Safe and Informative Computational Imaging via Conformal Prediction and Generative Models

Phil Schniter

(Joint work with Jeffrey Wen, Matt Bendel, and Rizwan Ahmad)

Supported in part by the NIH under grant R01-EB029957

University of Texas at Austin December 2024

Imaging inverse problems

Imaging inverse problems:

- lacksquare Unknown image x
- lacksquare Measurements $oldsymbol{y} = \mathcal{M}(oldsymbol{x})$
 - $lacktriangleq \mathcal{M}(\cdot)$ masks, distorts, and/or corrupts x with noise.
 - Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT), magnetic resonance imaging (MRI), etc.
- Typical goals
 - Recover image x
 - **Extract** quantitative information from x (e.g., probability of a pathology)

Challenges:

- \blacksquare The inverse problem is often ill-posed: many hypotheses of x can explain the measurements y
- Modern methods can hallucinate:
 - Produce nice-looking \hat{x} that differ from true x in important ways

Examples of ill-posedness and hallucinations

Fundamental ill-posedness:

measured y

Undesired hallucinations¹:

true x

reconstruction

¹Muckley et al'21

Uncertainty quantification

- lacktriangle We'd like to quantify the uncertainty or error in the image recovery \widehat{x}
 - If the error was large, we could collect new/more measurements
- Especially important in safety-critical applications (e.g., medical imaging)
- Most uncertainty quantification methods produce pixel-wise uncertainty maps (e.g., posterior variance) that look like

But how useful are these uncertainty maps in practice?

Outline

- 1 Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

Probabilistic bounds on recovered-image accuracy

- lacksquare Say we have an image-recovery method $m{r}(\cdot)$ that produces $\widehat{m{x}}_0 = m{r}(m{y}_0)$
 - Subscript 0 indicates "test" quantities, not calibration, as we'll soon see . . .
- We'd like to know the "accuracy" of \widehat{x}_0 relative to the true x_0
- lacksquare To measure accuracy, we'll use an arbitrary image-quality metric $oxed{z_0=m(\widehat{m{x}}_0,m{x}_0)}$ like
 - PSNR, SSIM¹ ... higher preferred (we'll focus on this below)
 - LPIPS², DISTS³ ...lower preferred
 - In any case, z_0 is unknown in practice
- Is it possible to guarantee the accuracy of \widehat{x}_0 , i.e., construct a bound $\beta_0(y_0)$ such that

$$\Pr\{Z_0 \ge \beta_0(\boldsymbol{Y}_0)\} \ge 1 - \alpha$$

for some chosen error rate α ? (Here, capital letters denote random variables)

¹Wang et al'04, ²Zhang et al'18, ³Ding et al'20

An impractical bound

lacksquare Say we have a perfect posterior sampler generating c image samples $\{\widetilde{m{x}}_0^{(j)}\}_{j=1}^c$. Then

$$\{\boldsymbol{x}_0, \widetilde{\boldsymbol{x}}_0^{(1)}, \dots, \widetilde{\boldsymbol{x}}_0^{(c)}\} \stackrel{iid}{\sim} p_{\boldsymbol{X}_0 \,|\, \boldsymbol{Y}_0}(\cdot \,|\, \boldsymbol{y}_0)$$

■ Define the corresponding image-accuracy samples $\widetilde{z}_0^{(j)} \triangleq m(\widehat{x}_0, \widetilde{x}_0^{(j)})$. Then

$$\{z_0, \widetilde{z}_0^{(1)}, \dots, \widetilde{z}_0^{(c)}\} \stackrel{iid}{\sim} p_{Z_0 \mid \boldsymbol{Y}_0}(\cdot \mid \boldsymbol{y}_0)$$

■ Thus an accuracy lower bound β_0 that holds with probability $1-\alpha$, i.e.,

$$\Pr\{Z_0 \ge \beta_0 \mid Y_0 = y_0\} = 1 - \alpha$$

can be constructed using an infinite number of perfect posterior samples:

$$\beta_0 = \lim_{c \to \infty} \widehat{\beta}_0 \quad \text{with} \quad \widehat{\beta}_0 \triangleq \operatorname{EmpQuant}(\alpha, \{\widetilde{z}_0^{(j)}\}_{j=1}^c)$$

• Why? Assuming the random variable $Z_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0$ is continuous, we recognize β_0 as its α th quantile. Then $\{\widehat{z}_0^{(j)}\}_{j=1}^c \stackrel{d}{\to} Z_0 \mid \boldsymbol{Y}_0 = \boldsymbol{y}_0 \text{ implies } \widehat{\beta}_0 \to \beta_0$

A conformal bound

- \blacksquare In practice, we have only a finite number c of imperfect posterior samples
- We propose to design a valid lower bound using conformal prediction¹
 - Assume we have n calibration samples $\{(m{x}_i,m{y}_i)\}_{i=1}^n$ in addition to the test measurements $m{y}_0$
 - Construct approximate *c*-sample bounds as before:

$$\widehat{\beta}_i = \text{EmpQuant}(\alpha, \{\widetilde{z}_i^{(j)}\}_{j=1}^c) \text{ for } i = 0, \dots, n$$

- lacksquare Also compute "bound-violation scores" $s_i \triangleq \widehat{eta}_i z_i$ for $i=1,\ldots,n$ (i.e., $s_i>0$ means bound violated)
- lacksquare Using the set $d_{\mathsf{cal}} \triangleq \{s_i\}_{i=1}^n$ of calibration scores, compute a bound correction term

$$\widehat{\lambda}(d_{\mathsf{cal}}) = \operatorname{EmpQuant}\left(\frac{\lceil (1-\alpha)(n+1)\rceil}{n}, \{s_i\}_{i=1}^n\right)$$

- \blacksquare Form the final "test" lower bound as $\beta_0(\pmb{y}_0,d_{\rm cal})=\widehat{\beta}_0-\widehat{\lambda}(d_{\rm cal})$
- This conformal bound obeys² the marginal coverage guarantee

$$1 - \alpha \le \Pr\{Z_0 \ge \beta_0(Y_0, D_{\mathsf{cal}})\} \le 1 - \alpha + \frac{1}{n+1}$$

assuming that $\{S_0, S_1, \dots, S_n\}$ are statistically exchangeable

¹Vovk, Gammerman, Shafer'05, ²Lei, G'Sell, Rinaldo, Tibshirani, Wasserman'18,

Summary of lower-bound procedure

 Similar techniques can be used to construct upper bounds on lower-preferred image accuracy metrics like LPIPS and DISTS

Example: Bounding recovery accuracy in MRI

■ Scatter plots of (z_0, β_0) from fastMRI knee recovery @ acceleration R = 8 using a conditional normalizing flow¹:

The red line indicates where the bound would be exact

■ Validation of marginal coverage using $10\,000$ Monte-Carlo trials (each with a random 70% test / 30% calibration split):

target coverage $1-\alpha$	average empirical coverage			
0.95	0.9504 ± 0.0001			

Application: Multi-round MRI acquisition

■ Consider acquiring over multiple rounds (i.e., $R \in \{16, 8, 4, 2, 1\}$), stopping as soon at the conformal upper bound on DISTS¹ is good enough (i.e., $\leq \beta_{\text{max}}$)

• Multi-round acquisition achieves much higher average acceleration than single-round acquisition:

	method	avg acceleration	empirical coverage
ſ	single-round	2.000 ± 0.0000	0.9505 ± 0.0001
	multi-round	5.422 ± 0.0001	0.9461 ± 0.0001

¹Kastryulin, Zakirov, Pezzotti, Dylov'23

Effect of distribution shift

- Recall that the marginal coverage guarantee $\Pr\{Z_0 \geq \beta_0(\boldsymbol{Y}_0, D_{\mathsf{cal}})\} \geq 1 \alpha$ requires exchangeability of the test and calibration scores $\{S_0, S_1, \dots, S_n\}$
- This can fail if the distribution shifts between calibration and test
- We investigate this phenomenon by calibrating on only the center slices of fastMRI knee volumes and testing on a variety of slices, from the center to the edge

- PSNR and SSIM are more robust than LPIPS and DISTS
- Recent theoretical results^{1,2} show that it's possible to extend coverage to a TV ball around the calibration distribution by choosing a more conservative error-rate α

¹Cauchois, Gupta, Ali, Duchi'24, ²Oliveira, Orenstein, Ramos, Romano'24

Outline

- Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

Quantitative / task-based imaging

- lacksquare Again consider measurements $m{y}_0 = \mathcal{A}(m{x}_0)$ and some recovery $\widehat{m{x}}_0 = r(m{y}_0)$
- lacksquare But now say that our goal is to extract quantitative information about $oldsymbol{x}_0$
- lacksquare Example: Does the MRI knee image $oldsymbol{x}_0$ indicate a meniscus tear?
 - Say we've trained & calibrated a soft-output binary classifier $f(\cdot)$ on clean images
 - Naively applying $f(\cdot)$ to imperfect recoveries \hat{x}_0 would give unreliable results
 - Instead, we want to estimate $f(x_0)$ from y_0 (without knowing x_0)
- lacksquare More generally, one may wish to estimate a generic $egin{bmatrix} z_0 = f(m{x}_0) \in \mathbb{R} \end{bmatrix}$ given $m{y}_0$
- Can one construct guaranteed upper and lower bounds on z_0 ?

Conformal prediction of the true task output

- Our approach is similar to before, in that we combine posterior image sampling with conformal prediction
- But instead of a one-sided bound, we construct a prediction interval $C_{\lambda} = [\beta_l, \beta_u]$ that is guaranteed to contain the true task output z_0 with probability 1α

Constructing the prediction set

Several options for constructing the prediction set, e.g.,

Absolute residual (AR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^c) = [\overline{z} - \lambda, \overline{z} + \lambda], \quad \overline{z} = \frac{1}{c} \sum_{j=1}^c \widetilde{z}^{(j)}$$

■ Locally weighted residual (LWR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^c) = [\overline{z} - \sigma_z \lambda, \overline{z} + \sigma_z \lambda], \quad \sigma_z^2 = \frac{1}{c} \sum_{j=1}^c (\widetilde{z}^{(j)} - \overline{z})^2$$

Conformalized quantile regression¹ (CQR):

$$C_{\lambda}(\{\widetilde{z}^{(j)}\}_{j=1}^{c}) = \left[\text{EmpQuant}(\frac{\alpha}{2}, \{\widetilde{z}^{(j)}\}_{j=1}^{c}) - \lambda, \text{EmpQuant}(1 - \frac{\alpha}{2}, \{\widetilde{z}^{(j)}\}_{j=1}^{c}) + \lambda \right]$$

Adaptivity:

- The interval length $|C_{\lambda}|$ provides a quantitative measure of uncertainty
- lacktriangle The AR method has a fixed $|C_{\lambda}|$, while LWR and CQR adapt the length $|C_{\lambda}|$ to $oldsymbol{y}_0$

¹Romano, Patterson, Candès' 19

Example: Predicting meniscus-tears in knee MRI

- lacktriangle We trained and calibrated a ResNet50 to output meniscus-tear probability $z_0=f(x_0)$ using clean images from fastMRI+
- From R-accelerated measurements y_0 , we compute a prediction interval C_λ that contains the true z_0 with 99% probability
- \blacksquare The conformal bound uses c posterior samples from a conditional normalizing flow¹

¹Wen, Ahmad, S'23

Effect of prediction-set method

- lacktriangle Recall that the interval length $|C_{\lambda}|$ acts as a quantitative measure of task uncertainty
- Below we plot $|C_{\lambda}|$ vs acceleration R and # posterior samples c for the AR, LWR, and CQR bounds
- In this application, CQR yields the least uncertainty and is robust to the number of posterior samples

Application: Multi-round MRI acquisition

Consider acquiring over multiple rounds (i.e., $R \in \{16, 8, 4, 2, 1\}$), stopping as soon at the task uncertainty is small enough ($|C_{\lambda}| \le \tau$ for $\tau = 0.1$)

The adaptive bounding schemes achieve much higher average acceleration rates than the non-adaptive AR scheme:

Method	Average	Average Empirical	
	Acceleration	Coverage	Error $@R = 2$
AR	2.000	0.991 ± 0.008	0.032 ± 0.017
LWR	5.157	0.992 ± 0.005	0.020 ± 0.002
CQR	6.762	0.987 ± 0.008	0.044 ± 0.009

Center Error
$$\triangleq |z_0 - \frac{\beta_l + \beta_u}{2}|$$

Outline

- Probabilistic bounds on recovered-image accuracy
- 2 Probabilistic bounds for quantitative/task-based imaging
- Sefficient posterior sampling via diffusion with fast iterative renoising
- 4 Fast posterior sampling with regularized cGANs

Diffusion methods

lacktriangle Diffusion methods are powerful ways to sample from a complex distribution p(x)

■ The forward process gradually adds noise to $x(0) \sim p(x)$. The reverse process starts with pure noise x(T) and gradually denoises, eventually generating a sample from p(x)

■ To discretize, we'll assume VP DDPM, where step $t \in \{1, ..., T\}$ provides

$$x_t = \sqrt{\alpha_t} x_0 + \sqrt{1 - \alpha_t} \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Although the reverse process is usually written using the score function $\nabla_x \log p_t(x_t)$, it can also be written using the MMSE denoiser $\mathbb{E}\{x_0|x_t\}$ via Tweedie's rule

$$\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t) = \frac{\sqrt{\alpha_t} \mathbb{E}\{\boldsymbol{x}_0 | \boldsymbol{x}_t\} - \boldsymbol{x}_t}{1 - \alpha_t}$$

Solving inverse problems with diffusion

- In inverse problems, we're given noisy/masked/distorted measurements $m{y}=\mathcal{A}(m{x}_0)$, from which we aim to recover $m{x}_0$
- As we saw earlier, there's value in sampling from the posterior distribution $p(x_0|y)$ rather than just constructing a point estimate of x_0
- Diffusion can be configured for posterior sampling by using $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t|\boldsymbol{y})$ in place of $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t)$, or equivalently by using $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t,\boldsymbol{y}\}$ in place of $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t\}$
- Many strategies have been proposed to approximate $\nabla_{\boldsymbol{x}} \log p_t(\boldsymbol{x}_t|\boldsymbol{y})$ or $\mathbb{E}\{\boldsymbol{x}_0|\boldsymbol{x}_t,\boldsymbol{y}\}$ using some combination of a pretrained denoiser/score-fxn and the likelihood function $p(\boldsymbol{y}|\boldsymbol{x}_0)$
 - Popular methods include DDRM¹, DPS², DDNM³, ∏GDM⁴, DiffPIR⁵, DDS⁶, etc.

¹Kawar et al'22, ²Chung et al'23, ³Wang et al'23, , ⁴Song et al'23, , ⁵Zhu et al'23, , ⁶Chung et al'24

The main challenge

- lacksquare How can one best approximate $\mathbb{E}\{x_0|x_t,y\}$ under computational constraints?
- Current methods can be evaluated by visualizing and computing the MSE of their $\mathbb{E}\{x_0|x_t,y\}$ approximations, since the exact $\mathbb{E}\{x_0|x_t,y\}$ minimizes MSE

Fast Iterative REnoising

- We propose an iterative approximation of $\mathbb{E}\{x_0|x_t,y\}$ that we call Fast Iterative REnoising (FIRE)
- For linear inverse problems $y = Ax_0 + w$ with $w \sim \mathcal{N}(0, \sigma_w^2 I)$, FIRE iterates the following steps after initializing $r = x_t$ and $\sigma_r^2 = (1 - \alpha_t)/\alpha_t$:
 - $\mathbf{1} \quad \widetilde{\boldsymbol{x}}_0 \leftarrow \mathsf{Denoise}(\boldsymbol{r}; \sigma_r^2), \quad \sigma_x^2 \leftarrow \mathbb{E} \, \| \widehat{\boldsymbol{x}}_0 \boldsymbol{x}_0 \|^2 / d$
 - $\widehat{oldsymbol{x}}_0 \leftarrow rg \min_{oldsymbol{x}} \ rac{1}{\sigma_x^2} \|oldsymbol{y} oldsymbol{A} oldsymbol{x}\|^2 + rac{1}{\sigma_x^2} \|\widetilde{oldsymbol{x}}_0 oldsymbol{x}\|^2$
 - $\sigma_r^2 \leftarrow \sigma_r^2/\rho$ for some $\rho > 1$... decrease renoising variance
 - 4 renoise: set $| r \leftarrow \widehat{x}_0 + n |$ with colored Gaussian n that gives $\boldsymbol{r} \sim \mathcal{N}(\boldsymbol{x}_0, \sigma_r^2 \boldsymbol{I})$
- Key idea: renoising ensures that the denoiser sees AWGN, consistent with how it was trained!
- Two options for renoising: exact SVD-based, or approximate $(\boldsymbol{A}, \boldsymbol{A}^{\mathsf{T}})$ -based

DDfire: Putting the FIRE into diffusion

- FIRE can be plugged into any diffusion reverse process
- But, because FIRE uses multiple NFEs per $\mathbb{E}\{x_0|x_t,y\}$, we subsample the diffusion steps $\{t\}$ using DDIM and schedule the FIRE iterations to meet a given total-NFE budget
- We allocate FIRE iterations using a "waterfilling" procedure, which is best illustrated using inverse variances, i.e., precisions:
- Basically, waterfilling ensures that FIRE's final-iteration denoiser-input-precision meets a target at each DDIM step
- The resulting "DDfire" outperforms many state-of-the-art diffusion methods at total NFE budgets of 20, 100, 1000

Noisy FFHQ results

■ Results on 256×256 FFHQ faces with measurement noise $\sigma_w = 0.05$:

		In	paint (box)	Deb	Deblur (Gaussian)		Deblur (Motion)			4× Super-resolution		
# NFEs	Model	PSNR↑	LPIPS↓	FID↓	PSNR↑	LPIPS↓	FID↓	PSNR↑	LPIPS↓	FID↓	PSNR↑	LPIPS↓	FID↓
20	DiffPIR	20.87	0.2741	41.50	23.55	0.3269	41.29	27.31	0.2704	29.27	22.32	0.3560	44.85
	DDRM	22.02	0.2052	40.61	26.27	0.2896	51.70	-	-	-	28.62	0.2417	45.82
	DDfire	21.80	0.1974	28.49	27.18	0.2843	36.22	28.52	0.2455	28.86	27.02	0.2917	37.72
100	DiffPIR	22.44	0.2415	31.98	24.57	0.2936	34.82	26.91	0.2683	26.67	26.76	0.3061	32.33
	IIGDM	21.75	0.2614	44.41	24.34	0.3125	45.34	25.94	0.2706	41.95	25.42	0.3109	51.41
	DDfire	23.78	0.1623	26.75	27.48	0.2274	25.48	27.79	0.2193	25.91	27.20	0.2399	26.24
1000	DPS	22.84	0.1793	35.69	26.32	0.2327	25.18	27.64	0.2176	27.17	27.11	0.2360	27.38
	DDfire	24.14	0.1579	24.56	26.84	0.2259	24.68	27.71	0.2155	24.57	27.32	0.2356	25.75

■ DDfire outperforms the competitors in 33 of the 36 cases

Extension to generalized-linear models

■ To handle problems like phase retrieval, dequantization, Poisson regression, and non-Gaussian additive noise, we extend FIRE & DDfire to the generalized linear model (GLM):

$$m{y} \sim p(m{y}|m{z}_0) = \prod_{j=1}^m p_{\mathsf{y}|\mathsf{z}}(y_j|z_{0,j}) \;\; \mathsf{with} \;\; m{z}_0 riangleq m{A}m{x}_0$$

- We do this using expectation-propagation iterations between linear FIRE and a scalar MMSE inference stage:
- The GLM DDfire gives state-of-the-art noisy phase-retrieval performance with both oversampled Fourier (OSF) and coded diffraction pattern (CDP) operators:

			OSF		CDP			
# NFEs	Model	PSNR↑	LPIPS↓	FID↓	PSNR↑	LPIPS↓	FID↓	
-	HIO	23.66	0.5299	130.58	17.59	0.5818	84.87	
1000	DOLPH	14.73	0.7089	389.88	25.76	0.2163	32.93	
1000	DPS	23.63	0.3326	53.91	29.19	0.1994	27.87	
800	prDeep	30.90	0.1585	31.51	19.24	0.4352	59.44	
800	DDfire	33.56	0.1160	28.94	30.01	0.1767	23.49	
100	DDfire	25.88	0.2643	46.54	30.16	0.1707	23.30	

Outline

- Probabilistic bounds on recovered-image accuracy
- Probabilistic bounds for quantitative/task-based imaging
- 3 Efficient posterior sampling via diffusion with fast iterative renoising
- Fast posterior sampling with regularized cGANs

Fast posterior sampling for inverse problems

- Although diffusion-based posterior sampling has become popular, it's computationally challenging:
 - High accuracy methods consume hundreds of NFEs
- For supervised posterior sampling, which trains on a particular $\mathcal{A}(\cdot)$ operator, single-NFE sampling is possible:
 - Conditional VAEs, conditional GANs, conditional normalizing flows
- Conventional wisdom says cGANs have unstable training and poor diversity. But is this really true?
 - In our experience, training instability vanished with the Wasserstein GAN^{1,2}
 - Poor diversity can indeed be a problem³
- Our work shows how appropriate regularization can solve the diversity problem and lead to single-NFE cGANs that are more accurate than modern diffusion-based samplers

¹Arjovsky, Chintala, Bottou'17, ²Gulrajani, Ahmed, Arjovsky, Dumoulin, Courville'17, ³Adler, Öktem'18

Our approach

The regularized Wasserstein cGAN:

- Generator G_{θ} : outputs $\widehat{\boldsymbol{x}}_i = G_{\theta}(\boldsymbol{z}_i, \boldsymbol{y})$ for code realization $\boldsymbol{z}_i \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$
- Discriminator D_{ϕ} : aims to distinguish true (x,y) from fake (\widehat{x}_i,y)
- Training:

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\phi}} \left\{ \mathbb{E}_{\mathsf{x},\mathsf{z},\mathsf{y}} \{ D_{\boldsymbol{\phi}}(\boldsymbol{x}_0,\boldsymbol{y}) - D_{\boldsymbol{\phi}}(G_{\boldsymbol{\theta}}(\boldsymbol{z},\boldsymbol{y}),\boldsymbol{y}) \} + \mathcal{R}(\boldsymbol{\theta}) - \mathcal{L}_{\mathsf{gp}}(\boldsymbol{\phi}) \right\}$$

lacktriangle The regularization $\mathcal{R}(m{ heta})$ is designed to enhance the fidelity & diversity of the generated samples

Contributions:

- lacktriangledown rcGAN 1 designs $\mathcal{R}(\cdot)$ to reward correctness in the conditional mean and conditional trace-covariance
- ullet pcaGAN² adds correctness in the K principal eigencomponents of the conditional covariance matrix

¹Bendel,Ahmad,S'22, ²Bendel,Ahmad,S'23

rcGAN

rcGAN¹ regularizes using an L1 penalty and a standard-deviation reward:

$$\mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) \triangleq \underbrace{\mathbb{E}_{\mathsf{x},\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\boldsymbol{x}_{0} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{1,P}(\boldsymbol{\theta})} - \beta_{\mathsf{std}} \underbrace{\sum_{i=1}^{P} \mathbb{E}_{\mathsf{z}_{1},...,\mathsf{z}_{\mathsf{P}},\mathsf{y}} \left\{ \|\widehat{\boldsymbol{x}}_{i} - \widehat{\boldsymbol{x}}_{\scriptscriptstyle(P)}\|_{1} \right\}}_{\triangleq \mathcal{L}_{\mathsf{std},P}(\boldsymbol{\theta})}$$

where $\widehat{x}_{(P)} \triangleq \frac{1}{P} \sum_{i=1}^{P} \widehat{x}_i$ is the average of P posterior samples.

Key points:

- ullet eta_{std} controls the amount of diversity, and is automatically optimized during training
- lacksquare Can prove $egin{aligned} \mathcal{R}_{\mathsf{rc}}(oldsymbol{ heta}) & \mathsf{yields} \ \mathbb{E}\{\widehat{oldsymbol{x}}_i|oldsymbol{y}\} = \mathbb{E}\{oldsymbol{x}_0|oldsymbol{y}\} \ \mathsf{and} \ \mathrm{tr} \ \mathrm{Cov}\{\widehat{oldsymbol{x}}_i|oldsymbol{y}\} = \mathrm{tr} \ \mathrm{Cov}\{oldsymbol{x}_0|oldsymbol{y}\} \ \mathsf{with} \ \mathsf{Gaussian} \ oldsymbol{x}_0|oldsymbol{y}\} \end{aligned}$
- Can prove¹ $\mathcal{R}(\theta) = \mathcal{L}_{2,P}(\theta) \beta_{\text{var}} \mathcal{L}_{\text{var},P}(\theta)$ does not (for any β_{var})

Phil Schniter (Ohio State)

¹Bendel.Ahmad.S'22

pcaGAN

Goal: Ensure that $\widehat{\boldsymbol{v}}_k = \boldsymbol{v}_k$ and $\widehat{\lambda}_k = \lambda_k$ for $k = 1, \dots, K$

- $\blacksquare~\{(\widehat{\pmb{v}}_k,\widehat{\lambda}_k)\}_{k=1}^K$ are the principal evecs/evals of $\mathrm{Cov}\{\widehat{\pmb{x}}_i|\pmb{y}\}$
- $\blacksquare~\{({\bm v}_k, \lambda_k)\}_{k=1}^K$ are the principal evecs/evals of $\mathrm{Cov}\{{\bm x}_0|{\bm y}\}$
- $lue{K}$ is user-specified

We propose

$$\mathcal{R}_{\mathsf{pca}}(\boldsymbol{\theta}) \triangleq \mathcal{R}_{\mathsf{rc}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{evec}}(\boldsymbol{\theta}) + \beta_{\mathsf{pca}} \mathcal{L}_{\mathsf{eval}}(\boldsymbol{\theta}),$$

where

$$\begin{aligned} & \mathcal{L}_{\text{evec}}(\boldsymbol{\theta}) \triangleq - \mathbb{E}_{\mathbf{y}} \left\{ \left. \mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{\mathsf{P}} | \mathbf{y}} \left\{ \left. \sum_{k=1}^{K} [\widehat{\boldsymbol{v}}_{k}(\boldsymbol{\theta})^{\mathsf{T}} (\boldsymbol{x}_{0} - \boldsymbol{\mu}_{\mathbf{x} | \mathbf{y}})]^{2} \middle| \boldsymbol{y} \right\} \right\} \\ & \mathcal{L}_{\text{eval}}(\boldsymbol{\theta}) \triangleq \mathbb{E}_{\mathbf{y}} \left\{ \left. \mathbb{E}_{\mathbf{x}, \mathbf{z}_{1}, \dots, \mathbf{z}_{\mathsf{P}} | \mathbf{y}} \left\{ \left. \sum_{k=1}^{K} \left(1 - \lambda_{k} / \widehat{\lambda}_{k}(\boldsymbol{\theta}) \right)^{2} \middle| \boldsymbol{y} \right\} \right\} \end{aligned}$$

and where

the unknown $m{\mu}_{\mathsf{x}|\mathsf{y}} riangleq \mathbb{E}\{m{x}_0|m{y}\}$ and $\{\lambda_k\}_{k=1}^K$ are approximated using stopgrad and an SVD

MNIST denoising: Visualizing the principal uncertainty components

- Principal eigenvectors $\{v_k\}_{k=1}^K$ are shown below for K=5
- Also shown are $\widehat{\mu_{\mathsf{x}|\mathsf{y}}} \pm \alpha \widehat{v}_k$ for $k \in \{1,4\}$ and $\alpha \in \{-3,-2,0,2,3\}$

pcaGAN's eigenvectors show much more meaningful structure

¹Nehme, Yair, Michaeli'23

Large-scale image completion/inpainting

We inpainted large random masks on 256x256 FFHQ face images

Results (20k test images):

Model	CFID↓	$FID{\downarrow}$	LPIPS↓	Time (40 samples)↓
DPS ¹ (1000 NFEs)	7.26	2.00	0.1245	14 min
DDNM ² (100 NFEs)	11.30	3.63	0.1409	30 s
DDRM ³ (20 NFEs)	13.17	5.36	0.1587	5 s
pscGAN ⁴	18.44	8.40	0.1716	325 ms
CoModGAN ⁵	7.85	2.23	0.1290	325 ms
rcGAN	7.51	2.12	0.1262	325 ms
$pcaGAN\;(K=2)$	7.08	1.98	0.1230	325 ms

- pcaGAN outperformed all diffusion and cGAN competitors
- cGANs are 15x to 2500x faster than the diffusion methods

¹Chung et al'23, ²Wang et al'23, ³Kawar et al'22, ⁴Ohayon et al'21, ⁵Zhao et al'21

Example FFHQ inpainting

original

masked

rcGAN and pcaGAN generate samples that are both high quality and diverse

Results on accelerated MR image recovery

We reconstructed multicoil fastMRI¹ T2 brain images at acceleration R=8

Results (74 test images):

Model	CFID↓	FID↓	PSNR↑	SSIM↑	LPIPS↓	DISTS↓	Time (4 samples)↓
E2E-VarNet ²	36.86	44.04	36.49	0.9220	0.0575	0.1253	316ms
Langevin (Jalal ³)	48.59	52.62	33.90	0.9137	0.0579	0.1086	14 min
cGAN (Adler ⁴)	59.94	31.81	33.51	0.9111	0.0614	0.1252	217 ms
pscGAN ⁵	39.67	43.39	34.92	0.9222	0.0532	0.1128	217 ms
rcGAN	24.04	28.43	35.42	0.9257	0.0379	0.0877	217 ms
$pcaGAN\ (K=1)$	21.65	28.35	<u>35.94</u>	0.9283	0.0344	0.0799	217 ms

- pcaGAN won in all metrics but PSNR
- The cGANs generated samples 3800x faster than the Langevin method
- lacksquare Note: PSNR, SSIM, LPIPS, DISTS computed using $\widehat{m{x}}_{(P)}$ for the optimal P

¹Zbontar et al'18, ²Sriram et al'19, ³Jalal et al'21, ⁴Adler,Öktem'18, ⁵Ohayon et al'21

Conclusion

- Due to ill-posedness and the possibility of hallucinations, there's a need for inverse-problem solvers with performance guarantees
- By combining approximate posterior sampling with conformal prediction, we proposed image-recovery and quantitative-imaging methods with probabilistic guarantees
- For the unsupervised scenario, we presented a new diffusion posterior sampler, based on iterative renoising, with SOTA performance over a wide range of NFEs
- For the supervised case, we presented a regularized cGAN sampler that is more accurate than contemporary diffusion methods while consuming only a single NFE