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Abstract— We consider the effect of mobility on a wideband
direct sequence spread spectrum (DSSS) communication system,
and study a scale-lag Rake receiver capable of leveraging the
diversity that results from mobility. A wideband signal has a
large bandwidth-to-center frequency ratio, such that the typical
narrowband Doppler spread assumptions do not apply to mobile
channels. Instead, we assume a more general temporal scaling
phenomenon, i.e., a dilation of the transmitted signal’s time
support. Based on a uniform ring of scatterers model, we
determine that the wideband scattering function, which quantifies
the average scale spreading, has a “bathtub-shaped” scale profile.
We compare the performances of a scale-lag Rake and a
frequency-lag Rake, each capable of leveraging the diversity
that results from mobility. Such analysis applies, for example, to
ultra-wideband (UWB) radio frequency channels and underwater
wideband acoustic channels.

Index Terms— Mobile wireless communication, scale-lag diver-
sity, spread spectrum, wideband systems.

I. INTRODUCTION

W IDEBAND communication systems are defined as hav-
ing a fractional bandwidth—the ratio of single-sided

bandwidth to center frequency—that exceeds 0.20 [1] [2].
Otherwise, the system is called narrowband. We are interested
in studying the effect of mobility (i.e., temporal variation in the
physical geometries between transmitter, receiver, and scatter-
ers) on wideband communications systems and in designing
transceivers capable of leveraging the potential diversity gains
that result from multipath propagation in mobile environments.

First, it is important to note that the combined effects of
multipath and mobility on transmitted signals are modeled
quite differently for wideband systems than for their narrow-
band counterparts. For example, in narrowband systems with
a dense ring of scatterers surrounding the receiver, mobility
imparts a spreading of the signal in the frequency-domain that
is commonly referred to as Doppler spreading [3, p. 809]. In
wideband communication systems employing direct sequence
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spread spectrum (DSSS)—the focus of this manuscript—the
effects of mobility in the multipath mobile environment are not
well described by frequency-domain spreading, but rather by
time-domain scale spreading. Note that scale-spreading arises
from the same fundamental mechanism that causes Doppler
spreading. For example, changing the time scale of a single
sinusoid is equivalent to shifting the signal in frequency. By
scale spreading, we mean that several copies of the transmitted
signal combine at the receiver, each with a different dilation
of the time support of the original signal. In addition, each
copy may be attenuated and temporally delayed by a different
amount.

When the different propagation paths are characterized
by independent dilations and delays, the fading inherent to
multipath propagation can be mitigated by using diversity
reception. For wideband DSSS signaling, we propose a scale-
lag Rake receiver that extracts this diversity.1 The scale-
lag Rake employs a basis composed of shift-dilates of the
transmitted waveform in order to match the scale-lag spreading
induced by the wideband channel. In general, the transmit
waveform could be designed to optimally enable the scale-lag
diversity; however, for practical considerations, we constrain
the transmit waveform to be a DSSS signal. The analysis
can be applied to underwater acoustic systems [4] as well
as to radio frequency ultra-wideband (UWB) systems [5]. In
particular, this paper considers mobile wideband systems with
limited available lag diversity where extracting dilation diver-
sity has the potential to significantly improve performance [6].

The rest of the paper is organized as follows. Section II
describes the DSSS waveform and defines the transformation
used to model the input-output characteristics of the wideband
channel. Section III motivates the scale-lag Rake receiver and
discusses the scale-resolution property of a wideband DSSS
waveform. Furthermore, a low complexity implementation of
the scale-lag basis projection is proposed. In Section IV, the
wideband scattering function, which quantifies the scale-lag
channel energy profile, is examined and scale-lag diversity is
defined. Section V supports the analysis by providing numeri-
cal results for a system employing second-derivative Gaussian
chip pulses. Finally, we provide conclusions in Section VI.

II. SYSTEM MODEL

A. Transmit Signal

Throughout, we assume baseband DSSS signaling, where
the transmitted signal s(t) results from linearly modulating a

1The possibility of a scale-lag receiver was mentioned in [3], but no details
were developed.
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Fig. 1. Wireless channel diagram with two equal-length propagation
paths from the transmitter to the receiver. The receiver is traveling
with velocity v.

sequence of BPSK symbols {bk} with a wideband signature
waveform x(t):

s(t) =
Nb−1∑
k=0

bkx(t − kTb), (1)

In (1), Nb is the number of transmitted bits, Tb is the bit
spacing, and bk ∈ {−√

Eb,
√

Eb}, where Eb is the energy per
bit.

The wideband DSSS signature waveform takes the form

x(t) =
1√
Np

Np−1∑
i=0

cip(t − iTo), (2)

where p(t) is the unit-energy chip pulse, {ci}Np−1
i=0 is the

length-Np pseudo-noise (PN) chip sequence, and To = Tb

Np

is the chip spacing. The spreading sequences in this paper
are modeled as random to facilitate the analysis. Since we
consider baseband signaling, all signals and parameters are
real valued. We assume that the chip pulse p(t) is bandpass
with spectral peak fo Hz, single-sided bandwidth W ≈ 2fo

Hz, and duration Tp ≈ f−1
o seconds, where typically Tp < To.

To model time-hopping [5] or episodic signaling [7], the
PN sequence {ci} may be chosen from a ternary alphabet
ci ∈ {− 1√

q , 0, 1√
q}, where the non-zero chip probability q is

chosen so that E[c2
i ] = 1. See [8], [9] for more details on the

construction of ternary sequences.

B. Wideband Channel Representation

The wideband channel output r(t), due to input s(t), can
be modeled as [10]

r(t) =
∫ ∫

L (a, τ)
1√
a

s

(
t − τ

a

)
da dτ

︸ ︷︷ ︸
L{s(t)}

+w(t), (3)

where L (a, τ) is the wideband channel kernel and w(t) is
zero-mean additive white Gaussian noise (AWGN) with two-
sided power spectral density σ2

w. The model (3) allows for
a continuum of paths, where each path is associated with a
propagation delay of τ seconds and a dilation factor of a. In
particular, the kernel L (a, τ) quantifies the contribution of all
paths with dilation/delay (a, τ). Note that, since the wideband
transformation L{·} is not time-invariant, its eigenfunctions
are not sinusoids. Note also that L{·} subsumes wideband
time-selective fading, wideband frequency-selective fading,
and wideband doubly selective fading.

We illustrate the function of the wideband channel kernel
L (a, τ) with the simple two-path noiseless example shown in
Fig. 1. Suppose that the two paths have equal length: d =
cτ ′, where c is the speed of wave propagation and τ ′ is the
temporal lag from transmitter to receiver. With the receiver
moving at velocity v, the path arriving perpendicular to the
direction of motion experiences no dilation (a = 1), while the
path arriving parallel to the direction of motion experiences a
dilation of a′ < 1. Hence, the received signal can be written as
r(t) = s(t−τ ′)+ 1√

a′ s(
t−τ ′

a′ ), obeying (3) under the wideband
channel kernel L (a, τ) = δ(a−1)δ(τ−τ ′)+δ(a−a′)δ(τ−τ ′)
with δ(·) denoting the Dirac delta function. In this model, a
path arriving at an angle of ξ radians (relative to the direction
of receiver motion) will experience a dilation factor of a′ =
1 − v

c cos(ξ).
Finite velocities and path losses imply that the wideband

channel kernel L (a, τ) has non-zero support on the compact
set Ω = {(a, τ) : amin ≤ a ≤ amax, 0 ≤ τ ≤ τmax},
where amin and amax are the minimum and maximum dilation,
respectively, and where τmax is the maximum delay spread.
By convention, we assume that the shortest path has time
delay of zero. Some channels may be considered sparse, such
that L (a, τ) is non-zero on a small fraction of the set Ω
[11]. We define the effective delay spread τsup to be the
measure of the non-zero lag support. The minimum dilation
and maximum dilation can be written amin = 1− vmax/c and
amax = 1+vmax/c, respectively, where vmax is the maximum
relative velocity.

An important system parameter is the (single-sided) scale
spread: γmax := amax−amin

2 = vmax/c = amax − 1, which
defines the maximum deviation from unit temporal dilation.
As we shall see, the normalized scale spread γmaxTbfo =
vmax

c Tbfo quantifies the effect of mobility on a wideband
communication system. This parameter is analogous to the
normalized Doppler spread fmaxTb = vmax

c Tbfc, which quan-
tifies the effect of mobility on a narrowband communication
system. There, fc denotes the carrier frequency and fmax =
vmax

c fc denotes the single-sided Doppler frequency spread [12,
p. 809].

Typical values of scale spread γmax can be quite large
in underwater acoustic channels. In particular, the numerical
experiments in Section V demonstrate that the wideband mo-
bility allows significant diversity gain when γmaxTbfo ≥ 0.01.
For example, γmax = 0.002 results from2 vmax = 11 km/hr,
from which γmaxTbfo = 0.01 can be obtained for, e.g.,
an underwater DSSS system with data rate T−1

b = 10 bps
and bandwidth 100 Hz. The latter rate should be adequate
for environmental monitoring applications which track slowly
varying parameters such as temperature or salinity. Though
typical values of scale spread γmax may be extremely small
for mobile RF channels, the effect of this scale spread can be

2As described in [13], mobility in underwater applications could arise from
wind-induced wave motion of a receiver mounted on a floating buoy. Using
the rule hrmsfwave = 0.01v1.5

wind [13], where hrms denotes RMS wave height in
meters, fwave denotes wave frequency in Hz, and vwind denotes wind velocity
in m/s—and assuming that the buoy bobs vertically, with the transmitter
located θ radians from the axis of motion—it is straightforward to show that a
maximal rate of path length variation vmax m/s corresponds to a wind speed
of vwind = ( 100vmax

2.8π cos(θ)
)2/3 m/s. Using this relationship with θ = π/6, a

mobility of vmax = 11 km/hr corresponds to a wind speed of 42 km/hr.
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significant when Tbfo, the signal’s time-bandwidth product,
is large enough. As an example, vmax = 67.5 km/hr yields
γmax = 6.25×10−8 in RF channels, from which γmaxTbfo =
0.01 can be obtained for, e.g., a DSSS system with data rate
T−1

b = 25 kbps and bandwidth W = 8 GHz.
We shall see that the normalized effective delay spread

τsupfo quantifies the effect of multipath time-dispersion in
wideband systems. Since fo ≈ W/2, the normalized effective
delay spread can be approximated by 1

2τsupW , which is
known to quantify the effect of time-dispersion in narrowband
systems. As an example of a system with limited lag diversity,
if we choose τmax = τsup = 10 ms in the previously described
acoustic example3, we find a normalized effective delay spread
of τsupfo = 0.5.

From the previous RF example, given a maximum delay
spread of τmax = 2.5 μs, we find a normalized maximum
delay spread of τmaxfo = 1.0 × 104. However, vehicular
channels are often sparse, as shown in [11]. For example, in
95% of measured channels only 5 rays were significant4, while
in 79% of measured channels only 2 rays were significant.
Since, at bandwidth W Hz, each ray contributes 1

2W seconds
to the effective delay spread τsup, a 2-ray channel would yield
a normalized effective delay spread of τsupfo = 0.5. These
diverse rays can be resolved by a DSSS system as shown in
Section III.

Throughout the paper, we assume that the maximum delay
spread is much less than the symbol spacing, i.e., τmax �
Tb, in which case guardbands can be inserted to prevent
inter-symbol interference (ISI) with a small loss in spectral
efficiency. This assumption is reasonable for DSSS with large
processing gain and is often made for impulse-radio UWB
RF systems [14, p.34] and DSSS underwater acoustic systems
[4]. It can be confirmed that τmax = 0.1Tb for the previously
described underwater acoustic example and τmax = 0.0625Tb

for the previously described RF example.

III. SCALE-LAG RAKE RECEIVER

A. Wideband Scale-Lag Canonical Model Representation

Sayeed and Aazhang [15] derived a narrowband canoni-
cal model for parsimonious representation of a narrowband
baseband-equivalent received signal and, after making sta-
tistical assumptions on the narrowband baseband-equivalent
channel kernel, analyzed the performance of a frequency-lag
Rake receiver, which exploits Doppler-lag channel diversity in
a mobile spread-spectrum system. Motivated by the narrow-
band canonical model, Balan et al. [3] derived a canonical
model for the wideband transformation. A similar wideband
decomposition was proposed independently in [16].

The wideband canonical model parameterizes the wideband
transformation as a weighted sum of delay and dilation oper-
ations [3]:

L{s(t)} =
∑
m

∑
n

lm,n
1

a
m/2
�

s

(
t − nt�a

m
�

am
�

)
, (4)

3A delay spread of 10 ms is said to be typical for underwater acoustic
channels [13].

4We reason that the number of rays in our example RF channel is similar
to the number of rays in the measured 19 MHz-bandwidth channels in [11],
since [11] concludes “a majority of the delay spread seen in the current
environment is due to single reflections from large man-made scatterers.”
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t

t

Fig. 2. Illustration of waveform x(t) (a) before and (b) after dilation
by factor a.

where the canonical weighting coefficients lm,n are given by,

lm,n =
∫ τmax

0

∫ amax

amin

L (a, τ)

sinc
(

n − τ

at�

)
sinc

(
ln(a)
ln(a�)

− m

)
da dτ. (5)

The quantities a� and t� are the channel’s dilation spacing
and translation spacing parameters, respectively. See [3] for
more details. Note that (5) follows from (3)-(4).

The wideband canonical representation (4) implies that, in
the presence of AWGN at the receiver, a bank of correlators
matched to shift-dilates of the wideband signature waveform
(i.e., the scale-lag Rake) will produce a set of (possibly
correlated) sufficient statistics for optimal reception [12, Ch
5]. Although [3] suggested the possibility of a scale-lag Rake
receiver for the wideband case, it was never developed. Our
main contribution is to develop and study the scale-lag Rake
receiver for the wideband channel.

B. Scale-Lag Resolution

The scale-lag resolution properties of a wideband DSSS
signal x(t) can be determined by studying the wideband
ambiguity function χ(a, τ) [17], defined as

χ(a, τ) :=
〈

x(t),
1√
a
x

(
t − τ

a

)〉
(6)

where 〈f(t), g(t)〉 :=
∫∞
−∞ f(t)g(t)dt is the inner product.

We define the minimum resolvable lag τo to be the smallest
τ > 0 such that χ(1, τ) = 0, and the minimum resolvable
dilation αo to be the smallest a > 1 such that χ(a, 0) = 0; the
minimum scale resolution is defined as βo := αo − 1. Below,
we show that these resolution quantities are related to the chip-
pulse duration Tp—or, equivalently, the peak frequency fo—
and to the symbol spacing Tb. The minimum resolvable lag
and the minimum scale resolution will be used as guidelines
in the sequel to construct the basis functions for the scale-lag
Rake receiver.

An often used rule-of-thumb is that a linear Rake receiver
can resolve multipath with inter-arrival lag differences on the
order of Tp seconds [12, p. 841]. This is verified by the
following proposition.

Proposition 1: The mean and variance of the ambiguity
function χ(1, τ) of the wideband DSSS signal x(t) in (2)
vanish for τ ≥ Tp.

Proof: See Appendix I.
It immediately follows from Proposition 1 that the minimum

resolvable lag τo has an upper bound given by τo ≤ Tp. Next,
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the scale resolution property of a DSSS signal is linked to the
time-bandwidth product. Let a result in a dilation greater than
or equal to one chip-pulse duration Tp (illustrated by Fig. 2),
i.e.,

aTb − Tb ≥ Tp ⇔ a ≥ 1 +
Tp

Tb
. (7)

Now consider the following proposition, which gives a rule-
of-thumb for the minimum resolvable dilation αo.

Proposition 2: The mean and variance of χ(a, 0) vanish for
a ≥ 1 + Tp

Tb
if and only if the chip pulse p(t) has zero DC

component.
Proof: See Appendix I.

From Proposition 2, we see that, for zero-DC pulses, the
minimum scale resolution is upper bounded by βo ≤ Tp

Tb
.

Since the chip-pulse duration Tp and the peak frequency fo are
inversely proportional, we can say that the scale resolution βo

is on the order of (Tbfo)−1—the inverse of the time-bandwidth
product.

C. Example: Second-Derivative Gaussian Chip Pulse

We now use a second-derivative Gaussian chip pulse to
illustrate the scale and lag resolution properties of a DSSS
signal. The pulse waveform is defined as [18]

p(t) =
√

fo
4
√

32π√
3

[
1 − 2(πfot)2

]
e−(πfot)2 , (8)

with Fourier transform

P (f) =
√

fo
4
√

32π√
3

2√
πf2

o

(
f

fo

)2

e
− f2

f2
o . (9)

Time and frequency plots of the second-derivative Gaussian
are shown in Fig. 3. From Fig. 3(a), we argue that the chip
pulse duration5 is roughly Tp = 2

fo
seconds. From Fig. 3(b),

we see that the chip pulse (8) has zero DC component6 and
confirm that the peak frequency equals fo.

It is shown in Appendix I that, for large spreading gain Np

and practical values of dilation (i.e., a ≈ 1),7 the wideband
ambiguity function can be approximated in the mean-square
sense as

χ(a, τ) ≈ χ̄(a, τ),

:=
∫ 1

0

χp(1, τ + (a − 1)zTb)dz (10)

where

χp(a, τ) :=
〈

p(t),
1√
a
p

(
t − τ

a

)〉
(11)

is the wideband ambiguity function of the chip pulse p(t). The
ambiguity function for the second derivative Gaussian pulse

5Some authors [19], [20] define duration differently and conclude Tp =
7

πfo
√

2
= 1.58

fo
.

6There exist other zero-DC pulses, e.g. the modified duobinary pulse [12,
p. 563].

7Recall that 1 − vmax
c

≤ a ≤ 1 + vmax
c

, where, usually, vmax
c

is very
small compared to 1.

−1 −0.5 0 0.5 1
−1

0

1

2

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

(a)

(b)

tfo

f/fo

Fig. 3. Plot of (a) p(t) (time domain) and (b) P (f) (frequency
domain) for the second-derivative Gaussian chip pulse (i.e., “Mexican
hat wavelet”) defined in (8).
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Fig. 4. Approximate wideband ambiguity function χ̄(a, τ ) with the
second-derivative Gaussian chip pulse (8).

(8) can be written as [21, p. 63]

χp(a, τ) =

f(a)
(

4π4f4
o τ4 − 12π2f2

o τ2(1 + a2) + 3(1 + a2)2
)

exp
(
−π2f2

o τ2

1 + a2

)
, (12)

where f(a) := 4
3

√
2a5

(1+a2)9 . Plugging (12) into (10) yields an
approximation for the wideband ambiguity function (6), which
is plotted in Fig. 4. (Note that the approximation χ̄(a, τ) is not
directly a function of the chip spacing To.) For comparison,
Fig. 5 plots the deterministic wideband ambiguity function
χ(a, τ) corresponding to a length-128 i.i.d. random binary
chip sequence {ci} with chip spacing To = Tp (i.e., non-
overlapping chips). Note the similarity between Fig. 4 and
Fig. 5.

We now find the minimum resolvable dilation αo and
minimum resolvable lag τo for DSSS signaling over second-
derivative Gaussian chip pulses. To do so, we examine the
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Fig. 5. Deterministic wideband ambiguity function χ(a, τ ) of a
DSSS waveform x(t) composed of a length-128 i.i.d. random binary
sequence modulating second-derivative Gaussian chip pulses with
chip spacing To = 2
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Fig. 6. Plot of (a) χ̄(a, 0) and (b) χ̄(1, τ ) for DSSS waveform
employing second-derivative Gaussian chip-pulses.

cross-sections χ̄(a, 0) and χ̄(1, τ), plotted in Fig. 6(a) and
Fig. 6(b), respectively. From Fig. 6(a), we see that the min-
imum resolvable dilation is approximately αo = 1 + 0.55

Tbfo
,

yielding minimum scale resolution βo = 0.55
Tbfo

. We also see
that χ̄(a, 0) approaches zero again at a = 1 + 1

Tbfo
and

vanishes for a ≥ 1 + 2
Tbfo

= 1 + Tp

Tb
, as predicted by

Proposition 2. From Fig. 6(b), we see that the minimum
resolvable lag is approximately τo = 0.236

fo
. We also see that

χ̄(1, τ) approaches zero again at τ = 0.744
fo

and vanishes for
τ ≥ 2

fo
= Tp, as predicted by Proposition 1.

D. Connection to Radar, Sonar, and Wavelets

The reader will notice that if x(t) satisfies the wavelet
admissibility conditions [22, p. 125], then χ(a, τ) is the
continuous wavelet transform (CWT) with respect to x(t). It
is easily verified that if the chip pulse p(t) is admissible, then

the waveform x(t) is also admissible. A necessary condition
of admissibility is for the waveform to have a zero at DC;
hence, an arbitrarily chosen wavelet will satisfy Proposition 2.
In this paper, wavelet sequences are used to extract scale
diversity from the channel; wavelets have also been used for
time-varying system identification [23], [24]. The connection
between wavelet analysis and wideband processing for Radar
and Sonar is studied in [25], and experimental results are
reported in [26].

The affect of time dilation on spread-spectrum signals is
sometimes called “code Doppler.” A study of the effect of
code Doppler on timing acquisition was performed in [27].
We are not aware of any attempts to exploit the presence
of code Doppler for diversity gain. Code Doppler will also
occur if there is a sampling frequency mismatch between the
transmitter digital to analog converter (DAC) and the receiver
analog to digital converter (ADC), in which case every path
is dilated by the same amount.

The scale and lag resolution analysis we have performed for
DSSS signals could be applied to Radar/Sonar estimation of
target velocity and range. Consider the following recent papers
on the topic. An exploration on the connection of the wideband
ambiguity function (6) for arbitrary motion (not just constant
velocity) and its constant-velocity narrowband approximation
is found in [28]. In [29], the authors investigate the dilation
resolution properties of random wideband signals, which are
generated via a Gaussian noise source. In [30], a ternary-
modulated sequence was used to estimate range and velocity.
In [31], the authors estimate range by determining when the
pulse first arrives. In [32], a Cramer-Rao lower bound (CRLB)
on the estimation error of velocity and range via wideband
ambiguity function analysis is calculated based on the Mellin
transform [33]. One avenue of future work is to design optimal
CRLB-minimizing chip-pulses and sequences by applying the
Mellin transform analysis in [32] to our ambiguity-function
approximations.

E. Choice of Rake Basis Functions

Motivated by the scale-lag wideband channel parameteriza-
tion in Section III-A and the scale-lag resolution properties in
Section III-B, we choose, as basis functions for demodulating
the kth bit, the set of dilated-delayed versions of the DSSS
waveform x(t) [c.f., (2)]:

x(k)
m,n(t) =

1√
am

o

x

(
t − ntoa

m
o − kTb

am
o

)
, (13)

where ao is the dilation-spacing parameter and to is the
translation-spacing parameter (c.f. Section III-A). We define
γo := ao − 1 as the scale-spacing parameter.

Recalling the relationship between the minimum resolution
quantities (αo, τo) and the system parameters (fo, Tb), we
set the scale-spacing and translation-spacing equal to γo =

kγ

Tbfo
and to = kt

fo
, respectively, where kγ and kt are Rake

design parameters. Note that, for the case of second-derivative
Gaussian chip pulses, the choices kγ = 0.55 and kt = 0.236
yield dilation-spacing and translation-spacing equal to the
minimum resolvable dilation and lag, respectively.

The scale-lag Rake receiver projects the received signal
onto the scale-lag basis functions {x(k)

m,n(t) for (m, n) ∈ I}
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Fig. 7. Example scale-lag Rake configurations: (a) rectangular, and
(b) “T-shaped”.

and subsequently combines the projection coefficients to infer
the kth bit. The index set I specifies the coordinates of active
Rake fingers. For example, Fig. 7(a) shows a Rake with a
rectangular grid of scale-lag fingers and Fig. 7(b) shows a
Rake with two active non-trivial scale fingers. Note that the
conventional lag-only Rake is a special case of the scale-lag
Rake with I = {(0, n) : n = 0, . . . , N}, i.e., with only trivial
scale fingers. Note also that, for typical values of dilation-
spacing (i.e., ao ≈ 1), a Taylor series approximation around
the point ao = 1 gives am

o ≈ 1+m(ao − 1) = 1+mγo. Thus
{x(k)

m,n(t)}m∈Z constitutes an approximately uniform sampling
of the scale domain with sampling interval γo.

Using the wideband channel transformation (3), we now
analyze {r(k)

m,n}, the scale-lag Rake projection coefficients for
the kth bit:

r(k)
m,n = 〈x(k)

m,n(t), r(t)〉,

=
Nb−1∑
l=0

bl

〈
x(k)

m,n(t),L{x(t − lTb)}
〉

︸ ︷︷ ︸
≈0, for l �=k since τmax�Tb

+ 〈x(k)
m,n(t), w(t)〉︸ ︷︷ ︸

w
(k)
m,n

,

≈ bk

〈
x(k)

m,n(t),L{x(t − kTb)}
〉

︸ ︷︷ ︸
h
(k)
m,n

+w(k)
m,n,

= bkh(k)
m,n + w(k)

m,n. (14)

In (14), {h(k)
m,n} are the channel coefficients and {w(k)

m,n}
are the noise coefficients. Collecting {r(k)

m,n}(m,n)∈I into the
vector rk, we can write

rk = bkhk + wk (15)

where vectors hk and wk are defined similarly. Because the
channel produces finite scaling and delay, there is negligible
energy in the scale-lag Rake components corresponding to

the following set of indices: {m, n | m > �γmax
γo

� or m <

−�γmax
γo

�, n > � τsup
to

� or n < 0}. Thus, in the case that I
specifies a rectangular array of Rake fingers with dimension
(2M+1)×(N+1), it would be advisable to choose M ≈ γmax

γo

and N ≈ τsup
to

in order to limit complexity while capturing a
significant fraction of the received signal energy.

F. Reduced-Complexity Rake Implementation

Anticipating the high expense of accurate wideband analog
filtering, we propose a low-complexity means of scale-lag
projection. For ease of illustration, we focus on a (2M +1)×
(N + 1) rectangular array of Rake fingers. For this setup, we
propose to feed the output of a single chip-matched filter into
a bank of samplers with rates {(am

o to)−1, m = −M, . . . , M}.
Each sampler output is connected to a tapped-delay line with
fingers down-sampled to the chip-pulse rate 1

To
. (See Fig. 8.)

Here, we have assumed, for simplicity, that the chip-spacing
To is a multiple of the translation-spacing to, i.e., To

to
= Nt for

Nt ∈ N. Focusing on the 0th bit and dropping the superscripts
in (14), the proposed structure can be justified as follows.

rm,n

=
∫

xm,n(t)r(t)dt,

=
1

a
m/2
o

Np−1∑
i=0

ci√
Np

∫
p
(

t−ntoam
o −iToam

o

am
o

)
r(t)dt,

=
1

a
m/2
o

Np−1∑
i=0

ci√
Np

p
(
− t

am
o

)
∗r(t)

∣∣∣
t=(n+iNt)am

o to

,

≈ 1

a
m/2
o

Np−1∑
i=0

ci√
Np

p (−t) ∗r(t)
∣∣∣∣
t=(n+iNt)am

o to

,

=
1

a
m/2
o

Np−1∑
i=0

ci√
Np

zm,n[i], (16)

where ∗ denotes linear convolution and where

zm,n[i] := p (−t) ∗r(t)
∣∣∣∣
t=(n+iNt)am

o to

. (17)

The approximation in (16) is premised on the idea that dilating
the Tp-duration chip pulse p(t) by am

o has a negligible effect
on the Rake outputs.8 Note that, since Tb � Tp, dilating p(t)
is insignificant in comparison to dilating the Tb-duration bit
waveform x(t).

Notice that the translation-spacing to is analogous to the
sampling period in lag-only Rake reception (i.e., the m = 0
components); the scale components (i.e., m �= 0) are obtained
by slightly lengthening or shortening the sampling period.
An interesting question is how sampling frequency offset will
affect the performance of the scale-lag Rake. We conjecture
that as long as the sampling of the scale-lag plane is “dense”
enough to collect all the received energy, then sampling
frequency offsets will not adversely impact performance.

8A similar approximation is used for analog-to-digital conversion in a
narrowband DSSS system, i.e., the Doppler distortion of chip pulses are
ignored [15].
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Fig. 8. Block-diagram for the rectangular scale-lag Rake projection
given by (16). The receiver can be made causal by introducing an
appropriate bulk delay in the matched filter.

IV. SCALE-LAG DIVERSITY

To determine the diversity extracted by the coherent scale-
lag Rake receiver, we derive the second-order statistics of the
wideband channel kernel L (a, τ) and use this information
to compute correlation between the channel coefficients. The
number of large eigenvalues of the combining coefficient
autocorrelation matrix will be used to study the effective
diversity order extracted by the receiver.

A. Wideband Scattering Function

In this section, we compute the
second-order wideband channel statistics
E[L (a, τ)L(a′, τ ′)] assuming N discrete independent
paths:

L (a, τ) =
N−1∑
n=0

lnδ(a − an)δ(τ − τn), (18)

where δ(·) is the Dirac delta function and where the nth path
has real-valued gain ln, dilation an, and lag τn. Specifically,
we assume:

(A1) The path parameters {ln}, {an}, and {τn} are i.i.d.
across paths with joint density pA,L,T (·, ·, ·).

(A2) The path amplitudes are zero mean, i.e., E[ln] = 0.
(A3) The dilation an is independent of the amplitude ln and

lag τn, i.e., pA,L,T (·, ·, ·) = pA(·)pL,T (·, ·).
Assumption (A3) is motivated by the fact that the amplitude
and lag are often correlated in wireless channels, as evident
from power profiles that are exponential in the lag variable
[12], [34]. Similar assumptions have been made to analyze
narrowband channels [35].

From assumptions (A1) and (A2) we write

E[L(a′, τ ′)L(a′′, τ ′′)]
= E[δ(a′−ao)δ(a′′−ao)N |l0|2δ(τ ′−τ0)δ(τ ′′−τ0)],

(19)

where (A1) allows us to consider the first path without loss
of generality. From (A3),

E[δ(a′ − ao)δ(a′′ − ao)]

=
∫

δ(a′ − a)δ(a′′ − a)pA(a)da,

= pA(a′)δ(a′ − a′′), (20)

and

E[N |l0|2δ(τ ′ − τ0)δ(τ ′′ − τ0)]

= N

∫ ∫
|l|2δ(τ ′ − τ)δ(τ ′′ − τ)pL,T (l, τ)dτdl,

= fT (τ ′)δ(τ ′ − τ ′′), (21)

where we define

fT (τ) := NpT (τ)
∫

|l|2pL|T (l|τ)dl. (22)

The function fT (τ) is the delay profile as a function of lag τ .
We substitute (20) and (21) into (19) to obtain

E[L(a, τ)L(a′, τ ′)] = pA(a)fT (τ)︸ ︷︷ ︸
:=Ψ(a,τ)

δ(a−a′)δ(τ−τ ′), (23)

where Ψ(a, τ) is the wideband scattering function, which
quantifies the distribution of received power as a function of
dilation and delay.

Now that the form of the wideband scattering function has
been determined, we investigate the dilation density pA(·).
An often studied channel geometry is a fixed transmitter and
dense ring of scatterers surrounding the mobile receiver. In
this “isotropic” case, the relation between the angle-of-arrival
relative to the direction of travel ξ and dilation a is

a = 1 − γmax cos(ξ). (24)

where γmax = vmax
c is the scale-spread. Given the angle of

arrival distribution pΞ(·), it is a simple matter to compute the
dilation distribution pA(·),

pA(a) =
1

γmax
pY

(
−a − 1

γmax

)
, (25)

where Y = cos(Ξ) and

pY (y) =
pΞ(cos−1(y)) + pΞ(− cos−1(y))√

1 − y2
. (26)

If the angle of arrival ξ is distributed uniformly on (−π, π],
then we have

pY (y) =
1

π
√

1 − y2
, |y| < 1, (27)

which is a shifted version of the familiar “bathtub” profile [36].
We call the function pA(a) the scale profile, analogous to the
Doppler profile in narrowband baseband-equivalent channels.
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B. Wideband Channel Coefficient Correlation

Recalling (15), the noise vector wk is Gaussian distributed
with zero mean; hence, the optimal bit error rate (BER)-
minimizing coherent receiver is the whitened matched filter
[12, p. 603], which assumes knowledge of the channel coef-
ficients hk and noise correlation matrix Rw := E[wkwH

k ] =
σ2

wRx, where the elements of Rx are inner products of the
form 〈x(k)

m,n(t), x(k)
m′,n′(t)〉 over m, m′ ∈ {−M, . . . , M} and

n, n′ ∈ {0, . . . , N}. In practice, the receiver would estimate
the channel coefficients hk.

The decision statistic b̂k is [12]

b̂k = fH
k (R−1/2

x )Hrk, (28)

= bk‖fk‖2 + fT
k (R−1/2

x )Hwk. (29)

where (R−1/2
x )H is the whitening matrix and fk =

(R−1/2
x )Hhk is the combining coefficient vector. The matrix

R1/2
x is, e.g., the Cholesky decomposition of the matrix Rx

and can be computed offline.
In the following, we focus on the kth bit and drop the

bit index notation. The signal-to-noise ratio is defined as
SNR := Eb/σ2

w and the theoretical BER expression for a
system employing BPSK signaling and coherent reception
with perfect channel state information, assuming real-valued
Gaussian coefficients, can be computed as [21, pp. 24-25]

Pe =
1
π

∫ π/2

0

κ−1∏
i=0

(
λiSNR

sin2 θ
+ 1
)−1/2

dθ, (30)

≤ 1
2

κ−1∏
i=0

(λiSNR + 1)−1/2
. (31)

where {λi}κ
i=1, κ := |I| are the eigenvalues of the

combining vector correlation matrix Σ := E[ffH ] =
(R−1/2

x )HRhR−1/2
x , and Rh := E[hhT ] is the the channel

autocorrelation matrix.
Similar to [37], we define the effective diversity order

extracted by the receiver as the negative slope of the log-log
plot of Pe versus SNR at a particular finite SNR. An exact
expression for the effective diversity order is omitted here
because it is complicated and does not yield insight into the
connection between the eigenvalues and the BER performance.
Instead, the following piecewise-linear upper bound derived
from (31) is provided whose negative slope approximates the
effective diversity order:

log Pe ≤ −B(SNR)
2

log SNR + C(SNR), (32)

where B(SNR) := |{λbig
j }| is the number of large eigenvalues

defined as {λbig
j } = {λj |λj > 1

SNR} and C(SNR) := log 1
2 −

1
2 log

∏B−1
j=0 λbig

j . We denote the negative slope B(SNR)
2 of

the upper bound (32) as the approximate effective diversity
order extracted by the receiver at a particular SNR. Note that
B(SNR) is a piecewise-constant function of SNR and that
when SNR > 1

min{λi}κ
i=1

, the approximate effective diversity

order B(SNR)
2 equals the traditionally defined (i.e., asymptotic)

diversity order, which, for our real-valued Gaussian channel,
is κ

2 , the number of non-zero eigenvalues divided by two.9

9The halving is an artifact of the real-valued nature of the Gaussian channel
coefficients.

To obtain the channel coefficient correlation matrix Rh, we
use the uncorrelated scattering property (23) to find

E[h(k)
m,nh

(k′)
m′,n′ ] =∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ) E
[
χ
(

am
o

a ,
ntoam

o −τ−k(a−1)Tb

a

)

χ

(
am′

o

a ,
n′toam′

o −τ−k′(a−1)Tb

a

)]
dadτ,

≈
∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ)χ̄
(

am
o

a ,
ntoam

o −τ−k(a−1)Tb

a

)

χ̄

(
am′

o

a ,
n′toam′

o −τ−k′(a−1)Tb

a

)
dadτ, (33)

The approximation above is due to Lemma 4 in Appen-
dix I, which makes the case that E[χ(a, τ)χ(a′, τ ′)] ≈
χ̄(a, τ)χ̄(a′, τ ′) when a and a′ are near unity and Np is large.
With the approximations10 am

o

a ≈ 1 + mγo − (a − 1) and
ntoam

o −τ−i(a−1)Tb

a ≈ nto − τ − i(a − 1)Tb, the correlation
(33) can be approximated by

E[h(k)
m,nh

(k′)
m′,n′ ] ≈∫ τmax

0

∫ 1+γmax

1−γmax

Ψ(a, τ)

χ̄ (1 + mγo − (a − 1), nto − τ − k(a − 1)Tb)
χ̄ (1 + m′γo − (a − 1), n′to − τ − k′(a − 1)Tb) dadτ.

We insert the parameterizations to = kτ

fo
and γo = kγ

Tbfo

from Section III-B and make the substitutions γ̄ := a−1
(Tbfo)−1

and τ̄ := τ
f−1

o
, for normalized scale and normalized lag,

respectively, to obtain

E[h(k)
m,nh

(k′)
m′,n′ ]

≈ 1
Tbf2

o

∫ τmaxfo

0

∫ γmaxTbfo

−γmaxTbfo

Ψ
(

1 +
γ̄

Tbfo
,

τ̄

fo

)
∫ 1

0

χp

(
1,

nkt−τ̄+(mkγ−γ̄)z−kγ̄
fo

)
dz

∫ 1

0

χp

(
1,

n′kt−τ̄+(m′kγ−γ̄)z′−k′γ̄
fo

)
dz′dγ̄dτ̄ , (34)

where we used χ̄(a, τ) from (10). The channel correlation
matrix Rh can be constructed component-wise from (34) with
k = k′ = 0.

V. NUMERICAL RESULTS

In this section, we examine the BER performance of a DSSS
system employing a unit-energy second-derivative Gaussian
chip pulse (c.f. (8)). We assume an energy-preserving chan-
nel, i.e.,

∫∫
Ψ(a, τ)dadτ = 1, with real-valued Gaussian

coefficients that satisfy (A1)-(A3), so that the results in Sec-
tion IV apply. By central limit theory arguments, the Gaussian
coefficient property can be justified through the assumption
that each channel coefficient represents an aggregate of many
reflections. BER is calculated using (30) and plotted against
SNR = Eb

σ2
w

. To obtain the eigenvalues in (30), we computed
Rh in (34) by numerically integrating over the variables (γ̄, τ̄ )
using a 41 × 41 grid and MATLAB’s trapz command.

10Note that am
o ≈ 1 + mγo and 1/a ≈ 1 − (a − 1) for a ≈ 1.
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Figure 9 compares performances of the rectangular and “T-
shaped” scale-lag Rakes to a rectangular frequency-lag Rake
and a lag-only Rake. Our baseband channel mandates that
we use a real-valued version of the frequency-lag Rake from
[15], the details of which are given in Appendix II. The lag-
only Rake employs a linear array of N + 1 fingers, the “T-
shaped” Rake employs N + 1 lag fingers plus two non-trivial
scale fingers, as illustrated in Fig. 7, and the rectangular Rakes
employ an array of (2M + 1) × (N + 1) fingers.

For the scale and lag spacing of the scale-lag Rake fin-
gers, we chose kγ = 0.28 (equivalent to half the mini-
mum resolvable dilation) and kτ = 0.236 (equivalent to the
minimum resolvable lag), respectively. Smaller scale and lag
spacings were found to yield little performance gain due to
increasing correlations between Rake fingers; larger scale and
lag spacings led to a degradation in performance. We chose
M = �γmax

γo
� = �γmaxTbfo

kγ
� and N = � τsup

to
� = � τsupfo

kτ
� to

ensure that the majority of the signal energy was captured by
the receiver. The experiments were performed with a “bathtub-
shaped” scale profile11 (27) and a (truncated) exponential
delay profile fT (τ) = Ke−ατ for 0 ≤ τ ≤ τsup and fT (τ) =
0 otherwise, where α = ln(4)

τsup
and K = α

1−exp(−ατsup) .
The normalized effective delay spread was τsupfo = 0.5
and normalized scale spread was chosen from γmaxTbfo ∈
{0.005, 0.05, 0.1}. Recalling the examples given in Section II,
γmaxTbfo = 0.01 and τsupfo = 0.5 would occur in a 2-ray
RF system with mobile velocity 67.5 km/hr, data rate 25 kbps,
and bandwidth 8 GHz; or in an underwater system with mobile
velocity 11 km/hr, data rate 10 bps, bandwidth 100 Hz, and
delay spread of 10 ms. In both of these examples, τmax � Tb,
so that ISI can be prevented using guardbands that are much
shorter than the bit interval.

In Fig. 9(a), the normalized scale spreading γmaxTbfo =
0.005 is minimal, and so the four receivers show similar
performance. In Figures 9(b) and (c), with normalized scale-
spreads of γmaxTbfo = 0.05 and 0.1, respectively, the scale-
lag Rake exploits an approximate effective diversity order
of three at SNR= 30 dB, while the lag-only Rake exploits
only an approximate effective diversity order of two at the
same SNR. The approximate effective diversity orders can
be determined by counting the number of eigenvalues above
−30 dB and dividing by two [c.f. (32)]. The frequency-lag
Rake also exploits an approximate effective diversity order
of three, though with smaller eigenvalues and hence worse
BER performance. Note that the “T-shaped” scale-lag Rake
performs nearly as well as the frequency-lag Rake, and much
better than the lag-only Rake with only a slight increase in
complexity.

For the remainder of this section, we report Monte Carlo
results that verify the above theoretical results. The setup and
results are described in the following paragraphs.

The DSSS signal was specified by the following parameters:
Tp = To = 2

fo
, where fo is the frequency of the chip-pulse’s

spectral peak, Tp is the chip-pulse duration, and To is the chip-
pulse spacing. While, in practical systems, the chip-pulses
might be spaced farther apart, complexity precluded us from

11Here we assume a uniform angle-of-arrival distribution; practical systems
may deviate from this assumption.

2 4 6 8 10

−40

−30

−20

−10

0

10 20 30 40

10
−2

10
−4

10
−6

10
−8

2 4 6 8 10

−40

−30

−20

−10

0

10 20 30 40

10
−2

10
−4

10
−6

10
−8

2 4 6 8 10

−40

−30

−20

−10

0

10 20 30 40

10
−2

10
−4

10
−6

10
−8

(a)

(b)

(c)

Eigenvalue

Eigenvalue

Eigenvalue

SNR

SNR

SNR

dB
dB

dB

B
E

R
B

E
R

B
E

R

Fig. 9. For the scale-spacing relation kγ = 0.28 (set to half the
minimum scale resolution) and translation-spacing relation kτ =
0.236 (set to minimum resolvable lag), we compare the eigenvalues
and BER performances of the receivers for the “bathtub”-shaped
scale profile (27) with scale-spreads of (a) γmaxTbfo = 0.005,
(b) γmaxTbfo = 0.05, (c) γmaxTbfo = 0.1, and an exponential
delay profile truncated to an effective delay spread of τsupfo = 0.5.
The curves are described as follows: (◦) the lag-only Rake, (+) the
“T-shaped” scale-lag Rake shown in Fig. 7(b), (∗) the real-valued
rectangular frequency-lag Rake from Appendix II, and (�) the scale-
lag Rake.

doing so. The second-derivative Gaussian pulse (8) was chosen
as the chip pulse, and the spreading sequence {ci}Np−1

i=0 was
a random binary sequence of length Np = 128.

An N = 10 tap random dilation-delay channel was gen-
erated with a “bathtub”-shaped scale profile pA(a) and with
a truncated exponential lag profile fT (τ). The dilations and
delays for each tap were chosen uniformly over the non-
zero support of the respective profiles, and the tap amplitudes
were zero-mean Gaussian distributed with variance satisfying
the scale-lag power profile. The normalized scale spread
was γmaxTbfo = 0.1, and the normalized effective delay
spread was τsupfo = 0.5. In total, 25000 channel realizations
were generated and each realization consumed approximately
500000 multiplies.12

The channel coefficients hT := [h−M,0, . . . , hM,N ] were
obtained by projecting the noiseless received signal onto the

12We would like to point out that a high simulation complexity does not
necessarily imply a high receiver complexity. Our wideband DSSS simulations
are numerically intensive because the sampling rate required to simulate
wideband signaling is inherently high; there is no simplifying “baseband
equivalent representation” as there would be with a carrier-modulated nar-
rowband system.
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Fig. 10. Theoretical and simulated BER performances of the
receivers with scale- and translation-spacing relations as in Fig. 9.
The normalized scale spread is γmaxTbfo = 0.1, and the normalized
effective delay spread is τsupfo = 0.5. The solid curves indicate
theoretical performance (c.f. equation (30)) and the dashed curves
indicate simulated performance (see the description of the simulation
above).

Rake basis functions. The projections were calculated using
the discrete approximation

hm,n =
∫

xm,n(t)r(t)dt

≈
Nsamps−1∑

i=0

xm,n(iTs)r(iTs)Ts, (35)

where Ts was the sampling period. For the simulations, we
chose Ts = 1

15fo
, which implies approximately 30 samples

per chip-pulse.
The Monte-Carlo bit error probability was computed via

Pe(SNR) := E
[
Q
(√

‖f‖2SNR
)]

(36)

≈ 1
Nsim

Nsim∑
a=1

Q
(√

‖fa‖2SNR
)

(37)

where SNR := Eb

σ2
w

, fa := (R−1/2
x )Hha denotes ath realiza-

tion of the combining coefficients vector, and Nsim denotes
the number of channel realizations. The Monte Carlo curves
in Fig. 10 match the theoretical with reasonable accuracy.

VI. CONCLUSIONS

In this paper, we studied scale-lag Rake receivers capable of
leveraging the diversity that results from scale-lag spreading
in mobile wideband direct-sequence spread-spectrum (DSSS)
systems. Our analysis applies to mobile channels where nar-
rowband fractional-bandwidth assumptions are invalid, such as
radio-frequency ultra-wideband (UWB) systems and underwa-
ter wideband acoustic systems. After defining the minimum
scale resolution of a DSSS signal, we produced guidelines
for choosing the scale-spacing and lag-spacing parameters for
the scale-lag Rake basis. We derived the wideband scattering

function for a uniform ring of scatterers and used this to nu-
merically compute the performances of scale-lag, frequency-
lag, and conventional lag-only Rakes. The proposed scale-lag
Rake receiver outperformed the frequency-lag Rake with an
equal number of fingers, since the scale-lag Rake was better
matched to the scale-lag spreading of the wideband channel.
Both scale-lag and frequency-lag Rakes outperformed the lag-
only Rake in the presence of mobility.

APPENDIX I
PROOF OF PROPOSITION 1 AND 2

In this appendix, we establish three lemmas and then use
them to prove Propositions 1 and 2.

Lemma 3: E[χ(a, τ)] ≈ χ̄(a, τ) for large Np and a ≈ 1.
Proof: Assuming unit-variance zero-mean uncorrelated

{ci}, we write

E [χ(a, τ)]

= E
[∫ ∞

−∞
x(t)

1√
a
x

(
t − τ

a

)
dt

]
,

=
Np−1∑
i=0

E[c2
i ]

Np
√

a

∫ ∞

−∞
p(t)p

(
t − τ − (a − 1)iTo

a

)
dt.

=
Np−1∑
i=0

1
Np

χp (a, τ + (a − 1)iTo) (38)

where the chip pulse ambiguity function χp(a, τ) is defined
in (11). Using To = Tb

Np
, the summation in (38) is well

approximated by an integral when Np is large:
Np−1∑
i=0

1
Np

χp

(
a, τ + (a − 1)

i

Np
Tb

)

≈
∫ 1

0

χp(a, τ + (a − 1)zTb)dz. (39)

When a ≈ 1, (39) can be further approximated as∫ 1

0

χp(a, τ + (a − 1)zTb)dz

≈
∫ 1

0

χp(1, τ + (a − 1)zTb)dz,

= χ̄(a, τ). (40)

Lemma 4: E[χ(a, τ)χ(a′, τ ′)] ≈ χ̄(a, τ)χ̄(a′, τ ′) for large
Np and a ≈ 1.

Proof: We start with

E[χ(a, τ)χ(a′, τ ′)]

=
1

N2
p

∑
i,j,k,l

E[cicjckcl]

χp(a, τ+(ai−j)To)χp(a′, τ ′+(a′k−l)To), (41)

with χp(a, τ) defined in (11). The expectation in (41) reduces
to

E[cicjckcl] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E[c4
i ] i = j = k = l,

E[c2
i ]

2 i = j, k = l, i �= k,

E[c2
i ]

2 i = k, j = l, i �= j,

E[c2
i ]

2 i = l, j = k, i �= j,

0 else.

. (42)
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Using To = Tb

Np
, we shall see that only the second case in (42)

yields a non-negligible contribution.
The terms in (41) corresponding to {i = j = k = l} can

be upper bounded by

Np−1∑
i=0

E[c4
i ]

N2
p

∣∣∣∣χp

(
a, τ+(a − 1)

i

Np
Tb

)

χp

(
a′, τ ′+(a′ − 1)

i

Np
Tb

)∣∣∣∣ ≤ E[c4
i ]

Np
, (43)

where the inequality in (43) follows from the chip pulse having
bounded energy, i.e., |χp(a, τ)| ≤ 1. Note that, for large Np,
(43) becomes negligible. Next, the summation terms in (41)
corresponding to {i = j, k = l, i �= k} can be approximated,
for large Np as

∑
i,k �=i

E[c2
i ]

2

N2
p

χp

(
a, τ+(a − 1)

i

Np
Tb

)

χp

(
a, τ ′+(a′ − 1)

k

Np
Tb

)

≈ E[c2
i ]
∫ 1

0

χp(1, τ + (a − 1)zTb)dz

E[c2
i ]
∫ 1

0

χp(1, τ ′ + (a′ − 1)z′Tb)dz′

= χ̄(a, τ)χ̄(a′, τ ′), (44)

while those corresponding to {i = k, j = l, i �= j} can be
approximated, for a ≈ 1, by

∑
i,j �=i

E[c2
i ]

2

N2
p

∣∣∣∣χp (a, τ+(ai − j)To)

χp (a′, τ ′+(a′i − j)To)
∣∣∣∣

≈
∑
i,j

E[c2
i ]

2

N2
p

∣∣∣∣χp (1, τ+(ai − j)To)

χp (1, τ ′+(a′i − j)To)
∣∣∣∣ (45)

≤
Np−1∑
i=0

2 E[c2
i ]

2

N2
p

=
2 E[c2

i ]
2

Np
. (46)

The following arguments justify (46). Since p(t) is time-
limited to Tp seconds, χp(1, z) is non-zero only when |z| <
Tp. Therefore, fixing a and τ , for each i ∈ {1, 2, . . . , Np−1},
there are at most two values of j such that | τ

To
+ai− j| < Tp

To
.

This property, combined with |χp(a, τ)| < 1, leads to the
inequality in (46). Note that, for large Np, the component
in (46) becomes negligible. Finally, the summation terms in
(41) corresponding to {i = l, j = k, i �= j} can also be
shown to negligible using similar arguments. In summary,
only (44) yields a non-negligible contribution to (41), so that
E[χ(a, τ)χ(a′, τ ′)] ≈ χ̄(a, τ)χ̄(a′, τ ′).

Lemma 5: For Np large and a near unity, the wideband
ambiguity function χ(a, τ) is approximately equal to χ̄(a, τ)
in the mean-squared sense.

Proof: Lemmas 3 and 4 imply

E[|χ(a, τ) − χ̄(a, τ)|2]
= E[(χ(a, τ))2]−2 E[χ(a, τ)]χ̄(a, τ)+(χ̄(a, τ))2

≈ 0. (47)

A. Proposition 1

Proof: From Lemma 5, we see that χ̄(1, τ) is a mean-
square approximation of χ(1, τ); hence, from (10)

χ(1, τ) ≈
∫ 1

0

χp(1, τ)dz (48)

= χp(1, τ). (49)

The function χp(1, τ) = 0 when τ > Tp.

B. Proposition 2

Proof: From Lemma 5, we see that χ̄(a, 0) is a mean-
square approximation of χ(a, 0); hence, from (10)

χ(a, 0) ≈
∫ 1

0

χp(1, (a − 1)zTb)dz (50)

=
∫ 1

0

Rp((a − 1)zTb)dz (51)

=
1

2(a − 1)Tb

∫ (a−1)Tb

−(a−1)Tb

Rp(z)dz. (52)

where Rp(τ) := χp(1, τ) is the deterministic autocorrelation
function of the chip pulse p(t). Suppose Sp(0) = 0 where
Sp(f) is the energy spectral density of the chip pulse. Since
the chip pulse has time support of Tp seconds, then for (a −
1)Tb ≥ Tp ⇔ a ≥ 1 + Tp

Tb
we have

χ(a, τ) ≈ Sp(0) = 0,

for Np large and a near unity.

APPENDIX II
REAL-VALUED FREQUENCY-LAG BASIS

The real-valued frequency-lag basis is a simple modification
of the work in [15], which is included here to facilitate
comparison to our baseband scale-lag Rake. The frequency-
lag basis functions are uniform frequency- and time-shifted
versions of the DSSS waveform:

x̃m,n(t) := ỹm(t/Tb)x(t − nto) (53)

where

ỹm(t) :=

⎧⎪⎨
⎪⎩
√

2 cos (2πmt) m > 0,

−√
2 sin (2πmt) m < 0,

1 m = 0.

(54)

In [15], it is shown that the baud-spaced complex-valued
extension of the frequency-lag basis (53) is approximately
orthonormal, which motivated using the frequency-lag Rake
receiver to extract diversity in doubly-spread narrowband
baseband-equivalent channels.



MARGETTS et al.: JOINT SCALE-LAG DIVERSITY IN WIDEBAND MOBILE DIRECT SEQUENCE SPREAD SPECTRUM SYSTEMS 4319

REFERENCES

[1] J. Taylor, “Ultrawideband radar,” IEEE MTT-S International Microwave
Symposium Digest, vol. 1, pp. 367–370, June 1991.

[2] Federal Communications Commission, “Revision of part 15 of the
commission’s rules regarding ultra-wideband transmission systems, First
report and order,” ET Docket 98-153, FCC 02-48, pp. 1–118, Feb. 14,
2002.

[3] R. Balan, H. V. Poor, S. Rickard, and S. Verdú, “Time-frequency and
time-scale canonical representations of doubly spread channels,” Proc.
European Signal Processing Conf., Sep. 2004, pp. 445–448.

[4] J. Davies, S. Pointer, and S. Dunn, “Wideband acoustic communications
dispelling narrowband myths,” in OCEANS 2000 MTS/IEEE Conf.
Exhibition, Sep. 2000, vol. 1, pp. 377–384.

[5] M. Win and R. Scholtz, “Ultra-wide bandwidth time-hopping spread-
spectrum impulse radio for wireless multiple-access communications,”
IEEE Trans. Commun., vol. 48, pp. 679–689, Apr. 2000.

[6] G. Hariharan and A. M. Sayeed, “Minimum probability of error in
sparse wideband channels,” in Proc. Allerton Conf. Commun., Control,
Computing, Sep. 2006.

[7] B. M. Sadler and A. Swami, “On the performance of episodic UWB
and direct-sequence communication systems,” IEEE Trans. Wireless
Commun., vol. 3, pp. 2246–2255, Nov. 2004.

[8] M. Antweiler, L. Bomer, and H.-D. Luke, “Perfect ternary arrays,” IEEE
Trans. Inform. Theory, vol. 36, pp. 696–705, May 1990.

[9] D. Wu, P. Spasojevic, and I. Seskar, “Ternary zero correlation zone
sequences for multiple code UWB,” in Proc. Conf. Inform. Science Syst.,
Mar. 2004, pp. 939–943.

[10] S. Rickard, “Time-frequency and time-scale representations of doubly
spread channels,” PhD thesis, Princeton University, Nov. 2003.

[11] J. F. Kepler, T. P. Krauss, and S. Mukthavaram, “Delay spread measure-
ments on a wideband MIMO channel at 3.7 GHz,” in Proc. IEEE Veh.
Technol. Conf., Sep. 2002, pp. 2498–2502.

[12] J. Proakis, Digital Communications, 4th ed. New York: McGraw-Hill,
2001.

[13] M. Stojanovic, “Recent advances in high-speed underwater acoustic
communications,” IEEE J. Oceanic Engineering, vol. 21, pp. 125–136,
Apr. 1996.

[14] L. Yang and G. B. Giannakis, “Ultra-wideband communications: An
idea whose time has come,” IEEE Signal Processing Mag., pp. 26–55,
Nov. 2004.

[15] A. M. Sayeed and B. Aazhang, “Joint multipath-Doppler diversity
in mobile wireless communications,” IEEE Trans. Commun., vol. 47,
pp. 123–132, Jan. 1999.

[16] Y. Jiang and A. Papandreou-Suppappola, “Time-scale cononical model
for wideband system characterization,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing, Mar. 2005, pp. 281–284.

[17] Q. Jin, K. M. Wong, and Z.-Q. Luo, “The estimation of time delay and
Doppler stretch of wideband signals,” IEEE Trans. Signal Processing,
vol. 43, pp. 904–916, Apr. 1995.

[18] A. Swami, B. Sadler, and J. Turner, “On the coexistence of ultra-
wideband and narrowband radio systems,” in Proc. IEEE Military
Commun. Conf., Oct. 2001, vol. 1, pp. 16–19.

[19] J. Conroy, J. LoCicero, and D. Ucci, “Communication techniques using
monopulse waveforms,” in Proc. IEEE Military Commun. Conf., Oct
1999, vol. 2, pp. 1181–1185.

[20] L. Zhao and A. Haimovich, “Performance of ultra-wideband communi-
cations in the presence of interference,” IEEE J. Select. Areas Commun.,
vol. 20, pp. 1684–1691, Dec. 2002.

[21] A. R. Margetts, “Joint scale-lag diversity in mobile wideband commu-
nications,” PhD thesis, The Ohio State University, 2005.

[22] S. Mallat, A Wavelet Tour of Signal Processing, 2nd ed. San Diego:
Academic Press, 1999.

[23] M. K. Tsatsanis and G. B. Giannakis, “Time-varying system iden-
tification and model validation using wavelets,” IEEE Trans. Signal
Processing, vol. 41, pp. 3512–3523, Dec. 1993.

[24] M. Martone, “Wavelet-based separating kernels for sequence estimation
with unknown rapidly time-varying channels,” IEEE Commun. Lett.,
vol. 3, pp. 78–80, Mar. 1999.

[25] L. G. Weiss, “Wavelets and wideband correlation processing,” IEEE
Signal Processing Mag., pp. 13–32, Jan. 1994.

[26] F.-Y. Lin and J.-M. Liu, “Ambiguity functions of laser-based chaotic
radar,” IEEE J. Quantum Electronics, vol. 40, pp. 1732–1738, Dec. 2004.

[27] A. Fuxjaeger and R. Iltis, “Acquisition of timing and Doppler-shift
in a direct-sequence spread-spectrum system,” IEEE Trans. Commun.,
vol. 42, pp. 2870–2880, Oct. 1994.

[28] G. Kaiser, “Physical wavelets and radar: A variational approach to
remote sensing,” IEEE Antennas Propagat. Mag., vol. 38, pp. 15–24,
Feb. 1996.

[29] M. Dawood and R. Narayanan, “Generalised wideband ambiguity func-
tion of a coherent ultrawideband random noise radar,” IEE Radar, Sonar
Navigation, vol. 150, pp. 379–386, Oct. 2003.

[30] R. Scholtz and J.-Y. Lee, “Problems in modeling UWB channels,” in
Proc. Asilomar Conf. Signals, Syst., Computers, vol. 1, pp. 706–711,
Nov. 2002.

[31] J.-Y. Lee and R. A. Scholtz, “Ranging in dense multipath environment
using an UWB radio link,” IEEE J. Select. Areas Commun., vol. 20,
pp. 1677–1683, Dec. 2002.

[32] J. Ovarlez, “Cramer-Rao bound computation for velocity estimation in
the broad band case using the mellin transform,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, Apr. 1993, pp. 273–276.

[33] J. Bartrand, P. Bertrand, and J.-P. Ovarlez, The Transforms and Appli-
cations Handbook, 2nd ed., ch. 11, pp. 1–11. CRC Press LLC, 2000.

[34] M. Terri, A. Hong, G. Guibe, and F. Legrand, “Major characteristics of
UWB indoor transmission for simulation,” in Proc. IEEE Veh. Technol.
Conf., vol. 1, pp. 19–23, Apr. 2003.

[35] G. L. Stuber, Principles of Mobile Communications. Norwell, MA:
Kluwer Academic, 1996.

[36] W. Jakes, Microwave Mobile Communications. Piscataway, NJ: IEEE
Press, 1993.

[37] R. Narasimhan, “Finite-SNR diversity-multiplexing tradeoff for cor-
related Rayleigh and Rician MIMO channels,” IEEE Trans. Inform.
Theory, vol. 52, pp. 3965–3979, Sep. 2006.

Adam R. Margetts received a dual B.S. degree in
Electrical Engineering and Mathematics from Utah
State University, Logan, UT in 2000; and the M.S.
and Ph.D. degrees in Electrical Engineering from
The Ohio State University, Columbus, OH in 2002
and 2005, respectively. Dr. Margetts is currently with
MIT Lincoln Laboratory, Lexington, MA, and his
research interests include adaptive filtering, ultra-
wideband and MIMO communications, and wireless
networking.

Philip Schniter received the B.S. and M.S. degrees
in Electrical and Computer Engineering from the
University of Illinois at Urbana-Champaign in 1992
and 1993, respectively. From 1993 to 1996 he was
employed by Tektronix Inc. in Beaverton, OR as a
systems engineer. In 2000, he received the Ph.D.
degree in Electrical Engineering from Cornell Uni-
versity in Ithaca, NY. Subsequently, he joined the
Department of Electrical and Computer Engineering
at The Ohio State University in Columbus, OH,
where he is now an Associate Professor. In 2003, he

received the National Science Foundation CAREER Award, and he currently
serves on the IEEE Signal Processing for Communications Technical Commit-
tee. Dr. Schniter’s research interests include signal processing, communication
theory, and wireless networks.

Ananthram Swami received the B.Tech. degree
from IIT, Bombay; the M.S. degree from Rice
University, Houston; and the Ph.D. degree from the
University of Southern California (USC), all in Elec-
trical Engineering. He has held positions with Uno-
cal Corporation, USC, CS-3 and Malgudi Systems.
He was a Statistical Consultant to the California
Lottery, developed a Matlab-based toolbox for non-
Gaussian signal processing, and has held visiting
faculty positions at INP, Toulouse. He is currently
with the US Army Research Laboratory where his

work is in the broad area of signal processing, wireless communications and
networking, including both sensor networks and MANETs.


