion gigabytes generated in 2012 alone [1]. Due to this trend, it comes as no

surprise that many researchers are focused on efficient techniques for data acquisition

and signal inference.

With “Big Data” comes many big challenges and insights. In his Aide-Memoir [2],

renowned statistician David Donoho popularized the term “curses and blessings of di-

mensionality” describing this dichotomy. The main curse of dimensionality is the ap-

parent intractability and complexity of searching through the high-dimensional space

or performing integrals of high-dimensional functions, typically resulting in increased

computational runtime. However, in many practical applications, the blessings of

dimensionality manifest in the success of asymptotic methods, usually in a statistical

framework, where rigorous analyses can be made in the large system limit.

In this dissertation, we explore the the application of a family of these methods

for high-dimensional Bayesian signal inference and the task of “learning” the under-

lying probability distributions that describe the signal and measurement models. We

then demonstrate how to perform these tasks in conjunction, resulting in a so-called

1



empirical-Bayes [3] technique. In particular, we employ flexible Bayesian models that

leverage known low-dimensional signal structure, which is commonly exhibited in the

high-dimensional inference setting. The resulting algorithms contain zero tuning pa-

rameters as they automatically tune all free parameters from realization specific data.

Furthermore, they yield per-iteration computational complexities that scale linearly

in each problem dimension.

1.1 Problem Statement: Structured Sparse Recovery

In this dissertation, we are interested in inferring a signal x ∈ R
N from noisy

measurements y ∈ R
M . In addition, we focus on signals that share a common low-

dimensional structure, called sparsity, where only a fraction of the signal elements are

non-zero.1 We call a signal K-sparse if it has K non-zero elements.

In the subsequent sections, we will formalize the observation models investigated

in this dissertation. As we progress, we will introduce additional examples of signal

structure and methods to incorporate them into the inference problem.

1.1.1 Linear Observation Model

Formally stated, we frame the sparse signal recovery problem as the estimation of

a K-sparse (or compressible) signal x ∈ R
N from the noisy linear measurements

y = Ax + w ∈ R
M , (1.1)

where A is known and w is additive white Gaussian noise (AWGN).

In traditional inverse problems, the signal is first recovered from measurements

obtained from Shannon-Nyquist sampling [5](i.e., M ≥ N)) via standard tools, e.g.,

1Similarly, a signal is called compressible if a majority of its elements are negligible in amplitude.
For a formal definition of compressibility, we refer interested readers to [4].
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least squares recovery. It can then be subsequently compressed, exploiting its under-

lying sparsity. Compressive sensing CS [6,7], on the other hand, attempts to recover

the sparse signal x using fewer measurements than unknowns, i.e., M < N . Whereas

signal recovery in the Shannon-Nyquist paradigm compresses after sampling, CS at-

tempts to compress while sampling. This is particularly useful when measurement

acquisition incurs a large cost (e.g., acquisition time, monetary value, availability), as

exhibiting in many applications such as magnetic resonance imaging (MRI) [8] and

radar imaging [9]. In CS, it is well established that accurate signal recovery is known

to be possible, relative the the variance of the noise w, with polynomial-complexity

algorithms when x is sufficiently sparse2 and when A satisfies certain restricted isom-

etry properties [10] or when A has i.i.d zero-mean sub-Gaussian entries [11].

To recover a sparse x̂ from the CS problem (1.1), one approach is to solve

x̂ = arg min
x

‖x‖0 s.t. ‖y − Ax‖2
2 ≤ ǫ, (1.2)

where ‖ · ‖0 and ǫ controls sparsity and the fit to the measurements, respectively.

Unfortunately, this optimization problem is NP-hard [12], so alternative approaches

need to be considered. The well-known LASSO algorithm [13] (or, equivalently, Basis

Pursuit Denoising [14]) relaxes the problem (1.2) by solving the convex problem

x̂lasso = arg min
x

‖y − Ax‖2
2 + λlasso‖x‖1, (1.3)

where λlasso is a tuning parameter that serves as the tradeoff between sparsity and

the “fit” to the measurements, and is, in general, difficult to optimize. A remarkable

property of LASSO is that its noiseless phase transition, or, the number of measure-

ments M needed to recover a K-sparse signal (in the large system limit for fixed

2Without loss of generality, we assume that x is sparse in the canonical basis, or known to have
a sparse representation in a known basis Ψ.
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ratios M/N and K/M), is nearly minimax optimal with respect to the distribution

of the non-zero signal coefficients [15]. In other words, if the vector x is drawn i.i.d

from the pdf

px(x) = λpact(x) + (1 − λ)δ(x), (1.4)

where δ(·) is the Dirac delta, pact(·) is the active-coefficient pdf (with zero probability

mass at x = 0), and λ , K/N , then the LASSO phase transition curve is invariant

to pact(·). However, this implies that LASSO cannot benefit from the case that pact(·)

is an “easy” distribution. For example, if we restrict pact(·) to the class of non-

negative distributions, polynomial-complexity algorithms exist with PTC that are

better than LASSO’s [16]. On the other hand, in the rare case that the “active”

signal distribution pact(·) in (1.4) is known, then MMSE-optimal recovery, though

computationally intractable for large problems, yields the large-system limit PTC

K
M

= 1 [17].

1.1.2 Bilinear Observation Model

In many instances, we often observe a matrix of noisy measurements Y ∈ R
M×T

and are asked to find a matrix-factorization, i.e., Y ≈ AX, where A and X are

unknown. Applications exhibiting such factorizations are hyperspectral unmixing [18]

(investigated in detail in Chapter 6), dictionary learning [19], matrix completion

(MC) [20], and non-negative matrix factorizations (NNMF) [21]. These applications

also share a commonality; they rely on the assumption that the factorization is low-

rank. In many cases, they must also assume that the signal X is sufficiently sparse.
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Assuming an additive noise model,3 we state the bilinear observation model to be

Y = AX + W ∈ R
M×T , (1.5)

where the dictionary A ∈ R
M×N and the signal X ∈ R

N×T are unknown, N is

the (known or hypothesized) rank, and W is noise. A straightforward approach to

solving (1.5) would be to employ an alternating least-squares approach, where, given

an initialization X̂, we iterate

Â = arg min
A

‖Y − AX̂‖2
F (1.6)

X̂ = arg min
X

‖Y − ÂX‖2
F . (1.7)

Unfortunately, this procedure typically takes many iterations to converge, and when

it does, usually at a local-minimum. Hence, the algorithms to perform the low-rank

matrix-factorization task often vary with the application, often exploiting additional

known signal structures or properties.

1.1.3 Additional Signal Structure

In many practical applications, the signals of interest exhibit additional structure

beyond simple sparsity, where, if leveraged, leads to improved recoveries. Many sig-

nals exhibit known geometric constraints such as non-negativity and linear-equality

constraints, e.g., Bx = c ∈ R
P . Incorporating such constraints into optimization

problems such as LASSO is straightforward, i.e., (1.3) transforms to

x̂c-lasso = arg min
x≥0

‖y − Ax‖2
2 + λc-lasso‖x‖1 s.t. Bx = c. (1.8)

3The MC problem’s noise model is more involved since there are many unobserved or “incomplete”
entries in Y .
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Alternatively, Bayesian estimation approaches can employed (e.g., Gibbs sampling

[22]), but they often necessitate the use of more sophisticated priors, typically result-

ing in additional computational burdens.

In addition to these geometrical constraints, many real-world signals feature other,

less-strict types of structure. For instance, the amplitudes of the signal X in (1.5) can

be correlated across the row or column elements. Incorporating such a “smoothness”

structure into optimization techniques such as (1.8) often involve adding a regular-

ization penalty, e.g., a total variation norm (akin to image denoising [23, 24]). We

note that these techniques introduce yet another tuning parameter that depends on

the amount of correlation, which is typically unknown and can vary from problem to

problem.

The sparsity itself can also be structured. For example, the large coefficients of an

image in the wavelet domain exhibit a tree structure, often referred to as a persistence

across scales [25]. Incorporating structured-sparsity in the CS problem often leads to

vastly improved performance gains in regards to the sampling rate and robustness to

signal-to-noise ratio (SNR).

1.2 Proposed Approach

In the this dissertation, we develop an empirical-Bayes [3] approach to the recov-

ery of structured-sparse signals. It is Bayesian in the sense that we assume families

of sparsity-promoting priors on the signal, likelihoods on the observations, and other

probabilistic models describing the underlying structure, which we then employ to

generate maximum a posteriori (MAP) or minimum MSE (MMSE) estimates. How-

ever, since perfect prior knowledge is rarely available, we propose to “learn” the
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parameters that describe these statistical models from the realization-specific data,

hence the phrase empirical. Thus, the resulting procedure can be interpreted as a

feedback mechanism where the signal estimates improve the distributions, and vice

versa.

Unfortunately, for many of the signal and noise distributions we assume, exact

MAP or MMSE inference is intractable. For instance, if we performed MMSE in-

ference via loopy belief propagation (LBP) [26] on the underlying factor graph, the

number of messages grow quickly with problem dimensions and the computation of

the messages is intractable. Because of this, we turn to the recent approximate mes-

sage passing (AMP) family of algorithms, which simultaneously simplify the form

and reduce the number of messages of LBP. In particular, this dissertation focuses on

three versions of AMP:

• Bayesian AMP [27] (AMP): performs MAP or MMSE inference of x with

known, separable priors and AWGN.

• Generalized AMP [28] (GAMP): extends Bayesian AMP to known, separable

likelihood models on the observations.

• Bilinear GAMP [29] (BiG-AMP): extends GAMP to MMSE inference of un-

known dictionary A and signal X, assuming known, separable priors.

These algorithms approximate LBP on the underlying factor graph (GAMP’s fac-

tor graph is illustrated in Fig. 2.1) using central-limit-theorem and Taylor-series

approximations that become exact in the large-system limit under i.i.d zero-mean

sub-Gaussian A.4 Moreover, AMP and GAMP obeys a state-evolution whose fixed

4Certain BiG-AMP variables must also assume additional scalings in the large-system limit.
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points, when unique, are optimal [30]. Since a major portion of this dissertation relies

on the AMP family of algorithms, we give a brief overview of GAMP and BiG-AMP

in Chapter 2.

After using AMP, GAMP, or BiG-AMP, we then employ the expectation maxi-

mization (EM) algorithm [31] to automatically tune their parameters from the data

to “fit” the underlying signal distribution. Unlike many other inference procedures

(e.g., LASSO), our approach contains no tuning parameters in any of the proposed

approaches due to the aforementioned EM algorithm and supplemental model order

selection strategies. If additional structure exists, we introduce auxiliary random

variables describing this structure, then model the signal as independent conditioned

on these random variables. Then, rather than performing LBP on the entire fac-

tor graph, we can leverage the “turbo” AMP framework [32] to separate the main

inference sub-task (using AMP family of algorithms) from the structure-promoting

sub-tasks.

The remainder of this dissertation is structured as follows. Chapter 2 gives an

overview of the GAMP and BiG-AMP algorithms that are extensively used through-

out the dissertation. In Chapter 3, we develop a mean-removal and adaptive-damping

procedure to mitigate the occurences of GAMP divergence for non-i.i.d zero-mean

sub-Gaussian A [33]. In Chapter 4, we employ our empirical-Bayes approach, EM-

Gaussian-Mixture-GAMP (EM-GM-GAMP) [34], to the CS problem. In Chapter 5,

we demonstrate how our approach, EM-non-negative-GAMP (EM-NN-GAMP) [35]

can incorporate known non-negativity and linear equality constraints into the Bayesian

context. Additionally, we demonstrate how EM-NN-GAMP can solve (1.8) exactly,

8



as well as update the nuisance parameter λ
c-lasso

. In Chapter 6, we investigate the hy-

perspectral unmixing (HU) problem, and propose the HU-turbo-AMP (HUT-AMP)

[36, 37] algorithm that exploits additional structure in the scene. To enhance the

readability of this dissertation, detailed derivations and results are supplemented in

the appendices. In all sections, we perform thorough numerical experiments on syn-

thetic and real-world datasets demonstrating the state-of-the-art performance of our

approaches in terms of recovery accuracy and runtime.

1.3 Notation

For matrices, we use boldface capital letters like A, and we use AT, AH, tr(A),

and ‖A‖F to denote the transpose, Hermitian transpose, trace, and Frobenius norm,

respectively. For vectors, we use boldface small letters like x, and we use ‖x‖p =

(
∑
n |xn|p)1/p to denote the ℓp norm, with xn = [x]n representing the nth element of x.

We use 1N to denote the N × 1 vector of ones. Deterministic quantities are denoted

using serif typeface (e.g., x,x,X), while random quantities are denoted using san-

serif typeface (e.g., x, x,X). For random variable x, we write the pdf as px(x), the

expectation as E{x}, and the variance as var{x}. For a Gaussian random variable x

with mean m and variance v, we write the pdf as N (x;m, v) and, for the special case

of N (x; 0, 1), we abbreviate the pdf as ϕ(x) and write the cdf and complimentary cdf

as Φ(x) and Φc(x), respectively. Meanwhile, for a Laplacian random variable x with

location m and scale v, we write the pdf as L(x;m, v). Finally, we use δ(x) (where

x ∈ R) to denote the Dirac delta distribution and δn (where n ∈ Z) to denote the

Kronecker delta sequence, and
∫

+ g(x)dx for the integral of g(x) over x ∈ [0,∞).
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Chapter 2: Generalized Approximate Message Passing

Overview

As described in Chapter 1.2, the generalized approximate message passing algo-

rithm [28] is an inference algorithm capable of computing either MAP or approximate-

MMSE estimates of x ∈ R
N , where x is a realization of random vector x with a prior

of the form (2.1), from generalized-linear observations y ∈ R
M that yield a likelihood

of the form (2.2),

px(x) ∝ ∏N
n=1 pxn

(xn) (2.1)

py|z(y | Ax) ∝ ∏M
m=1 pym|zm

(ym | [Ax]m), (2.2)

where z , Ax represents “noiseless” transform outputs.

GAMP generalizes Donoho, Maleki, and Montanari’s Approximate Message Pass-

ing (AMP) algorithms [15, 16] from the case of AWGN-corrupted linear observations

to the generalized-linear model (2.2). As we shall see, this generalization is useful

when enforcing linear equality constraints such as Bx = c and when formulating

non-quadratic variations of (1.8).
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GAMP is derived from particular approximations of loopy belief propagation

(based on Taylor-series and central-limit-theorem arguments) that yield computa-

tionally simple “first-order” algorithms bearing strong similarity to primal-dual al-

gorithms [38, 39]. Importantly, GAMP admits rigorous analysis in the large-system

limit (i.e., M,N → ∞ for fixed ratio M/N) under i.i.d sub-Gaussian A [28,40], where

its iterations obey a state evolution whose fixed points are optimal whenever they are

unique. In this asymptotic setting, it is readily shown that sum-product GAMP’s

marginal posteriors converge to the true posteriors. Meanwhile, for finite-sized prob-

lems and generic A, max-sum GAMP yields critical points of the MAP cost function

whenever it converges,5 whereas sum-product GAMP minimizes a certain mean-field

variational objective [38] (detailed in Chapter 3). Although performance guarantees

for generic finite-dimensional A are lacking except in special cases (e.g., [39]), in-

depth empirical studies have demonstrated that (G)AMP performs relatively well for

the A typically used in compressive sensing applications (see, e.g., [34]). An example

of GAMP’s factor graph is illustrated in Fig. 2.1.

Table 2.1 summarizes the GAMP algorithm. Effectively, GAMP converts the com-

putationally intractable MAP and MMSE high-dimensional vector inference problems

to a sequence of scalar inference problems. In the end, its complexity is dominated

by four6 matrix-vector multiplies per iteration: steps (R1), (R2), (R9), (R10). Fur-

thermore, GAMP can take advantage of fast implementations of the matrix-vector

multiplies (e.g., FFT) when they exist. For max-sum GAMP, scalar inference is

5If the MAP cost function is convex, then max-sum GAMP yields the MAP solution when it
converges.

6Two matrix multiplies per iteration, those in (R1) and (R9), can be eliminated using the “scalar
variance” modification of GAMP, with vanishing degradation in the large-system limit [28].
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accomplished by lines (R3) and (R11), which involve the proximal operator

proxg(v̂;µ
v) , arg min

x∈R

g(x) +
1

2µv
|x− v̂|2 (2.3)

for generic scalar function g(·), as well as lines (R4) and (R12), which involve the

derivative of the prox operator (2.3) with respect to its first argument. Meanwhile,

for sum-product GAMP, scalar inference is accomplished by lines (R5) and (R6),

which compute the mean and variance of GAMP’s iteration-t approximation to the

marginal posterior on zm,

pzm|pm
(z | p̂m(t);µpm(t)) ∝ pym|zm

(ym|z)N (z; p̂m(t), µpm(t)), (2.4)

and by lines (R13) and (R14), which compute the mean and variance of the GAMP-

approximate marginal posterior on xn,

pxn|rn
(x | r̂n(t);µrn(t)) ∝ pxn

(x)N (x; r̂n(t), µ
r
n(t)). (2.5)
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Figure 2.1: The GAMP factor graph when N = 4 and M = 3, assuming a known,
separable likelihood py|z(y|z) and prior px(x).

We now provide background on GAMP that helps to explain (2.4)-(2.5) and Ta-

ble 2.1. First and foremost, GAMP can be interpreted as an iterative thresholding

algorithm, in the spirit of, e.g., [41, 42]. In particular, when the GAMP-assumed

distributions are matched to the true ones, the variable r̂n(t) produced in (R10) is an

approximately AWGN-corrupted version of the true coefficient xn (i.e., a realization of

r̂n(t) = xn+ r̃n(t) with r̃n(t) ∼ N (0, µrn(t)) independent of xn) where µrn(t) is computed

in (R9) and the approximation becomes exact in the large-system limit with i.i.d sub-

Gaussian A [28, 40]. Note that, under this AWGN corruption model, the pdf of xn

given r̂n(t) takes the form in (2.5). Thus, in sum-product mode, GAMP sets x̂n(t+1)

at the scalar MMSE estimate of xn given r̂n(t), as computed via the conditional mean

in (R13), and it sets µxn(t+1) as the corresponding MMSE, as computed via the con-

ditional variance in (R14). Meanwhile, in max-sum mode, GAMP sets x̂n(t+1) at
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the scalar MAP estimate of xn given r̂n(t), as computed by the prox step in (R11),

and it sets µxn(t+1) in accordance with the sensitivity of this proximal thresholding,

as computed in (R12). This explains (2.5) and lines (R9)-(R14) in Table 2.1.

We now provide a similar explanation for (2.4) and lines (R1)-(R6) in Table 2.1.

When the GAMP distributions are matched to the true ones, p̂m(t) produced in (R2)

is an approximately AWGN-corrupted version of the true transform output zm (i.e.,

a realization of p̂m(t) = zm + p̃m(t) with p̃m(t) ∼ N (0, µpm(t)) independent of p̂m(t))

where µpm(t) is computed in (R1) and the approximation becomes exact in the large-

system limit with i.i.d sub-Gaussian A [28, 40]. Under this model, the pdf of zm

given p̂m(t) and ym takes the form in (2.4). Thus, in sum-product mode, GAMP

sets ẑm(t) at the scalar MMSE estimate of zm given p̂m(t) and ym, as computed

via the conditional mean in (R5), and it sets µzm(t) as the corresponding MMSE,

as computed via the conditional variance in (R6). Meanwhile, in max-sum mode,

GAMP sets ẑm(t) at the scalar MAP estimate of zm given p̂m(t) and ym, as computed

by the prox operation in (R3), and it sets µzm(t) in accordance with the sensitivity of

this prox operation, as computed in (R4).

Indeed, what sets GAMP (and its simpler incarnation AMP) apart from other

iterative thresholding algorithms is that the thresholder inputs r̂n(t) and p̂m(t) are

(approximately) AWGN corrupted observations of xn and zm, respectively, ensur-

ing that the scalar thresholding steps (R3)-(R6) and (R11)-(R14) are well justified

from the MAP or MMSE perspectives. Moreover, it is the “Onsager” correction

“−µpm(t)ŝm(t−1)” in (R2) that ensures the AWGN nature of the corruptions; with-

out it, AMP reduces to classical iterative thresholding [16], which performs much

worse [43]. Computing the Onsager correction involves (R7)-(R8). To our knowledge,
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the simplest interpretation of the variables ŝm(t) and µsm(t) computed in (R7)-(R8)

comes from primal-dual optimization theory, as established in [39]: whereas x̂n(t)

are estimates of the primal variables, ŝm(t) are estimates of the dual variables; and

whereas µxn(t) relates to the primal sensitivity at the point x̂n(t), µsm(t) relates to the

dual sensitivity at ŝm(t).
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inputs: ∀m,n : pxn , pym|zm
, Amn, Tmax, ǫgamp > 0,MaxSum ∈ {0, 1}

definitions:

pzm|pm
(z | p̂;µp) ,

pym|zm(ym|z) N (z;p̂,µp)∫
z
pym|zm (ym|z) N (z;p̂,µp)

(D1)

pxn|rn
(x | r̂;µr) ,

pxn(x) N (x;r̂,µr)∫
x
pxn(x) N (x;r̂,µr)

(D2)

initialize:

∀n : x̂n(1) =
∫
x x fxn(x) (I1)

∀n : µxn(1) =
∫
x |x− x̂n(1)|2fxn(x) (I2)

∀m : ŝm(0) = 0 (I3)

for t = 1 : Tmax,

∀m : µpm(t) =
∑N
n=1 |Amn|2µxn(t) (R1)

∀m : p̂m(t) =
∑N
n=1Amnx̂n(t) − µpm(t) ŝm(t − 1) (R2)

if MaxSum then

∀m : ẑm(t) = prox− ln pym|zm
(p̂m(t);µpm(t)) (R3)

∀m : µzm(t) = µpm(t) prox′
− ln pym|zm

(p̂m(t);µpm(t)) (R4)

else

∀m : ẑm(t) = E{zm|pm= p̂m(t);µpm(t)} (R5)

∀m : µzm(t) = var{zm|pm= p̂m(t);µpm(t)} (R6)

end if

∀m : µsm(t) =
(
1 − µzm(t)/µpm(t)

)
/µpm(t) (R7)

∀m : ŝm(t) =
(
ẑm(t) − p̂m(t)

)
/µpm(t) (R8)

∀n : µrn(t) =
(∑M

m=1 |Amn|2µsm(t)
)−1

(R9)

∀n : r̂n(t) = x̂n(t) + µrn(t)
∑M
m=1A

∗
mnŝm(t) (R10)

if MaxSum then

∀n : x̂n(t+1) = prox− ln pxn
(r̂n(t);µrn(t)) (R11)

∀n : µxn(t+1) = µrn(t) prox′
− ln pxn

(r̂n(t);µrn(t)) (R12)

else

∀n : x̂n(t+1) = E{xn|rn= r̂n(t);µrn(t)} (R13)

∀n : µxn(t+1) = var{xn|rn= r̂n(t);µrn(t)} (R14)

end if

if
∑N
n=1 |x̂n(t+1) − x̂n(t)|2 < ǫgamp

∑N
n=1 |x̂n(t)|2, break (R15)

end

outputs: ∀m,n : ẑm(t), µzm(t), r̂n(t), µrn(t), x̂n(t+1), µxn(t+1)

Table 2.1: The GAMP Algorithm from [28] with max iterations Tmax and stopping
tolerance ǫgamp.
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2.1 Bilinear GAMP Overview

Consider the problem of estimating the matrices A ∈ R
M×N and X ∈ R

N×T

from a noisy observation Y ∈ R
M×T of the hidden bilinear form Z , AX ∈ R

M×T .

BiG-AMP treats the elements in both A and X as independent random variables

amn and xnt with known prior pdfs pamn
(·) and pxnt

(·), respectively, with amn being

zero-mean. Furthermore, it assumes that the likelihood function of Z is known and

separable, i.e., of the form

pY |Z(Y |Z) =
M∏

m=1

T∏

t=1

pymt|zmt
(ymt|zmt). (2.6)

BiG-AMP then converts the computationally intractable matrix-inference problem to

a sequence of simple scalar-inference problems. In particular, it iteratively computes

approximations to the marginal posterior pdfs pamn|Y (·|Y ) and pxnt|Y (·|Y ) using an

approximation of the sum-product algorithm (SPA) [44].

BiG-AMP’s SPA approximation is primarily based on central-limit-theorem (CLT)

and Taylor-series arguments that become exact in the large-system limit, i.e., as

M,N, T → ∞ with M/N and T/N converging to fixed positive constants. One

important property of this approximation is that the messages from the amn nodes

to the pamn
(amn) nodes are Gaussian, as are those from the xnt nodes to the pxnt

(xnt)

nodes. We refer the interested reader to [29] for derivation details and a full statement

of the algorithm.

BiG-AMP’s complexity is dominated by ten matrix multiplies (of the form AX)

per iteration, although simplifications can be made in the case of additive white

Gaussian pymt|zmt
(ymt|zmt) that reduce the complexity to three matrix multiplies per

iteration [29]. Furthermore, when BiG-AMP’s likelihood function and priors include
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unknown parameters Ω, expectation-maximization (EM) methods can be used to

learn them, as described in [29].
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Chapter 3: Adaptive Damping and Mean Removal for the

Generalized Approximate Message Passing Algorithm

Assuming knowledge of the prior px(x) =
∏N
n=1 pxn

(xn) and likelihood py |z(y|z),

typical estimation goals are to compute the minimum mean-squared error (MMSE)

estimate x̂MMSE ,
∫
RN xpx|y(x|y)dx or the maximum a posteriori (MAP) estimate

x̂MAP , arg maxx px|y(x|y) = arg minx JMAP(x) for the MAP cost

JMAP(x̂) , − ln py|z(y|Ax̂) − ln px(x̂). (3.1)

As described in Chapter 2, the generalized approximate message passing (GAMP)

algorithm [28] is a means of tackling these two problems in the case that M and N

are large.7

GAMP is well motivated in the case that A is a realization of a large random

matrix with i.i.d zero-mean sub-Gaussian entries. For such A, in the large-system

limit (i.e., M,N → ∞ for fixed M/N ∈ R+), GAMP is characterized by a state

evolution whose fixed points, when unique, are MMSE or MAP optimal [11, 28, 40].

Furthermore, for generic A, it has been shown [38] that MAP-GAMP’s fixed points

coincide with the critical points of the cost function (3.1) and that MMSE-GAMP’s

fixed points coincide with those of a system-limit approximation of the Bethe free

entropy [45], as discussed in detail in Chapter 3.1.2.

7This chapter is excerpted from our work developed in [33].
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For generic A, however, GAMP may not reach its fixed points, i.e., it may diverge

(e.g., [46]). The convergence of GAMP has been fully characterized in [39] for the

simple case that pxn
and pym|zm

are Gaussian. There, it was shown that Gaussian-

GAMP converges if and only if the peak-to-average ratio of the squared singular values

of A is sufficiently small. A damping modification was then proposed in [39] that

guarantees the convergence of Gaussian-GAMP with arbitrary A, at the expense of a

slower convergence rate. For strictly log-concave pxn
and pym|zm

, the local convergence

of GAMP was also characterized in [39]. However, the global convergence of GAMP

under generic A, pxn
, and pym|zm

is not yet understood.

Because of its practical importance, prior work has attempted to robustify the

convergence of GAMP in the face of “difficult” A (e.g., high peak-to-average singu-

lar values) for generic pxn
and pym|zm

. For example, “swept” GAMP (SwAMP) [47]

updates the estimates of {xn}Nn=1 and {zm}Mm=1 sequentially, in contrast to GAMP,

which updates them in parallel. Relative to GAMP, experiments in [47] show that

SwAMP is much more robust to difficult A, but it is slower and cannot facilitate fast

implementations of A like an FFT. As another example, the public-domain GAMP-

matlab implementation [48] has included “adaptive damping” and “mean removal”

mechanisms for some time, but they have never been described in the literature.

In this chapter, we detail the most recent versions of GAMPmatlab’s adaptive

damping and mean-removal mechanisms, and we experimentally characterize their

performance on non-zero-mean, rank-deficient, column-correlated, and ill-conditioned

A matrices. Our results show improved robustness relative to SwAMP and enhanced

convergence speed.
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3.1 Adaptively Damped GAMP

Damping is commonly used in loopy belief propagation to “slow down” the updates

in an effort to promote convergence. (See, e.g., [49] for damping applied to the sum-

product algorithm and [39, 48, 50] for damping applied to GAMP.) However, since

not enough damping allows divergence while too much damping unnecessarily slows

convergence, we are motivated to develop an adaptive damping scheme that applies

just the right amount of damping at each iteration.

Table 3.1 details the proposed adaptively damped GAMP (AD-GAMP) algorithm.

Lines (R3)-(R6) and (R10) use an iteration-t-dependent damping parameter β(t) ∈

(0, 1] to slow the updates,8 and lines (R12)-(R18) adapt the parameter β(t). When

β(t) = 1 ∀t, AD-GAMP reduces to the original GAMP from Table 2.1.

8The GAMPmatlab implementation [48] allows one to disable damping in (R6) and/or (R10).
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definitions for MMSE-GAMP:

gzm(p̂, νp),
∫
z fzm(z; p̂, νp)dz (D1)

for fzm(z; p̂, νp) ,
pym|zm(ym|z)N (z;p̂,νp)

Bm(p̂,νp)

and Bm(p̂, νp) ,
∫
pym|zm

(ym|z) N (z; p̂, νp)dz

gxn(r̂, ν
r),

∫
x fxn(x; r̂, νr)dx (D2)

for fxn(x; r̂, νr) , pxn(x)N (x;r̂,νr)
Cn(r̂,νr)

and Cn(r̂, νr) ,
∫
pxn(x) N (x; r̂, νr)dx

definitions for MAP-GAMP:

gzm(p̂, νp),arg maxz ln pym|zm
(ym|z) + 1

2νp |z − p̂|2 (D3)

gxn(r̂, ν
r),arg maxx ln pxn(x) + 1

2νr |x− r̂|2 (D4)

inputs:

∀m,n : gzm, gxn, x̂n(1), νxn(1), amn, Tmax ≥ 1, ǫ ≥ 0
Tβ ≥ 0, βmax ∈ (0, 1], βmin ∈ [0, βmax], Gpass ≥ 1, Gfail < 1

initialize:

∀m : νpm(1)=
∑N
n=1 |amn|2νxn(1), p̂m(1)=

∑N
n=1 amnx̂n(1) (I2)

J(1)=∞, β(1) = 1, t = 1 (I3)

while t ≤ Tmax,

∀m : νzm(t)=νpm(t) g′
zm

(p̂m(t), νpm(t)) (R1)

∀m : ẑm(t)=gzm(p̂m(t), νpm(t)) (R2)

∀m : νsm(t)=β(t)
(

1− νz
m(t)
νp

m(t)

)
1

νp
m(t)

+
(
1−β(t)

)
νsm(t−1) (R3)

∀m : ŝm(t)=β(t) ẑm(t)−p̂m(t)
νp

m(t)
+
(
1−β(t)

)
ŝm(t−1) (R4)

∀n : x̃n(t)=β(t)x̂n(t) +
(
1−β(t)

)
x̃n(t−1) (R5)

∀n : νrn(t)=β(t) 1∑M

m=1
|amn|2νs

m(t)
+
(
1−β(t)

)
νrn(t−1) (R6)

∀n : r̂n(t)= x̃n(t) + νrn(t)
∑M
m=1a

H
mnŝm(t) (R7)

∀n : νxn(t+1)=νrn(t) g′
xn

(r̂n(t), νrn(t)) (R8)

∀n : x̂n(t+1)=gxn(r̂n(t), νrn(t)) (R9)

∀m : νpm(t+1)=β(t)
∑N
n=1 |amn|2νxn(t+1) + (1−β(t)

)
νpm(t) (R10)

∀m : p̂m(t+1)=
∑N
n=1 amnx̂n(t+1) − νpm(t+1) ŝm(t) (R11)

J(t+1)= eqn (3.1) for MAP-GAMP or eqn (3.10) for MMSE-GAMP (R12)

if J(t+1) ≤ maxτ=max{t−Tβ ,1},...,t J(τ) or β(t) = βmin (R13)

then if ‖x̂(t) − x̂(t+1)‖/‖x̂(t+1)‖ < ǫ, (R14)

then stop (R15)

else β(t+1) = min{βmax, Gpassβ(t)} (R16)

t = t+1 (R17)

else β(t) = max{βmin, Gfailβ(t)}, (R18)

end

outputs: ∀m,n : r̂n(t), νrn(t), p̂m(t+1), νpm(t+1), x̂n(t+1), νxn(t+1)

Table 3.1: The adaptively damped GAMP algorithm. In lines (R1) and (R8), g′
zm

and g′
xn

denote the derivatives of gzm
and gxn

w.r.t their first arguments.
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3.1.1 Damping Adaptation

The damping adaptation mechanism in AD-GAMP works as follows. Line (R12)

computes the current cost J(t+1), as described in the sequel. Line (R13) then checks

evaluates whether the current iteration “passes” or “fails”: it passes if the current cost

is at least as good as the worst cost over the last Tβ ≥ 0 iterations or if β(t) is already

at its minimum allowed value βmin, else it fails. If the iteration passes, (R14)-(R15)

implement a stopping condition, (R16) increases β(t) by a factor Gpass ≥ 1 (up to

the maximum value βmax), and (R17) increments the counter t. If the iteration fails,

(R18) decreases β(t) by a factor Gfail<1 (down to the minimum value βmin) and the

counter t is not advanced, causing AD-GAMP to re-try the tth iteration with the

new value of β(t).

In the MAP case, line (R12) simply computes the cost J(t+1) = JMAP(x̂(t+1))

for JMAP from (3.1). The MMSE case, which is more involved, will be described next.

3.1.2 MMSE-GAMP Cost Evaluation

As proven in [38] and interpreted in the context of Bethe free entropy in [45], the

fixed points of MMSE-GAMP are critical points of the optimization problem

(fx , fz) = arg min
bx ,bz

JBethe(bx , bz) s.t. E{z|bz}=A E{x|bx} (3.2)

JBethe(bx , bz) , D
(
bx‖px

)
+D

(
bz‖py|zZ

−1
)

+H
(
bz ,ν

p
)

(3.3)

H
(
bz ,ν

p
)

,
1

2

M∑

m=1

(
var{zm|bzm

}
νpm

+ ln 2πνpm

)
, (3.4)

where bx and bz are separable pdfs, Z−1 ,
∫
py|z(y|z)dz is the scaling factor that

renders py|z(y|z)Z−1 a valid pdf over z ∈R
M , D(·‖·) denotes Kullback-Leibler (KL)

divergence, and H(bz) is an upper bound on the entropy of bz that is tight when bz is
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independent Gaussian with variances in νp. In other words, the pdfs fx(x; r̂,νr) =

∏N
n=1 fxn

(xn; r̂n, ν
r
n) and fz(z; p̂,νp) =

∏M
m=1 fzm

(zm; p̂m, ν
p
m) given in lines (D1) and

(D2) of Table 3.1 are critical points of (3.2) for fixed-point versions of r̂,νr, p̂,νp.

Since fx and fz are functions of r̂,νr, p̂,νp, the cost JBethe can be written in terms

of these quantities as well. For this, we first note

D
(
fxn

∥∥∥pxn

)
=
∫
fxn

(x; r̂n, ν
r
n) ln

pxn
(x)N (x; r̂n, ν

r
n)

pxn
(x)Cn(r̂n, νrn)

dx (3.5)

= − lnCn(r̂n, ν
r
n) − ln 2πνrn

2
−
∫
fxn

(x; r̂n, ν
r
n)

|x− r̂n|2
2νrn

dx (3.6)

= − lnCn(r̂n, ν
r
n) − ln 2πνrn

2
− |x̂n − r̂n|2 + νxn

2νrn
, (3.7)

where x̂n and νxn are the mean and variance of fxn
(·; r̂n, νrn) from (R9) and (R8).

Following a similar procedure,

D
(
fzm

‖pym|zm
Z−1
m

)
= − ln

Bm(p̂m, ν
p
m)

Zm
− ln 2πνpm

2
− |ẑm−p̂m|2 + νzm

2νpm
, (3.8)

where ẑm and νzm are the mean and variance of fzm
(·; p̂m, νpm) from (R2) and (R1).

Then, by separability of KL divergences, we have D(fx‖px) =
∑N
n=1D

(
fxn

‖pxn

)
and

D(fz‖py|zZ−1) =
∑M
m=1 D

(
fzm

‖pym|zm
Z−1
m

)
, (3.3) and (3.4) imply

JBethe(r̂,ν
r, p̂,νp) = −

M∑

m=1


lnBm(p̂m, ν

p
m) +

|ẑm−p̂m|2
2νpm




−
N∑

n=1


lnCn(r̂n, ν

r
n) +

ln νrn
2

+
νxn+|x̂n−r̂n|2

2νrn


+const, (3.9)

where we have written JBethe(fx , fz) as “JBethe(r̂,ν
r, p̂,νp)” to make the (r̂,νr, p̂,νp)-

dependence clear, and where const collects terms invariant to (r̂,νr, p̂,νp).

Note that the iteration-t MMSE-GAMP cost is not obtained simply by plugging

(r̂(t),νr(t), p̂(t+1),νp(t+1)) into (3.9), because the latter quantities do not necessarily
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yield (fx , fz) satisfying the moment-matching constraint E{z |fz} = A E{x|fx} from

(3.2). Thus, it was suggested in [45] to compute the cost as

JMSE(r̂(t),νr(t)) = JBethe(r̂(t),νr(t), p̃,νp(t+1)), (3.10)

for p̃ chosen to match the moment-matching constraint, i.e., for

[Ax̂(t+1)]m = gzm

(
p̃m, ν

p
m(t+1)

)
for m = 1, . . . ,M (3.11)

where x̂n(t+ 1) = gxn

(
r̂n(t), µrn(t)

)
for n = 1, . . . , N from (R9). Note that, since

νp(t+1) can be computed from (r̂(t),νr(t)) via (R8) and (R10), the left side of (3.10)

uses only (r̂(t),νr(t)).

In the case of an additive white Gaussian noise (AWGN), i.e., pym|zm
(ym|zm) =

N (zm; ym, ν
w) with νw>0, the function gzm

(p̃m, ν
p
m) is linear in p̃m. In this case, [45]

showed that (3.11) can be solved in closed-form, yielding the solution

p̃m =
(
(νpm(t+1) + νw)[Ax̂(t+1)]m − νpm(t+1)ym

)
/νw. (3.12)

For general pym|zm
, however, the function gzm

(p̃m, ν
p
m) is non-linear in p̃m and

difficult to invert in closed-form. Thus, we propose to solve (3.11) numerically using

the regularized Newton’s method detailed in Table 3.2. There, α ∈ (0, 1] is a stepsize,

φ ≥ 0 is a regularization parameter that keeps the update’s denominator positive, and

Imax is a maximum number of iterations, all of which should be tuned in accordance

with pym|zm
. Meanwhile, p̃m(1) is an initialization that can be set at p̂m(t+1) or

[Ax̂(t+1)]m and ǫinv is a stopping tolerance. Note that the functions gzm
and g′

zm

employed in Table 3.2 are readily available from Table 3.1.
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inputs:

gzm
, [Ax̂]m, ν

p
m, p̃m(1), Imax ≥ 1, ǫinv ≥ 0, α ∈(0, 1], φ ≥ 0

for i = 1 : Imax,

em(i) = [Ax̂]m − gzm

(
p̃m(i), νp

m

)
(F1)

if
∣∣em(i)/gzm

(
p̃m(i), νp

m

)∣∣ < ǫinv, stop (F2)

∇m(i) =g′
zm

(
p̃m(i), νp

m

)
(F3)

p̃m(i+1)= p̃m(i) + α em(i)∇m(i)
∇2

m(i)+φ (F4)

end

outputs: p̃m(i)

Table 3.2: A regularized Newton’s method to find the value of p̃m that solves [Ax̂]m =
gzm

(p̃m, ν
p
m) for a given [Ax̂]m and νpm.

3.1.3 Mean Removal

To mitigate the difficulties caused by A with non-zero mean entries, we propose

to rewrite the linear system “z = Ax” as



z

zM+1

zM+2




︸ ︷︷ ︸
, z̄

=




Ã b12γ b131M
b211H

N −b21b12 0
b31cH 0 −b31b13




︸ ︷︷ ︸
, Ā




x

xN+1

xN+2




︸ ︷︷ ︸
, x̄

(3.13)

where (·)H is conjugate transpose, 1P , [1, . . . , 1]H ∈ R
P , and

µ , 1
MN

1H
MA1N (3.14)

γ , 1
N

A1N (3.15)

cH , 1
M

1H
M

(
A − µ1M1H

N

)
(3.16)

Ã , A − γ1H
N − 1McH. (3.17)

The advantage of (3.13) is that the rows and columns of Ā are approximately zero-

mean. This can be seen by first verifying, via the definitions above, that cH1N = 0,

Ã1N = 0, and 1H
MÃ = 0H, which implies that the elements in every row and column

of Ã are zero-mean. Thus, for large N and M , the elements in all but a vanishing
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fraction of the rows and columns in Ā will also be zero-mean. The mean-square

coefficient size in the last two rows and columns of Ā can be made to match that in

Ã via choice of b12, b13, b21, b31.

To understand the construction of (3.13), note that (3.17) implies

z = Ax = Ãx + b12γ 1H
Nx/b12︸ ︷︷ ︸
, xN+1

+b131M cHx/b13︸ ︷︷ ︸
, xN+2

, (3.18)

which explains the first M rows of (3.13). To satisfy the definitions in (3.18), we then

require that zM+1 = 0 and zM+2 = 0 in (3.13), which can be ensured through the

Dirac-delta likelihood

pym|zm
(ym|zm) , δ(zm) for m∈{M+1,M+2}. (3.19)

Meanwhile, we make no assumption about the newly added elements xN+1 and xN+2,

and thus adopt the improper uniform prior

pxn
(xn) ∝ 1 for n ∈ {N+1, N+2}. (3.20)

In summary, the mean-removal approach suggested here runs GAMP or AD-

GAMP (as in Table 3.1) with Ā in place of A and with the likelihoods and priors

augmented by (3.19) and (3.20). It is important to note that, if multiplication by A

and AH can be implemented using a fast transform (e.g., FFT), then multiplication

by Ā and Ā
H

can too; for details, see the GAMPmatlab implementation [48].

3.2 Numerical Results

We numerically studied the recovery NMSE , ‖x̂ − x‖2/‖x‖2 of SwAMP [47]

and the MMSE version of the original GAMP from [28] relative to the proposed

mean-removed (M-GAMP) and adaptively damped (AD-GAMP) modifications, as
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well as their combination (MAD-GAMP). In all experiments, the signal x was drawn

Bernoulli-Gaussian (BG) with sparsity rate τ and length N=1000, and performance

was averaged over 100 realizations. Average NMSE was clipped to 0 dB for plotting

purposes. The matrix A was drawn in one of four ways:

(a) Non-zero mean: i.i.d amn ∼ N (µ, 1
N

) for a specified µ 6= 0.

(b) Low-rank product: A = 1
N

UV with U ∈R
M×R, V ∈R

R×N , and i.i.d umr, vrn ∼

N (0, 1), for a specified R. Note A is rank deficient when R<min{M,N}.

(c) Column-correlated: Rows of A are independent zero-mean stationary Gauss-

Markov processes with correlation coefficient ρ = E{amnaH
m,n+1}/E{|amn|2}.

(d) Ill-conditioned: A = UΣV
H where U and V

H are the left and right singular

vector matrices of an i.i.d N (0, 1) matrix and Σ is a singular value matrix such

that [Σ]i,i/[Σ]i+1,i+1 = (κ)1/min{M,N} for i = 1, . . . ,min{M,N}−1, with a specified

condition number κ > 1.

For all algorithms, we used Tmax = 1000 and ǫ = 10−5. Unless otherwise noted, for

adaptive damping, we used Tβ = 0, Gpass = 1.1, Gfail = 0.5, βmax = 1, and βmin = 0.01.

For SwAMP, we used the authors’ publicly available code [51].

First we experiment with CS in AWGN at SNR , E{‖z‖2}/E{‖y − z‖2} = 60

dB. For this, we used M = 500 =N/2 measurements and sparsity rate τ = 0.2. As a

reference, we compute a lower-bound on the achievable NMSE using a genie who knows

the support of x. For non-zero-mean matrices, Fig. 3.1(a) shows that the proposed

M-GAMP and MAD-GAMP provided near-genie performance for all tested means µ.

In contrast, GAMP only worked with zero-mean A and SwAMP with small-mean A.

For low-rank product, correlated, and ill-conditioned matrices, Fig. 3.1(b)-(d) show
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Figure 3.1: AWGN compressive sensing under (a) non-zero-mean, (b) low-rank prod-
uct, (c) column-correlated, and (d) ill-conditioned A.

that AD-GAMP is slightly more robust than SwAMP and significantly more robust

than GAMP.

Next, we tried “robust” CS by repeating the previous experiment with sparsity rate

τ=0.15 and with 10% of the observations (selected uniformly at random) replaced by

“outliers” corrupted by AWGN at SNR=0 dB. For (M)AD-GAMP, we set βmax =0.1

and Tmax = 2000. With non-zero-mean A, Fig. 3.2(a) shows increasing performance

as we move from GAMP to M-GAMP to SwAMP to MAD-GAMP. For low-rank

product, correlated, and ill-conditioned matrices, Fig. 3.2(b)-(d) show that SwAMP

was slightly more robust than AD-GAMP, and both where much more robust than

GAMP.
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Figure 3.2: “Robust” compressive sensing under (a) non-zero-mean, (b) low-rank
product, (c) column-correlated, and (d) ill-conditioned A.

Next, we experimented with noiseless 1-bit CS [52], where y = sgn(Ax), using

M=3000 measurements and sparsity ratio τ=0.125. In each realization, the empirical

mean was subtracted from the non-zero entries of x to prevent ym = 1 ∀m. For

(M)AD-GAMP, we used βmax =0.5. For SwAMP, we increased the stopping tolerance

to ǫ = 5 × 10−5, as it significantly improved runtime without degrading accuracy.

For non-zero-mean A, Fig. 3.3(a) shows that M-GAMP and MAD-GAMP were more

robust than SwAMP, which was in turn much more robust than GAMP. For low-rank

product, correlated, and ill-conditioned matrices, Fig. 3.3(b)-(d) show that MAD-

GAMP and SwAMP gave similarly robust performance, while the original GAMP

was very fragile.
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Figure 3.3: 1-bit compressive sensing under (a) non-zero-mean, (b) low-rank product,
(c) column-correlated, and (d) ill-conditioned A.

Finally, we compare the convergence speed of MAD-GAMP to SwAMP. For each

problem, we chose a setting that allowed MAD-GAMP and SwAMP to converge for

each matrix type. Table 3.3 shows that, on the whole, MAD-GAMP ran several

times faster than SwAMP but used more iterations. Thus, it may be possible to

reduce SwAMP’s runtime to below that of MAD-GAMP using a more efficient (e.g.,

BLAS-based) implementation, at least for explicit A. When A has a fast O(N logN)

implementation (e.g., FFT), only (M)AD-GAMP will be able to exploit the reduced

complexity.
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µ = 0.021 R/N = 0.64 ρ = 0.8 log10 κ = 1

MAD-GAMP SwAMP AD-GAMP SwAMP AD-GAMP SwAMP AD-GAMP SwAMP

se
co

n
d

s AWGN 1.06 1.90 0.88 2.74 1.36 3.84 0.81 1.49

1-bit 53.34 83.21 49.22 137.46 42.32 149.40 50.25 117.62

Robust 3.47 8.81 2.66 11.13 3.33 15.70 2.38 12.22
#

it
er

s AWGN 42.9 39.2 130.0 109.5 221.9 153.2 121.4 58.8

1-bit 947.8 97.4 942.7 160.8 866.2 175.8 927.3 136.3

Robust 187.3 42.2 208.7 56.1 269.1 79.2 187.7 61.7

Table 3.3: Average runtime (in seconds) and # iterations of MAD-GAMP and
SwAMP for various problem types and matrix types.

3.3 Conclusions

We proposed adaptive damping and mean-removal modifications of GAMP that

help prevent divergence in the case of “difficult” A matrices. We then numerically

demonstrated that the resulting modifications significantly increase GAMP’s robust-

ness to non-zero-mean, low-rank product, column-correlated, and ill-conditioned A

matrices. Moreover, they provide robustness similar to the recently proposed SwAMP

algorithm, whilerunning faster than the current SwAMP implementation. For future

work, we note that the sequential update of SwAMP could in principle be combined

with the proposed mean-removal and/or adaptive damping to perhaps achieve a level

robustness greater than either SwAMP or (M)AD-GAMP.
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Chapter 4: Expectation-Maximization Gaussian-Mixture

Approximate Message Passing

4.1 Introduction

We consider estimating a K-sparse (or compressible) signal x ∈ R
N from M < N

linear measurements y = Ax + w ∈ R
M , where A is known and w is additive white

Gaussian noise (AWGN).9 For this problem, accurate (relative to the noise variance)

signal recovery is known to be possible with polynomial-complexity algorithms when

x is sufficiently sparse and when A satisfies certain restricted isometry properties [10],

or when A is large with i.i.d zero-mean sub-Gaussian entries [11] as discussed below.

LASSO [13] (or, equivalently, Basis Pursuit Denoising [14]), is a well-known ap-

proach to the sparse-signal recovery problem that solves the convex problem (1.3) with

λlasso a tuning parameter that trades between the sparsity and measurement-fidelity

of the solution. When A is constructed from i.i.d zero-mean sub-Gaussian entries,

the performance of LASSO can be sharply characterized in the large system limit

(i.e., as K,M,N → ∞ with fixed undersampling ratio M/N and sparsity ratio K/M)

using the so-called phase transition curve (PTC) [11,53]. When the observations are

noiseless, the PTC bisects the M/N -versus-K/M plane into the region where LASSO

9This chapter is excerpted from our work published in [34].
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reconstructs the signal perfectly (with high probability) and the region where it does

not. (See Figs. 4.3–4.5.) When the observations are noisy, the same PTC bisects the

plane into the regions where LASSO’s noise sensitivity (i.e., the ratio of estimation-

error power to measurement-noise power under the worst-case signal distribution)

is either finite or infinite [54]. An important fact about LASSO’s noiseless PTC is

that it is invariant to the distribution of the nonzero signal coefficients. While this

implies that LASSO is robust to “difficult” instances of pact in (1.4), it also implies

that LASSO cannot benefit from the case that pact is an “easy” distribution. For

example, when the signal is known apriori to be non-negative, polynomial-complexity

algorithms exist with PTCs that are better than LASSO’s [16].

At the other end of the spectrum is minimum mean-squared error (MMSE)-

optimal signal recovery under known marginal pdfs of the form (1.4) and known

noise variance. The PTC of MMSE recovery has been recently characterized [17] and

shown to be well above that of LASSO. In particular, for any pact(·), the PTC on

the M/N -versus-K/M plane reduces to the line K/M = 1 in both the noiseless and

noisy cases. Moreover, as described in Chapter 2, efficient algorithms for approxi-

mate MMSE-recovery have been proposed, such as the Bayesian version of Donoho,

Maleki, and Montanari’s approximate message passing (AMP) algorithm from [27],

which performs loopy belief-propagation on the underlying factor graph using central-

limit-theorem approximations that become exact in the large-system limit under i.i.d

zero-mean sub-Gaussian A. In fact, in this regime, AMP obeys [30] a state-evolution

whose fixed points, when unique, are optimal. To handle arbitrary noise distributions

and a wider class of matrices A, Rangan proposed a generalized AMP (GAMP) [28]
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that forms the starting point of this work. (See Table 2.1.) For more details and

background on GAMP, we refer the reader to Chapter 2 and [28].

In practice, one ideally wants a recovery algorithm that does not need to know px(·)

and the noise variance a priori, yet offers performance on par with MMSE recovery,

which (by definition) requires knowing these prior statistics. Towards this goal, we

propose a recovery scheme that aims to learn the prior signal distribution px(·), as

well as the variance of the AWGN, while simultaneously recovering the signal vector x

from the noisy compressed measurements y. To do so, we model the active component

pact(·) in (1.4) using a generic L-term Gaussian mixture (GM) and then learn the GM

parameters and noise variance using the expectation-maximization (EM) algorithm

[31]. As we will see, all of the quantities needed for the EM updates are already

computed by the GAMP algorithm, making the overall process very computationally

efficient. Moreover, GAMP provides approximately MMSE estimates of x that suffice

for signal recovery, as well as posterior activity probabilities that suffice for support

recovery.

Since, in our approach, the prior pdf parameters are treated as deterministic un-

knowns, our proposed EM-GM-GAMP algorithm can be classified as an “empirical-

Bayesian” approach [3]. Compared with previously proposed empirical-Bayesian ap-

proaches to compressive sensing (e.g., [55–57]), ours has a more flexible signal model,

and thus is able to better match a wide range of signal pdfs px(·), as we demonstrate

through a detailed numerical study. In addition, the complexity scaling of our algo-

rithm is superior to that in [55–57], implying lower complexity in the high dimensional

regime, as we confirm numerically. Supplemental experiments demonstrate that our

excellent results hold for a wide range of sensing operators A, with some exceptions.
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Although this chapter does not contain any convergence guarantees or a rigorous

analysis/justification of the proposed EM-GM-GAMP, Kamilov et al. showed in [58]

that a generalization of EM-GM-GAMP yields asymptotically (i.e., in the large sys-

tem limit) consistent parameter estimates when A is i.i.d zero-mean Gaussian, when

the parameterized signal and noise distributions match the true signal and noise dis-

tributions, and when those distributions satisfy certain identifiability conditions. We

refer interested readers to [58] for more details.

4.2 Gaussian-Mixture GAMP

We first introduce Gaussian-mixture (GM) GAMP, a key component of our overall

approach, where the coefficients in x = [x1, . . . , xN ]T are assumed to be i.i.d with

marginal pdf

px(x;λ,ω, θ,φ) = (1 − λ)δ(x) + λ
L∑

ℓ=1

ωℓN (x; θℓ, φℓ), (4.1)

where δ(·) is the Dirac delta, λ is the sparsity rate, and, for the kth GM component,

ωk, θk, and φk are the weight, mean, and variance, respectively. In the sequel, we use

ω , [ω1, . . . , ωL]T and similar definitions for θ and φ. By definition,
∑L
ℓ=1 ωℓ = 1.

The noise w = [w1, . . . ,wM ]T is assumed to be i.i.d Gaussian, with mean zero and

variance ψ, i.e.,

pw (w;ψ) = N (w; 0, ψ), (4.2)

and independent of x. Although above and in the sequel we assume real-valued

quantities, all expressions in the sequel can be converted to the circular-complex case

by replacing N with CN and removing the 1
2
’s from (A.3), (A.14), and (A.24). We

note that, from the perspective of GM-GAMP, the prior parameters q , [λ,ω, θ,φ, ψ]

and the number of mixture components, L, are treated as fixed and known.
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GAMP models the relationship between the mth observed output ym and the

corresponding noiseless output zm , aT
mx, where aT

m denotes the mth row of A, using

the conditional pdf py |z(ym|zm; q). It then approximates the true marginal posterior

p(zm|y; q) by

pz |y(zm|y; p̂m, µ
p
m, q) ,

py |z(ym|zm; q) N (zm; p̂m, µ
p
m)

∫
z py |z(ym|z; q) N (z; p̂m, µ

p
m)

(4.3)

using quantities p̂m and µpm that change with iteration t (see Table 2.1), although

here we suppress the t notation for brevity. Under the AWGN assumption10 (4.2) we

have py |z(y|z; q) = N (y; z, ψ), and thus the pdf (4.3) has moments [28]

Ez |y{zm|y; p̂m, µ
p
m, q} = p̂m + µp

m

µp
m+ψ

(ym − p̂m) (4.4)

varz|y{zm|y; p̂m, µ
p
m, q} =

µpmψ

µpm + ψ
. (4.5)

GAMP then approximates the true marginal posterior p(xn|y; q) by

px|y(xn|y; r̂n, µ
r
n, q) ,

px(xn; q) N (xn; r̂n, µ
r
n)∫

x px(x; q) N (x; r̂n, µrn)
(4.6)

where again r̂n and µrn vary with the GAMP iteration t.

10Because GAMP can handle an arbitrary py |z(·|·), the extension of EM-GM-GAMP to additive
non-Gaussian noise, and even non-additive measurement channels (such as with quantized outputs
[59] or logistic regression [28]), is straightforward. Moreover, the parameters of the pdf py |z(·|·) could
be learned using a method similar to that which we propose for learning the AWGN variance ψ, as
will be evident from the derivation in Chapter 4.3.1. Finally, one could even model py |z(·|·) as a
Gaussian mixture and learn the corresponding parameters.
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Plugging the sparse GM prior (4.1) into (4.6) and simplifying, one can obtain11

the GM-GAMP approximated posterior

px|y(xn|y; r̂n, µ
r
n, q)

=

(
(1−λ)δ(xn)+λ

L∑

ℓ=1

ωℓN (xn; θℓ, φℓ)

)
N (xn; r̂n, µ

r
n)

ζn
(4.7)

=
(
1 − πn

)
δ(xn) + πn

L∑

ℓ=1

βn,ℓ N
(
xn; γn,ℓ, νn,ℓ

)
(4.8)

with normalization factor

ζn ,

∫

x
px(x; q) N (x; r̂n, µ

r
n) (4.9)

= (1−λ)N (0; r̂n, µ
r
n)+λ

L∑

ℓ=1

ωℓN (0; r̂n−θℓ, µrn+φℓ) (4.10)

and (r̂n, µ
r
n, q)-dependent quantities

βn,ℓ , λωℓN (r̂n; θℓ, φℓ + µrn) (4.11)

βn,ℓ ,
βn,ℓ∑L
k=1 βn,k

(4.12)

πn ,
1

1 +
( ∑L

ℓ=1
βn,ℓ

(1−λ)N (0;r̂n,µr
n)

)−1 (4.13)

γn,ℓ ,
r̂n/µ

r
n + θℓ/φℓ

1/µrn + 1/φℓ
(4.14)

νn,ℓ ,
1

1/µrn + 1/φℓ
. (4.15)

The posterior mean and variance of px|y are given in steps (R13)-(R14) of Table 2.1,

and (4.8) makes it clear that πn is GM-GAMP’s approximation of the posterior sup-

port probability Pr{xn 6=0 | y; q}.

In principle, one could specify GAMP for an arbitrary signal prior px(·). However,

if the integrals in (R9)–(R10) are not computable in closed form (e.g., when px(·) is

11Both (4.8) and (4.10) can be derived from (4.7) via the Gaussian-pdf multiplication rule:

N (x; a,A)N (x; b,B)=N (x; a/A+b/B
1/A+1/B ,

1
1/A+1/B )N (0; a− b, A+B).
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Student’s-t), then they would need to be computed numerically, thereby drastically

increasing the computational complexity of GAMP. In contrast, for GM signal models,

we see above that all steps can be computed in closed form. Thus, a practical approach

to the use of GAMP with an intractable signal prior px(·) is to approximate px(·) using

an L-term GM, after which all GAMP steps can be easily implemented. The same

approach could also be used to ease the implementation of intractable output priors

py |z(·|·).

4.3 EM Learning of the Prior Parameters

We now propose an expectation-maximization (EM) algorithm [31] to learn the

prior parameters q , [λ,ω, θ,φ, ψ]. The EM algorithm is an iterative technique that

increases a lower bound on the likelihood p(y; q) at each iteration, thus guaranteeing

that the likelihood converges to a local maximum or at least a saddle point [60]. In

our case, the EM algorithm manifests as follows. Writing, for arbitrary pdf p̂(x),

ln p(y; q) =
∫

x
p̂(x) ln p(y; q) (4.16)

=
∫

x
p̂(x) ln

(
p(x,y; q)

p̂(x)

p̂(x)

p(x|y; q)

)
(4.17)

= Ep̂(x){ln p(x,y; q)} +H(p̂)
︸ ︷︷ ︸

, Lp̂(y; q)

+D(p̂ ‖ px|y(·|y; q))
︸ ︷︷ ︸

≥ 0

(4.18)

where Ep̂(x){·} denotes expectation over x ∼ p̂(x), H(p̂) denotes the entropy of pdf p̂,

and D(p̂ ‖ p) denotes the Kullback-Leibler (KL) divergence between p̂ and p. The non-

negativity of the KL divergence implies that Lp̂(y; q) is a lower bound on ln p(y; q),

and thus the EM algorithm iterates over two steps: E) choosing p̂ to maximize the

lower bound for fixed q = qi, and M) choosing q to maximize the lower bound for

fixed p̂ = p̂i. For the E step, since Lp̂(y; qi) = ln p(y; qi) − D(p̂ ‖ px|y(·|y; qi)), the
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maximizing pdf would clearly be p̂i(x) = px|y(x|y; qi), i.e., the true posterior under

prior parameters qi. Then, for the M step, since Lp̂i(y; q) = Ep̂i(x){ln p(x,y; q)} +

H(p̂i), the maximizing q would clearly be qi+1 = arg maxq E{ln p(x,y; q) | y; qi}.

In our case, because the true posterior is very difficult to calculate, we instead

construct our lower-bound Lp̂(y; q) using the GAMP approximated posteriors, i.e.,

we set p̂i(x)=
∏
n px|y(xn|y; qi) for px|y defined in (4.6), resulting in

qi+1 = arg max
q

Ê{ln p(x,y; q) | y; qi}, (4.19)

where “Ê” indicates the use of the GAMP’s posterior approximation. Moreover, since

the joint optimization in (4.19) is difficult to perform, we update q one component at

a time (while holding the others fixed), which is the well known “incremental” variant

on EM from [61]. In the sequel, we use “qi\λ” to denote the vector qi with the element

λ removed (and similar for the other parameters).

4.3.1 EM Update of the Gaussian Noise Variance

We first derive the EM update for the noise variance ψ given a previous parameter

estimate qi. For this, we write p(x,y; q) = Cp(y|x;ψ) = C
∏M
m=1 pY |Z(ym|aT

mx;ψ)

for a ψ-invariant constant C, so that

ψi+1 = arg max
ψ>0

M∑

m=1

Ê
{

ln py |z(ym|aT
mx;ψ)

∣∣∣y; qi
}

(4.20)

Following Appendix A.1, we see that the noise variance update becomes

ψi+1 =
1

M

M∑

m=1

(
|ym − ẑm|2 + µzm}

)
, (4.21)

where the quantities ẑm and µzm are given in (R5)-(R6) in Table 2.1.
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4.3.2 EM Updates of the Signal Parameters: BG Case

Suppose that the signal distribution px(·) is modeled using an L = 1-term GM,

i.e., a Bernoulli-Gaussian (BG) pdf. In this case, the marginal signal prior in (4.1)

reduces to

px(x;λ, ω, θ, φ) = (1 − λ)δ(x) + λN (x; θ, φ). (4.22)

Note that, in the BG case, the mixture weight ω is, by definition, unity and does not

need to be learned.

We now derive the EM update for λ given previous parameters qi , [λi, θi, φi, ψi].

Because we can write p(x,y; q) = C
∏N
n=1 px(xn;λ, θ, φ) for a λ-invariant constant C,

λi+1 = arg max
λ∈(0,1)

N∑

n=1

Ê
{

ln px(xn;λ, qi\λ)
∣∣∣y; qi

}
. (4.23)

From Appendix A.2.1, we see that the update for the sparsity rate λ is

λi+1 =
1

N

N∑

n=1

πn. (4.24)

Conveniently, the posterior support probabilities {πn}Nn=1 are easily calculated from

the GM-GAMP outputs via (4.13).

Similar to (4.23), the EM update for θ can be written as

θi+1 = arg max
θ∈R

N∑

n=1

Ê
{

ln px(xn; θ, qi\θ)
∣∣∣y; qi

}
. (4.25)

Following Appendix A.2.2, the update for θ becomes

θi+1 =
1

λi+1N

N∑

n=1

πnγn,1 (4.26)

where {γn,1}Nn=1 defined in (4.14) are easily computed from the GM-GAMP outputs.

Similar to (4.23), the EM update for φ can be written as

φ̂i+1 = arg max
φ>0

N∑

n=1

Ê
{

ln px(xn;φ, qi\φ)
∣∣∣y; qi

}
. (4.27)

41



Following the procedure detailed in Appendix A.2.3, we get the update

φi+1 =
1

λi+1N

N∑

n=1

πn

(∣∣∣θi − γn,1
∣∣∣
2

+ νn,1

)
(4.28)

where {νn,1}Nn=1 from (4.15) are easily computed from the GAMP outputs.

4.3.3 EM Updates of the Signal Parameters: GM Case

We now generalize the EM updates derived in Chapter 4.3.2 to the GM prior given

in (4.1) for L ≥ 1. As we shall see, it is not possible to write the exact EM updates

in closed-form when L > 1, and so some approximations will be made.

We begin by deriving the EM update for λ given the previous parameters qi ,

[λi,ωi, θi,φi, ψi]. The first two steps are identical to the steps (4.23) and (A.5)

presented for the BG case, and for brevity we do not repeat them here. In the third

step, use of the GM prior (4.1) yields

d

dλ
ln px(xn;λ, qi\λ) =

∑L
ℓ=1 ω

i
ℓN (xn; θiℓ, φ

i
ℓ) − δ(xn)

px(xn;λ, qi\λ)
=





1
λ

xn 6= 0
−1

1−λ xn = 0
, (4.29)

which coincides with the BG expression (A.6). The remaining steps also coincide

with those in the BG case, and so the final EM update for λ, in the case of a GM,12

is given by (4.24).

We next derive the EM updates for the GM parameters ω, θ, and φ. For each

k = 1, . . . , L, we incrementally update θk, then φk, and then the entire vector ω,

12The arguments in this section reveal that, under signal priors of the form px(x) = (1 − λ)δ(x) +
λpact(x), where pact(·) can be arbitrary, the EM update for λ is that given in (4.24).
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while holding all other parameters fixed. The EM updates are thus

θi+1
k = arg max

θk∈R

N∑

n=1

Ê
{

ln px(xn; θk, q
i
\θk

)
∣∣∣y; qi

}
, (4.30)

φi+1
k = arg max

φk>0

N∑

n=1

Ê
{

ln px(xn;φk, q
i
\φk

)
∣∣∣y; qi

}
(4.31)

ωi+1 = arg max
ω>0:

∑
k
ωk=1

N∑

n=1

Ê
{

ln px(xn; ω, qi\ω)
∣∣∣y; qi

}
. (4.32)

Following Appendices A.3.1–A.3.3, the updates of the GM parameters are

θi+1
k =

∑N
n=1 πnβn,kγn,k∑N
n=1 πnβn,k

(4.33)

φi+1
k =

∑N
n=1 πnβn,k

(
|θik − γn,k|2+νn,k

)

∑N
n=1 πnβn,k

(4.34)

ωi+1
k =

∑N
n=1 πnβn,k∑N
n=1 πn

, (4.35)

respectively, where βn,k, πn, γn,k and νn,k are given by (4.12)–(4.15).

For sparse signals x, we find that learning the GM means {θk} using the above

EM procedure yields excellent recovery MSE. However, for “heavy-tailed” signals (i.e.,

whose pdfs have tails that are not exponentially bounded, such as Student’s-t), our

experience indicates that the EM-learned values of {θk} tend to gravitate towards the

outliers in {xn}Nn=1, resulting in an overfitting of px(·) and thus poor reconstruction

MSE. For such heavy-tailed signals, we find that better reconstruction performance

is obtained by fixing the means at zero (i.e., θik =0 ∀k, i). Thus, in the remainder of

the chapter, we consider two modes of operation: a “sparse” mode where θ is learned

via the above EM procedure, and a “heavy-tailed” mode that fixes θ = 0.

Although, for the case of GM priors, approximations were used in the derivation

of the EM updates (4.33), (4.34), and (4.35), it is interesting to note that, in the case

of L = 1 mixture components, these approximate EM-GM updates coincide with the
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exact EM-BG updates derived in Chapter 4.3.2. In particular, the approximate-EM

update of the GM parameter θ1 in (4.33) coincides with the exact-EM update of the

BG parameter θ in (4.26), the approximate-EM update of the GM parameter φ1 in

(4.34) coincides with the exact-EM update of the BG parameter φ in (4.28), and the

approximate-EM update of the GM parameter ω1 in (4.35) reduces to the fixed value

1. Thus, one can safely use the GM updates above in the BG setting without any

loss of optimality.

4.3.4 EM Initialization

Since the EM algorithm may converge to a local maximum or at least a saddle

point of the likelihood function, proper initialization of the unknown parameters q is

essential. Here, we propose initialization strategies for both the “sparse” and “heavy-

tailed” modes of operation, for a given value of L. Regarding the value of L, we

prescribe a method to learn it in Chapter 4.3.6. However, the fixed choices L = 3 for

“sparse” mode and L = 4 for “heavy tailed” mode usually perform well, as shown in

Chapter 4.4.

For the “sparse” mode, we set the initial sparsity rate λ0 equal to the theoretical

noiseless LASSO PTC, i.e., λ0 = M
N
ρSE(M

N
), where [16]

ρSE(M
N

) = maxc>0

1 − 2N
M

[(1 + c2)Φ(−c) − cφ(c)]

1 + c2 − 2[(1 + c2)Φ(−c) − cφ(c)]
(4.36)

describes the maximum value of K
M

supported by LASSO for a given M
N

, and where

Φ(·) and φ(·) denote the cdf and pdf of the N (0, 1) distribution, respectively. Using

the energies ||y||22 and ||A||2F and an assumed value of SNR0, we initialize the noise

and signal variances, respectively, as

ψ0 =
‖y‖2

2

(SNR0 + 1)M
, ϕ0 =

‖y‖2
2 −Mψ0

||A||2Fλ0
, (4.37)
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where, in the absence of (user provided) knowledge about the SNR,‖Ax‖2
2/‖w‖2

2, we

suggest SNR0 =100, because in our experience this value works well over a wide range

of true SNR. Then, we uniformly space the initial GM means θ0 over [−L+1
2L

, L−1
2L

],

and subsequently fit the mixture weights ω0 and variances φ0 to the uniform pdf

supported on [−0.5, 0.5] (which can be done offline using the standard approach to

EM-fitting of GM parameters, e.g., [22, p. 435]). Finally, we multiply θ0 by
√

12ϕ0

and φ0 by 12ϕ0 to ensure that the resulting signal variance equals ϕ0.

For the “heavy-tailed” mode, we initialize λ0 and ψ0 as above and set, for k =

1, . . . , L,

ω0
k =

1

L
, φ0

k =
k√
L

(‖y‖2
2 −Mψ0)

‖A‖2
Fλ

0
, and θ0

k = 0. (4.38)

4.3.5 EM-GM-GAMP Summary and Demonstration

The fixed-L EM-GM-GAMP13 algorithm developed in the previous sections is

summarized in Table 4.1. For EM-BG-GAMP (as previously described in [62]), one

would simply run EM-GM-GAMP with L = 1.

To demonstrate EM-GM-GAMP’s ability to learn the underlying signal distri-

bution, Fig. 4.1 shows examples of the GM-modeled signal distributions learned by

EM-GM-GAMP in both “sparse” and “heavy-tailed” modes. To create the figure,

we first constructed the true signal vector x ∈ R
N using N = 2000 independent

draws of the true distribution px(·) shown in each of the subplots. Then, we con-

structed measurements y = Ax + w by drawing A ∈ R
M×N with i.i.d N (0,M−1)

elements and w ∈ R
M with i.i.d N (0, σ2) elements, with M = 1000 and σ2 chosen

to achieve SNR = 25 dB. Finally, we ran EM-GM-GAMP according to Table 4.1,

13Matlab code at http://www.ece.osu.edu/˜schniter/EMturboGAMP.
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Figure 4.1: True and EM-GM-GAMP-learned versions of the signal distribution
px(x) = λpact(x)+(1−λ)δ(x). The top subplot shows “sparse” mode EM-GM-GAMP
run using GM-order L = 3 on a sparse signal whose non-zero components were gen-
erated according to a triangular mixture, whereas the bottom subplot shows “heavy-
tailed” EM-GM-GAMP run using L = 4 on a Student’s-t signal with rate parameter
q = 1.67 (defined in (4.48)). The density of the continuous component λpact(x) is
marked on the left axis, while the mass of the discrete component (1 − λ)δ(x) is
marked on the right axis.

and plotted the GM approximation px(x; qi) from (4.1) using the learned pdf param-

eters qi = [λi,ωi, θi,φi, ψi]. Figure 4.1 confirms that EM-GM-GAMP is successful

in learning a reasonable approximation of the unknown true pdf px(·) from the noisy

compressed observations y, in both sparse and heavy-tailed modes.
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Initialize L and q0 as described in Chapter 4.3.4.
Initialize x̂0 = 0.
for i = 1 to Imax do

Generate x̂i, ẑi, (µz)i, πi, {βi
k,γ

i
k,ν

i
k}Lk=1 using GM-GAMP with

qi−1 (see Table 2.1).
if ‖x̂i − x̂i−1‖2

2 < τem‖x̂i−1‖2
2 then

break.
end if

Compute λi from πi−1 as described in (4.24).
for k = 1 to L do

if sparse mode enabled then

Compute θik from πi−1, γi−1
k , {βi−1

l }Ll=1 as described in (4.33).
else if heavy-tailed mode enabled then

Set θik = 0.
end if

Compute φik from θi−1
k , πi−1, γi−1

k , νi−1
k , {βi−1

l }Ll=1 as described
in (4.34).
Compute ωi from πi−1 and {βi−1

l }Ll=1 as described in (4.35).
end for

Compute ψi from ẑi and (µz)i as in (4.21).
end for

Table 4.1: The EM-GM-GAMP algorithm (fixed-L case)

4.3.6 Selection of GM Model Order

We now propose a method to learn the number of GM components, L, based on

standard maximum likelihood (ML)-based model-order-selection methodology [63],

i.e.,

L̂ = arg max
L∈Z+

ln p(y; q̂L) − η(L), (4.39)

where q̂L is the ML estimate of q under the hypothesis L and η(L) is a penalty term.

For η(L), there are several possibilities, but we focus on the Bayesian information

criterion (BIC) [63]:

ηBIC(L) = |q̂L| lnU, (4.40)
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where |q̂L| denotes the number14 of real-valued parameters affected by L, and U is

the sample size (see below).

Because ln p(y; q̂L) is difficult to evaluate, we work with the lower bound (where

for now Lj , q̂L, and q̂Lj are arbitrary)

ln p(y; q̂L) = ln
∫

x
p(x|y; q̂Lj )

p(x,y; q̂L)

p(x|y; q̂Lj )
(4.41)

≥
∫

x
p(x|y; q̂Lj ) ln

p(x,y; q̂L)

p(x|y; q̂Lj )
(4.42)

=
∫

x
p(x|y; q̂Lj ) ln p(x,y; q̂L) + const (4.43)

=
N∑

n=1

∫

xn

p(xn|y; q̂Lj ) ln px(xn; q̂L) + const (4.44)

=
N∑

n=1

∫

xn 6=0
p(xn|y; q̂Lj ) ln pact(xn; q̂L)

︸ ︷︷ ︸
, LLj (y; q̂L)

+ const, (4.45)

where (4.42) applies Jensen’s inequality, “const” denotes a constant term w.r.t L, and

(4.44) holds because ln p(x,y; q̂L) = ln p(x; q̂L) + ln p(y|x; ψ̂) =
∑N
n=1 ln px(xn; q̂L) +

const. Equation (4.45) can then be obtained integrating (4.44) separately over Bǫ and

Bǫ and taking ǫ→0, as done several times in Chapter 4.3.2. Using this lower bound in

place of ln p(y; q̂L) in (4.39), we obtain the BIC-inspired model order estimate (where

now q̂L is specifically the ML estimate of qL)

Lj+1 , arg max
L∈Z+

LLj (y; q̂L) − ηBIC(L). (4.46)

We in fact propose to perform (4.46) iteratively, with j = 0, 1, 2, . . . denoting the

iteration index. Notice that (4.46) can be interpreted as a “penalized” EM update

14In our case, the parameters affected by L are the GM means, variances, and weights, so that,
for real-valued signals, we use |q̂L| = 3L − 1 in “sparse” mode and |q̂L| = 2L − 1 in heavy-tailed
mode, and for complex-valued signals, we use |q̂L| = 4L− 1 in “sparse” mode and |q̂L| = 2L− 1 in
heavy-tailed mode.
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for L; if we neglect the penalty term η(L), then (4.41)-(4.45) becomes a standard

derivation for the EM-update of L (recall, e.g., the EM derivation in Chapter 4.3).

The penalty term is essential, though, because the unpenalized log-likelihood lower

bound LLj (y; q̂L) is non-decreasing15 in L.

We now discuss several practical aspects of our procedure. First, we are forced to

approximate the integral in (4.45). To start, we use GM-GAMP’s approximation of

the posterior p(xn|y; q̂Lj ) from (4.7), and the EM approximations of the ML-estimates

q̂Lj and q̂L outlined in Chapter 4.3.3. In this case, the integral in (4.45) takes the

form

∫

xn

πn
Lj∑

l=1

βn,lN (xn; γn,l, νn,l) ln
L∑

k=1

ωkN (xn; θk, φk) (4.47)

which is still difficult due to the log term. Hence, we evaluate (4.47) using the point-

mass approximation N (xn; γn,l, νn,l) ≈ δ(xn−γn,l). Second, for the BIC penalty (4.40),

we use the sample size U =
∑N
n=1 πn, which is the effective number of terms in the

sum in (4.45). Third, when maximizing L over Z
+ in (4.46), we start with L = 1

and increment L in steps of one until the penalized metric decreases. Fourth, for the

initial model order L0, we recommend using L0 = 3 in “sparse” mode and L0 = 4

in “heavy-tailed” mode, i.e., the fixed-L defaults from Chapter 4.3.4. Finally, (4.46)

is iterated until either Lj+1 = Lj or a predetermined maximum number of allowed

model-order iterations Jmax has been reached.

As a demonstration of the proposed model-order selection procedure, we estimated

a realization of x with N = 1000 coefficients drawn i.i.d from the triangular mixture

pdf shown in Fig. 4.1 (top, red) with λ = 0.1, from the M = 500 noisy measurements

15Note that LLj (y; q̂L) can be written as a constant plus a scaled value of the negative KL
divergence between p(x | x 6=0,y; q̂Lj ) and the GMM pact(x; q̂L), where the KL divergence is clearly
non-increasing in L.
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Figure 4.2: An example of the model-order metric in (4.46) over several iterations
j = 1, 2, 3 using initial model-order Lj |j=0 = 1, together with the NMSE of the
resulting estimates.

y = Ax + w, where A was drawn i.i.d N (0,M−1), and w was AWGN such that

SNR = 20 dB. For illustrative purposes, we set the initial model order at L0 = 1.

Iteration j = 1 yielded the metric LLj (y; q̂L) − ηBIC(L) shown at the top of Fig. 4.2,

which was maximized by L = 3 , L1. The metric resulting from iteration j = 2 is

shown in the middle of Fig. 4.2, which was maximized by L = 2 , L2. At iteration

j = 3, we obtained the metric at the bottom of Fig. 4.2, which is also maximized

by L = 2 , L3. Since L3 = L2, the algorithm terminates with final model order

estimate L = 2. Figure 4.2 also indicates the per-iteration MSE, which is best at the

final model order.

4.4 Numerical Results

In this section we report the results of a detailed numerical study that investigate

the performance of EM-GM-GAMP under both noiseless and noisy settings. For all

experiments, we set the GM-GAMP tolerance to τgamp = 10−5 and the maximum
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GAMP-iterations to Tmax = 20 (recall Table 2.1), and we set the EM tolerance to

τem = 10−5 and the maximum EM-iterations to Imax = 20 (recall Table 4.1). For

fixed-L EM-GM-GAMP, we set L = 3 in “sparse” and L = 4 in “heavy-tailed”

modes.

4.4.1 Noiseless Phase Transitions

We first describe the results of experiments that computed noiseless empirical

phase transition curves (PTCs) under three sparse-signal distributions. To evaluate

each empirical PTC, we fixed N = 1000 and constructed a 30×30 grid where (M,K)

were chosen to yield a uniform sampling of oversampling ratios M
N

∈ [0.05, 0.95] and

sparsity ratios K
M

∈ [0.05, 0.95]. At each grid point, we generated R = 100 indepen-

dent realizations of a K-sparse signal x from a specified distribution and an M ×N

measurement matrix A with i.i.d N (0,M−1) entries. From the noiseless measure-

ments y = Ax, we recovered the signal x using several algorithms. A recovery x̂ from

realization r ∈ {1, . . . , R} was defined a success if the NMSE , ‖x−x̂‖2
2/‖x‖2

2 < 10−6,

and the average success rate was defined as S , 1
R

∑R
r=1 Sr, where Sr = 1 for a success

and Sr = 0 otherwise. The empirical PTC was then plotted, using Matlab’s contour

command, as the S = 0.5 contour over the sparsity-undersampling grid.

Figures 4.3–4.5 show the empirical PTCs for five recovery algorithms: the pro-

posed EM-GM-GAMP algorithm (in “sparse” mode) for both L fixed and L learned

through model-order selection (MOS), the proposed EM-BG-GAMP algorithm, a

genie-tuned16 GM-GAMP that uses the true parameters q = [λ,ω, θ,φ, ψ], and the

Donoho, Maleki, Montanari (DMM) LASSO-style AMP from [16]. For comparison,

16For genie-tuned GM-GAMP, for numerical reasons, we set the noise variance at ψ = 10−6 and,
with Bernoulli and BR signals, the mixture variances at φk = 10−2.
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Figure 4.3: Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli-Gaussian signals.

Figs. 4.3–4.5 also display the theoretical LASSO PTC (4.36). The signals were gen-

erated as Bernoulli-Gaussian (BG) in Fig. 4.3 (using mean θ= 0 and variance φ= 1

for the Gaussian component), as Bernoulli in Fig. 4.4 (i.e., all non-zero coefficients

set equal to 1), and as Bernoulli-Rademacher (BR) in Fig. 4.5.

For all three signal types, Figs. 4.3–4.5 show that the empirical PTC of EM-

GM-GAMP significantly improves on the empirical PTC of DMM-AMP as well as

the theoretical PTC of LASSO. (The latter two are known to converge in the large

system limit [16].) For BG signals, Fig. 4.3 shows that EM-GM-GAMP-MOS, EM-

GM-GAMP, and EM-BG-GAMP all yield PTCs that are nearly identical to that

of genie-GM-GAMP, suggesting that our EM-learning procedures are working well.

For Bernoulli signals, Fig. 4.4 shows EM-GM-GAMP-MOS performing very close to

genie-GM-GAMP, and both EM-GM-GAMP and EM-BG-GAMP performing slightly
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Figure 4.4: Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli signals.

worse but far better than DMM-AMP. Finally, for BR signals, Fig. 4.5 shows EM-GM-

GAMP performing significantly better than EM-BG-GAMP, since the former is able

to accurately model the BR distribution (with L ≥ 2 mixture components) whereas

the latter (with a single mixture component) is not, and on par with genie-GM-

GAMP, whereas EM-GM-GAMP-MOS performs noticeably better than genie-GM-

GAMP. The latter is due to EM-GM-GAMP-MOS doing per-realization parameter

tuning, while genie-GM-GAMP employs the best set of fixed parameters over all

realizations.
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Figure 4.5: Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli-Rademacher signals.

To better understand the performance of EM-GM-GAMP when M
N

≪ 1, we fixed

N = 8192 and constructed a 12 × 9 grid of (M,K) values spaced uniformly in the

log domain. At each grid point, we generated R = 100 independent realizations of

a K-sparse BG signal and an i.i.d N (0,M−1) matrix A. We then recovered x from

the noiseless measurements using EM-GM-GAMP-MOS, EM-GM-GAMP, EM-BG-

GAMP, genie-GM-GAMP, and the Lasso-solver17 FISTA18 [64]. Figure 4.6 shows that

the PTCs of EM-GM-GAMP-MOS and EM-GM-GAMP are nearly identical, slightly

better than those of EM-BG-GAMP and genie-GM-GAMP (especially at very small

M), and much better than FISTA’s.

17For this experiment, we also tried DMM-AMP but found that it had convergence problems, and
we tried SPGL1 but found performance degradations at small M .

18For FISTA, we used the regularization parameter λFISTA = 10−5, which is consistent with the
values used for the noiseless experiments in [64].
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Figure 4.6: Empirical PTCs for noiseless recovery of Bernoulli-Gaussian signals of
length N = 8192 when M ≪ N .

Next, we studied the effect of the measurement matrix construction on the perfor-

mance of EM-GM-GAMP in “sparse” mode with fixed L = 3. For this, we plot-

ted EM-GM-GAMP empirical PTCs for noiseless recovery of a length-N = 1000

BG signal under several types of measurement matrix A: i.i.d N (0, 1), i.i.d Uni-

form [−1
2
, 1

2
], i.i.d centered Cauchy with scale 1, i.i.d Bernoulli19 (i.e., amn ∈ {0, 1})

with λA , Pr{amn 6= 0} = 0.15, i.i.d zero-mean BR (i.e., amn ∈ {0, 1,−1}) with

λA ∈ {0.05, 0.15, 1}, and randomly row-sampled Discrete Cosine Transform (DCT).

Figure 4.7 shows that the EM-GM-GAMP PTC with i.i.d N (0, 1) matrices also holds

with the other i.i.d zero-mean sub-Gaussian examples (i.e., Uniform and BR with

λA = 1). This is not surprising given that AMP itself has rigorous guarantees for i.i.d

zero-mean sub-Gaussian matrices [11]. Figure 4.7 shows that the i.i.d-N PTC is also

19For the Bernoulli and BR matrices, we ensured that no two columns of a given realization A

were identical.

55



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

M/N

K
/M

i.i.d N
i.i.d Unif

i.i.d Cauchy

i.i.d BR

i.i.d Bern

DCT λA = 1

λA = 0.05

λA = 0.15

Figure 4.7: Empirical PTCs for EM-GM-GAMP noiseless recovery of Bernoulli-
Gaussian signals under various A: i.i.d N (0, 1), i.i.d Uniform [−1

2
, 1

2
], i.i.d Bernoulli

with λA , Pr{amn 6= 0} = 0.15, i.i.d zero-mean Bernoulli-Rademacher with
λA ∈ {0.05, 0.15, 1}, i.i.d Cauchy, and randomly row-sampled DCT.

preserved with randomly row-sampled DCT matrices, which is not surprising given

AMP’s excellent empirical performance with many types of deterministic A [65] even

in the absence of theoretical guarantees. Figure 4.7 shows, however, that EM-GM-

GAMP’s PTC can degrade with non-zero-mean i.i.d matrices (as in the Bernoulli

example) or with super-Gaussian i.i.d matrices (as in the BR example with sparsity

rate λA = 0.05 and the Cauchy example). Surprisingly, the i.i.d-N PTC is preserved

by i.i.d-BR matrices with sparsity rate λA = 0.15, even though λA >
1
3

is required for

a BR matrix to be sub-Gaussian [66].
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4.4.2 Noisy Sparse Signal Recovery

Figures 4.8–4.10 show NMSE for noisy recovery of BG, Bernoulli, and BR signals,

respectively. To construct these plots, we fixed N = 1000, K = 100, SNR = 25

dB, and varied M . Each data point represents NMSE averaged over R = 500 real-

izations, where in each realization we drew an A with i.i.d N (0,M−1) elements, an

AWGN noise vector, and a random signal vector. For comparison, we show the perfor-

mance of the proposed EM-GM-GAMP (in “sparse” mode) for both MOS and L = 3

versions, EM-BG-GAMP, genie-tuned20 Orthogonal Matching Pursuit (OMP) [67],

genie-tuned20 Subspace Pursuit (SP) [68], Bayesian Compressive Sensing (BCS) [57],

Sparse Bayesian Learning [56] (via the more robust T-MSBL [69]), de-biased genie-

tuned21 LASSO (via SPGL1 [70]), and Smoothed-ℓ0 (SL0) [71]. All algorithms were

run under the suggested defaults, with noise=small in T-MSBL.

20We ran both the SP and OMP algorithms (using the publicly available implementation from
http://sparselab.stanford.edu/OptimalTuning/code.htm) under 10 different sparsity assump-
tions, spaced uniformly from 1 to 2K, and reported the lowest NMSE among the results.

21We ran SPGL1 in ‘BPDN’ mode: minx̂ ‖x‖1 s.t. ‖y − Ax‖2 ≤ σ, for hypothesized tolerances
σ2 ∈ {0.1, 0.2, . . . , 1.5} ×Mψ, and reported the lowest NMSE among the results.
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Figure 4.8: NMSE versus undersampling ratio M/N for noisy recovery of Bernoulli-
Gaussian signals.

For BG signals, Fig. 4.8 shows that EM-GM-GAMP-MOS, EM-GM-GAMP, and

EM-BG-GAMP together exhibit the best performance among the tested algorithms,

reducing the M/N breakpoint (i.e., the location of the knee in the NMSE curve, which

represents a sort of phase transition) from 0.3 down to 0.26, but also improving NMSE

by ≈ 1 dB relative to the next best algorithm, which was BCS. Relative to the other

EM-GAMP variants, MOS resulted in a slight degradation of performance for M
N

between 0.26 and 0.31, but was otherwise identical. For Bernoulli signals, Fig. 4.9

shows much more significant gains for EM-GM-GAMP-MOS, EM-GM-GAMP and

EM-BG-GAMP over the other algorithms: the M/N breakpoint was reduced from 0.4

down to 0.32 (and even 0.3 with MOS), and the NMSE was reduced by ≈ 8 dB relative

to the next best algorithm, which was T-MSBL in this case. Finally, for BR signals,

Fig. 4.10 shows a distinct advantage for EM-GM-GAMP and EM-GM-GAMP-MOS
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Figure 4.9: NMSE versus undersampling ratio M/N for noisy recovery of Bernoulli
signals.

over the other algorithms, including EM-BG-GAMP, due to the formers’ ability to

accurately model the BR signal prior. In particular, for M/N ≥ 0.36, EM-GM-

GAMP-MOS reduces the NMSE by 10 dB relative to the best of the other algorithms

(which was either EM-BG-GAMP or T-MSBL depending on the value of M/N) and

reduces the M/N breakpoint from 0.38 down to 0.35.
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Figure 4.10: NMSE versus undersampling ratio M/N for noisy recovery of Bernoulli-
Rademacher signals.

To investigate each algorithm’s robustness to AWGN, we plotted the NMSE at-

tained in the recovery of BR signals with N = 1000, M = 500, and K = 100 as a

function of SNR in Fig. 4.11, where each point represents an average over R = 100

problem realizations, where in each realization we drew an A with i.i.d N (0,M−1)

elements, an AWGN noise vector, and a random signal vector. All algorithms were

under the same conditions as those reported previously, except that T-MSBL used

noise=small when SNR > 22dB and noise=mild when SNR ≤ 22 dB, as recom-

mended in [72]. From Fig. 4.11, we see that the essential behavior observed in the

fixed-SNR BR plot Fig. 4.10 holds over a wide range of SNRs. In particular, Fig. 4.11

shows that EM-GM-GAMP and EM-GM-GAMP-MOS yield significantly lower NMSE

than all other algorithms over the full SNR range, while EM-BG-GAMP and T-MSBL

yield the second lowest NMSE (also matched by BCS for SNRs between 30 and 40
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Figure 4.11: NMSE versus SNR for noisy recovery of Bernoulli-Rademacher signals.

dB). Note, however, than T-MSBL must be given some knowledge about the true

noise variance in order to perform well [72], unlike the proposed algorithms.

4.4.3 Heavy-Tailed Signal Recovery

In many applications of compressive sensing, the signal to be recovered is not

perfectly sparse, but instead contains a few large coefficients and many small ones.

While the literature often refers to such signals as “compressible,” there are many

real-world signals that do not satisfy the technical definition of compressibility (see,

e.g., [4]), and so we refer to such signals more generally as “heavy tailed.”

To investigate algorithm performance for these signals, we first consider an i.i.d

Student’s-t signal, with prior pdf

px(x; q) , Γ((q+1)/2))√
πΓ(q/2)

(1 + x2)
−(q+1)/2

(4.48)
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Figure 4.12: NMSE versus undersampling ratio M/N for noisy recovery of Student-t
signals with rate parameter 1.67.

under the (non-compressible) rate q = 1.67, which has been shown to be an excellent

model for wavelet coefficients of natural images [4]. For such signals, Fig. 4.12 plots

NMSE versus the number of measurements M for fixed N = 1000, SNR = 25 dB,

and an average of R = 500 realizations, where in each realization we drew an A with

i.i.d N (0,M−1) elements, an AWGN noise vector, and a random signal vector. Fig-

ure 4.12 shows both variants of EM-GM-GAMP (here run in “heavy-tailed” mode)

outperforming all other algorithms under test.22 We have also verified (in experi-

ments not shown here) that “heavy-tailed” EM-GM-GAMP exhibits similarly good

performance with other values of the Student’s-t rate parameter q, as well as for i.i.d

centered Cauchy signals.

22In this experiment, we ran both OMP and SP under 10 different sparsity hypotheses, spaced
uniformly from 1 to Klasso = MρSE(M

N ), and reported the lowest NMSE among the results.
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Figure 4.13: NMSE versus undersampling ratio M/N for noisy recovery of log-normal
signals with location parameter 0 and scale parameter 1.

To investigate the performance for positive heavy-tailed signals, we conducted a

similar experiment using i.i.d log-normal x, generated using the distribution

px(x;µ, σ2) = 1

x
√

2πσ2
exp − (ln x−µ)

2σ2 (4.49)

with location parameter µ = 0 and scale parameter σ2 = 1. Figure 4.13 confirms

the excellent performance of EM-GM-GAMP-MOS, EM-GM-GAMP, and EM-BG-

GAMP over all tested undersampling ratios M/N . We postulate that, for signals

known apriori to be positive, EM-GM-GAMP’s performance could be further im-

proved through the use of a prior px with support restricted to the the positive reals,

via a mixture of positively truncated Gaussians.

It may be interesting to notice that, with the perfectly sparse signals examined

in Figs. 4.8–4.10, SL0 and SPGL1 performed relatively poorly, the relevance-vector-

machine (RVM)-based approaches (i.e., BCS, T-MSBL) performed relatively well, and
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the greedy approaches (OMP and SP) performed in-between. With the heavy-tailed

signals in Figs. 4.12–4.13, it is more difficult to see a consistent pattern. For example,

with the Student’s-t signal, the greedy approaches performed the worse, the RVM

approaches were in the middle, and SL0 and SPGL1 performed very well. But with the

log-normal signal, the situation was very different: the greedy approaches performed

very well, SPGL1 performed moderately well, but SL0 and the RVM approaches

performed very poorly.

In conclusion, for all of the many signal types tested above, the best recovery

performance came from EM-GM-GAMP and its MOS variant. We attribute this

behavior to EM-GM-GAMP’s ability to tune itself to the signal (and in fact the

realization) at hand.

4.4.4 Runtime and Complexity Scaling with Problem Size

Next we investigated how complexity scales with signal length N by evaluating the

runtime of each algorithm on a typical personal computer. For this, we fixed K/N =

0.1, M/N = 0.5, SNR = 25 dB and varied the signal length N . Figure 4.14 shows the

runtimes for noisy recovery of a Bernoulli-Rademacher signal, while Fig. 4.15 shows

the corresponding NMSEs. In these plots, each datapoint represents an average over

R = 50 realizations. The algorithms that we tested are the same ones that we

described earlier. However, to fairly evaluate runtime, we configured some a bit

differently than before. In particular, for genie-tuned SPGL1, in order to yield a

better runtime-vs-NMSE tradeoff, we reduced the tolerance grid (recall footnote 21)

to σ2 ∈ {0.6, 0.8, . . . , 1.4} × Mψ and turned off debiasing. For OMP and SP, we

used the fixed support size Klasso = MρSE(M
N

) rather than searching for the size that
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Figure 4.14: Runtime versus signal length N for noisy recovery of Bernoulli-
Rademacher signals.

minimizes NMSE over a grid of 10 hypotheses, as before. Otherwise, all algorithms

were run under the suggested defaults, with T-MSBL run under noise=small and

EM-GM-GAMP run in “sparse” mode.

The complexities of the proposed EM-GM-GAMP methods are dominated by

one matrix multiplication by A and AT per iteration. Thus, when these matrix

multiplications are explicitly implemented and A is dense, the total complexity of

EM-GM-GAMP should scale as O(MN). This scaling is indeed visible in the run-

time curves of Fig. 4.14. There, O(MN) becomes O(N2) since the ratio M/N was

fixed, and the horizontal axis plots N on a logarithmic scale, so that this complexity

scaling manifests, at sufficiently large values of N , as a line with slope 2. Figure 4.14

confirms that genie-tuned SPGL1 also has the same complexity scaling, albeit with

longer overall runtimes. Meanwhile, Fig. 4.14 shows T-MSBL, BCS, SL0, OMP, and
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SP exhibiting a complexity scaling of O(N3) (under fixed K/N and M/N), which

results in orders-of-magnitude larger runtimes for long signals (e.g., N ≥ 104). With

short signals (e.g., N < 1300), though, OMP, SP, SL0, and SPGL1 are faster than

EM-GM-GAMP. Finally, Fig. 4.15 verifies that, for most of the algorithms, the NMSEs

are relatively insensitive to signal length N when the undersampling ratio M/N and

sparsity ratio K/M are both fixed, although the performance of EM-GM-GAMP im-

proves with N (which is not surprising in light of AMP’s large-system-limit optimality

properties [30]) and the performance of BCS degrades with N .

Both the proposed EM-GM-GAMP methods and SPGL1 can exploit the case

where multiplication by A and AT is implemented using a fast algorithm like the

fast Fourier transform (FFT)23, which reduces the complexity to O(N logN), and

avoids the need to store A in memory—a potentially serious problem when MN is

large. The dashed lines in Figs. 4.14–4.15 (labeled “fft”) show the average runtime

and NMSE of the proposed algorithms and SPGL1 in case that A was a randomly

row-sampled FFT. As expected, the runtimes are dramatically reduced. While EM-

BG-GAMP retains its place as the fastest algorithm, SPGL1 now runs 1.5× faster

than EM-GM-GAMP (at the cost of 14 dB higher NMSE). The MOS version of EM-

GM-GAMP yields slightly better NMSE, but takes ≈ 2.5 times as long to run as the

fixed-L version.

23For our FFT-based experiments, we used the complex-valued versions of EM-BG-GAMP, EM-
GM-GAMP, and SPGL1.
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Figure 4.15: NMSE versus signal length N for noisy recovery of Bernoulli-Rademacher
signals.

4.4.5 Example: Compressive Recovery of Audio

As a practical example, we experimented with the recovery of an audio signal

from compressed measurements. The full length-81920 audio signal was first par-

titioned into T blocks {ut}Tt=1 of length N . Noiseless compressed measurements

yt = Φut ∈ R
M were then collected using M = N/2 samples per block. Rather than

reconstructing ut directly from yt, we first reconstructed24 the transform coefficients

xt = ΨTut, using the (orthogonal) discrete cosine transform (DCT) Ψ ∈ R
N×N , and

later reconstructed ut via ut = Ψxt. Our effective sparse-signal model can thus be

written as yt = Axt with A = ΦΨ. We experimented with two types of measure-

ment matrix Φ: i.i.d zero-mean Gaussian and random selection (i.e., containing rows

24Although one could exploit additional structure among the multiple-timestep coefficients {xt}T
t=1

for improved recovery (e.g., sparsity clustering in the time and/or frequency dimensions, as well as
amplitude correlation in those dimensions) as demonstrated in [73], such techniques are outside the
scope of this chapter.
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of the identity matrix selected uniformly at random), noting that the latter allows

a fast implementation of A and AT. Table 4.2 shows the resulting time-averaged

NMSE, i.e., TNMSE , 1
T

∑T
t=1 ||ut − ût||2/||ut||2, and total runtime achieved by the

previously described algorithms at block lengths N = 1024, 2048, 4096, 8192, which

correspond to T = 80, 40, 20, 10 blocks, respectively. The numbers reported in the

table represent an average over 50 realizations of Φ. For these experiments, we con-

figured the algorithms as described in Chapter 4.4.3 for the heavy-tailed experiment

except that, for genie-SPGL1, rather than using ψ = 0, we used ψ = 10−6 for the tol-

erance grid (recall footnote 21) because we found that this value minimized TNMSE

and, for T-MSBL, we used the setting prune gamma = 10−12 as recommended in a

personal correspondence with the author. For certain combinations of algorithm and

blocklength, excessive runtimes prevented us from carrying out the experiment, and

thus no result appears in the table.

Table 4.2 shows that, for this audio experiment, the EM-GM-GAMP methods

and SL0 performed best in terms of TNMSE. As in the synthetic examples presented

earlier, we attribute EM-GM-GAMP’s excellent TNMSE to its ability to tune itself to

whatever signal is at hand. As for SL0’s excellent TNMSE, we reason that it had the

good fortune of being particularly well-tuned to this audio signal, given that it per-

formed relatively poorly with the signal types used for Figs. 4.8–4.11 and Fig. 4.13.

From the runtimes reported in Table 4.2, we see that, with i.i.d Gaussian Φ and

the shortest block length (N = 1024), genie-OMP is by far the fastest, whereas the

EM-GM-GAMP methods are the slowest. But, as the block length grows, the EM-

GM-GAMP methods achieve better and better runtimes as a consequence of their
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excellent complexity scaling, and eventually EM-BG-GAMP and fixed-L EM-GM-

GAMP become the two fastest algorithms under test (as shown with i.i.d Gaussian

Φ at N = 8192). For this audio example, the large-block regime may be the more

important, because that is where all algorithms give their smallest TNMSE. Next,

looking at the runtimes under random-selection Φ, we see dramatic speed improve-

ments for the EM-GM-GAMP methods and SPGL1, which were all able to leverage

Matlab’s fast DCT. In fact, the total runtimes of these four algorithms decrease as

N is increased from 1024 to 8192. We conclude by noting that EM-BG-GAMP (at

N = 8192 with random selection Φ) achieves the fastest runtime in the entire table

while yielding a TNMSE that is within 1.3 dB of the best value in the entire table.

Meanwhile, fixed-L EM-GM-GAMP (at N = 8192 with random selection Φ) gives

TNMSE only 0.3 dB away from the best in the entire table with a runtime of only

about twice the best in the entire table. Finally, the best TNMSEs in the entire table

are achieved by EM-GM-GAMP-MOS (at N = 8192), which takes ≈ 2.5 times as

long to run as its fixed-L counterpart.
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N = 1024 N = 2048 N = 4096 N = 8192
TNMSE time TNMSE time TNMSE time TNMSE time

i.
i.
d

G
au

ss
ia

n
Φ

EM-GM-GAMP-MOS -17.3 468.9 -18.3 487.2 -21.0 967.9 -21.8 2543
EM-GM-GAMP -16.9 159.2 -18.0 213.2 -20.7 434.0 -21.4 1129
EM-BG-GAMP -15.9 115.2 -17.0 174.1 -19.4 430.2 -20.0 1116

SL0 -16.8 41.6 -17.9 128.5 -20.6 629.0 -21.3 2739
genie SPGL1 -14.3 90.9 -16.2 200.6 -18.6 514.3 -19.5 1568

BCS -15.0 67.5 -15.8 149.1 -18.4 428.0 -18.8 2295
T-MSBL -16.3 1.2e4 – – – – – –

genie OMP -13.9 20.1 -14.9 109.9 -17.6 527.0 – –
genie SP -14.5 87.7 -15.5 305.9 -18.0 1331 – –

ra
n
d
om

se
le

ct
io

n
Φ

EM-GM-GAMP-MOS -16.6 233.0 -17.5 136.1 -20.5 109.6 -21.6 93.9
EM-GM-GAMP -16.7 56.1 -17.7 43.7 -20.5 38.0 -21.5 37.8
EM-BG-GAMP -16.2 29.6 -17.2 22.3 -19.7 19.4 -20.5 18.0

SL0 -16.7 35.7 -17.6 119.5 -20.4 597.8 -21.2 2739
genie SPGL1 -14.0 34.4 -15.9 24.5 -18.4 21.7 -19.7 19.6

BCS -15.5 60.5 -16.1 126.2 -19.4 373.8 -20.2 2295
T-MSBL -15.5 1.2e4 – – – – – –

genie OMP -15.1 20.1 -15.7 106.8 -18.9 506.0 – –
genie SP -15.2 104.5 -16.1 395.3 -18.7 1808 – –

Table 4.2: Average TNMSE (in dB) and total runtime (in seconds) for compressive
audio recovery.

4.5 Conclusions

Those interested in practical compressive sensing face the daunting task of choos-

ing among literally hundreds of signal reconstruction algorithms (see, e.g., [74]). In

testing these algorithms, they are likely to find that some work very well with partic-

ular signal classes, but not with others. They are also likely to get frustrated by those

algorithms that require the tuning of many parameters. Finally, they are likely to find

that some of the algorithms that are commonly regarded as “very fast” are actually

very slow in high-dimensional problems. Meanwhile, those familiar with the theory

of compressive sensing know that the workhorse LASSO is nearly minimax optimal,
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and that its phase transition curve is robust to the nonzero-coefficient distribution

of sparse signals. However, they also know that, for most signal classes, there is a

large gap between the MSE performance of LASSO and that of the MMSE estimator

derived under full knowledge of the signal and noise statistics [17]. Thus, they may

wonder whether there is a way to close this gap by designing a signal reconstruction

algorithm that both learns and exploits the signal and noise statistics.

With these considerations in mind, we proposed an empirical Bayesian approach

to compressive signal recovery that merges two powerful inference frameworks: ex-

pectation maximization (EM) and approximate message passing (AMP). We then

demonstrated—through a detailed numerical study—that our approach, when used

with a flexible Gaussian-mixture signal prior, achieves a state-of-the-art combination

of reconstruction error and runtime on a very wide range of signal and matrix types

in the high-dimensional regime.
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Chapter 5: Enforcing Non-negativity and Linear Equality

Constraints

5.1 Introduction

We consider the recovery of an (approximately) sparse signal x ∈ R
N from the

noisy linear measurements

y = Ax + w ∈ R
M , (5.1)

where A is a known sensing matrix, w is noise, andM may be ≪ N .25 In this chapter,

we focus on non-negative (NN) signals (i.e., xn ≥ 0 ∀n) that obey known linear

equality constraints Bx=c ∈ R
P . A notable example is simplex-constrained signals,

i.e., x ∈ ∆N
+ , {x ∈ R

N : xn ≥ 0 ∀n, 1Tx = 1}, occurring in hyperspectral image

unmixing [18], portfolio optimization [75, 76], density estimation [77, 78], and other

applications. We also consider the recovery of NN sparse signals without the linear

constraint Bx=c [79–81], which arises in imaging applications [82] and elsewhere [83].

As previously discussed in Chapter 1.1.3, one approach to recovering linearly

constrained NN sparse x is to solve the ℓ1-penalized constrained NN least-squares

(LS) problem (5.2) (see, e.g., [76]) for some λ ≥ 0:

x̂
c-lasso

= arg min
x≥0

1
2
‖y − Ax‖2

2 + λ‖x‖1 s.t. Bx = c. (5.2)

25This chapter is excerpted from our work published in [35].
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Although this problem is convex [84], finding a solution can be computationally chal-

lenging in the high-dimensional regime. Also, while a larger λ is known to promote

more sparsity in x̂, determining the best choice of λ can be difficult in practice. For

example, methods based on cross-validation, the L-curve, or Stein’s unbiased risk es-

timator can be used (see [85] for discussions of all three), but they require much more

computation than solving (5.2) for a fixed λ. For this reason, (5.2) is often considered

under the special case λ=0 [86], where it reduces to linearly constrained NN-LS.

For the recovery of K-sparse simplex-constrained signals, a special case of the gen-

eral problem under consideration, the Greedy Selector and Simplex Projector (GSSP)

was proposed in [78]. GSSP, an instance of projected gradient descent, iterates

x̂i+1 = PK

(
x̂i − stepi ∇x‖y − Ax̂i‖2

2

)
, (5.3)

where PK(·) is the Euclidean projection onto the K-sparse simplex, x̂i is the iteration-

i estimate, stepi is the iteration-i step size, and ∇x is the gradient w.r.t x. For

algorithms of this sort, rigorous approximation guarantees can be derived when A

obeys the restricted isometry property [87]. Determining the best choice of K can,

however, be difficult in practice.

In this chapter, we propose two methods for recovering a linearly constrained NN

sparse vector x from noisy linear observations y of the form (5.1), both of which

are based on the Generalized Approximate Message Passing (GAMP) algorithm [28],

an approximation of loopy belief propagation that has close connections to primal-

dual optimization algorithms [38, 39]. When run in “max-sum” mode, GAMP can

be used to solve optimization problems of the form x̂ = arg minx

∑M
m=1 hm([Ax]m) +
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∑N
n=1 gn(xn), where x̂ can be interpreted as the maximum a posteriori (MAP) esti-

mate26 of x under the assumed signal prior (5.4) and likelihood (5.5):

p(x) ∝ ∏N
n=1 exp(−gn(xn)) (5.4)

p(y|Ax) ∝ ∏M
m=1 exp(−hm([Ax]m)). (5.5)

When run in “sum-product” mode, GAMP returns an approximation of the minimum

mean-squared error (MMSE) estimate of x under the same assumptions. In either

case, the linear equality constraints Bx = c can be enforced through the use of

noiseless pseudo-measurements, as described in the sequel.

The first of our proposed approaches solves (5.2) using max-sum GAMP while

tuning λ using a novel expectation-maximization (EM) [31] procedure. We henceforth

refer to this approach as EM-NNL-GAMP, where NNL is short for “non-negative

LASSO.27” We demonstrate, via extensive numerical experiments, that 1) the runtime

of our approach is much faster than the state-of-the-art TFOCS solver [88] for a

fixed λ, and that 2) the MSE performance of our λ-tuning procedure is on par with

TFOCS under oracle tuning. We also consider the special case of λ = 0, yielding

“non-negative least squares GAMP” (NNLS-GAMP), whose performance and runtime

compare favorably to Matlab’s lsqlin routine. In addition, we consider a variation on

(5.2) that replaces the quadratic loss 1
2
‖y−Ax‖2

2 with the absolute loss ‖y−Ax‖1 for

improved robustness to outliers in w [89], and demonstrate the potential advantages

of this technique on a practical dataset.

26When the optimization problem is convex, max-sum GAMP yields exact MAP estimates for
arbitrary A if it converges.

27In the absence of the constraint Bx=c, the optimization problem (5.2) can be recognized as a
non-negatively constrained version of the LASSO [13] (also known as basis-pursuit denoising [14]).
Similarly, in the special case of λ=0, (5.2) reduces to non-negative LS [86].

74



The second of our proposed approaches aims to solve not an optimization problem

like (5.2) but rather an inference problem: compute the MMSE estimate of a linearly

constrained NN sparse vector x from noisy linear observations y. This is in general a

daunting task, since computing the true MMSE estimate requires i) knowing both the

true signal prior p(x) and likelihood p(y|Ax), which are rarely available in practice,

and ii) performing optimal inference w.r.t that prior and likelihood, which is rarely

possible in practice for computational reasons.

However, when the coefficients in x are i.i.d and the observation matrix A in

(5.1) is sufficiently large and random, recent work [34] has demonstrated that near-

MMSE estimation is indeed possible via the following methodology: place an i.i.d

Gaussian-mixture (GM) model with parameters q on the coefficients {xn}, run sum-

product GAMP based on that model, and tune the model parameters q using an

appropriately designed EM algorithm. For such A, the asymptotic optimality of

GAMP as an MMSE-inference engine was established in [28, 40], and the ability of

EM-GAMP to achieve consistent estimates of q was established in [58].

In this work, we show that the EM-GM-GAMP approach from [34] can be ex-

tended to linearly constrained non-negative signal models through the use of a non-

negative Gaussian-mixture (NNGM) model and noiseless pseudo-measurements, and

we detail the derivation and implementation of the resulting algorithm. Moreover, we

demonstrate, via extensive numerical experiments, that EM-NNGM-GAMP’s recon-

struction MSE is state-of-the-art and that its runtime compares favorably to existing

methods.

Both of our proposed approaches can be classified as “empirical-Bayes” [3] in the

sense that they combine Bayesian and frequentist approaches: GAMP performs (MAP
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or MMSE) Bayesian inference with respect to a given prior, where the parameters

of the prior are treated as deterministic and learned using the EM algorithm, a

maximum-likelihood (ML) approach.

5.2 Observation Models

To enforce the linear equality constraint Bx = c ∈ R
P using GAMP, we extend

the observation model (5.1) to

[
y

c

]

︸︷︷︸
, ȳ

=

[
A

B

]

︸ ︷︷ ︸
, Ā

x +

[
w

0

]
(5.6)

and exploit the fact that GAMP supports a likelihood function that varies with

the measurement index m. Defining z̄ , Āx, the likelihood associated with the

augmented model (5.6) can be written as

(5.7)
pym|zm

(ym|zm)=




py |z(ym|zm) m = 1, . . . ,M

δ(ym− zm) m = M+1, . . . ,M+P,

where py |z corresponds to the first M measurements, i.e., (5.1).

Note that, for either max-sum or sum-product GAMP, the quantities in (R3)-(R6)

of Table 2.1 then become

ẑm(t) = cm−M m = M+ 1, . . . ,M+P (5.8)

µzm(t) = 0 m = M+ 1, . . . ,M+P, (5.9)

where cm−M are elements of c.
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5.2.1 Additive white Gaussian noise

When the noise w is modeled as additive white Gaussian noise (AWGN) with

variance ψ, the likelihood py |z in (5.7) takes the form

py |z(y|z) = N (y; z, ψ). (5.10)

In this case, for either max-sum or sum-product GAMP, the quantities in (R3)-(R6)

of Table 2.1 become [28] (omitting the t index for brevity)

ẑm = p̂m + µp
m

µp
m+ψ

(ym − p̂m) m = 1, . . . ,M (5.11)

µzm =
µpmψ

µpm + ψ
m = 1, . . . ,M. (5.12)

5.2.2 Additive white Laplacian noise

The additive white Laplacian noise (AWLN) observation model is an alternative

to the AWGN model that is more robust to outliers [89]. Here, the noise w is modeled

as AWLN with rate parameter ψ > 0, and the corresponding likelihood py |z in (5.7)

takes the form

py |z(y|z) = L(y; z, ψ) , ψ
2

exp(−ψ|y − z|), (5.13)

and so, for the max-sum case, (R3) in Table 2.1 becomes

ẑm = arg min
zm∈R

|zm − ym| +
(zm − p̂m)2

2µpmψ
. (5.14)

The solution to (5.14) can be recognized as a ym-shifted version of “soft-thresholding”

function, and so the max-sum quantities in (R3) and (R4) of Table 2.1 become, using
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p̃m , p̂m − ym,

ẑm =





p̂m − ψµpm p̃m ≥ ψµpm
p̂m + ψµpm p̃m ≤ −ψµpm
ym else

m = 1, . . . ,M, (5.15)

µzm =





0 |p̃m| ≤ ψµpm
µpm else

m = 1, . . . ,M. (5.16)

Meanwhile, as shown in Appendix B.2.1, the sum-product GAMP quantities (R5)

and (R6) (i.e., the mean and variance of the GAMP approximated zm posterior (2.4))

become

ẑm = ym+
Cm

Cm

(
p
m

−
√
µpmh(κm)

)
+
Cm

Cm

(
pm+

√
µpmh(κm)

)
(5.17)

µzm =
Cm

Cm

(
µpmg(κm)+

(
p
m

−
√
µpmh(κm)

)2
)

(5.18)

+
Cm

Cm

(
µpmg(κm)+

(
pm+

√
µpmh(κm)

)2
)
−(ym−ẑm)2,

where p
m
, p̃m + ψµpm, pm , p̃m − ψµpm,

Cm ,
ψ
2

exp
(
ψp̃m + 1

2
ψ2µpm

)
Φc(κm) (5.19)

Cm ,
ψ
2

exp
(
−ψp̃m + 1

2
ψ2µpm

)
Φc(κm), (5.20)

Cm , Cm + Cm, κm , p
m
/
√
µpm, κm , −pm/

√
µpm and

h(a) ,
ϕ(a)

Φc(a)
(5.21)

g(a) , 1 − h(a)
(
h(a) − a

)
. (5.22)

5.3 Non-Negative GAMP

5.3.1 NN Least Squares GAMP

We first detail the NNLS-GAMP algorithm, which uses max-sum GAMP to solve

the λ = 0 case of (5.2). Noting that the x ≥ 0 constraint in (5.2) can be thought of as
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adding an infinite penalty to the quadratic term when any xn < 0 and no additional

penalty otherwise, we model the elements of x as i.i.d random variables with the

(improper) NN prior pdf

px(x) =





1 x ≥ 0

0 x < 0
, (5.23)

and we assume the augmented model (5.7) with AWGN likelihood (5.10) (of variance

ψ = 1), in which case max-sum GAMP performs the unconstrained optimization

arg min
x

−
N∑

n=1

ln 1xn≥0 − ln 1Bx=c +
1

2
‖y − Ax‖2

2, (5.24)

where 1A ∈ {0, 1} is the indicator function of the event A. Hence, (5.24) is equivalent

to the constrained optimization (5.2) when λ = 0.

Under the i.i.d NN uniform prior (5.23), it is readily shown that the max-sum

GAMP steps (R11) and (R12) become

x̂n =





0 r̂n ≤ 0

r̂n r̂n > 0
, (5.25)

µxn =





0 r̂n ≤ 0

µrn r̂n > 0
. (5.26)

5.3.2 NN LASSO GAMP

Next we detail the NNL-GAMP algorithm, which uses max-sum GAMP to solve

the λ > 0 case of (5.2). For this, we again employ the augmented model (5.7) and

AWGN likelihood (5.10) (with variance ψ), but we now use i.i.d exponential xn, i.e.,

px(x) =




χ exp(−χx) x ≥ 0

0 else
(5.27)

for χ > 0. With these priors and the augmented observation model (5.6), NNL-GAMP

solves the optimization problem

x̂ = arg min
x≥0

1
2ψ

‖y − Ax‖2
2 + χ‖x‖1 s.t. Bx = c, (5.28)
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which reduces to (5.2) under λ = χψ.

It is then straightforward to show that the max-sum lines (R11) and (R12) in

Table 2.1 reduce to

x̂n =




r̂n − χµrn r̂n ≥ χµrn
0 else

(5.29)

µxn =




µrn r̂n ≥ χµrn
0 else

. (5.30)

5.3.3 NN Gaussian Mixture GAMP

Finally, we detail the NNGM-GAMP algorithm, which employs sum-product

GAMP under the i.i.d Bernoulli non-negative Gaussian mixture (NNGM) prior pdf

for x , i.e.,

px(x) = (1 − τ)δ(x) + τ
L∑

ℓ=1

ωℓ N+(x; θℓ, φℓ), (5.31)

where N+(·) denotes the non-negative Gaussian pdf,

N+(x; θ, φ) =





N (x;θ,φ)

Φc(−θ/
√
φ)

x ≥ 0

0 x < 0
, (5.32)

τ ∈ (0, 1] is the sparsity rate, and ωℓ, θℓ, and φℓ are the weight, location, and scale,

respectively, of the ℓth mixture component. For now, we treat the NNGM parameters

[τ,ω, θ,φ] and the model order L as fixed and known.

As shown in Appendix B.3.1, the sum-product GAMP quantities in (R13) and

(R14) of Table 2.1 then become

x̂n =
τ

ζn

L∑

ℓ=1

βn,ℓ
(
γn,ℓ +

√
νn,ℓh(αn,ℓ)

)
(5.33)

µxn =
τ

ζn

L∑

ℓ=1

βn,ℓ

(
νn,ℓg(αn,ℓ)+

(
γn,ℓ+

√
νn,ℓh(αn,ℓ)

)2
)
−x̂2

n, (5.34)
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where ζn is the normalization factor

ζn , (1 − τ)N (0; r̂n, µ
r
n) + τ

L∑

ℓ=1

βn,ℓ, (5.35)

h(·) and g(·) were defined in (5.21) and (5.22), respectively, and

αn,ℓ ,
−γn,ℓ√
νn,ℓ

(5.36)

γn,ℓ ,
r̂n/µ

r
n + θℓ/φℓ

1/µrn + 1/φℓ
, (5.37)

νn,ℓ ,
1

1/µrn + 1/φℓ
(5.38)

βn,ℓ ,
ωℓN (r̂n; θℓ, µ

r
n+φℓ)Φc(αn,ℓ)

Φc(−θℓ/
√
φℓ)

. (5.39)

From (2.5) and (5.31), it follows that GAMP’s approximation to the posterior

activity probability Pr{xn 6= 0 | y} is

πn =
1

1 +
(

τ
1−τ

∑L

ℓ=1
βn,ℓ

N (0;r̂n,µr
n)

)−1 . (5.40)

5.4 EM learning of the prior parameters

In the sequel, we will use q to refer to the collection of prior parameters. For

example, if NNGM-GAMP was used with the AWGN observation model, then q =

[τ,ω, θ,φ, ψ]. Since the value of q that best fits the true data is typically unknown,

we propose to learn it using an EM procedure [31]. The EM algorithm is an iterative

technique that is guaranteed to converge to a local maximum of the likelihood p(y; q).

To understand the EM algorithm, it is convenient to write the log-likelihood as [34]

ln p(y; q) = Qp̂(y; q) +D
(
p̂ || px|y(·|y; q)

)
, (5.41)
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where p̂ is an arbitrary distribution on x, D
(
p̂ || q̂

)
is the Kullback-Leibler (KL)

divergence between p̂ and q̂, and

Qp̂(y; q) , Ep̂{ln px,y(x ,y; q)} +H(p̂), (5.42)

where H(p̂) is the entropy of x ∼ p̂. Importantly, the non-negativity of KL divergence

implies that Qp̂(y; q) is a lower bound on (5.41). Starting from the initialization q0,

the EM algorithm iteratively improves its estimate qi at each iteration i ∈ N: first,

it assigns p̂i(·) = px|y(·|y; qi) to tighten the bound, and then it sets qi+1 to maximize

(5.42) with p̂ = p̂i.

Since the exact posterior pdf px|y(·|y; qi) is difficult to calculate, in its place we

use GAMP’s approximate posterior
∏
n pxn|rn

(·|r̂n;µrn; qi) from (2.5), resulting in the

EM update

qi+1 = arg max
q

Ê{ln p(x,y; q) | y; qi}, (5.43)

where Ê denotes expectation using GAMP’s approximate posterior. Also, because

calculating the joint update for q in (5.43) can be difficult, we perform the maxi-

mization (5.43) one component at a time, known as “incremental EM” [61]. Note

that, even when using an approximate posterior and updating incrementally, the EM

algorithm iteratively maximizes a lower-bound to the log-likelihood.

Whereas [34] proposed the use of (5.43) to tune sum-product GAMP, where the

marginal posteriors pxn|rn
(·|r̂n;µrn; qi) from (2.5) are computed for use in steps (R13)-

(R14) of Table 2.1, we hereby propose the use of (5.43) to tune max-sum GAMP. The

reasoning behind our proposal goes as follows. Although max-sum GAMP does not

compute marginal posteriors (but rather joint MAP estimates), its large-system-limit

analysis (under i.i.d sub-Gaussian A) [40] shows that r̂n(t) can be modeled as an
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AWGN-corrupted measurement of the true xn with AWGN variance µrn(t), revealing

the opportunity to compute marginal posteriors via (2.5) as an additional step. Doing

so enables the use of (5.43) to tune max-sum GAMP.

5.4.1 EM update of AWGN variance

We first derive the EM update of the AWGN noise variance ψ (recall (5.10)). This

derivation differs from the one in [34] in that here we use x as the hidden variable

(rather than z), since experimentally we have observed gains in the low-SNR regime

(e.g., SNR < 10 dB). Because we can write p(x,y; q) = D
∏M
m=1 py |z(ym|aT

mx;ψ) with

a ψ-invariant term D, the incremental update of ψ from (5.43) becomes

ψi+1 = arg max
ψ>0

M∑

m=1

Ê
{

ln py |z(ym|aT
mx ;ψ)

∣∣∣y;ψi
}
. (5.44)

In Appendix B.1, we show that (5.44) reduces to

ψi+1 =
1

M
‖y − Ax̂‖2

2 +
1

M

M∑

m=1

N∑

n=1

a2
mnµ

x
n. (5.45)

5.4.2 EM update of Laplacian rate parameter

As in the AWGN case above, the incremental update of the Laplacian rate ψ from

(5.43) becomes

ψi+1 = arg max
ψ>0

M∑

m=1

Ê
{

ln py |z(ym|aT
mx ;ψ)

∣∣∣y;ψi
}
, (5.46)

but where now py |z is given by (5.13). In Appendix B.2.2, we show that (5.46) reduces

to

ψi+1 = M
(∑M

m=1 Ê
{
|aT
mx − ym|

∣∣∣y;ψi
})−1

(5.47)
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where

Ê
{

|aT
mx−ym|

∣∣∣y;ψi
}

≈ Φc

(
z̃m
µpm

)(
z̃m+

√
µpmh

(
−z̃m√
µpm

))

− Φc

(
−z̃m
µpm

)(
z̃m−

√
µpmh

(
z̃m√
µpm

))
(5.48)

for z̃m , aT
mx̂ − ym, µpm defined in line (R1) of Table 2.1, and h(·) defined in (5.21).

5.4.3 EM update of exponential rate parameter

Noting that p(x,y; q) = D
∏N
n=1 px(xn;χ) with χ-invariant D, the incremental

EM update of the exponential rate parameter χ is

χi+1 = arg max
χ>0

N∑

n=1

Ê
{

ln px(xn;χ)
∣∣∣y;χi

}
, (5.49)

= arg max
χ>0

N logχ− χ
N∑

n=1

Ê
{
xn
∣∣∣y;χi

}
(5.50)

which, after zeroing the derivative of (5.50) w.r.t. χ, reduces to

χi+1 = N

(
N∑

n=1

r̃n +
√
µrnh

(
− r̃n√

µrn

))−1

(5.51)

for r̃n , r̂n−χµrn, µrn defined in line (R9) of Table 2.1, and h(·) defined in (5.21). The

derivation of (5.51) uses the fact that the posterior used for the expectation in (5.50)

simplifies to px|r(xn|r̂n;µrn) = N+(xn; r̃n, µ
r
n). Note that this procedure, when used in

conjunction with the AWGN variance learning procedure, automatically “tunes” the

LASSO regularization parameter λ in (5.2), a difficult problem (see, e.g., [85]).
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5.4.4 EM updates for NNGM parameters and model-order

selection

Noting that p(x,y; q) = D
∏N
n=1 px(xn; ω, θ,φ) with [ω, θ,φ]-invariant D, the

incremental EM updates become

θi+1
k = arg max

θk∈R

N∑

n=1

Ê
{

ln px(xn; θk, q
i
\θk

)
∣∣∣y; qi

}
, (5.52)

φi+1
k = arg max

φk>0

N∑

n=1

Ê
{

ln px(xn;φk, q
i
\φk

)
∣∣∣y; qi

}
, (5.53)

ωi+1 = arg max
ω>0:

∑
k
ωk=1

N∑

n=1

Ê
{

ln px(xn; ω, qi\ω)
∣∣∣y; qi

}
, (5.54)

where we use “qi\ω” to denote the vector qi with ω components removed (and sim-

ilar for qi\θk
and qi\φk

). As derived in Appendix B.3.2, the updates above can be

approximated as

θi+1
k =

∑N
n=1 πnβn,k

(
γn,k +

√
νn,kh(αn,k)

)

∑N
n=1 πnβn,k

(5.55)

φi+1
k =

∑N
n=1 πnβn,k

(
γn,k +

√
νn,kh(αn,k) − θk

)2

∑N
n=1 πnβn,k

+

∑N
n=1 πnβn,kνn,kg(αn,k)∑N

n=1 πnβn,k
(5.56)

ωi+1
k =

∑N
n=1 πnβn,k∑N
n=1 πn

, (5.57)

where the quantities αn,ℓ, γn,ℓ, νn,ℓ, βn,ℓ, πn were defined in (5.36)-(5.40) and βn,k ,

βn,k/
∑
ℓ βn,ℓ. The EM update of the NNGM sparsity rate τ (recall (5.31)) is identical

to that for the GM sparsity rate derived in [34]:

τ i+1 =
1

N

N∑

n=1

πn. (5.58)

Since the quantities in (5.55)-(5.58) are already computed by NNGM-GAMP, the EM

updates do not significantly increase the complexity beyond that of NNGM-GAMP

itself.
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The number of components L in the NNGM model (5.31) can be selected using

the standard penalized log-likelihood approach to model-order-selection [63], i.e., by

maximizing

ln p(y; q̂L) − η(L), (5.59)

where q̂L is the ML estimate of q under the hypothesis L (for which we would use

the EM estimate) and η(L) is a penalty term such as that given by the Bayesian

information criterion (BIC). Since this model-order-selection procedure is identical to

that proposed for EM-GM-GAMP in [34], we refer interested readers to [34] for more

details. In practice, we find that the fixed choice of L = 3 performs sufficiently well

(see Chapter 5.5).

5.4.5 EM initialization

With EM, a good initialization is essential to avoiding bad local minima. For EM-

NNL-GAMP, we suggest setting the initial exponential rate parameter χ0 = 10−2, as

this seems to perform well over a wide range of problems (see Chapter 5.5).

For EM-NNGM-GAMP, we suggest the initial sparsity rate

τ 0 = min
{
M
N
ρSE(M

N
), 1 − ǫ

}
(5.60)

where ǫ > 0 is set arbitrarily small and ρSE(·) is the theoretical noiseless phase-

transition-curve (PTC) for ℓ1 recovery of sparse non-negative signals, shown in [16]

to have the closed-form expression

ρSE(δ) = max
c≥0

1 − (1/δ)[(1 + c2)Φ(−c) − c ϕ(c)]

1 + c2 − [(1 + c2)Φ(−c) − c ϕ(c)]
(5.61)

where Φ(·) and ϕ(·) denote the cdf and pdf of the standard normal distribution. We

then propose to set the initial values of the NNGM weights {ωℓ}, locations {θℓ},

86



and scales {φℓ} at the values that best fit the uniform pdf on [0,
√

3ϕ0], which can

be computed offline similar to the standard EM-based approach described in [22, p.

435]. Under the AWGN model (5.10), we propose to set the initial variance of the

noise and signal, respectively, as

ψ0 =
‖y‖2

2

(SNR + 1)M
, ϕ0 =

‖y‖2
2 −Mψ0

||A||2F τ 0
, (5.62)

where, without knowledge of the true SNR , ‖Ax‖2
2/‖w‖2

2, we suggest using the

value SNR=100. Meanwhile, under the i.i.d Laplacian noise model (5.13), we suggest

to initialize the rate as ψ0 = 1 and ϕ0 again as in (5.62).

5.5 Numerical Results

The subsections below describe numerical experiments used to ascertain the per-

formance of the proposed methods28 to existing methods for non-negative signal re-

covery.

5.5.1 Validation of NNLS-GAMP and NNL-GAMP

We first examine the performance of our proposed algorithms on the linearly con-

strained NNLS problem (5.2) with λ=0. In particular, we compare the performance

of NNLS-GAMP to Matlab’s solver lsqlin. To do this, we drew realizations of K-

sparse simplex x ∈ ∆N
+ , where the nonzero elements {xk}Kk=1 were placed uniformly

at random and drawn from a symmetric Dirichlet distribution with concentration a,

i.e.,

p(x1, . . . , xK−1) =





Γ(aK)
Γ(a)K

∏K
k=1 x

a−1
k , xk ∈ [0, 1]

0 else
(5.63a)

p(xK |x1, . . . , xK−1) = δ(1 − x1 − · · · − xK), (5.63b)

28We implemented the proposed algorithms using the GAMPmatlab [48] package available at
http://sourceforge.net/projects/gampmatlab/.
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N = 100 N = 250 N = 500
time time time

NMSE NNLS-GAMP lsqlin NMSE NNLS-GAMP lsqlin NMSE NNLS-GAMP lsqlin

S
N

R 10 -161.8 0.068 0.050 -161.8 0.080 0.550 -161.8 0.159 5.414
100 -161.7 0.069 0.021 -154.3 0.080 0.205 -161.5 0.154 1.497
1000 -162.1 0.068 0.011 -161.7 0.079 0.074 -161.5 0.151 0.504

Table 5.1: NNLS-GAMP vs. lsqlin: average comparative NMSE [dB] and runtime
[sec] for simplex signal recovery.

where Γ(·) is the gamma function. For this first experiment, we used a=1, in which

case {xk}K−1
k=1 are i.i.d uniform on [0, 1], as well as K = N (i.e., no sparsity). We

then constructed noisy measurements y ∈ R
M according to (5.1) using A with i.i.d

N (0,M−1) entries, SNR , ‖Ax‖2
2/‖w‖2

2 = [10, 100, 1000], and sampling ratioM/N =

3. Table 5.1 reports the resulting comparative NMSE , ‖x̂NNLS-GAMP − x̂lsqlin‖2
2/‖x‖2

2

and runtime averaged over R = 100 realizations for signal lengths N = [100, 250, 500].

From the table, we see that NNLS-GAMP and lsqlin return identical solutions (up

to algorithmic tolerance29), but that NNLS-GAMP’s runtime scales like O(N2) while

lsqlin’s scales like O(N3), making NNLS-GAMP much faster for larger problem

dimensions N . Moreover, we see that NNLS-GAMP’s runtime is invariant to SNR,

whereas lsqlin’s runtime quickly degrades as the SNR decreases.

Next, we examine the performance of our proposed algorithms on the non-negative

LASSO problem (5.2) with λ > 0. In particular, we compare NNL-GAMP to

TFOCS30 [88]. For this, K-sparse non-negative x and noisy observations y were

29The algorithms under test include user-adjustable stopping tolerances. As these tolerances
are decreased, we observe that the comparative NMSE also decreases, at least down to Matlab’s
numerical precision limit.

30We used Matlab code from http://cvxr.com/tfocs/download/.
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K = 50 K = 100 K = 150
time time time

NMSE NNL-GAMP TFOCS NMSE NNL-GAMP TFOCS NMSE NNL-GAMP TFOCS

λ

0.01 -135.7 0.024 0.091 -139.9 0.025 0.119 -140.8 0.025 0.104
0.001 -125.4 0.026 0.130 -122.9 0.026 0.148 -117.0 0.027 0.175
0.0001 -113.2 0.035 0.256 -113.4 0.036 0.262 -112.4 0.036 0.292

Table 5.2: NNL-GAMP vs. TFOCS: average comparative NMSE [dB] and runtime
[sec] for K-sparse non-negative signal recovery.

constructed as before, but now with M=1000, N=500, K<N , and SNR=20 dB. Ta-

ble 5.2 shows the runtimes and comparative NMSE between NNL-GAMP and TFOCS

for various combinations of sparsity K and regularization weight λ. Table 5.2 shows

that the solutions returned by the two algorithms were identical (up to algorithmic

tolerance) but that NNL-GAMP ran about 4 to 8 times faster than TFOCS.

5.5.2 Noiseless Empirical Phase Transitions

It has been established (see, e.g., [16]) that, for the recovery of a non-negative

K-sparse signal x ∈ R
N from noiseless observations y = Ax ∈ R

M , there exists a

sharp phase-transition separating problem sizes (M,N,K) that are perfectly solv-

able (with very high probability) from those that are not. The precise location of

the phase-transition curve (PTC) differs among algorithms, presenting an avenue for

comparison.

Below, we present empirical PTCs for the recovery of K-sparse N -length simplex

signals from M noiseless measurements. To compute each PTC, we fixed N=500 and

constructed a 20×20 uniformly spaced grid on the M
N

-versus-K
M

plane for M
N

∈ [0.05, 1]

and K
M

∈ [0.05, 1]. At each grid point, we drew R= 100 independent realizations of

the pair (A,x), where A was drawn from i.i.d N (0,M−1) entries and x ∈ R
N had
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Figure 5.1: Empirical PTCs and ℓ1-SNN theoretical PTC for noiseless recovery of
length-N = 500, K-sparse, simplex signals with Dirichlet concentration a = 1 from
M measurements.

K nonzero elements {xk}Kk=1 (placed uniformly at random) drawn from a symmetric

Dirichlet distribution (5.63) with concentration parameter a. For the rth realization

of (A,x), we attempted to recover non-negative sparse x from the augmented obser-

vations [ y
1 ] =

[
A
1T

]
x, which implicitly enforce the simplex constraint. The resulting

recovery x̂ was considered to be “successful” if NMSE,‖x − x̂‖2
2/‖x‖2

2 < 10−6. Us-

ing Sr =1 to record a success and Sr =0 a failure, the average success rate was then

computed as S, 1
R

∑R
r=1 Sr, and the corresponding empirical PTC was plotted as the

S=0.5 level-curve using Matlab’s contour command.

Figures 5.1 and 5.2 show the empirical PTCs under the Dirichlet concentration

a = 1 (i.e., i.i.d uniform {xk}K−1
k=1 ) and a = 100 (i.e., xk ≈ 1

K
∀k), respectively, for

our proposed EM-tuned NNGM-GAMP and NNL-GAMP algorithms, in comparison

90



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

M/N

K
/M

EM-NNGM-GAMP

EM-NNL-GAMP

GSSP

theoretical ℓ1

Figure 5.2: Empirical PTCs and ℓ1-SNN theoretical PTC for noiseless recovery of
length-N=500, K-sparse, simplex signals with Dirichlet concentration a = 100 from
M measurements.

to the GSSP31 approach (5.3) proposed in [78]. We did not consider NNLS-GAMP

and lsqlin because, for A drawn i.i.d Gaussian, the solution to the non-negative LS

problem “arg minx≥0
‖y − Ax‖2

2” is not guaranteed to be unique when M <N [86,

Thm. 1], which is the setting considered here. Figures 5.1 and 5.2 also show ρSE(M
N

)

from (5.61), i.e., the theoretical large-system-limit PTC for ℓ1-based recovery of sparse

non-negative (SNN) signals.

Looking at Figures 5.1 and 5.2, we see that the empirical PTCs of EM-NNL-

GAMP are close to the theoretical ℓ1 PTC, as expected, and significantly better

than those of GSSP. More striking is the far superior PTCs of EM-NNGM-GAMP.

We attribute EM-NNGM-GAMP’s success to three factors: i) the generality of the

31For GSSP, we used code provided by its authors, but found that its performance was greatly
enhanced by initializing the algorithm at the Basis Pursuit solution (as computed by SPGL1 [70])
and using the stepsize 100/‖A‖2

F .
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NNGM prior (5.31), ii) the ability of the proposed EM approach to accurately learn

the prior parameters, and iii) the ability of sum-product GAMP to exploit the learned

prior. In fact, Fig. 5.2 shows EM-NNGM-GAMP reliably reconstructing K-sparse

signals from only M=K measurements in the compressive (i.e., M < N) regime.

5.5.3 Sparse Non-negative Compressive Imaging

As a practical example, we experimented with the recovery of a sparse non-

negative image. For this, we used the N=256 × 256 satellite image shown on the left

of Fig. 5.3, which contained K=6678 nonzero pixels and N−K=58858 zero-valued

pixels, and thus was approximately 10% sparse. Measurements y = Ax + w ∈ R
M

were collected under i.i.d Gaussian noise w whose variance was selected to achieve an

SNR=60 dB. Here, x represents the (rasterized) image and A a linear measurement

operator configured as A = ΦΨS, where Φ ∈ {0, 1}M×N was constructed from rows

of the N×N identity matrix selected uniformly at random, Ψ ∈ {−1, 1}N×N was a

Hadamard transform, and S ∈ R
N×N was a diagonal matrix with ±1 diagonal entries

chosen uniformly at random. Note that multiplication by A can be executed using

a fast binary algorithm, making it attractive for hardware implementation. For this

experiment, no linear equality constraints exist and so the observation model was not

augmented as in (5.6).

As a function of the sampling ratio M
N

, Fig. 5.4 shows the NMSE and runtime

averaged over R=100 realizations of A and w for the proposed EM-NNGM-GAMP

and EM-NNL-GAMP in comparison to EM-GM-GAMP from [34], genie-tuned non-

negative LASSO via TFOCS [88],32 and genie-tuned standard LASSO implemented

32Using EM-NNL-GAMP’s x̂, we ran TFOCS over an 11-point grid of hypothesized non-negative
ℓ1 penalty λ ∈ {0.5‖AT(y − Ax̂)‖∞, . . . , 2‖AT(y − Ax̂)‖∞} and then reported the total runtime
and best NMSE.
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Figure 5.3: Sparse non-negative image of a satellite: original image on left and EM-
NNGM-GAMP recovery at M

N
= 1

4
on right.

via SPGL133 [70]. NNLS methods were not considered because of the non-uniqueness

of their solutions in the M<N regime (recall [86, Thm. 1]).

Figure 5.4 shows that the proposed EM-NNGM-GAMP algorithm provided the

most accurate signal recoveries for all undersampling ratios. Remarkably, its phase-

transition occurred at M
N

≈ 0.25, whereas that of the other algorithms occurred

at M
N

≈ 0.35. The gain of EM-NNGM-GAMP over EM-GM-GAMP can be at-

tributed to the former’s exploitation of signal non-negativity, whereas the gain of

EM-NNGM-GAMP over non-negative LASSO (either via EM-NNL-GAMP or genie-

tuned TFOCS) can be attributed to former’s learning/exploitation of the true signal

distribution. Finally, the gain of non-negative LASSO over standard LASSO can be

attributed to the former’s exploitation of signal non-negativity.

Figure 5.4 also demonstrates that the LASSO tuning procedure proposed in Chap-

ter 5.4 works very well: the NMSE of EM-NNL-GAMP is nearly identical to that of

oracle-tuned TFOCS for all sampling ratios M/N .

33We ran SPGL1 in “BPDN mode,” i.e., solving minx ‖x‖1 s.t. ‖y − Ax‖2 < σ for hypothesized
tolerances σ2 ∈ {0.3, 0.6, . . . , 1.5} ×Mψ and then reported the total runtime and best NMSE.
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Figure 5.4: Recovery NMSE (top) and runtime (bottom) versus M
N

for the sparse
NN satellite image for the proposed EM-NNGM-GAMP and EM-NNL-GAMP com-
pared to EM-GM-GAMP, non-negative LASSO via oracle-tuned TFOCS, and stan-
dard LASSO via oracle-tuned SPGL1.

Finally, Fig. 5.4 shows that EM-NNGM-GAMP was about 3 times as fast as

EM-GM-GAMP, between 3 to 15 times as fast as SPGL1 (implementing standard

LASSO), and between 10 to 20 times as fast as TFOCS (implementing non-negative

LASSO). The proposed EM-NNL-GAMP was about 2 to 4 faster than EM-NNGM-

GAMP, although it did not perform as well in terms of NMSE.

5.5.4 Portfolio Optimization

As another practical example, we consider portfolio optimization under the return-

adjusted Markowitz mean-variances (MV) framework [75]: if x ∈ ∆N
+ is a portfolio

and rM+1 ∈ R
N is a random vector that models the returns of N commodities at the

future time M+1, then we desire to design x so that the future sum-return rT
M+1x

has relatively high mean and low variance. Although rM+1 is unknown at design
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time, we assume knowledge of the past M returns A, [r1, . . . , rM ]T, which can be

time-averaged to yield µ , 1
M

∑M
m=1 rm = 1

M
AT1, and then (assuming stationarity)

design x that minimizes the variance around a target sum-return of ρ, i.e.,

x̂ = arg min
x∈∆N

+

‖1ρ− Ax‖2
2 + λ‖x‖1 s.t. µTx = ρ. (5.64)

In (5.64), the use of sparsity promoting ℓ1 regularization [76] aims to help the portfolio

designed from past data {rm}Mm=1 generalize to the future data rM+1. Without ℓ1

regularization, the solutions to (5.64) are often outperformed by the “näıve” portfolio

xnäıve,
1
N

1 in practice [90].

Noting that (5.64) is a special case of (5.2), MV portfolio optimization is a nat-

ural application for the algorithms developed in this chapter. We thus tested our

proposed algorithms against34 lsqlin and cross-validated (CV)35 TFOCS using the

FF49 portfolio database,36 which consists of monthly returns for N = 49 securities

from July 1971 (i.e., r1) to July 2011 (i.e., r481). In particular, starting from July

1981 and moving forward in yearly increments, we collected the past M=120 months

of return data in A(i), [r12(i−1)+1, . . . , r12(i−1)+M ]T and computed the corresponding

time-average return µ(i) , 1
M

A(i)T1, where i ∈ {1, . . . , 30} indexed the years from

1981 to 2010. Then, we chose the target sum-return ρ(i) to be that of the näıve

scheme, i.e., ρ(i)= 1
N

µ(i)T1, and computed the portfolio x̂(i) from {A(i),µ(i), ρ(i)}

for each algorithm under test. The resulting x̂(i) was evaluated on the future T =12

34We were not able to configure GSSP in a way that maintained µTx̂ = ρ, even approximately,
after the simplex projection step in (5.3).

35For CV-TFOCS, we used 4-fold cross-validation to tune λ over a 15-point grid between 0.001
and 0.1.

36The publicly available FF49 database and other financial datasets can be obtained from
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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months of return data using the Sharpe ratio SR(i) , ρ̂(i)/σ̂(i), where

ρ̂(i) ,
1

T

T∑

t=1

rT
12(i−1)+M+tx̂(i), (5.65)

σ̂2(i) ,
1

T

T∑

t=1

(
rT

12(i−1)+M+tx̂(i) − ρ̂(i)
)2
, (5.66)

For lsqlin, the constraints were specified directly. For NNLS-GAMP, EM-NNL-

GAMP, and EM-NNGM-GAMP, the constraints were enforced using (5.6) with B =

[µ, 1]T and c = [ρ, 1]T, and for CV-TFOCS, the constraints were enforced using the

augmentation

ȳ ,



ρ(i)1

500ρ(i)
500


 and Ā =




A(i)
500µ(i)T

500 1T


 , (5.67)

where the gain of 500 helped to weight the constraints above the loss. Lastly, we tried

our GAMP-based approaches using both the AWGN likelihood (5.10) as well as the

AWLN likelihood (5.13).

Table 5.3 reports the average Sharpe ratios SR, 1
30

∑30
i=1 SR(i) and runtimes for

each algorithm under test. In addition, it reports the average squared constraint error

E , 1
30

∑30
i=1 |µ(i)Tx̂(i) − ρ(i)|2, showing that all algorithms near-perfectly met the

target sum-return constraint µ(i)Tx̂(i)=ρ(i). The table shows that Matlab’s lsqlin

and AWGN NNLS-GAMP (which solve the same NNLS problem) yielded identical

Sharpe ratios, which were ≈ 19% larger than the näıve value. Meanwhile, CV-

TFOCS and AWGN EM-NNL-GAMP (which solve the same NN LASSO problem)

yielded very similar Sharpe ratios, also ≈ 19% larger than the näıve value. As in

previous experiments, AWGN EM-NNGM-GAMP outperformed both NNLS and NN

LASSO, in this case improving on the näıve Sharpe ratio by 24%. The table also

shows that the use of an AWLN likelihood (robust to outliers [89]) resulted in across-

the-board improvements in Sharpe ratio. Among the algorithms under test, AWLN
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SR time (sec) E (dB)
näıve 0.3135 - -∞
lsqlin 0.3725 0.06 -307.4
CV-TFOCS 0.3747 31.92 -56.9

A
W

G
N NNLS-GAMP 0.3724 0.68 -72.0

EM-NNL-GAMP 0.3725 1.48 -60.9
EM-NNGM-GAMP 0.3900 6.98 -41.5

A
W

L
N NNLS-GAMP 0.3818 1.80 -56.1

EM-NNL-GAMP 0.3829 5.14 -43.2
EM-NNGM-GAMP 0.3995 2.95 -42.3

Table 5.3: Average Sharpe ratio SR, constraint error E (in dB), and runtime (in sec)
versus algorithm for the FF49 dataset.

EM-NNGM-GAMP yielded the best performance, improving the näıve Sharpe ratio

by 27%.

In terms of runtimes, Matlab’s lsqlin was by far the fastest algorithm, CV-

TFOCS was by far the slowest, and the AMP approaches were in-between. NNLS-

GAMP and NNL-GAMP were slower here than in Table 5.1 and Table 5.2 because

the matrix A in this financial experiment had correlated columns and thus required

the use of a stronger damping factor in the GAMPmatlab implementation [48].

5.5.5 Hyperspectral Image Inversion

As a final practical example, we consider hyperspectral image inversion [18]. A

hyperspectral image is like a color image, but instead of 3 spectral bands (red, green,

and blue) it contains M ≫ 3 spectral bands. With T =T1×T2 spatial pixels, such an

image can be represented by a matrix Y ∈ R
M×T and, under the macroscopic model,

“unmixed” into

Y = AX + W (5.68)
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where the nth column in A ∈ R
M×N is the spectral signature (or “endmember”) of the

nth material present in the scene, the nth row in X ∈ R
N×T
≥0 is the spatial abundance

of that material, and W is additive noise. The tth column of X, henceforth denoted

as xt, describes the distribution of materials within the tth pixel, and so for a valid

distribution we need xt ∈ ∆N
+ . We will assume that the endmembers A have been

extracted from Y (e.g., via the well known VCA algorithm [91]) and therefore focus

on image inversion, where the goal is to estimate X in (5.68) given Y and A. In

particular, the goal is to estimate a (possibly sparse) simplex-constrained xt from the

observation yt = Axt + wt at each pixel t.

We evaluated algorithm performance using the SHARE 2012 Avon dataset37 [92],

which uses M = 360 spectral bands, corresponding to wavelengths between 400 and

2450 nm, over a large rural scene. To do this, we first cropped down to the scene

shown in Fig. 5.5, known to consist primarily of pure grass, dry sand, black felt, and

white TyVek [93]. We then extracted the endmembers A from Y using VCA. Finally,

we estimated the simplex-constrained columns of X from (Y ,A) using NNLS-GAMP,

EM-NNL-GAMP, EM-NNGM-GAMP, lsqlin (known in the hyperspectral literature

as “fully constrained least squares” [94]), and GSSP. For both EM-NNL-GAMP and

EM-NNGM-GAMP, we opted to learn the prior parameters separately for each row

of X, since the marginal distributions can be expected to differ across materials. For

GSSP, we assumed that each pixel was at most K=3-sparse and used a step size of

3/‖A‖2
F , as these choices seemed to yield the best results.

37The SHARE 2012 Avon dataset can be obtained from http://www.rit.edu/cos/share2012/.

98

http://www.rit.edu/cos/share2012/


Figure 5.5: RGB image of the cropped scene of the SHARE 2012 dataset [92].

Since we have no knowledge of the true abundances X, we are unable to present

quantitative results on estimation accuracy. However, a qualitative comparison is

made possible using the fact that most pixels in this scene are known to be pure [92]

(i.e., contain only one material). In particular, each row of Fig. 5.6 shows the N =4

abundance maps recovered by a given algorithm, and we see that all recoveries are

nearly pure. However, the recoveries of EM-NNGM-GAMP are the most pure, as

evident from the deep blue regions in the first and third columns of Fig. 5.6, as well

as the deep red regions in the first and second columns. In terms of runtime, GSSP

was by far the slowest algorithm, whereas all the other algorithms were similar (with

lsqlin beating the others by a small margin).
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(a) lsqlin (runtime = 2.26 sec):

 

 

1/5

2/5

3/5

4/5

1

(b) NNLS-GAMP (runtime = 2.84 sec):
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(c) EM-NNL-GAMP (runtime = 3.23 sec):
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(d) EM-NNGM-GAMP (runtime = 4.37 sec):
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(e) GSSP (runtime = 170.71 sec):

 

 

1/5

2/5

3/5

4/5

1

Figure 5.6: Each row shows the N = 4 abundance maps estimated by a given algo-
rithm. From left to right, the materials are: grass, dry sand, black felt, and white
TyVek. Figure 5.5 shows the RGB image of the same scene.
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5.6 Conclusions

The problem of recovering a linearly constrained non-negative sparse signal x from

noisy linear measurements y arises in many applications. One approach is to pose

a sparsity-inducing convex optimization problem like (5.2) and then apply standard

solvers like lsqlin (when λ = 0) or TFOCS (when λ > 0), although doing so requires

also solving the non-trivial problem of optimizing λ [85]. Another approach is to solve

for the MMSE estimate of x, but doing so is made difficult by the need to estimate

the prior distribution of x and then compute the resulting posterior mean.

In this chapter, we proposed new solvers for (5.2) based on the min-sum AMP

methodology, yielding NNLS-GAMP (for λ = 0) and NNL-GAMP (for λ > 0), and

we demonstrated computational advantages relative to standard solvers in the large-

N regime. In addition, we proposed a novel EM-based approach to optimizing λ

that, in our empirical experiments, worked nearly as well as cross-validation and

oracle methods. Moreover, we proposed a new approximate-MMSE estimation scheme

that models x using an i.i.d Bernoulli non-negative Gaussian-mixture, learns the

distributional parameters via the EM algorithm, and exploits the learned distribution

via sum-product AMP. In all of our experiments, the resulting EM-NNGM-GAMP

algorithm yielded superior performance while maintaining a reasonable computational

efficiency. Finally, for problems where the noise may be non-Gaussian, we developed

Laplacian likelihood models for both min-sum and sum-product GAMP, in addition

to EM-tuning procedures, and demonstrated performance gains on practical datasets.
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Chapter 6: Hyperspectral Unmixing via Turbo Approximate

Message Passing

6.1 Introduction

In hyperspectral unmixing (HU), the objective is to jointly estimate the radiance

spectra and per-pixel abundances of the N materials present in a scene, given mea-

surements across M spectral bands at each of T = T1 × T2 pixels.38 Often, linear

mixing [18, 95] is assumed, in which case the measurements Y ∈ R
M×T are modeled

as

Y = SA + W , (6.1)

where the nth column of S ∈ R
M×N
+ represents the spectrum (or “endmember”) of

the nth material, the nth row of A ∈ R
N×T
+ represents the spatial abundance of the

nth material, and W represents noise. We note that this is analagous to the bilinear

obervation model (1.5), noting the change of variables. Both S and A must contain

only non-negative (NN) elements, and each column of A must obey the simplex

constraint (i.e., NN and sum-to-one).

Traditionally, hyperspectral unmixing is a two-step procedure, consisting of end-

member extraction (EE) to recover the endmembers followed by inversion to recover

38This chapter is an extended version of work our work published in [36] and further developed
in [37].
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the abundances. Many EE algorithms leverage the “pure pixel” assumption: for

each material, there exists at least one observed pixel containing only that material

(i.e., all columns of the N × N identity matrix can be found among the columns of

A). Well-known examples of pure-pixel-based EE algorithms include N-FINDR [96]

and VCA [91]. The existence of pure pixels in HU is equivalent to “separability” in

the problem of non-negative matrix factorization (NMF), where the goal is to find

S ∈ R
M×N
+ and A ∈ R

N×T
+ matching a given Z = SA. There, separability has been

shown to be sufficient for the existence of unique factorizations [21] and polynomial-

time solvers [97], with a recent example being the FSNMF algorithm from [98]. In

HU, however, the limited spatial-resolution of hyperspectral cameras implies that the

pure-pixel assumption does not always hold in practice. With “mixed pixel” scenarios

in mind, algorithms such as Minimum Volume Simplex Analysis (MVSA) [99] and

Minimum Volume Enclosing Simplex (MVES) [100] attempt to find the minimum-

volume simplex that contains the data Y .

In the inversion step, the extracted endmembers in Ŝ are used to recover the

simplex-constrained abundances in A. Often this is done by solving [94, 101]

Â = arg min
A≥0

‖Y − ŜA‖2
F s.t. 1T

NA = 1T
T , (6.2)

where 1N denotes the N × 1 vector of ones, which is usually referred to as fully

constrained least squares (FCLS).

Real-world hyperspectral datasets can contain significant structure beyond non-

negativity on smn and simplex constraints on {ant}Nn=1. For example, the abundances

{ant}Nn=1 will be sparse if most pixels contain significant contributions from only a

small subset of the N materials. Also, the abundances {ant}Tt=1 will be spatially

coherent if the presence of a material in a given pixel makes it more likely for that
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same material to exist in neighboring pixels. Likewise, the endmembers {smn}Mm=1

will be spectrally coherent if the radiance values are correlated across frequency.

Various unmixing algorithms have been proposed to leverage these additional

structures. For example, given an endmember estimate Ŝ, the SUnSAL algorithm

[102] estimates sparse abundances A using ℓ1-regularized least-squares (LS), and the

SUnSAL-TV algorithm [103] adds total-variation (TV) regularization [24] to also pe-

nalize changes in abundance across neighboring pixels (i.e., to exploit spatial coher-

ence). SUnSAL and SUnSAL-TV can be categorized as unmixing algorithms, rather

than inversion algorithms, since their ℓ1-regularization supports the use of large (i.e.,

N > M) and scene-independent endmember libraries for Ŝ. However, there are lim-

itations on the size of the library Ŝ, and it can be difficult to determine suitable

choices for the ℓ1 and TV regularization weights.

Bayesian approaches to hyperspectral unmixing have also been proposed. For ex-

ample, the Bayesian Linear Unmixing (BLU) algorithm [104] employs priors that

enforce NN constraints on the endmembers and simplex constraints on the per-

pixel abundances, and returns either (approximately) minimum mean-square error

(MMSE) or maximum a posteriori (MAP) estimates using Gibbs sampling. The

Spatially Constrained Unmixing (SCU) [105] algorithm, an extension of BLU, fur-

thermore exploits spatial coherence using a hierarchical Dirichlet-process prior. Both

BLU and SCU have been shown to outperform N-FINDR and VCA-plus-FCLS under

certain conditions [105], but at the cost of several orders-of-magnitude increase in

runtime.

In this chapter, we propose a novel Bayesian approach to HU that is based on

loopy belief propagation. Our approach, referred to as HU turbo-AMP (HUT-AMP),
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partitions the factor graph (see Fig. 6.1) into three subgraphs: one that models

spectral coherence (using N Gauss-Markov chains), one that models spatial coher-

ence (using N binary Markov Random Fields (MRFs)), and one that models the

NN bilinear structure of (6.1). While the first two subgraphs yield inference prob-

lems that are handled efficiently by standard methods [106, 107], the third does not.

Thus, to perform efficient inference on the bilinear structure subgraph, we apply the

recently proposed Bilinear Generalized Approximate Message Passing (BiG-AMP)

algorithm [29]. BiG-AMP can be interpreted as an extension of approximate message

passing (AMP) techniques [16, 27, 28], originally proposed for the linear observation

models that arise in compressive sensing, to bilinear models like (6.1). To merge

BiG-AMP-based inference with Markov-chain and MRF-based inference, we leverage

the “turbo AMP” approach first proposed in [32] and subsequently applied to joint

channel-estimation and decoding [108,109], compressive image retrieval [110,111], and

compressive video retrieval [112], all with state-of-the-art results. Furthermore, since

the parameters of the various prior distributions are unknown in practice, we use the

expectation-maximization (EM) algorithm to automatically tune them, building on

the NN sparse reconstruction work in [35]. Lastly, when the number of materials N is

unknown, we show how it can be accurately estimated using a classical model-order

selection (MOS) strategy [63].
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Figure 6.1: The factor graph for HUT-AMP for the toy-problem dimensions M = 3,
N = 2, and T = 4. Circles represent random variables and dark squares represent pdf
factors. Each elongated bar in the left subgraph conglomerates the factors associated
with an M-variable Markov chain (detailed in Fig. 6.2), while each square in the right
subgraph conglomerates the factors associated with a T1 × T2-pixel Markov random
field (detailed in Fig. 6.3).

We evaluate the performance of our proposed technique, in comparison to sev-

eral recently proposed methods, through a detailed numerical study that includes

both synthetic and real-world datasets. The results, presented in Chapter 6.4, sug-

gest that HUT-AMP yields an excellent combination of unmixing performance and

computational complexity.

6.2 Signal and Observation Models

6.2.1 Augmented Observation Model

We model the elements of the additive noise matrix W in (6.1) as i.i.d zero-mean

Gaussian with variance ψ > 0. Thus, the BiG-AMP marginal likelihoods take the
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form pymt|zmt
(ymt|zmt) = N (ymt; zmt;ψ). For now we treat ψ as known, but later (in

Chapter 5.4) we describe how it and other model parameters can be learned from Y .

Leveraging the zero-mean property of the noise, we first perform mean-removal

on the observations Y . In particular, we subtract the empirical mean

µ ,
1

MT

T∑

t=1

M∑

m=1

ymt =
1

MT
1T
MY 1T (6.3)

from Y to obtain

Y , Y − µ1M1T
T (6.4)

=
(
S − µ1M1T

N

)

︸ ︷︷ ︸
, S

A + W , (6.5)

where (6.5) employed (6.1) and 1T
NA = 1T

T , the latter of which results from the

simplex constraint on the columns of A. It can then be shown (see Appendix C.1)

that the elements of S in (6.5) are approximately zero-mean.

To enforce the linear equality constraint 1T
NA = 1T

T , we augment the observation

model (6.5) into the form

[
Y

1T
T

]

︸ ︷︷ ︸
, Ȳ

=

[
S

1T
N

]

︸ ︷︷ ︸
, S̄

A +

[
W

0T
T

]

︸ ︷︷ ︸
, W̄

. (6.6)

For the augmented model (6.6), the likelihood function of Z̄ , S̄A takes the form in

(2.6) with

pymt|zmt
(ymt|zmt) =





N (ymt; zmt, ψ) m=1, . . . ,M

δ(ymt− zmt) m=M+1.
︸ ︷︷ ︸

, hmt(zmt)

(6.7)

We note that, ignoring spectral and spatial coherence, the model (6.6) is appro-

priate for the application of BiG-AMP, since the likelihood function pY |Z(Ȳ |Z̄) is
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known (up to ψ) and separable, and since the elements in S̄ and A can be treated

as independent random variables with priors known up to a set of parameters, with

those in S̄ being approximately zero-mean. In the sequel, we describe how the model

(6.6) can be extended to capture spectral and spatial coherence.

6.2.2 Endmember Model

We desire a model that promotes spectral coherence in the endmembers, i.e., cor-

relation among the (mean removed) spectral amplitudes {smn}Mm=1 of each material

n. However, since BiG-AMP needs smn to be independent, we cannot impose cor-

relation on these variables directly. Instead, we introduce an auxiliary sequence of

correlated amplitudes {emn}Mm=1 such that smn are independent conditional on emn.

In particular,

pS|E(S|E) =
M∏

m=1

N∏

n=1

ps|e(smn|emn) (6.8)

ps|e(smn|emn) = δ(smn − emn)︸ ︷︷ ︸
, fmn(smn, emn)

, (6.9)

implying that emn is merely a copy of smn. To impart correlation within the auxiliary

sequences {emn}Mm=1, we model them as independent Gauss-Markov models

pE(E) =
N∏

n=1

p(e1n)
M∏

m=2

p(emn|em−1,n)

︸ ︷︷ ︸
, pen

(en)

, (6.10)

where en , [e1n, . . . , eMn]T, en , [e1n, . . . , eMn]T, and

p(e1n) = N (emn; κn, σ
2
n) (6.11)

p(emn|em−1,n) = N
(
emn; (1−ηn)em−1,n+ηnκn, η

2
nσ

2
n

)
. (6.12)
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Figure 6.2: Factor graph for the stationary first-order Gauss-Markov chain used to
model coherence in the spectrum of the nth endmember, shown here for M = 4
spectral bands. Incoming messages from BiG-AMP flow downward into the emn
nodes, and outgoing messages to BiG-AMP flow upward from the emn nodes.

In (6.11)-(6.12), κn ∈ R controls the mean of the nth process, σ2
n controls the variance,

and ηn ∈ [0, 1] controls the correlation. The resulting factor graph is illustrated in

Fig. 6.2.

We note that the model (6.11)-(6.12) does not explicitly enforce non-negativity in

smn because, for simplicity, we have omitted the constraint smn ≥ −µ. Enforcement of

smn ≥ −µ could be accomplished by replacing the pdfs in (6.11)-(6.12) with truncated

Gaussian versions, but the computations required for inference would become much

more tedious. In our experience, this tedium is not warranted: with practical HU

datasets,39 it suffices to enforce non-negativity in A and keep Y ≈ SA.

6.2.3 Abundance Model

We desire a model that promotes both sparsity and spatial coherence in the

abundances ant. To accomplish the latter, we impose structure on the support of

{ant}Tt=1 for each material n. For this purpose, we introduce the support variables

dnt ∈ {−1, 1}, where dnt = −1 indicates that ant is zero-valued, and dnt = 1 indi-

cates that ant is non-zero with probability 1, which we will refer to as “active.” By

modeling the abundances ant as independent conditional on dnt, we comply with the

39Throughout our numerical experiments, the proposed inference method never produced a neg-
ative estimate of smn.
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independence assumptions of BiG-AMP. In particular, we assume that

pA|D(A|D) =
N∏

n=1

T∏

t=1

pan|dn
(ant|dnt) (6.13)

pan|dn
(ant|dnt) =




δ(ant) dnt = −1

ζn(ant) dnt = 1
︸ ︷︷ ︸

, gnt(ant, dnt)

, (6.14)

where ζn(·) denotes the pdf of ant when active. Essentially, we employ a Bernoulli-

ζn(·) distribution for the nth material.

We then place a Markov random field (MRF) prior on the support of the nth

material, dn , [dn1, . . . , dnT ]T:

pD(D) =
N∏

n=1

pdn
(dn) (6.15)

pdn
(dn) ∝ exp




T∑

t=1


1

2

∑

i∈Dt

βndni − αn


dnt


, (6.16)

where Dt ⊂ {1, . . . , T} \ t denotes the neighbors of pixel t. Roughly speaking, larger

βn yields higher spatial coherence and larger αn yields higher sparsity. For simplicity,

we adopt a neighborhood structure corresponding to the classical Ising model [106],

as illustrated by the factor graph in Fig. 6.3.
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dn1 dn2 dn3

dnT

Figure 6.3: Factor graph for the Ising MRF used to model spatial coherence in the
support of the nth abundance map, here for T = 3 × 3 pixels. Incoming messages
from BiG-AMP flow diagonally upward into the dnt nodes, and outgoing messages to
BiG-AMP flow diagonally downward from the dnt nodes.

As for the active abundances, we adopt a non-negative Gaussian mixture (NNGM)

distribution for ζn(·):

ζn(a) =
L∑

ℓ=1

ωa
nℓN+(a; θa

nℓ, φ
a
nℓ), (6.17)

where ωa
nℓ ≥ 0 and

∑L
ℓ=1 ω

a
nℓ = 1. In (6.17), N+ refers to the truncated Gaussian pdf

N+(x; θ, φ) ,





0 x < 0
N (x; θ, φ)

Φc(θ/
√
φ)

x ≥ 0
, (6.18)

where θ ∈ R is a location parameter (but not the mean), φ > 0 is a scale parameter

(but not the variance), and Φc(·) is the complimentary cdf of the N (0, 1) distribution.

In practice, we find that L = 3 mixture components suffice, and we used this value

throughout our numerical experiments in Chapter 6.4.
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6.3 The HUT-AMP Algorithm

6.3.1 Message Passing and Turbo Inference

Our overall goal is to jointly estimate the (correlated, non-negative) endmembers

S and (structured sparse, simplex-constrained) abundances A from noisy observations

Y of the bilinear form Z = SA. Using the mean-removed, augmented probabilistic

models from Chapter 6.2, the joint pdf of all random variables can be factored as

follows:

p(Ȳ , S̄,A,E,D) = p(Ȳ |S̄,A) p(S̄,E) p(A,D) (6.19)

= pY |Z(Ȳ |S̄A) pS|E(S̄|E) pE(E) pA|D(A|D) pD(D) (6.20)

=



M+1∏

m=1

T∏

t=1

hmt




N∑

n=1

smnant






×
N∏

n=1


δ(sM+1,n − 1) pen

(en)
M∏

m=1

fmn(smn, emn)

× pdn
(dn)

T∏

t=1

gnt(ant, dnt)


, (6.21)

yielding the factor graph in Fig. 6.1. Due to the cycles within the factor graph, exact

inference is NP-hard [113], and so we settle for approximate MMSE inference.

To accomplish approximate MMSE inference, we apply a form of loopy belief

propagation that is inspired by the “turbo decoding” approach used in modern com-

munications receivers [114]. In particular, after partitioning the overall factor graph

into three subgraphs, as in Fig. 6.1, we alternate between message-passing within sub-

graphs and message-passing between subgraphs. In our case, BiG-AMP [29] is used for

message-passing within the bilinear subgraph and standard methods from [106, 107]

are used for message-passing within the other two subgraphs, which involve N Gauss-

Markov chains and N binary MRFs, respectively. Overall, our proposed approach can
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be interpreted as a bilinear extension of the “turbo AMP” approach first proposed

in [32].

6.3.2 Messaging Between Subgraphs

For a detailed description of the message passing within the Gauss-Markov, MRF,

and BiG-AMP subgraphs, we refer interested readers to [106], [107], and [29], respec-

tively. We now describe the message passing between subgraphs, which relies on the

sum-product algorithm (SPA) [44]. In our implementation of the SPA, we assume

that all messages are scaled to form valid pdfs (in the case of continuous random

variables) or pmfs (in the case of discrete random variables), and we use ∆b
c(·) to

represent the message passed from node b to node c.

As described in [44], the SPA message flowing out of a variable node along a

given edge equals the (scaled) product of messages flowing into that node along its

other edges. Meanwhile, the SPA message flowing out of a factor node along a given

edge equals the (scaled) integral of the product of all incoming messages times the

factor associated with that node. Finally, the SPA approximates the posterior of a

given random variable as the (scaled) product of messages flowing into that random

variable.

As discussed in Chapter 2.1, a key property of BiG-AMP is that certain messages

within its sub-graph are approximated as Gaussian. In particular,

∆
smn

fmn
(s) = N (s; q̂mn, ν

q
mn) (6.22)

∆ant

gnt
(a) = N (a; r̂nt, ν

r
nt), (6.23)
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where the quantities q̂mn, ν
q
mn, r̂nt, ν

r
nt are computed during the final iteration of BiG-

AMP. Thus, the SPA approximated posteriors on smn and ant take the form

psmn|qmn
(s | q̂mn; νqmn) ∝ ∆fmn

smn
(s)N (s; q̂mn, ν

q
mn) (6.24)

pant|rnt
(a | r̂nt; νrnt) ∝ ∆gnt

ant
(a)N (a; r̂nt, ν

r
nt). (6.25)

We will use these properties in the sequel.

First, we discuss the message-passing between the bilinear sub-graph and spectral-

coherence sub-graph in Fig. 6.1. Given (6.9), (6.22), and the construction of the factor

graph in Fig. 6.1, the SPA implies that

∆fmn

emn
(e) ∝

∫
fmn(s, e) ∆

smn

fmn
(s) ds = N (e; q̂mn, ν

q
mn). (6.26)

The messages in (6.26) are used as inputs to the Gauss-Markov inference procedure.

By construction, the outputs of the Gauss-Markov inference procedure will also be

Gaussian beliefs. Denoting their means and variances by θs
mn and φs

mn, respectively,

we have that

∆emn

fmn
(e) ∝ N (e; θs

mn, φ
s
mn) (6.27)

∆fmn

smn
(s) =

∫
fmn(s, e) ∆emn

fmn
(e) de = N (s; θs

mn, φ
s
mn). (6.28)

When BiG-AMP is subsequently called for inference on the bilinear sub-graph, it will

use ∆fmn
smn

(·) as the prior on smn.

Next we discuss the message-passing between the bilinear sub-graph and the

spatial-coherence sub-graph in Fig. 6.1. The SPA, together with the construction

of the factor graph in Fig. 6.1, imply

∆gnt

dnt
(d) =

∫
gnt(a, d) ∆ant

gnt
(a) da

∑
d′=±1

∫
gnt(a, d′) ∆ant

gnt
(a) da

, d ∈ ±1. (6.29)

114



Given (6.14) and (6.23), we find that

∫
gnt(a, d) ∆ant

gnt
(a) da =





N (0; r̂nt, ν
r
nt) da d = −1

∫
ζn(a) N (a; r̂nt, ν

r
nt) da d = 1

(6.30)

which implies

∆gnt

dnt
(d = +1) =

(
1+

N (0; r̂nt, ν
r
nt)∫

ζn(a) N (a; r̂nt, νrnt)

)−1

(6.31a)

∆gnt

dnt
(d = −1) = 1 − ∆gnt

dnt
(d = +1), (6.31b)

where the fraction in (6.31a) is BiG-AMP’s approximation of the likelihood ratio

pY |dnt
(Y | − 1)/pY |dnt

(Y | + 1).

The Bernoulli beliefs from (6.31) are used as inputs to the MRF-based support-

inference procedure. The outputs of the MRF inference procedure will also be

Bernoulli beliefs of the form

∆dnt

gnt
(d = +1) = πnt (6.32a)

∆dnt

gnt
(d = −1) = 1 − πnt (6.32b)

for some πnt ∈ (0, 1). The SPA and (6.14) then imply that

∆gnt

ant
(a) ∝

∑

d=±1

gnt(a, d) ∆dnt

gnt
(d) = (1 − πnt)δ(a) + πntζn(a) (6.33)

for ζn(·) defined in (6.17). When BiG-AMP is subsequently called for inference on

the bilinear sub-graph, it will use ∆gnt
ant

(·) as the prior on ant.

6.3.3 EM Learning of the Prior Parameters

In practice, we desire that the parameters

Ω =
{
ψ, {ωa

nℓ, θ
a
nℓ, φ

a
nℓ}∀nℓ, {ηn, κn, σ2

n, αn, βn}∀n

}
(6.34)

115



used for the assumed likelihood pymt|zmt
(ymt|·), NNGM abundance prior ζn(·), Gauss-

Markov chain pen
(·), and binary MRF pdn

(·) are well tuned. With this in mind, we

propose an expectation-maximization (EM) [31] procedure to tune Ω, similar to that

used for the GAMP-based sparse-reconstruction algorithms in [34] and [35].

To tune Ω, the EM algorithm [31] iterates

Ωi+1 = arg max
Ω

E
{

ln p(E ,A,D,Y ; Ω)
∣∣∣ Ȳ ; Ωi

}
(6.35)

with the goal of increasing a lower bound on the true likelihood p(Ȳ ; Ω) at each

EM-iteration i. In our case, the true posterior distribution used to evaluate the

expectation in (6.35) is hard to compute, and so we use the SPA-approximated pos-

teriors p̂E |Y (E|Ȳ ) ∝ ∏
m,n ∆fmn

emn
(emn)∆emn

fmn
(emn) from (6.26)-(6.27), p̂D|Y (D|Ȳ ) ∝

∏
n,t ∆

gnt

dnt
(dnt)∆

dnt
gnt

(dnt) from (6.31)-(6.32), and p̂A|Y (A|Ȳ ) ∝ ∏
n,t ∆

ant
gnt

(ant)∆
gnt
ant

(ant)

from (6.23) and (6.33). Furthermore, since it is difficult to perform the maximization

in (6.35) jointly, we maximize Ω one component at a time (while holding the others

fixed), which is the well known “incremental” variant of EM [61].

The resulting EM-update expressions for the parameters ψ, ωa
nℓ, θ

a
nℓ, φ

a
nℓ can be

found in [35], and those for the Gauss-Markov chain parameters ηn, κn, σ
2
n can be

found in [112]. They are all computed in closed-form using readily available quanti-

ties, and thus do not add significantly to the complexity of HUT-AMP. The update

procedure for the binary MRF parameters αn, βn is described in [111] and uses gra-

dient descent. Since a small number of gradient-descent iterations suffice, this latter

procedure does not significantly increase the complexity of HUT-AMP.
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6.3.4 EM Initialization

Since the EM algorithm may converge to a local maximum of the likelihood, care

must be taken when initializing the EM-learned parameters. Below, we propose an

initialization strategy for HUT-AMP that, based on our empirical experience, seems

to work well.

We first initialize the endmembers S. For this, we found it effective to use an

off-the-shelf EE algorithm like VCA [91] or FSNMF40 [98] to recover Ŝ
0
. Then,

as described in (6.5), we subtract the observation mean µ from Ŝ
0

to obtain the

initialization Ŝ
0
.

With the aid of Ŝ
0
, we next run BiG-AMP under

1. the trivial endmember prior

∆fmn

smn
(s) = δ(s− ŝ0

mn), (6.36)

which essentially fixes the endmembers at Ŝ
0
,

2. the agnostic NNGM abundance initialization from [35]:

∆gnt

ant
(a) = (1 − π0

nt)δ(a) + π0
nt

L∑

ℓ=1

ωa
nℓN+(a; θa

nℓ, φ
a
nℓ) (6.37)

with {ωa
nℓ, θ

a
nℓ, φ

a
nℓ}Lℓ=1 set at the best fit to a uniform distribution on the interval

[0, 1] and π0
nt = 1

N
, and

3. the noise variance initialization from [35]:

ψ0 =
‖Y ‖2

F

(SNR0 + 1)MT
, (6.38)

40 With FSNMF (which was used for all of the experiments in Chapter 6.4), we found that it
helped to post-process the observations to reduce the effects of noise. For this, we used the standard
PCA-based denoising approach described in [18]: the signal subspace was estimated from the left
singular vectors of Y after row-wise mean-removal, and the FSNMF-estimated endmembers were
projected onto the signal subspace.
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where, without any prior knowledge of the true SNR , E{|zmt|2}/ψ, we suggest

setting SNR0 =0 dB.

By running BiG-AMP under these settings, we initialize the messages ∆
smn

fmn
(·) and

∆ant
gnt

(·) from (6.22)-(6.23) and we also obtain an initial estimate of A from the mean

of the approximate posterior (6.25), which we shall refer to as Â
0
.

Finally, we initialize the remaining parameters in Ω. Starting with the spectral

coherence parameters, we set the mean κ0
n and variance (σ2

n)0 at the empirical mean

and variance, respectively, of the elements in the nth column of Ŝ
0
. Then, we initialize

the correlation ηn as suggested in [112], i.e.,

ϕ0 =
‖Y ‖2

F −MTψ0

∥∥∥Â
0∥∥∥

2

F

(6.39)

η0
n = 1 − 1

M − 1

M−1∑

m=1

|yT
m

y
m+1

|
ϕ0
∥∥∥Â

0∥∥∥
2

F

for n = 1, . . . , N, (6.40)

where yT
m

denotes the mth row of Y . Lastly, we initialize the spatial coherence

parameters as suggested in [111], i.e., β0
n = 0.4 and α0

n = 0.4, since [111] shows these

values to work well over a wide operating range.

6.3.5 HUT-AMP Summary

We now describe the scheduling of turbo-messaging and EM-tuning steps, which

together constitute the HUT-AMP algorithm. Essentially, we elect to perform one EM

update per turbo iteration, yielding the steps tabulated in Table 6.1. As previously

mentioned, the “BiGAMP” operation iterates the BiG-AMP algorithm to convergence

as described in [29], the “GaussMarkov” operation performs standard Gauss-Markov

inference as described in [106], and the “MRF” operation performs MRF inference via

the belief-propagation method described in [107].
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Definitions:

∆E
F , {∆emn

fmn
(·)}∀mn ∆F

E , {∆fmn
emn

(·)}∀mn
∆F

S , {∆fmn
smn

(·)}∀mn ∆
S
F , {∆

smn

fmn
(·)}∀mn

∆A
G , {∆ant

gnt
(·)}∀nt ∆G

A , {∆gnt
ant

(·)}∀nt
∆G

D , {∆gnt

dnt
(·)}∀nt ∆D

G , {∆dnt
gnt

(·)}∀nt

1: Initialize ∆
S
F , ∆A

G, and Ω0 as described in Chapter 6.3.4.
2: for i = 1, 2, 3, . . . do

3: convert ∆
S
F to ∆F

E via (6.22) and (6.26)
4: convert ∆A

G to ∆G
D via (6.23) and (6.31)

5: ∆E
F = GaussMarkov(∆F

E ,Ω
i)

6: ∆D
G = MRF(∆G

D ,Ω
i)

7: convert ∆E
F to ∆F

S via (6.27) and (6.28)

8: convert ∆D
G to ∆G

A via (6.32) and (6.33)
9: Ωi = EM(∆F

E ,∆
E
F ,∆

G
D ,∆

D
G,∆

G
A ,∆

A
G,Ω

i−1)

10: [∆
S
F ,∆

A
G] = BiGAMP(∆F

S ,∆
G
A ,Ω

i)
11: end for

Table 6.1: HUT-AMP pseudocode for fixed number of materials N .

6.3.6 Selection of Number of Materials

In practice, the number of materials N present in a scene may be unknown. Thus,

we now propose a method to estimate N from the observed data Y . For this, we use

the standard form of penalized log-likelihood maximization [63]

N̂ = arg max
N

2 ln pY |Z(Ȳ |ŜNÂN ; ψ̂ML) − γ(N), (6.41)

where ŜN and ÂN are the estimates of the mean-removed endmembers and abun-

dances returned from N -material HUT-AMP, ψ̂ML is the ML estimate of the noise

variance, and γ(·) is a penalty term. As recommended in [115], we choose γ(·) in ac-

cordance with the small-sample-corrected Akaike information criterion (AICc) [63],

i.e., γ(N) = 2 MT
MT−n(N)−1

n(N), where MT is the number of scalar observations in

Y and n(N) is the number of scalar degrees-of-freedom (DoF) in our model, which
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depends on N . In particular, n(N) comprises MN DoF from S, (N − 1)T DoF from

A, and 5N + 2NL +N(L − 1) + 1 DoF from Ω. Plugging the standard form of the

ML estimate of ψ (see, e.g., [63, eq. (7)]) into (6.41), we obtain

N̂=arg max
N

−MT ln

(
‖Y −ŜNÂN‖2

F

MT

)
− 2MTn(N)

MT−n(N)−1
. (6.42)

To solve the maximization in (6.42), we first run N = 2 HUT-AMP to completion

and compute the penalized log-likelihood. We then increment N by 1, and compute

the penalized log-likelihood again. If it increases, we increment N by 1 and repeat

the procedure. Once the penalized log-likelihood decreases, we stop the procedure

and select the previous model order N , which is the maximizer of the penalized

log-likelihood. We refer to the resulting procedure as “HUT-AMP with model-order

selection” (HUT-AMP-MOS).

We also note that a similar model-order selection strategy can be implemented

to tune the number of NNGM components L used in (6.17), and we refer interested

readers to [34] for more details. We note, however, that the fixed choice L = 3 was

sufficient to yield the excellent results in Chapter 6.4.

6.4 Numerical Results

In this section, we report the results of several experiments that we conducted to

characterize the performance of our proposed methods on both synthetic and real-

world datasets.

In these experiments, we compared the endmembers Ŝ recovered from our pro-

posed HUT-AMP and HUT-AMP-MOS41 unmixing algorithms to those recovered by

41Matlab code can be found at http://www.ece.osu.edu/˜schniter/HUTAMP.
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the Bayesian unmixing algorithm SCU [105] and the endmember extraction (EE) al-

gorithms VCA [91], FSNMF [98], and MVSA [99]. For FSNMF, we used the PCA

post-processing described in footnote 40 to reduce the effects of measurement noise,

since this greatly improved its mean-squared estimation error.

We also compared the abundances Â recovered by our proposed HUT-AMP and

HUT-AMP-MOS unmixing algorithms to those recovered by the Bayesian unmixing

algorithm SCU, as well as those recovered by both FCLS (6.2) (implemented via

Matlab’s lsqlin) and SUnSAL-TV [103] using the endmember estimates produced

by VCA, FSNMF, and MVSA.

In all cases, algorithms were run using their authors’ implementation and sug-

gested default settings, unless noted otherwise. For SUnSAL-TV, the regularization

weights for the ℓ1 and TV norms were hand-tuned, because cross-validation tuning

was too computationally expensive given the sizes of the datasets.

6.4.1 Pixel Purity versus Abundance Sparsity

In the first experiment, we aim to assess EE performance as a function of pixel

purity and abundance sparsity. Our motivation stems from the fact that the proposed

HUT-AMP algorithm aims to exploit sparsity in the columns of the abundance matrix

A, while classical EE techniques like VCA and FSNMF aim to exploit the presence

of pure pixels, recalling the discussion in Chapter 6.1. Thus, we are interested in

seeing how these contrasting approaches fare under varying degrees of pixel purity

and abundance sparsity.

For this first experiment, we constructed synthetic data consisting of M = 100

spectral bands, T =115 spatial pixels, and N=10 materials. The endmember matrix
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M

T N
P

pure K=3

= ×
‖a‖1 =1

Figure 6.4: Illustration of the non-negative endmember matrix S and the K-sparse
P -pure abundance matrix A for the first experiment.

S ∈ R
M×N
+ was drawn i.i.d such that smn ∼ N+(0.5, 0.05). The abundance matrix

A ∈ R
N×T
+ was generated as shown in Fig. 6.4, where P of the columns of A were

assigned (uniformly at random) to be pure pixels, and the remaining columns were

drawn K-sparse on the simplex. In particular, for each of these latter columns, the

support was drawn uniformly at random, and the non-zero values {ak}Kk=1 were drawn

from a Dirichlet distribution, i.e.,

p(a1, . . . , aK−1) =





Γ(αK)
Γ(α)K

∏K
k=1 a

α−1
k , ak ∈ [0, 1]

0 else
(6.43a)

p(aK |a1, . . . , aK−1) = δ(1 − a1 − · · · − aK), (6.43b)

where Γ(·) denotes the gamma function, with concentration parameter α = 1. Finally,

the observation matrix Y was created by adding white Gaussian noise W to Z = SA,

where the noise variance ψ was adjusted to achieve SNR, 1
MT

‖Z‖2
F/ψ=30 dB.

We emphasize that neither spectral nor spatial coherence were used in this ex-

periment. Thus, we turn off the spectral and spatial coherence exploitation in HUT-

AMP, reducing our approach to EM-tuned BiG-AMP [29]. However, we emphasize

that this application of EM-BiG-AMP differs from those in [115] in that it involves

non-negativity and simplex constraints, i.e., it targets the NMF problem.
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Figure 6.5 shows empirical success probability averaged over R = 100 realizations,

as a function of pixel purity P and sparsity K, for the HUT-AMP, MVSA, VCA, and

FSNMF algorithms. Here, a recovery was considered successful if NMSES , ‖S −

Ŝ‖2
F/‖S‖2

F < −40 dB. As seen in Fig. 6.5(c) and Fig. 6.5(d), VCA and FSNMF were

only successful for the K=1 and P =10 cases, i.e., the pure-pixel cases. HUT-AMP,

on the other hand, was able to successfully recover the endmembers for K ≤ 6-sparse

abundances, even when there was only P = 1 pure-pixels available. We attribute

HUT-AMP’s improved performance to its exploitation of sparsity rather than pure

pixels (as with VCA and FSNMF). We also conjecture that sparsity (i.e., K>1 and

P <N) is more important in practice, since the spatial resolution of the hyperspectral

sensors may not guarantee pixel-purity for all materials, while sparse abundances (i.e.,

K≪N) are more likely to hold. Meanwhile, we note that, although MVSA performs

remarkably well for this problem, its performance suffers when real-world endmembers

are considered, as demonstrated by the experiments in the sequel.

6.4.2 Pure-Pixel Synthetic Abundances

The second experiment uses synthetic pure-pixel abundances A with endmem-

bers S chosen from the USGS Digital Spectral Library splib06a,42 which contains

laboratory-measured reflectance values for various materials over M = 224 spectral

bands. To construct the data, we partitioned a scene of T = 50 × 50 pixels into

N = 5 equally sized vertical strips, each containing a single pure material. We then

selected endmembers corresponding to the materials Grossular, Alunite, well crystal-

lized (wxl) Kaolinite, Hydroxyl-Apatite, and Amphibole, noting that similar results

were obtained in experiments we conducted with other materials. Finally, white

42See http://speclab.cr.usgs.gov/spectral.lib06/ds231/
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(b) MVSA:
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(c) VCA:
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(d) FSNMF:

 

 

2 4 6 8 10

2

4

6

8

10

0

0.2

0.4

0.6

0.8

1

S
p
ar

si
ty
K

Pixel purity P

Figure 6.5: First experiment: Average success rate for near-perfect recovery of i.i.d
endmembers S and K-sparse and P -pure abundances A using (a) HUT-AMP, (b)
MVSA, (c) VCA, and (d) FSNMF.

Gaussian noise was added to achieve SNR = 30 dB. Figure 6.6 shows an RGB image

constructed from the noiseless measurements Z.

Averaging over R= 50 noise realizations, Table 6.2 shows the normalized mean-

squared error (i.e., NMSES and NMSEA , ‖A − Â‖2
F/‖A‖2

F ) of the estimated end-

members and abundances, the runtimes for the individual estimation of S and A,

and the total runtime. (For HUT-AMP and SCU, the estimation of S and A is done

jointly, and thus only the total runtime is reported).
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Figure 6.6: RGB image of the noiseless measurements Z used for the second experi-
ment. Since the pixels are pure, each strip shows the RGB color of one of the N =5
materials. They are, in order from left to right: Grossular, Alunite, wxl Kaolinite,
Hydroxyl-Apatite, and Amphibole.

For this pure-pixel dataset, Table 6.2 shows HUT-AMP dominating the other

algorithms in both endmember and abundance estimation accuracy. In particular,

HUT-AMP outperformed the best competing techniques by 9 dB in NMSES and 60 dB

in NMSEA. We attribute HUT-AMP’s excellent NMSE to several factors. First, it

has the ability to jointly estimate endmembers and abundances, to exploit spectral

coherence in the endmembers, and to exploit both spatial coherence and sparsity in

the abundances (of which there is plenty in this experiment). Furthermore, due to

the presence of pure-pixels throughout the scene, the “active” distribution ζn(·) in

(6.17) is simply a Bernoulli distribution, which HUT-AMP is able to learn (via EM)

and exploit (via BiG-AMP) for improved performance. Although SCU also performs

joint estimation and is able to exploit spectral and spatial coherence, we conjecture

that its priors are less well-matched to this highly sparse dataset. Regarding the

NMSE advantage of FCLS over SUnSAL-TV, we attribute this to the fact that FCLS

enforces the sum-to-one abundance constraint whereas SUnSAL-TV does not.
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S time A time Total time NMSES NMSEA

HUT-AMP - - 13.75 sec -52.0 dB -91.8 dB

SCU - - 3178 sec -39.9 dB -30.0 dB

VCA + FCLS 0.15 sec 6.15 sec 6.31 sec -42.0 dB -31.5 dB

VCA + SUnSAL-TV 0.15 sec 11.61 sec 11.76 sec -42.2 dB -27.6 dB

FSNMF + FCLS 0.06 sec 5.63sec 5.69 sec -43.0 dB -30.8 dB

FSNMF + SUnSAL-TV 0.05 sec 11.51 sec 11.56 sec -43.0 dB -29.7 dB

MVSA + FCLS 0.93 sec 3.66 sec 4.59 sec -26.2 dB -18.9 dB

MVSA + SUnSAL-TV 0.42 sec 7.73 sec 8.15 sec -26.1 dB -18.9 dB

Table 6.2: Runtime and endmember/abundance recovery NMSE and runtime for the
second experiment.

Table 6.2 also shows that the total runtime of HUT-AMP is comparable to that

of the “EE-and-inversion” techniques, while being 230 times faster than that of the

Bayesian joint unmixing algorithm, SCU. In fact, SCU took advantage of parallel

processing over 8 cores, whereas the other algorithms all used a single core. We

conjecture that the slower runtime of SCU is due to its use of Gibbs sampling. As for

the EE-and-inversion techniques, we note that their total runtime is dominated by

the inversion step, which is 2-3 orders-of-magnitude more time-consuming than the

EE step.

Although not shown in Table 6.2, we also ran HUT-AMP-MOS on this dataset.

The result was that HUT-AMP-MOS correctly estimated the number of materials

(i.e., N = 5) on every realization and thus gave identical NMSES and NMSEA as

HUT-AMP. The total runtime of HUT-AMP-MOS was 94.27 seconds, which was

about 7 times slower than HUT-AMP but still 33 times faster than SCU.
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6.4.3 SHARE 2012 Avon Dataset

Next, we evaluated algorithm performance on the real-world SHARE 2012 Avon

dataset43 [92], which uses M = 360 spectral bands, corresponding to wavelengths

between 400 and 2450 nm, over a large rural area. To do this, we first cropped

down the full image to the scene shown in Fig. 5.5, which is known to consist of N=4

materials: grass, dry sand, black felt, and white TyVek [93]. This scene was explicitly

constructed for use in hyperspectral unmixing experiments, as efforts were made to

ensure that the vast majority of the pixels were pure. Also, the data was collected on

a nearly cloudless day, implying that shadowing effects were minimal.

To construct “ground truth” endmembers,44 we averaged a 4 × 4 pixel grid of the

received spectra in a “pure” region for each material. We then computed the spectral

angle distance

SADn = arccos

(
〈sn, ŝn〉

‖sn‖2‖ŝn‖2

)
(6.44)

between each ground-truth endmember sn and the estimate ŝn produced by each

algorithm. Table 6.3 shows median SAD over 50 trials, noting that VCA and SCU

are random algorithms and thus exhibit variability across trials, even for this deter-

ministic dataset. The table shows that HUT-AMP most accurately extracted all four

endmembers. It also shows that SCU, VCA, and FSNMF all had a difficult time

estimating the black felt endmember, most likely due to its low reflectivity. HUT-

AMP, on the other hand, was able to leverage the spectral coherence of the black

43The SHARE 2012 Avon dataset can be obtained from http://www.rit.edu/cos/share2012/.

44In real-world HU data, ground truth endmembers are hard to come by, since lab-measured
reflectivity can differ dramatically from received radiance at the sensor. In this experiment, we
exploit the known purity of the pixels and we minimize noise effects through averaging.
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grass dry sand black felt white TyVek

HUT-AMP 1.46 0.79 3.14 0.45

VCA 1.58 2.20 11.01 2.09

FSNMF 1.65 1.68 7.36 1.46

MVSA 4.57 10.42 45.47 1.60

SCU 2.69 2.48 32.10 1.19

Table 6.3: Median spectral angle distance (in degrees) between recovered and ground-
truth endmembers in the SHARE 2012 experiment.

felt endmember, resulting in a 4 degree SAD improvement over the next best algo-

rithm. Figure 6.7 shows an example of the extracted and ground-truth endmembers

for visual comparison. It can be seen that HUT-AMP’s estimates are a much better

match to the ground-truth for all but the dry-sand material, where VCA performed

very well on this trial; on most other trials, VCA performed worse. Figure 6.7 reveals

that MVSA does not always yield non-negative endmembers, which may account for

its relatively poor performance in all but our first experiment.
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Figure 6.7: Examples of recovered and ground-truth endmembers for the SHARE 2012
experiment.
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Since ground-truth abundance maps are not available for the SHARE 2012 dataset,

we do not present quantitative results on the accuracy of abundance estimation. We

do, however, plot the recovered abundance maps in Fig. 6.8. In interpreting Fig. 6.8,

we reason that the “best” recoveries are the ones that are the most pure within the

green, tan, black, and white regions of Fig. 5.5, given that great care was taken during

data collection to keep each region occupied by a single material. Figure 6.8 shows

that, in the case of dry sand and black felt, the abundances recovered by HUT-AMP

were the most pure and, in the case of grass and Tyvek, the abundances recovered by

HUT-AMP were among the most pure. The other Bayesian approach, SCU, yielded

abundance estimates with much less purity, and we conjecture that was due to its

priors being less well-matched to this highly sparse scene. Meanwhile, SUnSAL-TV

(using both EE techniques) failed to recover the black felt material, which we attribute

to its lack of a sum-to-one constraint.

Figure 6.8 also reports the total runtime of each algorithm. There we see that

HUT-AMP’s runtime was 3.6 times slower than the average EE-and-inversion tech-

nique but 230 times faster than SCU, the other Bayesian technique. We also ran

HUT-AMP-MOS on the SHARE 2012 data and found that it correctly estimated the

presence of N = 4 materials, thus yielding identical recovery performance to HUT-

AMP. HUT-AMP-MOS’s runtime was 36.54 seconds, which was 3.5 times slower than

HUT-AMP but still 67 times faster than SCU.

6.4.4 AVIRIS Cuprite Dataset

Our final numerical experiment was performed on the well known AVIRIS Cuprite

dataset. Although the original dataset consisted of M =224 spectral bands, ranging
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from 0.4 to 2.5 µm, we aimed to replicate the setup in [105], which removed bands

1-10, 108-113, 153-168, and 223-224 to avoid water-absorption effects, resulting in

M = 189 spectral measurements per pixel. And, like [105], we considered only the

80×80 pixel scene identified by the black square in Fig. 6.9. According to the tri-

corder classification map in Fig. 6.9, this scene contains 4 materials: Montmorillonite,

Alunite, well crystallized (wxl) Kaolinite, and partially crystallized (pxl) Kaolinite.

But, as in [18], we allow for the additional presence of Desert Varnish, bringing the

total number of materials to N=5. Also, like in [105], we consider both noiseless and

white-Gaussian-noise corrupted measurements (at SNR=30 dB).
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(a) HUT-AMP (average runtime = 10.52 sec):
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(e) FSNMF+SUnSAL-TV (average runtime = 3.36 sec):
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(f) MVSA+FCLS (average runtime = 1.82 sec):
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(g) MVSA+SUnSAL-TV (average runtime = 4.08 sec):
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Figure 6.8: Examples of recovered abundance maps and average runtimes for the
SHARE 2012 experiment. From left to right, the materials are: grass, dry sand,
black felt, and white TyVek.
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Figure 6.9: Mineral classification mapping of the Cuprite Dataset using the Tricorder
3.3 product [116]. We used the scene cropped by the black rectangle.
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Table 6.4 shows the median SAD achieved during endmember extraction over 50

trials. (We used median for consistency with [105], and note that the performance of

both VCA and SCU varied over trials due to the random nature of each algorithm.)

Table 6.4 shows that, in the noiseless case, HUT-AMP achieved the best median SAD

for three materials, while FSNMF achieved the best for two and SCU achieved the

best for one. Meanwhile, in the noisy case, HUT-AMP achieved the best median

SAD for two materials, while SCU, VCA, and FSNMF each achieved the best for one

material. However, the SAD values in the table should be interpreted with caution,

since i) they are based on the use of laboratory-measured reflectance spectra from the

2006 USGS library as ground-truth, whereas the Cuprite dataset itself uses reflectance

units obtained via atmospheric correction of radiance data,45 and ii) they are premised

on the assumption that these particular materials are actually present in the scene.

45The reflectance and radiance versions of the Cuprite dataset can be found at
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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SAD [degrees]

HUT-AMP SCU VCA FSNMF MVSA

S
N

R
=

∞

Montmor. 3.54 3.95 3.91 3.54 6.03

wxl Kaolinite 9.68 13.14 10.45 10.86 15.42

pxl Kaolinite 9.00 11.45 9.22 9.38 10.51

Desert Varnish 12.73 10.83 12.99 12.79 11.15

Alunite 7.19 6.62 6.55 6.40 7.11

S
N

R
=

30
d
B Montmor. 3.52 3.80 3.79 3.57 5.64

wxl Kaolinite 12.73 12.46 10.62 12.93 15.59

pxl Kaolinite 9.08 11.47 9.32 10.49 11.55

Desert Varnish 12.90 11.28 12.97 12.77 11.70

Alunite 7.19 7.94 6.60 6.39 7.16

Table 6.4: Median spectral angle distance (in degrees) for the Cuprite experiment.

Although a lack of ground truth prevents us from assessing abundance-map re-

covery performance for the Cuprite data, we plot the recovered (noiseless) abundance

maps in Fig. 6.10 for visual comparison to the classification map in Fig. 6.9. Fig-

ure 6.10 shows that the abundance maps returned by HUT-AMP, FSNMF+FCLS,

VCA+FCLS, FSNMF+SUnSAL-TV, and VCA+SUnSAL-TV have the highest con-

trast, suggesting that if certain pixels are truly pure then these algorithms are ac-

curately estimating those pixels. The maps produced by SUnSAL-TV appear more

“blurred,” probably as an artifact of TV regularization. The abundances returned

by SCU, MVSA+FCLS, and MVSA+SUnSAL-TV were of much lower contrast (i.e.,

much less sparse) and suggest different material placements than the maps generated

by the other algorithms. For example, SCU suggests a significant wxl-Kaolin pres-

ence throughout the lower half of the scene, in contrast to other algorithms. However,

Table 6.4 shows that SCU gave the worst SAD for wxl-Kaolin.
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Figure 6.10 also shows the total runtimes of the various approaches. There we see

that HUT-AMP is 5.6 times slower than the average VCA-or-FCLS-based approach,

while SCU is 460 times slower. We also ran HUT-AMP-MOS on the Cuprite data

and found that, in both the noiseless and noisy cases, it estimated the presence of

N = 5 materials, and thus returned identical estimates to HUT-AMP. Meanwhile,

HUT-AMP-MOS had an average runtime of 191.49 seconds, which is 30 times faster

than SCU.
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Figure 6.10: Examples of recovered abundance maps in the noiseless Cuprite exper-
iment. Each row corresponds to an algorithm and each column corresponds to a
material. Average runtimes are also listed on the left.
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6.5 Conclusions

In this chapter, we proposed a novel Bayesian hyperspectral-unmixing algorithm

that jointly estimates endmembers and abundance maps while exploiting the spectral

and spatial coherence, as well as the abundance sparsity, that is often present in prac-

tice. To perform the overall inference task, we used the “turbo” approach suggested

in [32], which breaks up the factor graph into three subgraphs, performs (approximate)

BP individually on each subgraph, and then exchanges beliefs between subgraphs. For

the spectral and spatial coherence subgraphs, we used standard Gauss-Markov and

discrete-Markov methods [106,107], respectively, while for the non-negative bilinear-

mixing subgraph, we use the recently proposed BiG-AMP algorithm from [29], which

exploits the approximate message passing framework from [16, 27]. Furthermore, we

tune our prior and likelihood parameters using expectation-maximization, and we

estimate the number of materials in the scene using penalized log-likelihood maxi-

mization.

Through a detailed numerical study, we demonstrated that our proposed HUT-

AMP algorithm yields excellent recoveries on both synthetic and real-world datasets,

and in many cases outperforms the other state-of-the-art algorithms under test.

For example, our results suggest that HUT-AMP can reliably recover endmembers

in the absence of pixel purity, unlike those endmember extraction algorithms de-

signed around the pure-pixel assumption (e.g., VCA, FSNMF). Moreover, the run-

time of HUT-AMP is on par with those of other EE-and-inversion techniques (e.g.,

VCA+FCLS), in contrast to other Bayesian spectral/spatial-coherence exploitation
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techniques like SCU, whose runtime is 2-3 orders-of-magnitude larger. Our experi-

ments also demonstrated that our model-order selection technique was able to cor-

rectly estimate the number of materials in several synthetic and real-world datasets,

without requiring a very large increase in runtime.

139



Chapter 7: Conclusions

As the dimensionality of data continues to grow, it becomes increasingly impor-

tant to develop inference algorithms that exploit known low-dimensional structures

without inducing unnecessary computational burden.

In this dissertation, we proposed an empirical-Bayes methodology for the infer-

ence of structurally sparse signals, whose complexity scales linearly with problem

dimensions M,N, and T . To do so, we iterate between using the AMP family of

algorithms for signal inference and EM for automatic distributional parameter tun-

ing, both of which thrive in the high-dimensional problem setting. When additional

structure such as non-negativity, linear equality constraints, amplitude correlation,

or structured sparsity persists, we can readily incorporate them into our Bayesian

models and supplement them into AMP utilizing conditional independence. Further-

more, the developed framework can be easily adapted to additional types of structure,

lending itself to a variety of additional applications.

We demonstrate numerous advantages of our approach using a variety of synthetic

and real-world experiments on the compressive sensing and hyperspectral unmixing

problems. In many experiments, the EM-AMP tuning methods yield equivalent re-

covery performance to “genie”-AMP methods, where the underlying probability dis-

tributions are perfectly known. This has the added benefit of relieving the user of the
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task of “hand-tuning” our approach, in stark contrast of numerous other algorithms.

Moreover, the developed algorithms exhibit favorable complexity scaling when com-

pared to other commonly used approaches. Lastly, our empirical-Bayes approaches

readily yield more accurate recoveries compared to other convex, greedy, and Bayesian

methods, which we attribute to our ability to automatically tune a more flexible model

while still promoting known low-dimensional structure.
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energies for compressed sensing,” in Proc. IEEE Int. Symp. Inform. Thy., Jul.
2014, pp. 1499–1503, (see also arXiv:1402.1384 ).

[46] F. Caltagirone, F. Krzakala, and L. Zdeborová, “On convergence of approximate
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with the swept approximated message-passing algorithm,” arXiv:1406.4311,
Jun. 2014.

145



[48] S. Rangan, P. Schniter, J. T. Parker, J. Ziniel, J. Vila, M. Borgerding et al.,
“GAMPmatlab,” https://sourceforge.net/projects/gampmatlab/.

[49] T. Heskes, “Stable fixed points of loopy belief propagation are minima of the
Bethe free energy,” in Proc. Neural Inform. Process. Syst. Conf., Vancouver,

B.C., Dec. 2002, pp. 343–350.

[50] P. Schniter and S. Rangan, “Compressive phase retrieval via generalized approx-

imate message passing,” in Proc. Allerton Conf. Commun. Control Comput.,
Monticello, IL, Oct. 2012, pp. 815–822.

[51] A. Manoel, F. Krzakala, E. W. Tramel, and L. Zdeborová, “SwAMP demo
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Appendix A: EM-GM-AMP Derivations

A.1 EM Update of the Gaussian Noise Variance

From (4.20), the EM update for the noise variance solves

ψi+1 = arg max
ψ>0

M∑

m=1

∫

zm

pz|y(zm|y; qi) ln py |z(ym|zm;ψ) (A.1)

since zm = aT
mx. The maximizing value of ψ in (A.1) is necessarily a value of ψ that

zeroes the derivative of the sum, i.e., that satisfies46

M∑

m=1

∫

zm

pz|y(zm|y; qi)
d

dψ
ln py |z(ym|zm;ψ) = 0. (A.2)

Because py |z(ym|zm;ψ) = N (ym; zm, ψ), we can obtain

d

dψ
ln py |z(ym|zm;ψ) =

1

2

(
|ym − zm|2

ψ2
− 1

ψ

)
, (A.3)

which, when plugged into (A.2), yields the unique solution

ψi+1 =
1

M

M∑

m=1

∫

zm

pz|y(zm|y; qi) |ym − zm|2. (A.4)

We then use the moments ẑm and µzm from (R3)-(R4) in Table 2.1 to get the final

update (4.21).

46The continuity of both the integrand and its partial derivative with respect to ψ allow the use
of Leibniz’s integral rule to exchange differentiation and integration.
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A.2 EM Updates of the Signal Parameters: BG Case

A.2.1 EM Update of Sparsity Rate

The maximizing value of λ in (4.23) is necessarily a value of λ that zeroes the

derivative of the sum, i.e., that satisfies47

N∑

n=1

∫

xn

px|y(xn|y; qi)
d

dλ
ln px(xn;λ, qi\λ) = 0. (A.5)

For the BG pX(xn;λ, θ, φ) in (4.22), it is readily seen that

d

dλ
ln px(xn;λ, qi\λ) =

N (xn; θi, φi) − δ(xn)

px(xn;λ, qi\λ)
=





1
λ

xn 6= 0
−1

1−λ xn = 0.
(A.6)

Plugging (A.6) and (4.7) into (A.5), it becomes evident that the neighborhood

around the point xn = 0 should be treated differently than the remainder of R. Thus,

we define the closed ball Bǫ , [−ǫ, ǫ] and its complement Bǫ , R \ Bǫ, and note that,

in the limit ǫ → 0, the following is equivalent to (A.5):

N∑

n=1

∫

xn∈Bǫ

px|y(xn|y; qi)
︸ ︷︷ ︸

ǫ→0
= πn

=
λ

1−λ
N∑

n=1

∫

xn∈Bǫ

px|y(xn|y; qi)
︸ ︷︷ ︸

ǫ→0
= 1−πn

(A.7)

where the values taken by the integrals are evident from (4.8). Taking ǫ → 0 in (A.7)

and applying straightforward algebra, we get the update

λi+1 =
1

N

N∑

n=1

πn. (A.8)

47To justify the exchange of differentiation and integration via Leibniz’s integral rule here, one
could employ the Dirac approximation δ(x) = N (x; 0, ε) for fixed arbitrarily small ε > 0, after which
the integrand and its derivative w.r.t λ become continuous. The same comment applies in to all
exchanges of differentiation and integration in the sequel.
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A.2.2 EM Update of Active Mean

The maximizing value of θ in (4.25) is again a necessarily a value of θ that zeroes

the derivative, i.e., that satisfies

N∑

n=1

∫

xn

px|y(xn|y; qi)
d

dθ
ln px(xn; θ, qi\θ) = 0. (A.9)

For the BG px(xn;λ, θ, φ) given in (4.22),

d

dθ
ln px(xn;λi, θ, φi) =

(xn − θ)

φi
λiN (xn; θ, φi)

px(xn; θ, qi\θ)
=




xn−θ
φi xn 6= 0

0 xn = 0.
(A.10)

Splitting the domain of integration in (A.9) into Bǫ and Bǫ as before, and then plugging

in (A.10), we find that the following is equivalent to (A.9) in the limit of ǫ → 0:

N∑

n=1

∫

xn∈Bǫ

(xn − θ) px|y(xn|y; qi) = 0. (A.11)

The unique value of θ satisfying (A.11) as ǫ → 0 is then

θi+1 =

∑N
n=1 limǫ→0

∫
xn∈Bǫ

xn px|y(xn|y; qi)
∑N
n=1 limǫ→0

∫
xn∈Bǫ

px|y(xn|y; qi)
=

1

λi+1N

N∑

n=1

πnγn,1 (A.12)

where {γn,1}Nn=1 are defined in (4.14). The last equality in (A.12) can be verified by

plugging the GAMP posterior expression (4.8) into the second term in (A.12).

A.2.3 EM Update of Active Variance

The maximizing value of φ in (4.27) is again necessarily a value of φ that zeroes

the derivative, i.e., that satisfies

N∑

n=1

∫

xn

px|y(xn|y; qi)
d

dφ
ln px(xn;φ, qi\φ) = 0. (A.13)

For the px(xn;λ, θ, φ) given in (4.22), it is readily seen that

d

dφ
ln px(xn;λi, θi, φ) =

1

2

(
|xn − θi|2

(φ)2
− 1

φ

)
λi N (xn; θi, φ)

px(xn; , φ, qi\φ)

=





1
2

( |xn−θi|2
(φ)2 − 1

φ

)
xn 6= 0

0 xn = 0
. (A.14)
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Splitting the domain of integration in (A.13) into Bǫ and Bǫ as before, and then

plugging in (A.14), we find that the following is equivalent to (A.13) in the limit of

ǫ → 0:
N∑

n=1

∫

xn∈Bǫ

(
|xn − θi|2 − φ

)
px|y(xn|y; qi) = 0. (A.15)

The unique value of φ satisfying (A.15) as ǫ → 0 is then

φi+1 =

∑N
n=1 limǫ→0

∫
xn∈Bǫ

|xn − θi|2px|y(xn|y; qi)
∑N
n=1 limǫ→0

∫
xn∈Bǫ

px|y(xn|y; qi)
. (A.16)

Finally, we expand |xn − θi|2 = |xn|2 − 2 Re(x∗
nθ

i) + |θi|2 which gives

φi+1 =
1

λi+1N

N∑

n=1

πn

(∣∣∣θi − γn,1
∣∣∣
2

+ νn,1

)
(A.17)

where {νn,1}Nn=1 from (4.15) are readily available BG-GAMP quantities. The equality

in (A.17) can be readily verified by plugging (4.8) into (A.16).

A.3 EM Updates of the Signal Parameters: GM Case

A.3.1 EM Update of Active Means

Following (A.9), the maximizing value of θk in (4.30) is again necessarily a value

of θk that zeros the derivative, i.e.,

N∑

n=1

∫

xn

px|y(xn|y; qi)
d

dθk
ln px(xn; θk, q

i
\θk

) = 0, (A.18)

Plugging in the derivative

d

dθk
ln px(xn; θk, q

i
\θk

) =
(
xn − θk
φik

)
(A.19)

× λiωikN (xn; θk, φ
i
k)

(1 − λi)δ(xn) + λi(ωikN (xn; θk, φik) +
∑
ℓ 6=k ω

i
ℓN (xn; θiℓ, φ

i
ℓ))

and the version of px|y(xn|y; qi) from (4.7), integrating (A.18) separately over Bǫ and

Bǫ as in (A.7), and taking ǫ → 0, we find that the Bǫ portion vanishes, giving the
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necessary condition

N∑

n=1

∫

xn

p(xn|xn 6= 0,y; qi)λiωikN (xn; θk, φ
i
k)(xn − θk)

ζn
(
ωikN (xn; θk, φik) +

∑
ℓ 6=k ω

i
ℓN (xn; θiℓ, φ

i
ℓ)
) = 0. (A.20)

Since this integral cannot be evaluated in closed form, we apply the approximation

N (xn; θk, φ
i
k) ≈ N (xn; θ

i
k, φ

i
k) in both the numerator and denominator, and subse-

quently exploit the fact that p(xn|xn 6= 0,y; qi) = N (xn; r̂n, µ
r
n)
∑
ℓ ω

i
ℓN (xn; θiℓ, φ

i
ℓ)

from (4.7) to cancel terms, and so obtain the (approximated) necessary condition

N∑

n=1

∫

xn

λiωikN (xn; r̂n, µ
r
n)N (xn; θik, φ

i
k)

ζn
(xn − θk) = 0. (A.21)

We then simplify (A.21) using the Gaussian-pdf multiplication rule, and set θi+1
k equal

to the value of θk that satisfies (A.21), which can be found to be

θi+1
k =

∑N
n=1 πnβn,kγn,k∑N
n=1 πnβn,k

(A.22)

Note from (4.8) that πnβn,k can be interpreted as the probability that xn originated

from the kth mixture component.

A.3.2 EM Update of Active Variances

Following (A.18), the maximizing value of φk in (4.31) is necessarily a value of φk

that zeroes the derivative, i.e.,

N∑

n=1

∫

xn

px|y(xn|y; qi)
d

dφk
ln px(xn;φk, q

i
\φk

) = 0. (A.23)

As for the derivative in the previous expression, we find

d

dφk
ln px(xn;φk, q

i
\φk

) =
1

2

(
|xn − θik|2

φ2
k

− 1

φk

)
(A.24)

× λiωikN (xn; θik, φk)

(1 − λi)δ(xn) + λi(ωikN (xn; θik, φk) +
∑
ℓ 6=k ω

i
ℓN (xn; θiℓ, φ

i
ℓ))
.
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Integrating (A.23) separately over Bǫ and Bǫ, as in (A.7), and taking ǫ → 0, we find

that the Bǫ portion vanishes, giving

N∑

n=1

∫

xn

p(xn|xn 6=0,y; qi)λiωikN (xn; θ
i
k, φk)/ζn

ωikN (xn; θik, φk)+
∑
ℓ 6=k ω

i
ℓN (xn; θiℓ, φ

i
ℓ)

(
|xn − θik|2

φk
−1

)
(A.25)

Similar to (A.20), this integral is difficult to evaluate, and so we again apply the

approximation N (xn; θik, φk) ≈ N (xn; θik, φ
i
k) in the numerator and denominator, after

which several terms cancel, yielding the necessary condition

N∑

n=1

∫

xn

N (xn; r̂n, µ
r
n)λ

iωikN (xn; θik, φ
i
k)

ζn

(
|xn − θik|2

φk
− 1

)
= 0. (A.26)

To find the value of φk satisfying (A.26), we expand |xn − θik|2 = |xn|2 − 2 Re(x∗
nθ

i
k) +

|θik|2 and apply the Gaussian-pdf multiplication rule, which gives

φi+1
k =

∑N
n=1 πnβn,k

(
|θik − γn,k|2+νn,k

)

∑N
n=1 πnβn,k

. (A.27)

A.3.3 EM Update of Active Weights

Finally, the value of the positive ω maximizing (4.32) under the pmf constraint

∑L
k=1 ωk = 1 can be found by solving the augmented Lagrangian maxω,ξ J(ω, ξ),

where ξ is a Lagrange multiplier and

J(ω, ξ) ,
N∑

n=1

Ê
{
ln px(xn; ω, qi\ω)

∣∣∣y; qi
}

−ξ
(

L∑

ℓ=1

ωℓ−1

)

=
N∑

n=1

∫

xn

px|y(xn|y; qi) ln px(xn; ω, qi\ω)−ξ
(

L∑

ℓ=1

ωℓ−1

)
. (A.28)

We start by setting d
dωk

J(ω, ξ) = 0, which yields

N∑

n=1

∫

xn

px(xn; qi)N (xn; r̂n, µ
r
n)

ζn

d

dωk
ln px(xn; ω, qi\ω) = ξ. (A.29)

⇔
N∑

n=1

∫

xn

px(xn; qi)N (xn; r̂n, µ
r
n)

ζn

λiN (xn; θik, φ
i
k)

px(xn; ω, qi\ω)
= ξ. (A.30)
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Like in (A.20) and (A.25), the above integral is difficult to evaluate, and so we ap-

proximate ω ≈ ωi, which reduces the previous equation to

ξ =
N∑

n=1

∫

xn

λiN (xn; θik, φ
i
k)N (xn; r̂n, µ

r
n)

ζn
. (A.31)

Multiplying both sides by ωik for k = 1, . . . , L, summing over k, employing the fact

1 =
∑
k ω

i
k, and simplifying, we obtain the equivalent condition

ξ =
N∑

n=1

∫

xn

λi
∑L
k=1 ω

i
kN (xn; θik, φ

i
k)N (xn; r̂n, µ

r
n)

ζn
=

N∑

n=1

πn. (A.32)

Plugging (A.32) into (A.31) and multiplying both sides by ωk, the derivative-zeroing

value of ωk is seen to be

ωk=

∑N
n=1

∫
xn
λiωkN (xn; θik, φ

i
k)N (xn; r̂n, µ

r
n)/ζn∑N

n=1 πn
, (A.33)

where, if we use ωk ≈ ωik on the right of (A.33), then we obtain

ωi+1
k =

∑N
n=1 πnβn,k∑N
n=1 πn

. (A.34)
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Appendix B: EM-NN-AMP Derivations

B.1 EM Update for AWGN Variance

Inserting the Gaussian likelihood (5.10) into (5.44), we see that the EM update

for the noise variance ψ becomes

ψi+1 = arg max
ψ

M

2
ln

1

ψ
− 1

2ψ
Ê{‖y −Ax‖2

2

∣∣∣y;ψi}, (B.1)

where, for the joint posterior px|y(x|y;ψi), we use the product of the approximate

marginal GAMP posteriors from (2.5). By zeroing the derivative of the objective in

(B.1) w.r.t. ψ, we find that

ψi+1 =
1

M
Ê{‖y − Ax‖2

2

∣∣∣y;ψi}, (B.2)

where the expectation simplifies to

Ê{‖y −Ax‖2
2

∣∣∣y;ψi}

= yTy − yTAx̂ + Ê{xTATAx
∣∣∣y;ψi} (B.3)

= yTy − yTAx̂ + tr(ATAΣ) + x̂TATAx̂ (B.4)

= ‖y − Ax̂‖2
2 + tr(ATAΣ). (B.5)

Here, Σ is the posterior covariance matrix of x , which—based on our assumptions—is

diagonal with [Σ]nn = µxn. Plugging in (B.5) into (B.2), we obtain the EM update

(5.45).
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B.2 Derivation of Laplacian Likelihood Quantities

B.2.1 Laplacian Likelihood Steps for Sum-product GAMP

Inserting the Laplacian likelihood (5.13) into the GAMP-approximated posterior

(2.4), the posterior mean in line (R5) of Table 2.1 becomes (removing the m subscript

for brevity)

ẑ , E{z | p= p̂;µp}=
1

C

∫

z
z L(z; y;ψ)N (z; p̂, µp) (B.6)

where the scaling constant C is calculated as

C =
∫

z
L(z; y, ψ)N (z; p̂, µp) (B.7)

=
∫

z′
L(z′; 0, ψ)N (z′; p̂− y, µp) (B.8)

=
ψ

2

∫ 0

−∞
N (z; p̃, µp)eψzdz

︸ ︷︷ ︸
, C

+
ψ

2

∫ ∞

0
N (z; p̃, µp)e−ψzdz

︸ ︷︷ ︸
, C (B.9)

where p̃ , p̂ − y. The expressions for C and C reported in (5.19)-(5.20) result after

completing the square inside the exponential terms in the integrands in (B.9) and

simplifying.

Following similar techniques (i.e., shifting z by y and splitting the integral), it can

be shown that (B.6) becomes

ẑ=y +
C

C

∫

z
zN−(z; p̃, µp) +

C

C

∫

z
zN+(z; p̃, µp), (B.10)

where N+(·) is defined in (5.32) and where N−(x; a, b2) is the pdf that results from

taking a Gaussian with mean a and variance b2, truncating its support to x ∈ (−∞, 0],

and normalizing. Supposing that u ∼ N (a, b2), [117] shows that

E{u | u > 0} =
∫

u
uN+(u; a, b2) = a+ bh(−a

b
), (B.11)

E{u | u < 0} =
∫

u
uN−(u; a, b2) = a− bh(a

b
), (B.12)
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where h(·) is defined in (5.21). Inserting (B.11) and (B.12) into (B.10) yields the

posterior mean expression in (5.17).

To calculate the posterior variance µz used in line (R6) of Table 2.1, we begin

with

E{z
2 | p= p̂;µp} =

1

C

∫

z
z2L(z; y;ψ)N (z; p̂, µp) (B.13)

=
1

C

∫

z′
(z′ + y)2L(z′; 0;ψ)N (z′; p̃, µp) (B.14)

= 2y(ẑ − y) + y2 +
1

C

∫

z
z2L(z; 0;ψ)N (z; p̃, µp) (B.15)

= 2yẑ − y2 +
C

C

∫

z
z2N−(z; p̃, µp) +

C

C

∫

z
z2N+(z; p̃, µp). (B.16)

Given that u ∼ N (a, b2), [117] shows that

E{u2 | u>0} = var{u | u>0} + E{u | u>0}2

= b2g(−a
b
) +

(
a+ bh(−a

b
)
)2
, (B.17)

E{u2 | u<0} = var{u | u<0} + E{u | u<0}2

= b2g(a
b
) +

(
a− bh(a

b
)
)2
, (B.18)

where g(·) is defined in (5.22). Inserting (B.17) and (B.18) into (B.16) and noting

that var{z | p= p̂;µp} = E{z
2 | p= p̂;µp} − E{z |p= p̂;µp}2, we obtain (5.18).

B.2.2 EM Update for Laplacian Rate

Inserting the Laplacian likelihood (5.13) into (5.46), we see that the EM update

for the Laplacian rate parameter ψ becomes.

ψi+1 = arg max
ψ

M∑

m=1

Ê{ln L(ym; aT
mx , ψ)

∣∣∣y;ψi} (B.19)

= arg max
ψ

M lnψ − ψ
M∑

m=1

Ê{|aT
mx − ym|

∣∣∣y;ψi}. (B.20)
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Zeroing the derivative of the objective in (B.20) w.r.t. ψ yields the update (5.47).

The expectation in (B.20) can be written as

Ê{|aT
mx − ym|

∣∣∣y;ψi} =
∫

x
|aT
mx−ym| px|y(x|y;ψi), (B.21)

where px|y(x|y;ψi) is taken to be the product of the approximated GAMP marginal

posteriors in (2.5).

In the large system limit, the central limit theorem implies that zm,aT
mx, when

conditioned on y =y, is N (aT
mx̂,

∑N
n=1 a2

mnµ
x
n), yielding the approximation

Ê{|aT
mx − ym|

∣∣∣y;ψi} ≈
∫

zm

|zm − ym| N (zm; aT
mx̂,

N∑

n=1

a2
mnµ

x
n) (B.22)

=
∫

z′
m

|z′
m| N (z′

m; aT
mx̂ − ym,

N∑

n=1

a2
mnµ

x
n). (B.23)

Defining z̃m , aT
mx̂−ym, and using a derivation similar to that used for (B.10), leads

to (5.48).

B.3 Derivation of NNGM-GAMP Quantities

B.3.1 BNNGM Prior Steps for Sum-product GAMP

Inserting the Bernoulli NNGM prior (5.31) into the GAMP approximated poste-

rior (2.5), the posterior mean in line (R13) of Table 2.1 becomes (removing the n

subscript for brevity)

x̂ , E{x | r = r̂;µr} =
∫

x
x px|r(x|r̂;µr) (B.24)

=
1

ζ

∫

+
xN (x; r̂, µr)

(
(1 − τ)δ(x)+τ

L∑

ℓ=1

ωℓN+(x; θℓ, φℓ)
)

=
τ

ζ

L∑

ℓ=1

ωℓ

∫

+
xN (x; r̂, µr)N+(x; θℓ, φℓ), (B.25)
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where ζ ,
∫
x px(x)N (x; r̂, µr) is a scaling factor. Using the Gaussian-pdf multiplica-

tion rule,48 we get

x̂ =
τ

ζ

L∑

ℓ=1

ωℓN (r̂; θℓ, µ
r + φℓ)

Φc(−θℓ/
√
φℓ)

∫

+
xN (x; γℓ, νℓ), (B.26)

with γℓ and νℓ defined in (5.37) and (5.38), respectively.

Using similar techniques, the scaling factor

ζ =
∫

+
N (x; r̂, µr)

(
(1 − τ)δ(x) + τ

L∑

ℓ=1

ωℓN+(x; θℓ, φℓ)
)

(B.27)

can be shown to be equivalent to (5.35). Finally, using the mean of a truncated

Gaussian (B.11), and inserting (5.35) into (B.26), we get the NNGM-GAMP estimate

(5.33).

To calculate the variance of the GAMP approximated posterior (2.5), we note

that

µx , var{x | r = r̂;µr} =
∫

+
x2px|r(x|r̂;µr) − E{x | r = r̂;µr}2. (B.28)

Following (B.24)-(B.26) and using the Gaussian-pdf multiplication rule, we find the

second moment to be

∫

+
x2px|r(x|r̂;µr)=

τ

ζ

L∑

ℓ=1

βℓ
Φc(αℓ)

∫

+
x2N (x; γℓ, νℓ) , (B.29)

where βℓ and αℓ are given in (5.39) and (5.36), respectively.

Leveraging the second moment of a truncated Gaussian (B.17) in (B.29), and

then inserting (5.33) and (B.29) into (B.28), we obtain the NNGM-GAMP variance

estimate (5.34).

48 N (x; a,A)N (x; b, B)=N
(
x; a/A+b/B

1/A+1/B ,
1

1/A+1/B

)
N (a; b, A+B).
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B.3.2 EM Updates of NNGM Parameters

We first derive the EM update for θk, the kth component location, given the

previous parameter estimate qi. The maximizing value of θk in (5.52) is necessarily

a value of θk that zeros the derivative of the sum, i.e., that satisfies

d

dθk

N∑

n=1

∫

xn

px|r
(
xn|r̂n;µrn, q

i
)

ln px

(
xn; θk, q

i
\θk

)
=0 (B.30)

⇔
N∑

n=1

∫

xn

px|r
(
xn|r̂n;µrn, q

i
) d

dθk
ln px

(
xn; θk, q

i
\θk

)
=0. (B.31)

For all xn ≥ 0, the derivative in (B.31) can be written as

d

dθk
ln px(xn; θk, q

i
\θk

) =

d
dθk
τ iωik

N (xn;θk;φi
k

)

Φc(−θk/
√
φi

k
)

px(xn; θk, qi\θk
)

. (B.32)

Because plugging (B.32) into (B.31) yields an intractable integral, we use the approx-

imation49 Φc(−θk/
√
φik) ≈ Φc(−θik/

√
φik), yielding

d

dθk
ln px(xn; θk, q

i
\θk

)=

(
xn − θk
φik

)
(B.33)

×
τ iωikN (xn; θk, φ

i
k)/Φc

(
− θik/

√
φik
)

(1−τ i)δ(xn)+τ i(ωikN+(xn; θk, φik)+
∑
ℓ 6=kω

i
ℓN+(xn; θiℓ, φ

i
ℓ))
.

We also note that (B.33) is zero at xn = 0 due to the Dirac delta function in the

denominator.

Now, plugging in (B.33) and the approximated GAMP posterior px|r(xn|r̂n;µrn, qi)

from (2.5), integrating (B.31) separately over [ǫ,∞) and its complement, and taking

ǫ → 0, we find that the (−∞, ǫ) portion vanishes, giving the necessary condition

N∑

n=1

∫

+

p̂(xn|xn 6= 0,y; qi)ωik
N (xn;θk,φ

i
k

)

Φc(−θi
k
/
√
φi

k
)
(xn − θk)

ζn
(
ωikN+(xn; θk, φik) +

∑
ℓ 6=k ω

i
ℓN+(xn; θiℓ, φ

i
ℓ)
)=0, (B.34)

49This approximation becomes more accurate as d
dθk

Φc

(
− θk/

√
φk

)
tends to zero, i.e., when

θk/
√
φk gets large, which was observed for the real-world experiments considered in Chapter 3.2.
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where p̂(xn|xn 6= 0,y; qi) , px|r(xn|r̂n, xn 6= 0;µrn, q
i). Since this integral cannot be

evaluated in closed form, we apply the approximation N (xn; θk, φ
i
k) ≈ N (xn; θik, φ

i
k)

in both the numerator and denominator, and subsequently exploit the fact that, for

xn ≥ 0, p̂(xn|xn 6= 0,y; qi) = N (xn; r̂n, µ
r
n)
∑
ℓ ω

i
ℓN+(xn; θiℓ, φ

i
ℓ) from (2.5) to cancel

terms, where we obtain the necessary condition

N∑

n=1

∫

+

ωikN (xn; r̂n, µ
r
n)N+(xn; θik, φ

i
k)

ζn
(xn − θk) = 0. (B.35)

Now using the Gaussian-pdf multiplication rule, we get

N∑

n=1

βn,k
Φc(αn,k)

∫

+
N (xn; γn,k, νn,k)(xn − θk) = 0. (B.36)

Following similar techniques as in Appendix B.3.1 and noting that βn,k = πnβn,k, we

see that the update θi+1
k in (5.55) is the value of θk that satisfies (B.36).

Similarly, the maximizing value of φk in (5.53) is necessarily a value of φk that

zeroes the derivative, i.e.,

N∑

n=1

∫

xn

px|r(xn|r̂n;µrn, qi)
d

dφk
ln px(xn;φk, q

i
\φk

) = 0. (B.37)

Using the prior given in (5.31), and simultaneously applying the approximation

Φc(−θik/
√
φk) ≈ Φc(−θik/

√
φik), we see that the derivative in (B.37) can be written as

d

dφk
ln px(xn;φk, q

i
\φk

)=
1

2

(
(xn − θik)

2

φ2
k

− 1

φk

)
(B.38)

×
τ iωikN (xn; θk, φ

i
k)/Φc(−θik/

√
φik)

(1−τ i)δ(xn)+τ i(ωikN+(xn; θik, φk)+
∑
ℓ 6=kω

i
ℓN+(xn; θiℓ, φ

i
ℓ))
.
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Integrating (B.37) separately over (−∞, ǫ) and [ǫ,∞), and taking ǫ → 0, we see that

the (−∞, ǫ) portion vanishes, giving

N∑

n=1

∫

+

p̂(xn|xn 6=0,y; qi)ωikN (xn; θik, φk)/Φc(−θik/
√
φik)

ζn(ωikN (xn; θik, φk) +
∑
ℓ 6=k ω

i
ℓN (xn; θiℓ, φ

i
ℓ))

×
(

(xn − θik)
2

φk
− 1

)
= 0. (B.39)

Again, this integral is difficult, so we approximate N (xn; θk, φ
i
k) ≈ N (xn; θik, φ

i
k) in

both the numerator and denominator. After some cancellation (as in (B.34)), we get

the necessary condition

N∑

n=1

∫

+

N (xn; r̂n, µ
r
n)ω

i
kN+(xn; θik, φ

i
k)

ζn

(
(xn − θik)

2

φk
− 1

)
=0. (B.40)

To find the value of φk that solves (B.40), we expand (xn − θik)
2 = x2

n − 2xnθ
i
k + (θik)

2

and apply the Gaussian-pdf multiplication rule, yielding

N∑

n=1

βn,k
Φc(αn,k)

∫

+
N (xn; γn,k, νn,k)

(
x2
n−2xnθ

i
k+(θik)

2

φk
−1

)
=0. (B.41)

Using similar techniques as in Appendix B.3.1 and simplifying, we see that φi+1
k in

(5.56) is the value of φk that solves (B.41).

Finally, we calculate the EM update in (5.54) for positive ω under the pmf con-

straint
∑L
k=1 ωk = 1 by solving the augmented Lagrangian maxω,ξ J(ω, ξ), where ξ is

a Lagrange multiplier and

J(ω, ξ) ,
N∑

n=1

Ê
{
ln px(xn; ω, qi\ω)

∣∣∣y; qi
}

−ξ
(

L∑

ℓ=1

ωℓ−1

)
. (B.42)

First, we set d
dωk

J(ω, ξ) = 0, which yields

N∑

n=1

∫

xn

px(xn; qi)N (xn; r̂n, µ
r
n)

ζn

d

dωk
ln px(xn; ω, qi\ω) = ξ (B.43)
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where, for non-negative xn,

d

dωk
ln px

(
xn; ω, qi\ω

)
=
τ iN+(xn; θik, φ

i
k)

px

(
xn; ω, qi\ω

) . (B.44)

Inserting (B.44) into (B.43), we get

N∑

n=1

∫

+

px(xn; qi)N (xn; r̂n, µ
r
n)

ζn

τ iN+(xn; θik, φ
i
k)

px(xn; ω, qi\ω)
= ξ. (B.45)

As in (B.34) and (B.39), the above integral is difficult to evaluate, and so we apply

the additional approximation ω ≈ ωi, which reduces the previous equation to

ξ =
N∑

n=1

∫

+

τ iN+(xn; θik, φ
i
k)N (xn; r̂n, µ

r
n)

ζn
. (B.46)

We then multiply both sides by ωik for k = 1, . . . , L, and sum over k. Leveraging the

fact 1 =
∑
k ω

i
k, and simplifying, we obtain the equivalent condition

ξ =
N∑

n=1

∫

+

τ i
∑L
k=1 ω

i
kN+(xn; θik, φ

i
k)N (xn; r̂n, µ

r
n)

ζn
(B.47)

=
N∑

n=1

τ i

ζn

L∑

k=1

βn,k

∫

+

N (xn; γn,k, φn,k)

Φc(αn,k)
=

N∑

n=1

πn. (B.48)

Plugging (B.48) into (B.46) and multiplying both sides by ωk, the derivative-zeroing

value of ωk is seen to be

ωk=

∑N
n=1

∫
+τ

iωkN+(xn; θik, φ
i
k)N (xn; r̂n, µ

r
n)/ζn∑N

n=1 πn
, (B.49)

where, if we use ωk ≈ ωik on the right of (B.43), then we obtain the approximate EM

update ωi+1
k in (5.57).

167



Appendix C: HUT-AMP Derivations

C.1 Mean removal

We can see that S from (6.5) is approximately zero-mean via

0 =
1

MT

M∑

m=1

T∑

t=1

y
mt

(C.1)

=
1

MT

M∑

m=1

T∑

t=1

N∑

n=1

smnant

︸ ︷︷ ︸
O(1)

+
1

MT

M∑

m=1

T∑

t=1

wmt

︸ ︷︷ ︸
O(1/N)

(C.2)

≈
N∑

n=1

1

T

T∑

t=1

ant

︸ ︷︷ ︸
, µan

1

M

M∑

m=1

smn, (C.3)

where (C.1) follows from the definitions (3.14)-(6.4). The underbraces in (C.2) show

the scaling on each term in the large-system limit (i.e., as N → ∞). These particular

scalings follow from our assumption that the noise is both zero-mean and white and

the convention [29] that both ymt and the noise variance ψ scale as O(1). Recall-

ing that
∑N
n=1 µ

a
n = 1 due to the simplex constraint, expression (C.3) shows that a

weighted average of elements in S is approximately zero, where the approximation

becomes exact in the large-system limit.
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