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Abstract: This report describes some preliminary results aimed at understanding the topology of the
undermodelled CMA 2-2 cost surface in the absence of noise and common subchannel roots.

1 Introduction and Notation

One could argue that principle difficulty in analyzing the topology of CMA in the presence
of undermodelling is due to the fact that not all channel-eqalizer responses are “reachable”.
The existing results on the topology of CMA depend heavily on the reachability of particular
locations in system space. The following analysis reformulates the historic system-space view in
terms of the reachable system subspace.

We denote the channel impulse response vector by h, the equalizer impulse response vector
by f, and the system impulse response vector by q. The channel convolution matrix H relates the
equalizer and system responses via q = Hf. The size and structure of the channel convolution
matrix is determined by the sizes of h and q and the degree of fractional sampling, P. Presently
this does not enter into our analysis, as we rely only on the dimension of H (N, x Ny). It should
be noted, however, that as a convolution matrix, H must have a Sylvester form governed by the
value of P.

The case of channel undermodelling implies that N, > N;. For simplicity, we assume that
H is full column rank (though not full row rank) and real-valued.

2 Channel Decomposition

The principle tool used in this study of undermodelled CMA is the singular value decomposition
(SVD). We apply this to the channel convolution matrix as follows.

H = USV. (1)

For full column rank H, the SVD specifies that U is a N; X N, orthogonal matrix composed
of the left singular vectors, V is a Ny x N; orthogonal matrix composed of the right singular
vectors, and S is a Ny x Ny matrix with non-zero elements (the “singular values”) only along
the uppermost diagonal.

Applying the channel decomposition to the system response, we have q = USV’f. Using
the orthogonal property of U,

>

Ulq = SV'f. (2)



The transformed system response p has an important property: for any choice of equalizer
parameters f, the last N; — N; entries in p are zero, as implied by the structure of S. Hence we
can partition our quantities to take advantage of this structure.
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Both U; and S; are square matrices of size Ny x Ny. We refer to the Ny x 1 vector p; as
the reachable transformed system respomse. In terms of the partioned quantities, we have the
fundamental relationships

H = US, VY, (3)
P1 = Slvtfa (4)
q = Up;. (5)

With the invertibility of S;V*, we establish that p; and f are isomorphic.

3 CMA Cost Function

In the absence of noise and common subchannel roots, the real-valued CMA 2-2 cost function
can be specified in terms of its system response q [1] as

Joma(a) = (ks — 3)a’diag(aq’)a + 3||al|3 — 2xs||ql|3 + K2 (6)

where the diag(-) preserves the diagonal elements of its matrix argument and zeros the rest.
Equation (5) implies that, in terms of the reachable pq,

Joma(p1) = (ks — 3)pt Uldiag(Uip1p! U)Uips + 3||p1ls — 2ks|Ip1ll3 + &2 (7)

where we have employed the fact that UjU; = Iy,.

4 Gradient in Equalizer Space

In this section we derive a compact expression for the gradient of the undermodelled CMA cost
function in equalizer space, VeJoma- We find the chain rule convenient

VeJocma = Vep1 VpiJoma
VS1 VpJoma

since Vp,Joma can be calculated using the identities

Vp, (P1U1diag(Uip1piUj)Uip1) = 4Ujdiag{(wip1)®,...,(wyp1)’}Uip1  (8)
Veilpillz = 4lp1llp: (9)

VeulpillZ = 2p1 (10)

where w!, specifies the n'* row! of U; and where the operation diag{-,...,-} returns a diagonal

matrix constructed from its scalar arguments.

'Recall that, unlike the columns, the rows of U; do not form an orthonormal set.



Combining the gradient identities (8)-(10) and substituting into (8), we arrive at the compact
expression

ViJoma = H'D(p1)Uip: (11)
where D(p;) is a diagonal matrix specified by the elements:

D@E)lnn = 4((ks —3)(wip1)” + 3l|p1l3 — ks) (12)

The result in (11) is a generalization of the following gradient expression, derived in the context
of invertible H [1].

VeJoma = 4H'diag{..., (ks —3)g; + 3||a||3 — &, --- }a (13)

It is straightforward to verify that (11) and (12) lead to (13) when U is an orthogonal matrix.

The equalizer-space gradient may be used to catalog the CMA stationary points, i.e. the
points where VeJoma = 0. This is straightforward in the case that H is full row rank, where
the requirement that D(p;)U;p; = 0 follows from (11). From (13) it can be seen that this
zero-gradient requirement is satisfied when

((rs —3)gp + 3llall5 — #5)gn = 0 for all n

7_
or, equivalently, when the values ¢, are chosen from the set {0, +4/ 3”3!%} Here we have

used the facts that w! p; = ¢, and ||p1]| = ||q]|-

When H is not full row rank, as is the case with channel undermodelling, the situation
is more complicated. From (11) and (3), the necessary and sufficient zero-gradient condition
becomes

UiD(p1)U;p: = 0.
Thus, the zero-gradient condition becomes

D(p1)U1p; € span{Us} (14)

where span{U,} denotes the space spanned by the columuns of Us.

Equation (14) can be put in a form which may be more intuitive. Using the facts that
q = U;p; and ¢, = w! p1, and the notation § = q/||q|| for the unit normalized system response,
the gradient is zeroed when

(@3 + ag,. .. ,(j?\,f + agn;) € span{Us} for q € span{U;} (15)
where a is the ||q||-dependent scalar

_ 3Jlallf — ss
lall3(3 — xs)

Unfortunately, we have not yet been able to count the number of stationary points based on
(14) and (15).

(16)

5 Hessian in Equalizer Space

The Hessian has not been derived yet.



6 Geometrical Interpretation

In this section we give a geometrical interpretation of the results in the previous sections. We will
begin with the case where N, = 2 and N; = 1 and follow with the case where N, = 3 and N; =
2.

Throughout this report we take advantage of the special structure of the noiseless CMA
2-2 cost function in N,-dimensional system space. Specifically, the zero forcing (ZF) system
responses® {+ey,...,+e N,} are known to minimize the CMA cost function, assuming that the
source kurtosis k; is sub-gaussian. (In the absence of noise, the ZF system responses are optimal
with respect to any reasonable cost criterion since they result in perfect symbol recovery.) In
the N, = 2 case, these ZF q vectors form a ”unit cross” aligned with the coordinate axes in
system space (see Fig. 1). In the N, = 3 case, the ZF q vectors resemble the minature metal

CMA Error Surface

Figure 1: J,p, contours for kappas = 1 (BPSK) and no noise, in system (q) space.

objects used to play the game ”jacks”. Such visualization will soon prove to be insightful.

The SVD also has geometrical properties which we make use of. First, multiplication by
an N-dimensional orthogonal matrix results in a pure N-dimensional rotation, i.e. a rotation
devoid of any dilation. In constrast, multiplication by an N-dimensional diagonal matrix results
in a dilation along each coordinate axis (without any rotation). Putting these facts together, we
can view the SVD as decomposing a Ny X Ny (where N, > Ny) matrix into the following four
consecutive operations:

1. rotation in Ny-dimensional space (via V*).

2. dilation in Ny-dimensional space (via Sp).

%We denote the unit vector with non-zero element in the n'” position by e,.



3. the embedding of the N¢-dimensional subspace in the N,-dimensional space (via So).
g f q 1%
(Specifically, the low dimensional subspace constitues a hyperplane spanned by the first
Ny coordinate axes of the higher dimensional space.)

4. rotation in N,-dimensional space (via U).

Note that U’ corresponds to the “opposite” rotation as U, since U'U = UU? =1.

6.1 Two-dimensional Example

Here we consider the case where N; = 2 and Ny = 1, or in other words when the channel

convolution matrix is of the form H = (Z; ) The reachable system subspace consists of a line

in the plane of system parameters q, as in Fig. 2(a). Transforming the elements in g-space by
U? rotates the reachable subspace to the e; coordinate axis, as depicted by the p-space plot
Fig. 2(b).

Figure 2: Drawing of CMA 2-2 contours in (a) system-space q and (b) transformed system space
pP- CMA and projected MMSE solutions are denoted by dots on the reachable subspace.

The reachable system responses minimizing CM cost occur at the tangent intersections of
the CM contours and the reachable subspace. We can use the same argument to determine
the MMSE solutions, using the fact that the MSE cost contours (corresponding to a given
system delay/polarity) take the form of circles centered at the respective ZF solution in q- or
p-space. Thus, the reachable MMSE reachable responses are the projections of the respective
ZF responses onto the reachable subspace. These projections are illustrated in Fig. 2. It follows
that the MSE cost associated with a particular solution can be measured by the distance of the
respective ZF solution from the reachable subspace.

The previous discussion enables us to make an important observation about the discrepancy
between the MMSE and CMA solutions: it is caused by the fact that the CM cost contours are
not circular in a Euclidean sense (see Fig. 1). Note, however, that the CM cost contours become
more circular as they approach the ZF solutions. This can be used to explain a claim made in

[2]:



The CM minima corresponding to system delays which give better MSE performance
stay closer to their corresponding Wiener solutions than the CM minima, correspond-
ing to system delays which give poorer MSE performance.

6.2 Three-dimensional Examples

The three-dimensional examples in the following subsections extend the intuition gained from
the two-dimensional example of Section 6.1. The CM contours (see for example Fig. 3) can be
considered a 2-dimensional slice of a multi-layered 3-dimensional object, the layers of which form
surfaces of uniform CM cost. Likewise, the MMSE solutions are the projections of the g-space
ZF solutions onto the p; plane.

Here we consider Ny = 3 and Ny = 2. For a T'/2-spaced equalizer, these dimensions specify
a channel convolution matrix of the form

ha  hy
H=|hs h3
he hs

When constructing examples, the lack of structure in H implies that we are free to choose the ma-
trices U, S1, and V. Appendix A specifies a method of constructing a rotation matrix in terms of
rotation angles {¢1, ¢2, . .. ,¢n } between pairs of coordinate axes {(e1, e2), (€2,€3),...,(en,e1)},
respectively.

Henceforth, it helps to visualize a minature metal “jack” as the shape representing the six
g-space ZF responses (see Fig. 4(a)). We are interested in choosing rotation matrices U that
spherically rotate this jack until it forms interesting relationships with the horizontal plane (i.e.
the plane spanned by e; and es), since we know this plane corresponds to the transformed
reachable system subspace. Figure 4(b) shows an example of one such rotation.

Having already established the fact that p; and f are isomorphic, we choose (without loss
of generality) S; V! =1 N, in the following examples, allowing the simplification f = p; = Ulh.

6.2.1 A “Typical” Scenario

We consider a channel constructed using the set of arbitrarily-chosen rotation angles {w/3, 7/8,7/3}
to be “typical” in terms of its effect on the CM cost surface in f-space. Figure 3 plots these
CM cost contours with the markers * and X specifying the locations of global and local MMSE
solutions, respectively. Note the presence of two pairs of distinct CM minima in which the
deeper CM minima have MMSE solutions in closer proximity.

6.2.2 TUndermodelled yet Perfect Equalization

Certain ”trivial” rotations can be used to explain the possibility of perfect symbol recovery in
the presence of channel undermodelling. The existence of a perfectly equalizing solution requires
that at least one pair of ZF system responses lies in the reachable subspace. For example, the
structure of Fig. 4(a) is preserved by rotation angles ¢, constrained to a multiples of 7 /4.

To be more general, the only requirement for perfect symbol recovery is that one of the rows
of U lies in the set {e1,es,e3}. This can be translated into a decomposition-based condition
on the channel convolution matrix or may be used to specify a class of rotation angles which
can be used to create U; (and hence H). In the 3 x 3 case, Appendix A specifies the following



CM Error Surface
T

0.5

Figure 3: CM cost contours resulting from rotation angles {x/3,7/8,7/3} in (p; =)f-space.

relationship between U and {¢1, ¢2, ¢3}:

COS (b3 cOs 1 + sin g sin o sinp;  — cos ¢p3 sin 1 + Sin 3 sin o cos 1 sin 3 cos o
U= oS 2 sin ¢y COS (2 €OS P1 —sin ¢g
— sin ¢p3 cos 1 + cos Pp3 sin o sinp;  sin 3 sin ¢y + cos P3sin gy cosp1  COS P3 COS Po

6.2.3 Loss of Distinct Minima

Perhaps the most interesting channel convolution matrices can be constructed from matrices
that rotate the ZF solutions onto a plane parallel to the reachable subspace (see Fig. 4(b)). We
say such channels belong to the MMSE mazimizing class: {arg maxy mins ¢ Jyvse }-

(2) U (b)
0 N

q2

ql

Figure 4: (a) ZF equalizers in g-space, (b) ZF equalizers in p-space.

Plotting the reachable CM cost contours reveals an extraordinary feature of the 3-dimensional
CM cost volume: there are slices through it with CM cost radially symmetric with respect to
the origin! The primary effect on the topology of the reachable CM cost surface is that the



four distinct minima merge into a single circular ring on the reachable subspace. Figure 5
demonstrates this claim by use of the rotation angles {0,7/4, — cos~!(1/2/3)}.
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Figure 5: CM cost contours resulting from rotation angles {0, 7/4, — cos™1(1/2/3)} in (p1 =)f-
space.

7 Summary

Two of the original goals of this work have not yet been achieved:
1. counting the number of stationary points (e.g. via zeroing the gradient),

2. counting the number of minima (e.g. via conditions on the Hessian), which should be a
channel-dependent quantity.

The resolution of these items are still of great practical interest.

On the other hand, the study so far has uncovered interesting properties about the topology
of the CMA cost function in system (q) space. Namely, that there is an unusually high degree of
symmetry in certain subspaces of system space (as evidenced by Section 6.2.3). Thus we are en-
couraged to follow up on the implications and existance of such symmetries in higher dimensions,
and to define a class of channels which excite such strange (and unfortunate) behavior.
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A Construction of Rotation Matrices

Here we present a technique to construct N-dimensional (orthogonal) rotation matrices parame-
terized by the angles of rotation between consecutive pairs of coordinate axes. Specifically, angle
¢n for 1 > n > N — 1 specifies the rotation that takes place between axes e, and e,;1, while
¢n rotates ey to e;. As the order of rotations is important, we adopt the ordering: ¢1 — ¢n.
The rotation matrix U can be constructed as the product of N rotation matrices Py, (¢p):

U(¢1,---,6n) = Pn(dn) - Pi(é) (17)
where P, (-) effects a rotation between only two dimensions. For 1 > n > N — 1, we have

In—l
_ cos ¢, —sindgy,
Pr(¢n) sing, cosd,

Ianfl

and for Py (¢n) we have

cos N sin ¢
Py(on) = Iy 2
—sin¢n cos pN



