# Safe and Informative Computational Imaging via Conformal Prediction and Generative Models

#### Phil Schniter

(Joint work with Jeffrey Wen, Matt Bendel, and Rizwan Ahmad)



Supported in part by the NIH under grant R01-EB029957

University of Texas at Austin December 2024

### Imaging inverse problems

#### Imaging inverse problems:

- lacksquare Unknown image x
- lacksquare Measurements  $oldsymbol{y} = \mathcal{M}(oldsymbol{x})$ 
  - $lacktriangleq \mathcal{M}(\cdot)$  masks, distorts, and/or corrupts x with noise.
  - Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT), magnetic resonance imaging (MRI), etc.
- Typical goals
  - Recover image x
  - **Extract** quantitative information from x (e.g., probability of a pathology)

#### Challenges:

- $\blacksquare$  The inverse problem is often ill-posed: many hypotheses of x can explain the measurements y
- Modern methods can hallucinate:
  - Produce nice-looking  $\hat{x}$  that differ from true x in important ways

### Examples of ill-posedness and hallucinations

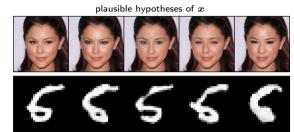
Fundamental ill-posedness:





measured y





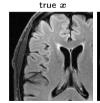
Undesired hallucinations<sup>1</sup>:



true x



reconstruction

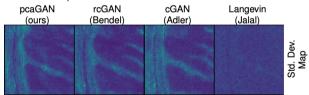




<sup>&</sup>lt;sup>1</sup>Muckley et al'21

### Uncertainty quantification

- lacktriangle We'd like to quantify the uncertainty or error in the image recovery  $\widehat{x}$ 
  - If the error was large, we could collect new/more measurements
- Especially important in safety-critical applications (e.g., medical imaging)
- Most uncertainty quantification methods produce pixel-wise uncertainty maps (e.g., posterior variance) that look like





But how useful are these uncertainty maps in practice?

### Outline

- 1 Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

### Probabilistic bounds on recovered-image accuracy

- lacksquare Say we have an image-recovery method  $m{r}(\cdot)$  that produces  $\widehat{m{x}}_0 = m{r}(m{y}_0)$ 
  - Subscript 0 indicates "test" quantities, not calibration, as we'll soon see . . .
- We'd like to know the "accuracy" of  $\widehat{x}_0$  relative to the true  $x_0$
- lacksquare To measure accuracy, we'll use an arbitrary image-quality metric  $oxed{z_0=m(\widehat{m{x}}_0,m{x}_0)}$  like
  - PSNR, SSIM¹ ... higher preferred (we'll focus on this below)
  - LPIPS<sup>2</sup>, DISTS<sup>3</sup> ...lower preferred
  - In any case,  $z_0$  is unknown in practice
- Is it possible to guarantee the accuracy of  $\widehat{x}_0$ , i.e., construct a bound  $\beta_0(y_0)$  such that

$$\Pr\{Z_0 \ge \beta_0(\boldsymbol{Y}_0)\} \ge 1 - \alpha$$

for some chosen error rate  $\alpha$ ? (Here, capital letters denote random variables)

<sup>&</sup>lt;sup>1</sup>Wang et al'04, <sup>2</sup>Zhang et al'18, <sup>3</sup>Ding et al'20

### An impractical bound

lacksquare Say we have a perfect posterior sampler generating c image samples  $\{\widetilde{m{x}}_0^{(j)}\}_{j=1}^c$ . Then

$$\{\boldsymbol{x}_0, \widetilde{\boldsymbol{x}}_0^{(1)}, \dots, \widetilde{\boldsymbol{x}}_0^{(c)}\} \stackrel{iid}{\sim} p_{\boldsymbol{X}_0 \,|\, \boldsymbol{Y}_0}(\cdot \,|\, \boldsymbol{y}_0)$$

■ Define the corresponding image-accuracy samples  $\widetilde{z}_0^{(j)} \triangleq m(\widehat{x}_0, \widetilde{x}_0^{(j)})$ . Then

$$\{z_0, \widetilde{z}_0^{(1)}, \dots, \widetilde{z}_0^{(c)}\} \stackrel{iid}{\sim} p_{Z_0 \mid \boldsymbol{Y}_0}(\cdot \mid \boldsymbol{y}_0)$$

■ Thus an accuracy lower bound  $\beta_0$  that holds with probability  $1-\alpha$ , i.e.,

$$\Pr\{Z_0 \ge \beta_0 \mid Y_0 = y_0\} = 1 - \alpha$$

can be constructed using an infinite number of perfect posterior samples:

$$\beta_0 = \lim_{c \to \infty} \widehat{\beta}_0 \quad \text{with} \quad \widehat{\beta}_0 \triangleq \operatorname{EmpQuant}(\alpha, \{\widetilde{z}_0^{(j)}\}_{j=1}^c)$$

• Why? Assuming the random variable  $Z_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0$  is continuous, we recognize  $\beta_0$  as its  $\alpha$ th quantile. Then  $\{\widehat{z}_0^{(j)}\}_{j=1}^c \stackrel{d}{\to} Z_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0 \text{ implies } \widehat{\beta}_0 \to \beta_0$ 

### A conformal bound

- $\blacksquare$  In practice, we have only a finite number c of imperfect posterior samples
- We propose to design a valid lower bound using conformal prediction¹
  - Assume we have n calibration samples  $\{(m{x}_i,m{y}_i)\}_{i=1}^n$  in addition to the test measurements  $m{y}_0$
  - Construct approximate *c*-sample bounds as before:

$$\widehat{\beta}_i = \text{EmpQuant}(\alpha, \{\widetilde{z}_i^{(j)}\}_{j=1}^c) \text{ for } i = 0, \dots, n$$

- lacksquare Also compute "bound-violation scores"  $s_i \triangleq \widehat{eta}_i z_i$  for  $i=1,\ldots,n$  (i.e.,  $s_i>0$  means bound violated)
- lacksquare Using the set  $d_{\mathsf{cal}} \triangleq \{s_i\}_{i=1}^n$  of calibration scores, compute a bound correction term

$$\widehat{\lambda}(d_{\mathsf{cal}}) = \operatorname{EmpQuant}\left(\frac{\lceil (1-\alpha)(n+1)\rceil}{n}, \{s_i\}_{i=1}^n\right)$$

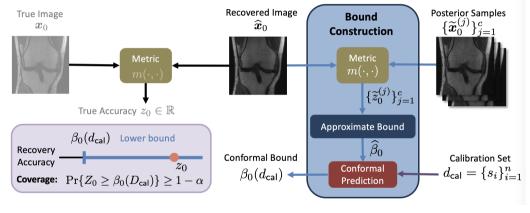
- $\blacksquare$  Form the final "test" lower bound as  $\beta_0(\pmb{y}_0,d_{\rm cal})=\widehat{\beta}_0-\widehat{\lambda}(d_{\rm cal})$
- This conformal bound obeys² the marginal coverage guarantee

$$1 - \alpha \le \Pr\{Z_0 \ge \beta_0(Y_0, D_{\mathsf{cal}})\} \le 1 - \alpha + \frac{1}{n+1}$$

assuming that  $\{S_0, S_1, \dots, S_n\}$  are statistically exchangeable

<sup>&</sup>lt;sup>1</sup>Vovk, Gammerman, Shafer'05, <sup>2</sup>Lei, G'Sell, Rinaldo, Tibshirani, Wasserman'18,

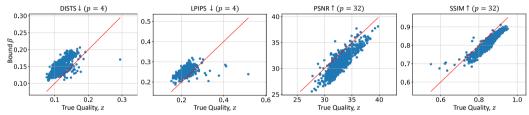
## Summary of lower-bound procedure



 Similar techniques can be used to construct upper bounds on lower-preferred image accuracy metrics like LPIPS and DISTS

## Example: Bounding recovery accuracy in MRI

■ Scatter plots of  $(z_0, \beta_0)$  from fastMRI knee recovery @ acceleration R = 8 using a conditional normalizing flow<sup>1</sup>:



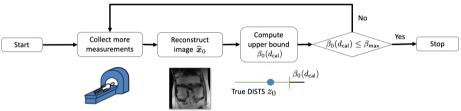
The red line indicates where the bound would be exact

■ Validation of marginal coverage using  $10\,000$  Monte-Carlo trials (each with a random 70% test / 30% calibration split):

| target coverage $1-\alpha$ | average empirical coverage |  |  |  |
|----------------------------|----------------------------|--|--|--|
| 0.95                       | $0.9504 \pm 0.0001$        |  |  |  |

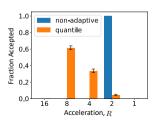
### Application: Multi-round MRI acquisition

■ Consider acquiring over multiple rounds (i.e.,  $R \in \{16, 8, 4, 2, 1\}$ ), stopping as soon at the conformal upper bound on DISTS<sup>1</sup> is good enough (i.e.,  $\leq \beta_{\text{max}}$ )



• Multi-round acquisition achieves much higher average acceleration than single-round acquisition:

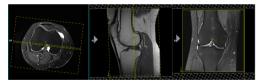
|   | method       | avg acceleration   | empirical coverage  |
|---|--------------|--------------------|---------------------|
| ſ | single-round | $2.000 \pm 0.0000$ | $0.9505 \pm 0.0001$ |
|   | multi-round  | $5.422 \pm 0.0001$ | $0.9461 \pm 0.0001$ |

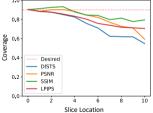


<sup>&</sup>lt;sup>1</sup>Kastryulin, Zakirov, Pezzotti, Dylov'23

### Effect of distribution shift

- Recall that the marginal coverage guarantee  $\Pr\{Z_0 \geq \beta_0(\boldsymbol{Y}_0, D_{\mathsf{cal}})\} \geq 1 \alpha$  requires exchangeability of the test and calibration scores  $\{S_0, S_1, \dots, S_n\}$
- This can fail if the distribution shifts between calibration and test
- We investigate this phenomenon by calibrating on only the center slices of fastMRI knee volumes and testing on a variety of slices, from the center to the edge





- PSNR and SSIM are more robust than LPIPS and DISTS
- Recent theoretical results<sup>1,2</sup> show that it's possible to extend coverage to a TV ball around the calibration distribution by choosing a more conservative error-rate  $\alpha$

<sup>&</sup>lt;sup>1</sup>Cauchois, Gupta, Ali, Duchi'24, <sup>2</sup>Oliveira, Orenstein, Ramos, Romano'24

### Outline

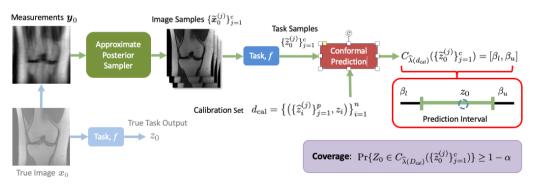
- Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

## Quantitative / task-based imaging

- lacksquare Again consider measurements  $m{y}_0 = \mathcal{A}(m{x}_0)$  and some recovery  $\widehat{m{x}}_0 = r(m{y}_0)$
- lacksquare But now say that our goal is to extract quantitative information about  $oldsymbol{x}_0$
- lacksquare Example: Does the MRI knee image  $oldsymbol{x}_0$  indicate a meniscus tear?
  - Say we've trained & calibrated a soft-output binary classifier  $f(\cdot)$  on clean images
  - Naively applying  $f(\cdot)$  to imperfect recoveries  $\hat{x}_0$  would give unreliable results
  - Instead, we want to estimate  $f(x_0)$  from  $y_0$  (without knowing  $x_0$ )
- lacksquare More generally, one may wish to estimate a generic  $egin{bmatrix} z_0 = f(m{x}_0) \in \mathbb{R} \end{bmatrix}$  given  $m{y}_0$
- Can one construct guaranteed upper and lower bounds on  $z_0$ ?

## Conformal prediction of the true task output

- Our approach is similar to before, in that we combine posterior image sampling with conformal prediction
- But instead of a one-sided bound, we construct a prediction interval  $C_{\lambda} = [\beta_l, \beta_u]$  that is guaranteed to contain the true task output  $z_0$  with probability  $1 \alpha$



### Constructing the prediction set

Several options for constructing the prediction set, e.g.,

Absolute residual (AR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^c) = [\overline{z} - \lambda, \overline{z} + \lambda], \quad \overline{z} = \frac{1}{c} \sum_{j=1}^c \widetilde{z}^{(j)}$$

■ Locally weighted residual (LWR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^c) = [\overline{z} - \sigma_z \lambda, \overline{z} + \sigma_z \lambda], \quad \sigma_z^2 = \frac{1}{c} \sum_{j=1}^c (\widetilde{z}^{(j)} - \overline{z})^2$$

Conformalized quantile regression<sup>1</sup> (CQR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^{c}) = \left[ \text{EmpQuant}(\frac{\alpha}{2}, \{\widetilde{z}^{(j)}\}_{j=1}^{c}) - \lambda, \text{EmpQuant}(1 - \frac{\alpha}{2}, \{\widetilde{z}^{(j)}\}_{j=1}^{c}) + \lambda \right]$$

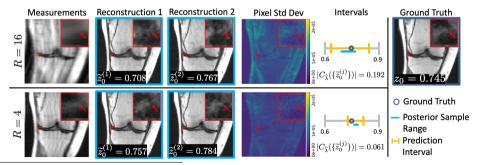
#### Adaptivity:

- The interval length  $|C_{\lambda}|$  provides a quantitative measure of uncertainty
- lacktriangle The AR method has a fixed  $|C_{\lambda}|$ , while LWR and CQR adapt the length  $|C_{\lambda}|$  to  $oldsymbol{y}_0$

<sup>&</sup>lt;sup>1</sup>Romano, Patterson, Candès' 19

## Example: Predicting meniscus-tears in knee MRI

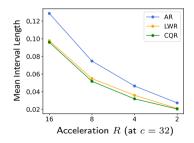
- lacktriangle We trained and calibrated a ResNet50 to output meniscus-tear probability  $z_0=f(x_0)$  using clean images from fastMRI+
- From R-accelerated measurements  $y_0$ , we compute a prediction interval  $C_\lambda$  that contains the true  $z_0$  with 99% probability
- $\blacksquare$  The conformal bound uses c posterior samples from a conditional normalizing flow<sup>1</sup>

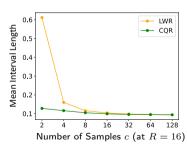


<sup>&</sup>lt;sup>1</sup>Wen, Ahmad, S'23

### Effect of prediction-set method

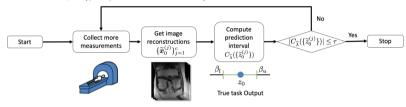
- lacktriangle Recall that the interval length  $|C_{\lambda}|$  acts as a quantitative measure of task uncertainty
- Below we plot  $|C_{\lambda}|$  vs acceleration R and # posterior samples c for the AR, LWR, and CQR bounds
- In this application, CQR yields the least uncertainty and is robust to the number of posterior samples





### Application: Multi-round MRI acquisition

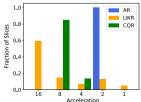
Consider acquiring over multiple rounds (i.e.,  $R \in \{16, 8, 4, 2, 1\}$ ), stopping as soon at the task uncertainty is small enough ( $|C_{\lambda}| \le \tau$  for  $\tau = 0.1$ )



The adaptive bounding schemes achieve much higher average acceleration rates than the non-adaptive AR scheme:

| Method | Average      | Average Empirical |                   |
|--------|--------------|-------------------|-------------------|
|        | Acceleration | Coverage          | Error $@R = 2$    |
| AR     | 2.000        | $0.991 \pm 0.008$ | $0.032 \pm 0.017$ |
| LWR    | 5.157        | $0.992 \pm 0.005$ | $0.020 \pm 0.002$ |
| CQR    | 6.762        | $0.987 \pm 0.008$ | $0.044 \pm 0.009$ |

Center Error 
$$\triangleq |z_0 - \frac{\beta_l + \beta_u}{2}|$$



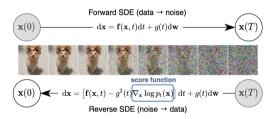
### Outline

- Probabilistic bounds on recovered-image accuracy
- 2 Probabilistic bounds for quantitative/task-based imaging
- Sefficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

### Diffusion methods

lacktriangle Diffusion methods are powerful ways to sample from a complex distribution p(x)

■ The forward process gradually adds noise to  $x(0) \sim p(x)$ . The reverse process starts with pure noise x(T) and gradually denoises, eventually generating a sample from p(x)



■ To discretize, we'll assume VP DDPM, where step  $t \in \{1, ..., T\}$  provides

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Although the reverse process is usually written using the score function  $\nabla_x \log p_t(x_t)$ , it can also be written using the MMSE denoiser  $\mathbb{E}\{x_0|x_t\}$  via Tweedie's rule

$$\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) = \frac{\sqrt{\alpha_t} \mathbb{E}\{\boldsymbol{x}_0 | \boldsymbol{x}_t\} - \boldsymbol{x}_t}{1 - \alpha_t}$$

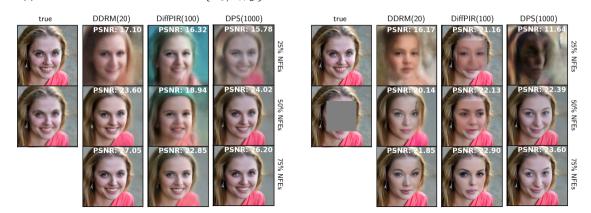
### Solving inverse problems with diffusion

- In inverse problems, we're given noisy/masked/distorted measurements  $m{y}=\mathcal{A}(m{x}_0)$ , from which we aim to recover  $m{x}_0$
- As we saw earlier, there's value in sampling from the posterior distribution  $p(x_0|y)$  rather than just constructing a point estimate of  $x_0$
- Diffusion can be configured for posterior sampling by using  $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t|\boldsymbol{y})$  in place of  $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)$ , or equivalently by using  $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t,\boldsymbol{y}\}$  in place of  $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t\}$
- Many strategies have been proposed to approximate  $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t|\boldsymbol{y})$  or  $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t,\boldsymbol{y}\}$  using some combination of a pretrained denoiser/score-fxn and the likelihood function  $p(\boldsymbol{y}|\boldsymbol{x}_0)$ 
  - Popular methods include DDRM¹, DPS², DDNM³, ∏GDM⁴, DiffPIR⁵, DDS⁶, etc.

<sup>&</sup>lt;sup>1</sup>Kawar et al'22, <sup>2</sup>Chung et al'23, <sup>3</sup>Wang et al'23, , <sup>4</sup>Song et al'23, , <sup>5</sup>Zhu et al'23, , <sup>6</sup>Chung et al'24

## The main challenge

- lacksquare How can one best approximate  $\mathbb{E}\{x_0|x_t,y\}$  under computational constraints?
- Current methods can be evaluated by visualizing and computing the MSE of their  $\mathbb{E}\{x_0|x_t,y\}$  approximations, since the exact  $\mathbb{E}\{x_0|x_t,y\}$  minimizes MSE



## Fast Iterative REnoising

- We propose an iterative approximation of  $\mathbb{E}\{x_0|x_t,y\}$  that we call Fast Iterative REnoising (FIRE)
- For linear inverse problems  $y = Ax_0 + w$  with  $w \sim \mathcal{N}(0, \sigma_w^2 I)$ , FIRE iterates the following steps after initializing  $r = x_t$  and  $\sigma_r^2 = (1 - \alpha_t)/\alpha_t$ :
  - $\mathbf{1} \quad \widetilde{\boldsymbol{x}}_0 \leftarrow \mathsf{Denoise}(\boldsymbol{r}; \sigma_r^2), \quad \sigma_x^2 \leftarrow \mathbb{E} \, \| \widehat{\boldsymbol{x}}_0 \boldsymbol{x}_0 \|^2 / d$
  - $\widehat{oldsymbol{x}}_0 \leftarrow rg \min_{oldsymbol{x}} \ rac{1}{\sigma_x^2} \|oldsymbol{y} oldsymbol{A} oldsymbol{x}\|^2 + rac{1}{\sigma_x^2} \|\widetilde{oldsymbol{x}}_0 oldsymbol{x}\|^2$
  - $\sigma_r^2 \leftarrow \sigma_r^2/\rho$  for some  $\rho > 1$  ... decrease renoising variance
  - 4 renoise: set  $| r \leftarrow \widehat{x}_0 + n |$  with colored Gaussian n that gives  $\boldsymbol{r} \sim \mathcal{N}(\boldsymbol{x}_0, \sigma_r^2 \boldsymbol{I})$
- Key idea: renoising ensures that the denoiser sees AWGN, consistent with how it was trained!
- Two options for renoising: exact SVD-based, or approximate  $(\boldsymbol{A}, \boldsymbol{A}^{\mathsf{T}})$ -based





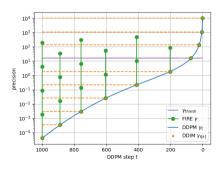






### DDfire: Putting the FIRE into diffusion

- FIRE can be plugged into any diffusion reverse process
- But, because FIRE uses multiple NFEs per  $\mathbb{E}\{x_0|x_t,y\}$ , we subsample the diffusion steps  $\{t\}$  using DDIM and schedule the FIRE iterations to meet a given total-NFE budget
- We allocate FIRE iterations using a "waterfilling" procedure, which is best illustrated using inverse variances, i.e., precisions:
- Basically, waterfilling ensures that FIRE's final-iteration denoiser-input-precision meets a target at each DDIM step
- The resulting "DDfire" outperforms many state-of-the-art diffusion methods at total NFE budgets of 20, 100, 1000



## Noisy FFHQ results

■ Results on  $256 \times 256$  FFHQ faces with measurement noise  $\sigma_w = 0.05$ :

|        |         | In           | paint (box    | )            | Deb          | Deblur (Gaussian) |              | Deblur (Motion) |               |              | 4× Super-resolution |               |              |
|--------|---------|--------------|---------------|--------------|--------------|-------------------|--------------|-----------------|---------------|--------------|---------------------|---------------|--------------|
| # NFEs | Model   | PSNR↑        | LPIPS↓        | FID↓         | PSNR↑        | LPIPS↓            | FID↓         | PSNR↑           | LPIPS↓        | FID↓         | PSNR↑               | LPIPS↓        | FID↓         |
| 20     | DiffPIR | 20.87        | 0.2741        | 41.50        | 23.55        | 0.3269            | 41.29        | 27.31           | 0.2704        | 29.27        | 22.32               | 0.3560        | 44.85        |
|        | DDRM    | <b>22.02</b> | 0.2052        | 40.61        | 26.27        | 0.2896            | 51.70        | -               | -             | -            | <b>28.62</b>        | <b>0.2417</b> | 45.82        |
|        | DDfire  | 21.80        | <b>0.1974</b> | <b>28.49</b> | <b>27.18</b> | <b>0.2843</b>     | <b>36.22</b> | <b>28.52</b>    | <b>0.2455</b> | <b>28.86</b> | 27.02               | 0.2917        | <b>37.72</b> |
| 100    | DiffPIR | 22.44        | 0.2415        | 31.98        | 24.57        | 0.2936            | 34.82        | 26.91           | 0.2683        | 26.67        | 26.76               | 0.3061        | 32.33        |
|        | IIGDM   | 21.75        | 0.2614        | 44.41        | 24.34        | 0.3125            | 45.34        | 25.94           | 0.2706        | 41.95        | 25.42               | 0.3109        | 51.41        |
|        | DDfire  | <b>23.78</b> | <b>0.1623</b> | <b>26.75</b> | <b>27.48</b> | <b>0.2274</b>     | <b>25.48</b> | <b>27.79</b>    | <b>0.2193</b> | <b>25.91</b> | <b>27.20</b>        | <b>0.2399</b> | <b>26.24</b> |
| 1000   | DPS     | 22.84        | 0.1793        | 35.69        | 26.32        | 0.2327            | 25.18        | 27.64           | 0.2176        | 27.17        | 27.11               | 0.2360        | 27.38        |
|        | DDfire  | <b>24.14</b> | <b>0.1579</b> | <b>24.56</b> | <b>26.84</b> | <b>0.2259</b>     | <b>24.68</b> | <b>27.71</b>    | <b>0.2155</b> | <b>24.57</b> | <b>27.32</b>        | <b>0.2356</b> | <b>25.75</b> |

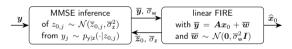
■ DDfire outperforms the competitors in 33 of the 36 cases

## Extension to generalized-linear models

■ To handle problems like phase retrieval, dequantization, Poisson regression, and non-Gaussian additive noise, we extend FIRE & DDfire to the generalized linear model (GLM):

$$m{y} \sim p(m{y}|m{z}_0) = \prod_{j=1}^m p_{\mathsf{y}|\mathsf{z}}(y_j|z_{0,j}) \;\; \mathsf{with} \;\; m{z}_0 riangleq m{A}m{x}_0$$

- We do this using expectation-propagation iterations between linear FIRE and a scalar MMSE inference stage:
- The GLM DDfire gives state-of-the-art noisy phase-retrieval performance with both oversampled Fourier (OSF) and coded diffraction pattern (CDP) operators:



|        |        |       | OSF    |        | CDP   |        |       |  |
|--------|--------|-------|--------|--------|-------|--------|-------|--|
| # NFEs | Model  | PSNR↑ | LPIPS↓ | FID↓   | PSNR↑ | LPIPS↓ | FID↓  |  |
| -      | HIO    | 23.66 | 0.5299 | 130.58 | 17.59 | 0.5818 | 84.87 |  |
| 1000   | DOLPH  | 14.73 | 0.7089 | 389.88 | 25.76 | 0.2163 | 32.93 |  |
| 1000   | DPS    | 23.63 | 0.3326 | 53.91  | 29.19 | 0.1994 | 27.87 |  |
| 800    | prDeep | 30.90 | 0.1585 | 31.51  | 19.24 | 0.4352 | 59.44 |  |
| 800    | DDfire | 33.56 | 0.1160 | 28.94  | 30.01 | 0.1767 | 23.49 |  |
| 100    | DDfire | 25.88 | 0.2643 | 46.54  | 30.16 | 0.1707 | 23.30 |  |

### Outline

- Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- Fast posterior sampling with regularized cGANs

### Fast posterior sampling for inverse problems

- Although diffusion-based posterior sampling has become popular, it's computationally challenging:
  - High accuracy methods consume hundreds of NFEs
- For supervised posterior sampling, which trains on a particular  $\mathcal{A}(\cdot)$  operator, single-NFE sampling is possible:
  - Conditional VAEs, conditional GANs, conditional normalizing flows
- Conventional wisdom says cGANs have unstable training and poor diversity. But is this really true?
  - In our experience, training instability vanished with the Wasserstein GAN<sup>1,2</sup>
  - Poor diversity can indeed be a problem<sup>3</sup>
- Our work shows how appropriate regularization can solve the diversity problem and lead to single-NFE cGANs that are more accurate than modern diffusion-based samplers

<sup>&</sup>lt;sup>1</sup>Arjovsky, Chintala, Bottou'17, <sup>2</sup>Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville'17, <sup>3</sup>Adler, Öktem'18

### Our approach

#### The regularized Wasserstein cGAN:

- Generator  $G_{\theta}$ : outputs  $\widehat{\boldsymbol{x}}_i = G_{\theta}(\boldsymbol{z}_i, \boldsymbol{y})$  for code realization  $\boldsymbol{z}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$
- Discriminator  $D_{\phi}$ : aims to distinguish true (x,y) from fake  $(\widehat{x}_i,y)$
- Training:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left\{ \mathbb{E}_{\mathsf{x},\mathsf{z},\mathsf{y}} \{ D_{\boldsymbol{\phi}}(\boldsymbol{x}_0,\boldsymbol{y}) - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z},\boldsymbol{y}),\boldsymbol{y}) \} + \mathcal{R}(\boldsymbol{\theta}) - \mathcal{L}_{\mathsf{gp}}(\boldsymbol{\phi}) \right\}$$

lacktriangle The regularization  $\mathcal{R}(m{ heta})$  is designed to enhance the fidelity & diversity of the generated samples

#### Contributions:

- lacktriangledown rcGAN $^1$  designs  $\mathcal{R}(\cdot)$  to reward correctness in the conditional mean and conditional trace-covariance
- ullet pcaGAN<sup>2</sup> adds correctness in the K principal eigencomponents of the conditional covariance matrix

<sup>&</sup>lt;sup>1</sup>Bendel,Ahmad,S'22, <sup>2</sup>Bendel,Ahmad,S'23

### rcGAN

rcGAN<sup>1</sup> regularizes using an L1 penalty and a standard-deviation reward:

$$\mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) \triangleq \underbrace{\mathbb{E}_{\mathsf{x},\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\boldsymbol{x}_{0} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{1,P}(\boldsymbol{\theta})} - \beta_{\mathsf{std}} \underbrace{\sum_{i=1}^{P} \mathbb{E}_{\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\widehat{\boldsymbol{x}}_{i} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{\mathsf{std},P}(\boldsymbol{\theta})}$$

where  $\widehat{x}_{(P)} \triangleq \frac{1}{P} \sum_{i=1}^{P} \widehat{x}_i$  is the average of P posterior samples.

#### Key points:

- ullet  $eta_{std}$  controls the amount of diversity, and is automatically optimized during training
- lacksquare Can prove  $egin{aligned} \mathcal{R}_{\mathsf{rc}}(oldsymbol{ heta}) & \mathsf{yields} \ \mathbb{E}\{\widehat{oldsymbol{x}}_i|oldsymbol{y}\} = \mathbb{E}\{oldsymbol{x}_0|oldsymbol{y}\} \ \mathsf{and} \ \mathrm{tr} \ \mathrm{Cov}\{\widehat{oldsymbol{x}}_i|oldsymbol{y}\} = \mathrm{tr} \ \mathrm{Cov}\{oldsymbol{x}_0|oldsymbol{y}\} \ \mathsf{with} \ \mathsf{Gaussian} \ oldsymbol{x}_0|oldsymbol{y}\} \end{aligned}$
- Can prove<sup>1</sup>  $\mathcal{R}(\theta) = \mathcal{L}_{2,P}(\theta) \beta_{\text{var}} \mathcal{L}_{\text{var},P}(\theta)$  does not (for any  $\beta_{\text{var}}$ )

Phil Schniter (Ohio State)

<sup>&</sup>lt;sup>1</sup>Bendel.Ahmad.S'22

### pcaGAN

Goal: Ensure that  $\widehat{\boldsymbol{v}}_k = \boldsymbol{v}_k$  and  $\widehat{\lambda}_k = \lambda_k$  for  $k = 1, \dots, K$ 

- $\blacksquare~\{(\widehat{\pmb{v}}_k,\widehat{\lambda}_k)\}_{k=1}^K$  are the principal evecs/evals of  $\mathrm{Cov}\{\widehat{\pmb{x}}_i|\pmb{y}\}$
- $\blacksquare~\{({\bm v}_k, \lambda_k)\}_{k=1}^K$  are the principal evecs/evals of  $\mathrm{Cov}\{{\bm x}_0|{\bm y}\}$
- $lue{K}$  is user-specified

We propose

$$\mathcal{R}_{\mathsf{pca}}(\boldsymbol{\theta}) \triangleq \mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{evec}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{eval}}(\boldsymbol{\theta}),$$

where

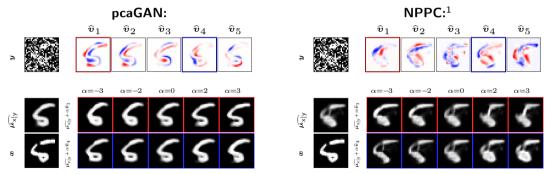
$$\begin{aligned} & \mathcal{L}_{\text{evec}}(\boldsymbol{\theta}) \triangleq - \mathbb{E}_{\mathbf{y}} \left\{ \left. \mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{\mathsf{P}} | \mathbf{y}} \left\{ \left. \sum_{k=1}^{K} [\widehat{\boldsymbol{v}}_{k}(\boldsymbol{\theta})^{\mathsf{T}} (\boldsymbol{x}_{0} - \boldsymbol{\mu}_{\mathbf{x} | \mathbf{y}})]^{2} \middle| \boldsymbol{y} \right\} \right\} \\ & \mathcal{L}_{\text{eval}}(\boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathbf{y}} \left\{ \left. \mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{\mathsf{P}} | \mathbf{y}} \left\{ \left. \sum_{k=1}^{K} \left( 1 - \lambda_{k} / \widehat{\lambda}_{k}(\boldsymbol{\theta}) \right)^{2} \middle| \boldsymbol{y} \right\} \right\} \end{aligned}$$

and where

the unknown  $m{\mu}_{\mathsf{x}|\mathsf{y}} riangleq \mathbb{E}\{m{x}_0|m{y}\}$  and  $\{\lambda_k\}_{k=1}^K$  are approximated using stopgrad and an SVD

## MNIST denoising: Visualizing the principal uncertainty components

- Principal eigenvectors  $\{v_k\}_{k=1}^K$  are shown below for K=5
- Also shown are  $\widehat{\mu_{\mathsf{x}|\mathsf{y}}} \pm \alpha \widehat{v}_k$  for  $k \in \{1,4\}$  and  $\alpha \in \{-3,-2,0,2,3\}$



pcaGAN's eigenvectors show much more meaningful structure

<sup>&</sup>lt;sup>1</sup>Nehme, Yair, Michaeli'23

## Large-scale image completion/inpainting

We inpainted large random masks on 256x256 FFHQ face images

Results (20k test images):

| Model                        | CFID↓ | $FID{\downarrow}$ | LPIPS↓ | Time (40 samples)↓ |
|------------------------------|-------|-------------------|--------|--------------------|
| DPS <sup>1</sup> (1000 NFEs) | 7.26  | 2.00              | 0.1245 | 14 min             |
| DDNM <sup>2</sup> (100 NFEs) | 11.30 | 3.63              | 0.1409 | 30 s               |
| DDRM <sup>3</sup> (20 NFEs)  | 13.17 | 5.36              | 0.1587 | 5 s                |
| pscGAN <sup>4</sup>          | 18.44 | 8.40              | 0.1716 | 325 ms             |
| CoModGAN <sup>5</sup>        | 7.85  | 2.23              | 0.1290 | 325 ms             |
| rcGAN                        | 7.51  | 2.12              | 0.1262 | 325 ms             |
| $pcaGAN\;(K=2)$              | 7.08  | 1.98              | 0.1230 | 325 ms             |

- pcaGAN outperformed all diffusion and cGAN competitors
- cGANs are 15x to 2500x faster than the diffusion methods

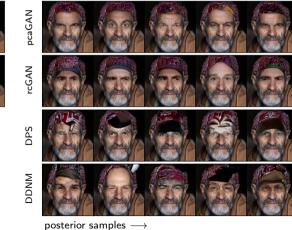
<sup>&</sup>lt;sup>1</sup>Chung et al'23, <sup>2</sup>Wang et al'23, <sup>3</sup>Kawar et al'22, <sup>4</sup>Ohayon et al'21, <sup>5</sup>Zhao et al'21

## Example FFHQ inpainting

original

masked

rcGAN and pcaGAN generate samples that are both high quality and diverse



## Results on accelerated MR image recovery

We reconstructed multicoil fastMRI<sup>1</sup> T2 brain images at acceleration R=8

Results (74 test images):

| Model                          | CFID↓ | FID↓  | PSNR↑        | SSIM↑  | LPIPS↓ | DISTS↓ | Time (4 samples)↓ |
|--------------------------------|-------|-------|--------------|--------|--------|--------|-------------------|
| E2E-VarNet <sup>2</sup>        | 36.86 | 44.04 | 36.49        | 0.9220 | 0.0575 | 0.1253 | 316ms             |
| Langevin (Jalal <sup>3</sup> ) | 48.59 | 52.62 | 33.90        | 0.9137 | 0.0579 | 0.1086 | 14 min            |
| cGAN (Adler <sup>4</sup> )     | 59.94 | 31.81 | 33.51        | 0.9111 | 0.0614 | 0.1252 | 217 ms            |
| pscGAN <sup>5</sup>            | 39.67 | 43.39 | 34.92        | 0.9222 | 0.0532 | 0.1128 | 217 ms            |
| rcGAN                          | 24.04 | 28.43 | 35.42        | 0.9257 | 0.0379 | 0.0877 | 217 ms            |
| $pcaGAN\ (K=1)$                | 21.65 | 28.35 | <u>35.94</u> | 0.9283 | 0.0344 | 0.0799 | 217 ms            |

- pcaGAN won in all metrics but PSNR
- The cGANs generated samples 3800x faster than the Langevin method
- lacksquare Note: PSNR, SSIM, LPIPS, DISTS computed using  $\widehat{m{x}}_{(P)}$  for the optimal P

<sup>&</sup>lt;sup>1</sup>Zbontar et al'18, <sup>2</sup>Sriram et al'19, <sup>3</sup>Jalal et al'21, <sup>4</sup>Adler,Öktem'18, <sup>5</sup>Ohayon et al'21

#### Conclusion

- Due to ill-posedness and the possibility of hallucinations, there's a need for inverse-problem solvers with performance guarantees
- By combining approximate posterior sampling with conformal prediction, we proposed image-recovery and quantitative-imaging methods with probabilistic guarantees
- For the unsupervised scenario, we presented a new diffusion posterior sampler, based on iterative renoising, with SOTA performance over a wide range of NFEs
- For the supervised case, we presented a regularized cGAN sampler that is more accurate than contemporary diffusion methods while consuming only a single NFE