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On the Robustness of Decision-Feedback Detection of DPSK and Differential
Unitary Space-Time Modulation in Rayleigh-Fading Channels

Bijoy Bhukania and Philip Schniter

Abstract—Decision-feedback differential detection (DFDD) of
differential phase-shift keying (DPSK) and differential unitary
space-time modulation (DUST) in Rayleigh-fading channels
exhibits significant performance improvement over standard
single-symbol maximum-likelihood detection. However, knowl-
edge of channel fading correlation and signal-to-noise ratio (SNR)
is required at the receiver to compute the feedback coefficients
used in DFDD. In this letter, we investigate the robustness of the
DFDD to imperfect knowledge of the feedback coefficients by
modeling the mismatch between estimated feedback coefficients
and ideal coefficients in terms of mismatch between the estimated
values of fading correlation and SNR and the true values. Under
the assumption of a block-fading channel when nondiagonal DUST
constellations are used and a continuous fading channel otherwise,
we derive exact and Chernoff bound expressions for pair-wise
word-error probability and then use them to approximate the
bit-error rate (BER), finding close agreement with simulation
results. The relationships between BER performance and various
system parameters, e.g., DFDD length and Doppler mismatch, are
also explored. Furthermore, the existence of an error floor in the
BER-vs-SNR curve is investigated for the infinite-length DFDD.
For the special case of Jakes’ fading model, it is shown that the
error floor can be removed completely even when the Doppler
spread is over-estimated.

Index Terms—Communication system performance, decision
feedback differential detection (DFDD), flat fading, space-time
codes.

I. INTRODUCTION

S INGLE antenna differential phase shift keying (DPSK) and
its multiple antenna extension, differential unitary space-

time modulation (DUST) [1], [2], are used in systems where
channel is flat, slow fading, and is unknown to the receiver as
well as the transmitter. In a fast-fading channel, however, both
DUST and DPSK with standard single-symbol maximum-like-
lihood (ML) detection succumb to an error floor when the error
due to channel variation dominates that due to additive noise
[3]–[5]. Decision-feedback differential detection (DFDD) [4],
[6]–[8] has been proposed to reduce, and asymptotically elim-
inate, the error floor and thereby improve the detection perfor-
mance significantly. DFDD, however, requires the knowledge of
channel fading correlation and signal-to-noise ratio (SNR) at the
receiver. In addition, when nondiagonal DUST constellations
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(as opposed to the diagonal constellations [1]) are used, DFDD
requires a block-fading channel with block length equal to or a
multiple of the matrix symbol duration. Thus, use of DFDD for
detection of nondiagonal DUST in continuous fading channels
results in modeling error, which, however, is negligible for slow
fading channels [1]. Keeping this mind, the results in this letter
are derived for DPSK and diagonal DUST in continuous fading
channels and nondiagonal DUST in block-fading channels.

It can be shown that the DFDD comprises a linear channel
predictor followed by a quasi-coherent detector [4], [6]–[8].
Computation of the linear predictor coefficients require the
knowledge of channel fading correlation and SNR, which may
not be available in practice. Two possible approaches can be
taken to counter this problem: 1) the fading correlation and the
SNR can be estimated [9]–[11] and then the estimates can be
used to compute the coefficients, and b) adaptive algorithms
can be employed to directly compute the coefficients [9], [12].

Since the estimated values of the fading correlation and SNR
are likely to be corrupted by estimation errors, especially in
nonstationary channels, we analyze the robustness of DFDD to
imperfect parameter knowledge. To do this, we consider DFDD
operation in accordance with the estimated or assumed values
of fading correlation and SNR that differ from true values.
Under such conditions, we derive exact and Chernoff bound ex-
pressions for pair-wise word-error probability (PWEP) and use
them to approximate the bit-error rate (BER), resulting in close
agreement with numerical simulations. In addition, we analyze
the “equivalent SNR-loss” due to parameter mismatch. Finally,
fundamental limits on the performance of DFDD have been
drawn via asymptotic performance analysis under parameter
mismatch. It is important to note that when adaptive algorithms
are employed to compute the predictor coefficients directly,
the mismatch between estimated predictor coefficients and true
coefficients may not always be modeled in terms of mismatch
in fading correlation and SNR. Extension of our results to such
cases is an avenue for further research.

Notation: denotes identity matrix of size . The
operator , e.g., , denotes stacking of the
columns of matrix in column vector . denotes conju-
gate transposition, denotes the Kronecker product, de-
notes the trace operator, is the determinant, and
is the extraction of the real valued component.

if , otherwise it denotes identity
matrix of appropriate size.

II. SYSTEM MODEL

We consider the system model

(1)
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where is the received matrix during the th ma-
trix-symbol interval, and where and are the number of
transmit and receive antennas, respectively. is the
multiple input multiple output (MIMO) channel response ma-
trix during the th matrix-symbol interval, containing i.i.d. unit
variance proper complex Gaussian entries. is the th
transmitted matrix-symbol, encoded as .

is the time- integer index into matrix
alphabet of size , so that . Thus, is the number
of bits per channel use. and are unitary for all is
a matrix of i.i.d. unit variance proper complex Gaussian entries,
and is the average SNR per receive antenna.

Note that the system model (1) assumes that the channel
is fixed for signaling intervals within the th matrix-symbol
interval, i.e., the channel is block-fading. However, for the spe-
cial case of diagonal codes, (1) can be shown to be a valid system
model even in a continuous fading channel. In this case, the th
row of is the th row of , where is the MIMO
channel response matrix at the th time instant within the th
matrix-symbol interval, i.e., at the th channel use. Fur-
thermore, if the MIMO fading process is independent be-
tween antennas, then will be independent between antennas.
We note that (1) is an approximate model when nondiagonal
codes are used in continuous fading.

III. DFDD

DFDD can be derived in two ways. Using -DFDD to denote
a DFDD that incorporates past decisions, -DFDD can be
derived from the -symbol ML differential detection rule [3],
[13], [14] by setting the past symbol hypotheses equal
to their previously-detected values. For DUST, -DFDD takes
the form [15]

(2)

where such that are the

previously detected symbols, and the coefficient can be

found at the th row and th column of

...
. . .

... (3)

In (3), is defined such that for
.

DFDD can also be derived from quasi-coherent detection
based on minimum mean square error (MMSE) channel pre-
diction [4], [8], [16]. Here, we present a summary of the
derivations in [8] that will establish some notation used later in
this letter. Assuming for the moment that both and

are known, the MMSE estimate of is given in
terms of , where ,
as

(4)

(5)

diag

which can be simplified to yield

(6)

Defining

(7)

it can be shown that

(8)

where . Since it can also be shown that
and , (8) implies that the

ML detection of given can be accomplished
via

(9)

Under the assumption of correct past decisions, i.e.,
, it is possible to verify that (9) is, in fact, equiva-

lent to (2).
It is important to note from (6) that, while computation of

requires knowledge of the (unknown) transmitted symbols
, computation of

requires only the past information symbols , al-
lowing quasi-coherent detection of using (2) or (9) via the
error-free past decisions . In practice, of course,
the past decisions might contain errors, leading to suboptimal
performance (and possibly error propagation).

IV. DETECTION ERROR PERFORMANCE

We have seen that -DFDD requires knowledge of
—henceforth termed “coherent SNR”1—and the fading

correlations . In this section, we derive exact and
Chernoff bound expressions for PWEP when the receiver has
imperfect knowledge of these parameters. The PWEP expres-
sions are later used to approximate the BER.

We consider the case where the DFDD is designed in ac-
cordance with the “assumed” quantities , and
which correspond (but whose values may differ from) the true
quantities , and defined in Section III. Thus, the

linear estimator obeys
and the channel estimate becomes . The

1Note � is the true SNR under perfect channel state information.
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quantities and obey (7) and (8) but with the possibly
mismatched estimate .

Using
, and

, where ,
and , it can be shown
that, , and

, where

(10)

(11)

(12)

Now, defining , and
, we can rewrite (8) as

(13)

such that and
.

A. Exact PWEP

Given that the symbol was sent, the receiver will detect
, and thus make a decision error, if

(14)

where and ,
and where the PWEP is given by [17]

(15)

In (15), the summation is taken over the poles in the upper half
plane (UHP) and . The characteristic func-
tion of , a Hermitian quadratic of a Gaussian vector, is given
by (see Appendix I for a proof)

(16)

(17)

(18)

(19)

(20)

where is the th singular value of . Note that the
characteristic function and, hence, the PWEP, depend
on the signal only through the singular values of . Since
the singular values of and are the same,

.
Computation of the PWEP using (15) involves taking

residues at poles with multiplicities greater than 1, which is
inconvenient. An alternative method to evaluate the PWEP in
such cases was proposed in [18], where the poles are perturbed
by small amount to eliminate multiplicity, and the PWEP is
computed by taking residues at all the simple poles in the UHP.
This method produces a lower bound on the PWEP if all the
concerned poles are moved away from origin, and an upper
bound when moved toward the origin. In this letter, the th oc-
currence of is replaced by ,
yielding the set of simple UHP poles . Here,
denotes the multiplicity of pole . From (15), this gives

(21)

where an upper bound is obtained by choosing
, and a lower bound by choosing .

Numerical results in Section VI confirm that these bounds
are very close to each other, and so this method produces an
accurate estimate of the PWEP.

B. Chernoff Bound

The Chernoff bound on PWEP is especially useful because
from it we will be able to infer an expression for the performance
loss due to parameter mismatch.

Theorem 1: The Chernoff upper bound on is
given by

(22)

See Appendix II for a proof.
Equation (22) implies that the diversity advantage of the

system is MP, while the performance is governed by the “equiv-
alent SNR” . The equivalent SNR in
the absence of mismatch is defined as
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To analyze the performance degradation due to parameter
mismatch, we define the “equivalent SNR-loss” as

(23)

C. Approximate BER

BER is typically a more useful metric than PWEP. Using
the properties that , that

, and that bits are encoded in
each transmitted matrix-symbol, the assumptions of Gray map-
ping and equal prior probabilities yield the following BER ap-
proximation:

(24)

In (24), is the Hamming distance between the binary
representations of and . The bound is obtained

when (22) is applied to (24), and the bounds and
are obtained when (21) is applied to (24).

For realizable -DFDD with , the influence of incor-
rect past-decisions must be taken into account. Through numer-
ical evaluation we found that the BER of realizable DFDD is
approximately twice that of genie-aided DFDD, which is in ac-
cordance with the standard DPSK approximation [19].

V. ASYMPTOTIC PREDICTION ERROR ANALYSIS

Section III showed that the DFDD can be viewed as a linear
channel predictor followed by a quasi-coherent ML detector.
Thus, we expect DFDD performance to be a function of the pre-
diction error variance. This notion can be verified by examining
the Chernoff PWEP bound (22) under reasonably large values
of . Since is proportional to and , large implies

and so (22) can be approximated by

(25)

In (25), is the power of the prediction error plus the addi-
tive Gaussian noise [recall (8) and (11)]. Examination of the be-
havior of under various forms of parameter mismatch will
yield insight into the detection performance of -DFDD.

We note that, since the MIMO channel fading coefficients are
spatially white and the additive noise is spatio-temporally white,
the prediction of every channel coefficient can be performed in-
dependently of the other channel coefficients. In other words,
the MIMO channel predictor can be implemented using MP de-
coupled and identical single input single output (SISO) channel
predictors [8], [15] such that the effective Doppler spread of
each corresponding SISO channel is , where is
the actual Doppler spread of the MIMO channel. Therefore, the
overall MIMO channel prediction error can be shown to be the
sum of the prediction errors of individual coefficients.

A. Relationship of Fading Spectrum to Predictor Response

It is well known that the problem of linear prediction
can be modeled as a problem of spectral matching [20].
From (6), we see that the channel estimator embedded
in the -DFDD can be described as a filter with im-
pulse response , output , and (scaled) input

. For brevity,
we denote . Although in Section III
we derived by minimizing , it
can be shown that these predictor coefficients also minimize

because is spatio-temporally
white. It is well known that prediction error becomes asymp-
totically white as predictor length grows to infinity [20], and so
the coefficients whiten the sequence

when . Thus, it can be shown that

(26)

where denotes the power spectral density (PSD) of
and is defined in (11).

Next, we consider the relationship between the predictor and
the channel fading spectrum from a different point of view.
Since the predictor input equals , the predictor will
attempt a one-step forward prediction of in the presence
of additive noise . Recall that is typically a low-
pass random process whose bandwidth is defined by the Doppler
spread of the channel [21] and is spatio-temporally white.
We expect that the passband width of the optimal linear pre-
dictor will be commensurate with the bandwidth of mod-
ulated somewhat by the presence of noise; as the noise power
increases the predictor bandwidth will decrease relative to the
desired-process bandwidth. This can be verified in Fig. 1, which
compares the channel fading spectrum with the predictor fre-
quency response for a SISO channel (i.e., ) and

dB, and (which approximates ).
Fig. 1(a) shows an important difference between over- and

under-estimation of Doppler frequency. The primary effect of
Doppler over-estimation is an increase in predictor bandwidth,
so that a disproportionate amount of noise is collected in
forming the channel estimate. Since the increase in prediction
error will be proportional to SNR , it should become less se-
vere as increases. In fact, we are able to prove (for large )
that Doppler over-estimation does not lead to an error floor as

(see Section V-B). Furthermore, Fig. 1(b) leads us to
conjecture that Doppler over-estimation can be somewhat com-
pensated for by simultaneous SNR under-estimation. Finally,
we expect that simultaneous over-estimation of both Doppler
and SNR would be especially degrading. These trends are con-
firmed by Figs. 3 and 4 and discussed further in Section VI.

The primary effect of Doppler under-estimation is a decrease
in predictor bandwidth, causing increased and suboptimal at-
tenuation of the desired signal . Though this behavior can
be somewhat offset by simultaneously over-estimating the SNR
(which widens the predictor bandwidth), the desired signal

will remain distorted by the predictor even as . In
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Fig. 1. (m-windowed) Channel fading spectrum and predictor frequency
response j a e j for m = 100; f T = 0:1; � = 20 dB.
(a) f T j 2 f0:15; 0:1;0:05g; � = 20 dB. (b) f T j = 0:1; � 2
f10;20;30g dB.

Fig. 2. (m-windowed) Channel fading spectrum and predictor frequency
response j a e j for m = 6; f T = 0:1; � = 20 dB.
(a) f T j 2 f0:15;0:1;0:05g; � = 20 dB. (b) f T j = 0:1; � 2
f10;20;30g dB.

fact, we are able to prove (for large ) that Doppler under-es-
timation leads to an error floor as (see Section V-B).
Finally, we expect that simultaneous under-estimation of both
Doppler and SNR would be especially degrading. These trends
are confirmed by our numeric results and discussed further in
Section VI.

The effect of Doppler spread and SNR mismatch is less pro-
nounced when the predictor/DFDD length is small. Observe
in Fig. 2 that, for , the predictor magnitude response lacks
significant stopband attenuation and sharp transitions, thereby
reducing the effects of Doppler and SNR mismatch relative to
the case in Fig. 1. In particular, over-estimation of
Doppler and SNR has a minimal effect on the response. Again,
effects of Doppler and SNR mismatch are similar and, therefore,

Fig. 3. SNR-loss � for f T j = �f T ; � = 20 dB. (a) � = 30 dB. (b)
� = 10 dB.

Fig. 4. Genie-aided 6-DFDD in continuous fading with f T = 0:075. (a)
f T j = 0:1. (b) f T j = 0:05.

can be used to counter each other. These notions are confirmed
by Fig. 5 and discussed further in Section VI.

B. Prediction Error When

In this section, we analyze the prediction error performance
as . We are especially interested in the limiting perfor-
mance of DFDD in the case where the Doppler spread is incor-
rectly assumed by the receiver. The presence of an error floor
under Doppler mismatch is investigated by examining the pre-
diction error as SNR .

Here, we consider the specific case of Rayleigh fading.
The results could, however, be easily extended to other types
of fading. The power spectrum of a Rayleigh-fading channel
coefficient with normalized Doppler spread is
given by [21]

(27)
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Fig. 5. Genie-aided m-DFDD in continuous fading with f T = 0:075 and
� = 20 dB.

where denotes normalized frequency ( ). From
(26) we know that, as , the spectrum of the whitening
filter approaches a scaled version of the
inverse of , the spectral density of

(28)

We denote the asymptotic (i.e., ) prediction error of a
SISO channel for true Doppler spread and assumed Doppler
spread as , i.e., . By def-
inition, the case gives [20]

(29)

Note that the total prediction error for the MIMO channel
is . It has been shown for the scalar DFDD in [4]
that is proportional to , from which it follows
that . The theorem below allows us to
infer for .

Theorem 2: For denoting the true Doppler
spread and denoting the assumed Doppler
spread, the prediction error ratio has the following behavior as
SNR

(30)

where

(31)

See Appendix III for a proof.

Since , Theorem 2 implies that
when . In other words, over-es-

timating the Doppler spread in an infinite-length DFDD does
not result in an error floor. When and is large, we
have and
which imply . Thus, under-estimating Doppler
spread in an infinite-length DFDD results in a prediction error
that increases with SNR. In this latter case, we expect a floor in
the BER versus SNR curve. These results are corroborated by
numerical examples in Section VI.

VI. SIMULATIONS AND NUMERICAL RESULTS

For numerical examples in this paper, we consider a system
with transmit antennas, receive antennas, and the
(diagonal) constellation specified in [1] for . The MIMO
channel exhibits continuous Rayleigh fading [21] so that the cor-
relation between channel coefficients channel-uses (i.e.,
s) apart is where denotes a zeroth-order
Bessel function of the first kind. As discussed in Section II, the
block-fading model (1) used throughout the paper is sufficient
to describe our continuously-fading channel since we use a di-
agonal constellation. The choice of Rayleigh fading implies that

in (3).

A. Equivalent SNR-Loss

Fig. 3 shows the variations in “equivalent SNR-loss” from
(23) with respect to true Doppler frequency for true SNR

dB, assumed Doppler , and assumed
SNR dB. In Fig. 3(a), we see that, when

dB, under-estimating the Doppler frequency (i.e.,
) results in lower SNR-loss than over-estimating the Doppler

frequency (i.e., ). In Fig. 3(b), where dB, we
see the opposite trend. In other words, Doppler under-estima-
tion can be somewhat offset by SNR over-estimation, Doppler
over-estimation can be somewhat offset by SNR under-estima-
tion, but simultaneous over/under-estimation of both Doppler
and SNR results in the severe performance degradation. (Recall
the discussion in Section V.)

Fig. 3 is valid for continuously-fading MIMO channels with
diagonal constellations or block-fading MIMO channels with
general constellations.

B. BER in Continuous Fading

Fig. 4 investigates the analytical and simulated performance
of 6-DFDD when and the receiver has imperfect
knowledge of and . The performance of the detectors
with perfect knowledge of and is compared to the per-
formance of detectors with assumed
and dB. In all cases, error propagation can be ob-
served as the performance difference between genie-aided and
realizable 6-DFDD. Note from Fig. 4 that the approximations of
BER, , and derived in Section IV-C are very close
to each other as well as to the simulated BER of genie-aided
6-DFDD.

As predicted in Section V and shown in Fig. 4, the DFDD
succumbs to an error floor when it underestimates the Doppler
frequency and a loss in SNR when it overestimates the Doppler
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Fig. 6. (a) Prediction error G(f T ; f T j ) and (b) P for genie-aided
m-DFDD in continuous fading with m = 100; f T = 0:075; f T j 2
f0:05;0:075;0:1g, and perfect knowledge of SNR.

frequency. The compensation of performance loss due to over-
estimation (under-estimation) of Doppler frequency by under-
estimation (over-estimation) of SNR is also depicted in Fig. 4.

Now we analyze the relation between robustness and DFDD
length . Fig. 5 plots the theoretical BER of genie-aided

-DFDD versus when the true normalized Doppler spread
is and the SNR is dB. Observe that
the performance loss due to under-estimation of the Doppler
spread is severe for large , as predicted in Section V. While
over-estimation of Doppler or misestimation of SNR also results
in performance loss, it is less severe and relatively constant over
all values of . Finally, it is observed that -DFDD is quite
robust against parameter mismatch when .

Next, we analyze the robustness of genie-aided -DFDD as
. Fig. 6 shows the variations in the prediction error

and the BER versus SNR for
and . Perfect knowledge of

is assumed. As expected from Section V, prediction error and
BER do not succumb to error floors when the Doppler spread
is over-estimated. On the other hand, prediction error and BER
increase with SNR when the Doppler spread is under-estimated.
The adverse effects of Doppler under-estimation are especially
prominent when is large and SNR is high.

VII. CONCLUSION

This paper has investigated, via simulation as well as theo-
retical analysis, the robustness of DFDD, when used for de-
tection of DUST and DPSK in Rayleigh-fading channels, to
Doppler/SNR mismatch. It was shown that as SNR approaches
infinity, under-estimation of the Doppler spread results in an
error floor while over-estimation does not. For moderate values
of SNR, Doppler under-estimation can be somewhat compen-
sated by SNR over-estimation whereas Doppler over-estimation

can be somewhat compensated by SNR under-estimation. Fi-
nally, it was demonstrated that increasing the DFDD length can
degrade BER performance when the Doppler spread is under-es-
timated.

APPENDIX I
PROOF OF (16)

Since , the characteristic function of is [22]

(32)

where . Recall that
and . Therefore

(33)

where

and . Using

and

it is straightforward to simplify to

where . Denoting the th singular
value of as , we have

(34)

Using
in (34), we get (16)–(20).
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APPENDIX II
PROOF OF THEOREM 1

To prove Theorem 1, we take an approach similar to the
approach in [23]. Recall that the th pole of the characteristic
function is given by (17)–(19). From (16) and (17), it is
observed that the region of convergence of
is

. Noting that
is not a function of , we evaluate the PWEP as

(35)

where the characteristic function has been inverted by choosing
the integration contour Im , which lies within the region
of convergence. From (16) and (17), we get

(36)

Since both and are real, extracting the
real part in (35), we get

(37)

Replacing and
in (37), we obtain (22).

APPENDIX III
PROOF OF THEOREM 2

Denoting , we can rewrite
(26) as . If the true Doppler spread of
the channel is , so that the whitening filter is applied to

an input process with PSD , then the PSD of the predic-
tion error process can be written as

By definition the prediction error is ,
so that

(38)

When , (27), and (28) imply

(39)

where we use . Clearly . When ,
we can see that and

(40)

where is given in (31). The first case in (30) follows from
(39)–(40).

When , we have

(41)

Clearly, . For we see that

(42)

Finally,

(43)

The second case in (30) follows from (41)–(43) with
.
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