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Imaging inverse problems

Imaging inverse problems:
m Unknown image «
m Measurements y = M(x)
m M(-) masks, distorts, and/or corrupts & with noise.

m Examples: denoising, deblurring, inpainting, super-resolution, phase retrieval, computed tomography (CT),
magnetic resonance imaging (MRI), etc.

m Typical goals
m Recover image

m Extract quantitative information from x (e.g., probability of a pathology)
Challenges:

m The inverse problem is often ill-posed: many hypotheses of & can explain the measurements y
m Modern methods can hallucinate:

m Produce nice-looking Z that differ from true = in important ways
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Examples of ill-posedness and hallucinations

measured y plausible hypotheses of x

Fundamental
ill-posedness:

Undesired hallucinations®:

1Muckley et al'21
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Uncertainty quantification

m We'd like to quantify the uncertainty or error in the image recovery T
m If the error was large, we could collect new/more measurements

m Especially important in safety-critical applications (e.g., medical imaging)

m Most uncertainty quantification methods produce pixel-wise uncertainty maps

(e.g., posterior variance) that look like
pcaGAN rcGAN

Std. Dev.
Map

m But how useful are these uncertainty maps in practice?
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Prob: stic bounds on recovered-image accuracy
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Probabilistic bounds on recovered-image accuracy

Probabilistic bounds on recovered-image accuracy

m Say we have an image-recovery method r(-) that produces Zoy = r(y,)
m Subscript ¢ indicates “test” quantities, not calibration, as we'll soon see ...

m We'd like to know the "accuracy” of Z relative to the true xg

m To measure accuracy, we'll use an arbitrary image-quality metric ’ 20 = m(Zg, xo) ‘ like

m PSNR, SSIM' ... higher preferred (we'll focus on this below)
m LPIPS?, DISTS® ... lower preferred
m In any case, 2o is unknown in practice

m Is it possible to guarantee the accuracy of &y, i.e., construct a bound Sy(y,) such that
Pr{Zy > po(Yo)} 21—«

for some chosen error rate a? (Here, capital letters denote random variables)

1Wang et al'04, 2Zhang et al'18, 3Ding et al'20
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Probabilistic bounds on recovered-image accuracy

An impractical bound

m Say we have a perfect posterior sampler generating ¢ image samples {:c(j)}c»zl. Then

~(1 ~(c)q tid
{zo, 3,307} % PXO\YO('HJo)
m Define the corresponding image-accuracy samples z; 9 2 2 m(Zo, a: ) Then
1
{20,235, 27 ¥ bz v (- 190)

m Thus an accuracy lower bound /3 that holds with probability 1 — ¢, i.e.,
PI‘{ZO Z 60 ‘ YO:yO} = 1 —
can be constructed using an infinite number of perfect posterior samples:

By = lim By with By 2 EmpQuant(a, {Z{}5_,)

m Why? Assuming the random variable Zy | Yo =1y, is continuous, we recognize 3y as its ath quantile.
Then {Z}521 % Zo | Yo =1y, implies Bo — Bo
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Probabilistic bounds on recovered-image accuracy

A conformal bound

m In practice, we have only a finite number ¢ of imperfect posterior samples
m We propose to design a valid lower bound using conformal prediction!
m Assume we have n calibration samples {(x;, y,;)}i=1 in addition to the test measurements y,
m Construct approximate c-sample bounds as before:
Bi = EmpQuant(«, {EY)};:l) fori=0,...,n
m Also compute "bound-violation scores” s; £ ,@ —z; fori=1,

.,n (i.e., s; > 0 means bound violated)
m Using the set d., £ {si}i=, of calibration scores, compute a bound correction term

A(deat) = EmpQuant ([E=22D1 g3 )
m Form the final “test” lower bound as Bo(y,, deal) = Bo — ( dear)

m This conformal bound obeys? the marginal coverage guarantee

1—a<Pr{Zy > Bo(Yo,Deal)} <1 -+ n+1
assuming that {Sp, S1,...,S5,} are statistically exchangeable

1Vovk,Gammerman,Shal"er'05, 2| ei,G'Sell,Rinaldo, Tibshirani,Wasserman'18,
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Probabilistic bounds on recovered-image accuracy

Summary of lower-bound procedure

True Image Recovered Image ( Bound \

Construction

Posterior Samples

(@95,

True Accuracy zg € R

BO (dcal) Lower bound

Recovery "
Accuracy T .ZO Conformal Bound

Coverage: Pr{Zy > fo(Dea)} > 1—

Calibration Set
/Bo(dcal) — Conformal _ dcal — {si}?zl

Prediction

m Similar techniques can be used to construct upper bounds on lower-preferred image accuracy metrics
like LPIPS and DISTS
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Probabilistic bounds on recovered-image accuracy

Example: Bounding recovery accuracy in MRI

m Scatter plots of (zg,8y) from fastMRI knee recovery @ acceleration R = 8 using a conditional
normalizing flow!:

DISTS ! (p = 4) LPIPS L (p = 4) PSNRT (p = 32) SSIMT (p = 32)
0.30
0.25
@
Bo.20
H
2
o
0.15
0.10
0.1 0.2 0.3 0.2 0.4 0.6 25 30 35 40 0.6 0.8 1.0
True Quality, z True Quality, z True Quality, z True Quality, z

The red line indicates where the bound would be exact

m Validation of marginal coverage using 10000 Monte-Carlo trials (each with a random 70% test / 30%

calibration split):

target coverage 1 — « | average empirical coverage

0.95 0.9504 £ 0.0001
IWen,Ahmad,S’'23
Safe & Informative Imaging UT Austin'24
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Probabilistic bounds on recovered-image accuracy

Application: Multi-round MRI acquisition

m Consider acquiring over multiple rounds (i.e., R € {16,8,4,2,1}), stopping as soon at the conformal
upper bound on DISTS! is good enough (i.e., < Bmax)
upper bound

—,[ Collect more Reconstruct
measurements image 2
g2 o J Bo(dea)

Bo(dea)
: o——
True DISTS 29

m Multi-round acquisition achieves much higher average acceleration than 10
single-round acquisition:

Compute

Bo(decal) < Brmax

B non-adaptive
0.8] ™ quantile

method avg acceleration  empirical coverage
single-round | 2.000 £ 0.0000 0.9505 £+ 0.0001
multi-round | 5.422 4+ 0.0001 0.9461 £+ 0.0001

Fraction Accepted

0.0"

16 8 4 2 1
Acceleration, R

1 Kastryulin,Zakirov,Pezzotti,Dylov'23
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Effect of distribution shift

m Recall that the marginal coverage guarantee Pr{Zy > 5y(Y o, Dcal)} > 1 — « requires exchangeability
of the test and calibration scores {Sy, S1,...,Sn}

m This can fail if the distribution shifts between calibration and test

m We investigate this phenomenon by calibrating on only the center slices of fastMRI knee volumes and

testing on a variety of slices, from the center to the edge 10
0.8
% 0.6
é 0.4 Desired
—— DISTS
0.2 PSNR
—— SSIM
— LPIPS
0.0
0 2 4 6 8 10

m PSNR and SSIM are more robust than LPIPS and DISTS Slon Location

m Recent theoretical results!>? show that it's possible to extend coverage to a TV ball around the
calibration distribution by choosing a more conservative error-rate «

1Cauchois,Gupta,AIi,Duchi'24, 2Qliveira,Orenstein,Ramos,Romano'24
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Probabilistic bounds for quantitative/task-based imaging

Outline

© Probabilistic bounds for quantitative/task-based imaging
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Probabilistic bounds for quantitative/task-based imaging

Quantitative / task-based imaging

m Again consider measurements y, = A(x() and some recovery Ty = 7(y,)

m But now say that our goal is to extract quantitative information about xq

Example: Does the MRI knee image x( indicate a meniscus tear?

m Say we've trained & calibrated a soft-output binary classifier f(-) on clean images
m Naively applying f(-) to imperfect recoveries Zo would give unreliable results

m Instead, we want to estimate f(xo) from y, (without knowing o)

m More generally, one may wish to estimate a generic ’ z0 = f(xo) €R ‘ given y,

m Can one construct guaranteed upper and lower bounds on zy?
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Probabilistic bounds for quantitative/task-based imaging

Conformal prediction of the true task output

m Our approach is similar to before, in that we combine posterior image sampling with conformal
prediction

m But instead of a one-sided bound, we construct a prediction interval Cy = [§;, 8,] that is guaranteed
to contain the true task output zo with probability 1 — «

Measurements ¥, Image Samples {m(:)}c -

Task Samples
Y51 ——
! Conformal
Prediction|

Approximate

i — 123

Sampler

Csay {3 ¥520) = 1B, B
L ]

1

B 2o Bu

| |
Calibration Set  dcal = {({ J)}J 11 )} ! dicti - | ’
True Task Output Prediction Interval
20
‘ Coverage: Pr{Z, € C5p,_,({&"}i_)} > 1-a

True Image xq
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Probabilistic bounds for quantitative/task-based imaging

Constructing the prediction set

Several options for constructing the prediction set, e.g.,

m Absolute residual (AR):
CA\{ZVYo)=F-ANzZ+A, 2=137,%

m Locally weighted residual (LWR):
CA{ZVYe) =z-0NZ+0.)], o= %2521(5@ —7z)?

m Conformalized quantile regression® (CQR):
CA{EPY5=1) = [BmpQuant($, {2V}521) — A, BmpQuant(1— 5, {Z07}5-,) + A]

Adaptivity:
m The interval length |C| provides a quantitative measure of uncertainty
m The AR method has a fixed |C|, while LWR and CQR adapt the length |C)] to y,

1Romano,Patterson,Candés'19
UT Austin'24
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ic bounds for quantitative /task-based imaging

Example: Predicting meniscus-tears in knee MRI

m We trained and calibrated a ResNet50 to output meniscus-tear probability zg = f(xg) using clean
images from fastMRI+

m From R-accelerated measurements y,, we compute a prediction interval C that contains the true z
with 99% probability

m The conformal bound uses ¢ posterior samples from a conditional normalizing flow*

Pixel Std Dev Intervals Ground Truth

=0

o
o

0.9

IC5 ({37} = 0.192

0e+00  1e-05

2e-05

O Ground Truth

o — Posterior Sample
i 0.6 0.9 Range
Prediction
SO (150 — 1
Q‘CA({ZD bl =006 Interval

1W ’
en,Ahmad,S’'23
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ve/task-based imaging

Effect of prediction-set method

m Recall that the interval length |C)\| acts as a quantitative measure of task uncertainty
m Below we plot |C)\| vs acceleration R and # posterior samples ¢ for the AR, LWR, and CQR bounds

m In this application, CQR yields the least uncertainty and is robust to the number of posterior samples

. AR 0.6 LWR
< 0.12 <
= LWR =] —e— CQR
@ . 2 o5
S o010 COR T
K] 3
S 0.08 g 04
2 c
8 ]
£ 0.06 03
g c
9 0.04 o 02
= =
0.02 0] TTT——— .,
16 8 2 2 2 4 8 16 32 64 128
Acceleration R (at ¢ = 32) Number of Samples ¢ (at R = 16)

Phil Schniter (Ohio State) Safe & Informative Imaging UT Austin'24 18 /37



stic bounds for quantitative/task-based imaging

Application: Multi-round MRI acquisition

m Consider acquiring over multiple rounds (i.e., R € {16,8,4,2,1}), stopping as soon at the task
uncertainty is small enough (|C\| < 7 for 7 = 0.1)

Compute
prediction
interval
Y

Get image
recons(tructions
~(e

{zs }]:1

Collect more
Start

m The adaptive bounding schemes achieve much higher average acceleration rates than the non-adaptive

AR scheme: 1o =y
LWR
Method Average Empirical Average Center o 08 = COR

Acceleration Coverage Error @ R =2 % 06

AR 2.000 0.991 4+ 0.008 | 0.032£0.017 g
LWR 5.157 0.992 4+ 0.005 | 0.020 £ 0.002 g 04
CQR 6.762 0.987 +0.008 | 0.044 £ 0.009 = 02
Center Error £ |z — W\

0.0+
4
Acceleration
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Efficient posterior sampling via diffusion with fast iterative renoising
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Efficient posterior sampling via diffusion with fast iterative renoising

Diffusion methods

m Diffusion methods are powerful ways to sample from a complex distribution p(x)

Forward SDE (data — noise)
dx = f(x,t)dt + g(t)dw 4)@

) score funchon
= 1) - () J o+ o0 @
Reverse SDE (noise — data)

m To discretize, we'll assume VP DDPM, where step ¢t € {1,...,T} provides
xy = Jouxo + V1 — ey, € ~N(0,1)
m Although the reverse process is usually written using the score function V log p:(x:), it can also be
written using the MMSE denoiser E{xq|x:} via Tweedie's rule

Vo E{xolz} — xy

1—Oét

?

m The forward process gradually adds noise to .
x(0) ~ p(z). The reverse process starts with pure
noise (T") and gradually denoises, eventually
generating a sample from p(x)

=3

9

Va Ingt(mt) =
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Efficient posterior sampling via diffusion with fast iterative renoising

Solving inverse problems with diffusion

m In inverse problems, we're given noisy/masked/distorted measurements y = A(x), from which we
aim to recover xg

m As we saw earlier, there's value in sampling from the posterior distribution p(x|y) rather than just
constructing a point estimate of xg

m Diffusion can be configured for posterior sampling by using V log p;(@:|y) in place of V logp:(x;),
or equivalently by using E{xq|z;,y} in place of E{x¢|x:}

m Many strategies have been proposed to approximate V log p:(x:|y) or E{xo|x:,y} using some
combination of a pretrained denoiser/score-fxn and the likelihood function p(y|xzo)

m Popular methods include DDRM?, DPS?, DDNM3, IIGDM*, DiffPIR®, DDS®, etc.

IKawar et al'22, 2Chung et al'23, 3Wang et al'23, , *Song et al’23, , ®Zhu et al'23, , ®Chung et al'24
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Efficient posterior sampling via diffusion with fast iterative renoising

The main challenge

m How can one best approximate E{x¢|z:, y} under computational constraints?

m Current methods can be evaluated by visualizing and computing the MSE of their E{x¢|x:, y}
approximations, since the exact E{@o|x:, y} minimizes MSE

true DDRM(20) DiffPIR(100) DPS(1000) true DDRM(20)
Y y PSNRTI6I17

3 )

S34N %S¢

S34N %08

Phil Schniter (Ohio State) Safe & Informative Imaging UT Austin'24
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Efficient posterior sampling via diffusion with fast iterative renoising

Fast Iterative REnoising

m We propose an iterative approximation of E{xq|x;,y} that we call Fast lterative REnoising (FIRE)

m For linear inverse problems y = Az + w with w ~ N(0,02I), FIRE iterates the following steps

after initializing » = z; and 02 = (1 — ay)/oy:
Zo + Denoise(r;c?2), o2 < E||Zo — xo|*/d
Zo < argmin —-|ly — Azx|? + = @0 — x|?

z 02 o2

o2 < a2/p for some p > 1 ... decrease renoising variance

renoise: set with colored Gaussian n that gives

r ~ N(xo, 1)

m Key idea: renoising ensures that the denoiser sees AWGN, consistent
with how it was trained!

m Two options for renoising: exact SVD-based, or approximate
(A, AT)-based

Safe & Informative Imaging
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Efficient posterior sampling via diffusion with fast iterative renoising

DDfire: Putting the FIRE into diffusion

m FIRE can be plugged into any diffusion reverse process

m But, because FIRE uses multiple NFEs per E{xo|z:, y}, we subsample the diffusion steps {¢} using
DDIM and schedule the FIRE iterations to meet a given total-NFE budget

m We allocate FIRE iterations using a “waterfilling” procedure, 10t
which is best illustrated using inverse variances, i.e., 10
precisions: wif . I ' I !

m Basically, waterfilling ensures that FIRE's final-iteration
denoiser-input-precision meets a target at each DDIM step

precision

— Vehresh

—8- FREY

— DDPM v
DDIM v

m The resulting “DDfire” outperforms many state-of-the-art
diffusion methods at total NFE budgets of 20, 100, 1000 o

1000 800 600 400 200 0
DDPM step t
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Efficient posterior sampling via diffusion with fast iterative renoising

Noisy FFHQ results

m Results on 256 x 256 FFHQ faces with measurement noise o,, = 0.05:

Inpaint (box)

Deblur (Gaussian)

Deblur (Motion)

4x Super-resolution

# NFEs Model PSNRt LPIPS| FID, PSNRt LPIPS| FID| PSNRt LPIPS| FID| PSNRf LPIPS| FID|
DIffPIR  20.87 02741 4150 2355 03260 4129 2731 02704 2927 2232 03560 44.85

20 DDRM 22.02 02052 40.61 2627 0.2896 51.70 - - - 28.62 02417 45.82

DDfre  21.80 0.1974 28.49 27.18 0.2843 36.22 28.52 0.2455 28.86 27.02 02017 37.72

DIffPIR 2244 02415 31.98 2457 02036 3482 2691 02683 2667 2676 03061 32.33

100 TIGDM 2175 02614 4441 2434 03125 4534 2504 02706 41.95 2542 03109 51.41
DDfire  23.78 0.1623 26.75 27.48 0.2274 2548 27.79 0.2193 2591 27.20 0.2399 26.24

1000 DPS 2284 01793 3569 2632 02327 2518 27.64 02176 27.17 27.11 02360 27.38
DDfre  24.14 0.1579 24.56 26.84 0.2259 24.68 27.71 0.2155 24.57 27.32 0.2356 25.75

m DDfire outperforms the competitors in 33 of the 36 cases
Safe & Informative Imaging UT Austin'24
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Efficient posterior sampling via diffusion with fast iterative renoising

Extension to generalized-linear models

m To handle problems like phase retrieval, dequantization, Poisson regression, and non-Gaussian additive

noise, we extend FIRE & DDfire to the generalized linear model (GLM):

m

Yy ~ p(ylzo) = [ [ pyi=(uil205) with zo = Axg

J=1
. . . . MMSE inference Y. 0 linear FIRE ~
m We do this using expectation-propagation Yol of 20, ~ N(Zoy.52) withy — Azo +w |28
iterations between linear FIRE and a scalar from y; ~ py(l205) [%5.5,1 and @ ~ N(0,521)
MMSE inference stage:
) OSF cop
m The GLM DDfire gives state-of-the-art noisy # NFEs Model  PSNRt LPIPS| FID| PSNRt LPIPS| FID|
phase-retrieval performance with both - HIO 23.66 05299 13058 17.50 05818 84.87
) . . 1000 DOLPH 1473 07080 389.88 2576 02163 3293
oversampled Fourier (OSF) and coded diffraction 1000 DPS 2363 03326 5391 2019 01994 2787
800  prDeep 3090 01585 3151 1924 04352 59.44
pattern (CDP) operators: 800  DDfire  33.56 0.1160 28.94 3001 0.1767 23.49
100 DDfre 2588 02643 4654 30.16 0.1707 23.30
Safe & Informative Imaging UT Austin'24 27 /37



Fast posterior sampling with regularized cGANs
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Fast posterior sampling with regularized cGANs

Fast posterior sampling for inverse problems

m Although diffusion-based posterior sampling has become popular, it's computationally challenging:
m High accuracy methods consume hundreds of NFEs

m For supervised posterior sampling, which trains on a particular A(-) operator, single-NFE sampling is
possible:
m Conditional VAEs, conditional GANs, conditional normalizing flows

m Conventional wisdom says cGANs have unstable training and poor diversity. But is this really true?

m In our experience, training instability vanished with the Wasserstein GAN®'2
m Poor diversity can indeed be a problem®

m Our work shows how appropriate regularization can solve the diversity problem and lead to single-NFE
c¢GANSs that are more accurate than modern diffusion-based samplers

1Arjovsky,Chintala,Bottou'l?, 2Gulrajani,Ahmed,Arjovsky,Dumoulin,CourviIIe'17, 3 Adler,Oktem’18
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Our approach

The regularized Wasserstein cGAN:

m Generator Gg: outputs ; = Gg(z;,y) for code realization z; ~ N (0, 1)
m Discriminator Dg: aims to distinguish true (x,y) from fake (Z;,y)

m Training:

min max { Exzy{Dg(x0,y) — Dy(Go(2,y),y)} + R(6) — ﬁgp(ﬁﬁ)}
m The regularization R(0) is designed to enhance the fidelity & diversity of the generated samples
Contributions:

m rcGAN? designs R(-) to reward correctness in the conditional mean and conditional trace-covariance

m pcaGAN? adds correctness in the K principal eigencomponents of the conditional covariance matrix

1Bendel,Ahmad,S'22, 2Bendel,Ahmad,S'23
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Fast posterior sampling with regularized cGANs

rcGAN! regularizes using an L1 penalty and a standard-deviation reward:
~ P ~ ~
Ric(0) = Exz1,....ze.y {||;1:0 - 3[’(P)Hl} —Bstd Dim1 Eayyzey {||m1 - a’(P)”l}

£ L1.p(0) £ Lea.r(0)

~ A1 P P .
where Z(p) = 5 > _,_; Z; is the average of P posterior samples.

Key points:

m [sq controls the amount of diversity, and is automatically optimized during training

m Can prove®! R,(0) yields E{Z;|y} = E{xzo|y} and tr Cov{Z;|y} = tr Cov{zg|y} with Gaussian x|y
m Can prove! R(6) = L2.p(0) — BvarLvar.p(0) does not (for any Bar)

1Bendel,Ahmad,S'22
Phil Schniter (Ohio State) Safe & Informative Imaging UT Austin'24
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Fast posterior sampling with regularized cGANs

Goal: Ensure that ¥ = vy and \, = )\, for k = 1,...,.K

] {(ﬁk,xk)}szl are the principal evecs/evals of Cov{;|y}
m {(vi, A\p)}_, are the principal evecs/evals of Cov{zg|y}
m K is user-specified

We propose
7zpca (0) é ch(e) + ﬂpcaﬁevec(g) + ‘chaﬁeval(e)a
where
Lovee(0) 2 =By { Buzy oty { 11 [Bk(0)T (0 — 1y 1P|y} }
['eval(g ]E {Ele, Jp\y{Zk 1 (I_Ak/)‘k ) |y}}
and where

the unknown g, = E{xo|y} and {\x}X_| are approximated using stopgrad and an SVD

Phil Schniter (Ohio State) Safe & Informative Imaging UT Austin'24 32/37



Fast posterior sampling with regularized cGANs

MNIST denoising: Visualizing the principal uncertainty components

m Principal eigenvectors {vy }5_, are shown below for K =5
m Also shown are fi,, + oy, for k € {1,4} and a € {-3,-2,0,2,3}

pcaGAN: NPPC:!
! P D3 Dy D5 D1 cP) D3 Dy vs
- — P
i ” ; ’ i Es i It
- L t
2 = - J =) L -t | 2 L : ‘\
a=-3 a=-—2 a=0 a=3 a=-3 a=-—2

BEEEE G
XEEE1 &

m pcaGAN's eigenvectors show much more meaningful structure

Fijy oy

I

— g —

“ NS

aby

@

=y

Hryy t

Fily+ads

INehme, Yair,Michaeli'23
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Fast posterior sampling with regularized cGANs

Large-scale image completion/inpainting

We inpainted large random masks on 256x256 FFHQ face images

m Results (20k test images):

Model CFID) FID{ LPIPS] Time (40 samples)|
DPS? (1000 NFEs) 7.26 2.00 0.1245 14 min

DDNM? (100 NFEs) 11.30 3.63 0.1409 30s

DDRM3 (20 NFEs) 13.17 536 0.1587 55

pscGAN* 18.44 840 0.1716 325 ms
CoModGAN® 7.85 223  0.1290 325 ms

rcGAN 7.51 2.12  0.1262 325 ms

pcaGAN (K = 2) 7.08 1.98 0.1230 325 ms

m pcaGAN outperformed all diffusion and cGAN competitors

m cGANs are 15x to 2500x faster than the diffusion methods

1Chung et al'23, 2Wang et al’23, 3Kawar et al'’22, “Ohayon et al'21,

Phil Schniter (Ohio State) Safe & Informative Imaging
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Example FFHQ inpainting

rcGAN and pcaGAN generate samples that are both high quality and diverse

original
pcaGAN

masked
rcGAN

DPS

DDNM

posterior samples —»
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Fast posterior sampling with regularized cGANs

Results on accelerated MR image recovery

We reconstructed multicoil fastMRI* T2 brain images at acceleration R = 8

m Results (74 test images):

Model CFID, FID, PSNR SSIMt LPIPS| DISTS, Time (4 samples)]

E2E-VarNet? 36.86 44.04 36.49 0.9220 0.0575 0.1253  316ms
Langevin (Jalal®) 4859 5262 33.90 0.9137  0.0579 0.1086 14 min
cGAN (Adler*) 59.94 3181 3351 0.9111 0.0614 0.1252 217 ms
pscGAN® 39.67 43.39 34.92 0.9222 0.0532 0.1128 217 ms
rcGAN 24.04 2843 35.42 0.9257 0.0379 0.0877 217 ms
pcaGAN (K =1) 21.65 28.35 35.94 0.9283 0.0344 0.0799 217 ms

m pcaGAN won in all metrics but PSNR
m The cGANs generated samples 3800x faster than the Langevin method

m Note: PSNR, SSIM, LPIPS, DISTS computed using i(p) for the optimal P

1Zbontar et al'18, 2Sriram et al’19, 3Jalal et al'21, “#Adler,Oktem’18, ®>Ohayon et al'21
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Fast posterior sampling with regularized cGANs

Conclusion
m Due to ill-posedness and the possibility of hallucinations, there's a need for inverse-problem solvers
with performance guarantees

m By combining approximate posterior sampling with conformal prediction, we proposed image-recovery
and quantitative-imaging methods with probabilistic guarantees

m For the unsupervised scenario, we presented a new diffusion posterior sampler, based on iterative
renoising, with SOTA performance over a wide range of NFEs

m For the supervised case, we presented a regularized cGAN sampler that is more accurate than
contemporary diffusion methods while consuming only a single NFE
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