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Dithered Signed-Error CMA:
Robust, Computationally Efficient
Blind Adaptive Equalization

Philip Schniter and C. Richard Johnson, Jr.

Abstract—Adaptive blind equalization has gained widespread robustness properties. A sizeable body of theoretical analysis
use in communication systems that operate without training exists to support this claim [3], including, for example, studies

signals. In particular, the constant modulus algorithm (CMA) 5o ~MA’s robustness to noise [8], channel undermodeling [9]
has become a favorite of practitioners due to its LMS-like . . ’ !
and lack of disparity [10].

complexity and desirable robustness properties. The desire for o .
further reduction in computational complexity has motivated Low-cost consumer applications (e.g., HDTV) motivate
signed-error versions of CMA, which have been found to lack blind equalization techniques requiring minimum implemen-

the robustness properties of CMA. This paper presents a simple tation cost. Although it is noted for its LMS-like complexity,
modification of signed-error CMA, based on the judicious use of CMA may be further simplified by transforming the bulk of

dither, that results in an algorithm with robustness properties . T . . .
closely resembling those of CMA. In this paper, we establish its update multiplications into sign operations [2]. A recent

the fundamental transient and steady-state properties of dithered Study suggests, however, that straightforward implementations
signed-error CMA and compare them with those of CMA. of signed-error CMA (SE-CMA) do not inherit the desirable

Index Terms—Adaptive equalizers, adaptive signal processing, robl_Jstness pro_pertl_es of CMA [11]. In this paper, we p_resent
blind equalization, constant modulus algorithm, deconvolution, @ simple modification of SE-CMA based on the judicious
dither techniques, HDTV. incorporation of controlled noise (sometimes referred to as
“dither”) that results in an algorithm with robustness properties
closely resembling the standard (unsigned) CMA. In fact, we
show that the mean behavior of dithered signed-error CMA
T HE CONSTANT modulus algorithm (CMA) [1]-[3] has (DSE-CMA) isidenticalto CMA under realistically achievable

gained widespread practical use as a blind adapti¥gnditions. The anticipated drawback to this dithering is a
equalization algorithm for digital communications systemgegradation in steady-state mean-square error (MSE) perfor-
operating over intersymbol interference channels. Modeffance. Hence, we derive an expression for the excess MSE
receiver implementations often realize the advantages offergdSE) of DSE-CMA and discuss implications on step-size
by a fractionally spaced equalizer (FSE), i.e., an equalizghd equalizer-length selection. We note in advance that the
operating at a rate higher than the baud rate [4] and/eMSE expression for DSE-CMA bears close resemblance to
processing data from multiple sensors (see, e.g., [5]). Undea@ analogous expression derived for CMA in [12].
set of perfect blind equalizability (PBE) conditions (listed in The paper is partitioned as follows. Section Il presents
Section 1I-B), CMA-adaptation of a FSE is known to convergghe fractionally spaced system model and reviews some fun-
in mean to an equalizer setting capable of perfect symh@dmental properties of fractionally-spaced CMA. Section IlI
recovery [6], [7]. discusses computationally-efficient blind equalization and in-

Although assumptions of ideality are convenient for thgoduces the new algorithm. The transient and steady-state
theoretical analysis of blind equalization schemes, they &goperties of DSE-CMA are studied in Section IV and result
unconditionally violated in physical implementations of comin the design guidelines of Section V. Simulation results based
munication systems. This fact motivates the consideration @ the Signal Processing Information Base (SPtBicrowave
algorithm performance under realistic (nonideal) conditionghannel models are presented in Section VI. Section VI also
We will use the termrobustwhen referring to a blind algo- includes a comparison study with another robust computa-
rithm’s ability to perform “well” under violations of the PBE tionally constrained implementation of CMA. For simplicity,
conditions. It has been reasoned that the widespread practigal restrict the focus of this paper to the case of real-valued
use of fractionally spaced CMA bears testament to its superiiantities. As discussed in Section VII, however, extension to

the complex-valued case is straightforward.
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U Perfect symbol recovery (PSR) occurs when the channel
; Tk noise is absent, and whehand H are such that,, = as,_s
$n—=02 | > R @_, f V2 leyn f_or all n, some fixed system deldy< é < N, — 1, and some
fixed scalara such thatja] = 1. The PSR system responses

are characterized by = aes (Wherees denotes a vector with

1 in the éth position and zeros elsewhere). We refer to PSR-
inducing equalizers as zero-forcidgnd denote a zero-forcing

is denoted by(-)*, transposition by(-)’, and the; norm by  equalizer associated with system detapy f5. The goal of
|[-[|- Finally, the variabler is reserved for the baud-rate timepjind equalization can be considered the achievement (or near-
index. achievemerf) of PSR based only on knowledge of the system
outputy, and the (marginal) statistics of the source process

Fig. 1. T'/2-spaced baseband communication system model.

Il. FRACTIONALLY SPACED CMA {sn}.

A. The Fractionally Spaced System Model B. The Constant Modulus Algorithm

: : . . The CMA is a stochastic gradient algorithm minimizing
In this section, we construct a received signal model bast%o(le Godard criteriongum := £ E{(|ya|? — 7)2}. The positive
on a single-sensor receiver operating at twice the baud rate, cmrT 4 n T P

: constant~y is referred to as the dispersion constant and is

Note that an equivalent model results from the use of two sen- i . o .
o ) chosen in accordance with the source statistics. Conceived
sors and that generalization to multiple sensors/oversampli

] . Lo :
is straightforward [5]. Consider a baseband communicatim%ependently in [1] and [2], the Godard criterion penalizes

no . N
system operating at baud intervdl A 7-spaced symbol the dispersion of the squared output modylys” away from

sequence(s, } is transmitted through a linear time-invariant’” As an FSE update algorithm, CMA takes the form

and finite impulse response channel characterizeh, byhich 1) = * _ 2 1
is a length&;, vector of T'/2-spaced impulse response co- Fin41) = fn)+pr*(n) yn(y — Junl) @)
efficients {h}. In addition to intersymbol interference, the =(yn)

T /2-spaced received signdlr;} is also corrupted by an . iy . .
additive noise procesg/ }. The baseband receiver consists gphere u is a (small) positive step size. The functioi(-)

aT/2-spaced linear equalizer specified by thig coefficients identified in (1) is referred to as the CMA error function and

in the vectorf. At baud time index., the receiver forms the will appear many times throughout_ this_ Paper. .
symbol estimatey,, = f'r(n) from the previousV; received The following perfect blind equalizability (PBE) conditions

samples, as collected in the vectefn). Fig. 1 shows the are known to be sufficient to guarantee that equalizers mini-
linear system relating transmitted symbails to the system mizing Je.,, achieve perfect symbol recovery [3]:

outputsy,,. We assume that the source symbejsare drawn A1) full column-rank #;

from a finite, zero-mean, symmetric alphalsewith variance ~ A2) no additive channel noise;

02:= F{|s,|*}. A3) sub-Gaussian source: the source’s normalized kurto-
Defining the Ny x N, fractionally spaced convolution sis 1, := E{|sn|*}/o7 must be less than that of a

matrix H, we have the equation at the bottom of the page, Gaussian process;

which allows us to write the received vector agn) = A4) i.i.d. zero-mean source (circularly symmetric in the

Hs(n) + v(n), wherew(n) is a vector containing the pre- complex-valued case®{s;} = 0).

vious N, samples of the channel noise process. The baudete that Al) and A2) pertain to the channel-equalizer pair's
rate linear system relating,, to v, is now compactly de- ability to achieve PSR, whereas A3) and A4) pertain specifi-
scribed by theT-spaced impulse response vectpe=H'f, cally to blind adaptive equalization using the Godard criterion.
so thaty,, = ¢'s(n) + f'v(n) with lengthV, source vector

s(n) . (Sm Sty Sn—Nq+1)t- The structure off implies 3The terminology “zero-forcing” stems from the equalizer’s ability to force

the symbol estimation error to zero.
that Ny = [(Nn + Ny —1)/2]. 4When used for blind startup, i.e., those situations in which training is
not present and the system error rate is too high for decision-directed (DD)

2A more tutorial (and more complete) development of the fractionalliechniques to function reliably, the goal of the blind algorithm may be that of

spaced system model can be found in [3]. reducing error rate to a level adequate for successful decision-direction.
hy ho '
hs ho hy ho
. . hg h2 . hl ho
H= . .
hn,—1 hn,—2 : . hs ho

hn,—1 hw,—2
hnv—1 hn,—2
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Fig. 2. CMA, SE-CMA, and DSE-CMA error functions.
Fig. 3. SE-CMA trajectories for BPSK transmitted over noiseless channel
h = (0.1,0.3,1,—0.1,0.5,0.2)! superimposed onJ.,, cost contours.

I1l. COMPUTATIONALLY EFFICIENT CMA Dotted lines delineate SE-CMA constant-gradient facets.

Straightforward implementations of LMS-like adaptive al-

gorithms (such as CMA) require a multiplication between : Wy, : ! €n
the error function and every regressor element [see update ! l ! i l :
(1)]. Many practical applications benefit from eliminating \ [ [
these NV; regressor multiplies. Signed-error (SE) algorithm&n : Q ! Tn oo~

present one method for doing so, whereby only the sign of ----------------*" lo-----—-

the error function is retained [13]. When a SE algorithm isFig. 4. Quantization noise model (right) of the dithered quantizer (left).
combined with a power-of-two step size, it is possible to
construct a multiply-free fixed-point implementation of th . :
equalizer updatepa)llgorithm. Thpe subsee:tions below diSCSBS.SDlthered Signed-Error CMA

two versions of SE-CMA. (For the remainder of the paper, “Gimme noise, noise, noise, noise’—The Replacements,
we restrict our focus to the case where all quantities are r&ink 1982.

valued. Extensions to the complex-valued case are discussebh this section, we describe a simple modification to SE-

in Section VII.) CMA that results in an algorithm whose mean behavior closely
matches that of standard (unsigned) CMA.
A. Signed-Error CMA Viewing the SE-CMA error function as a one-bit quantizer,

we might wonder whether a suitable dithering technique [14]
would help to remove the unwanted behavioral artifacts caused
_ by the sign operatot.Dithering refers to the addition of a
1) = sgN(vn (v — 2 2 _ BN
Jint+ 1) =fn) + W(R)M @ random signal before quantization in an attempt to preserve the
=&(yn) information lost in the quantization process. From an additive

where sgr{-) denotes the standard signum function. EquationnOlse perspective, dithering is an aftempt to make the so-

(2) defines the SE-CMA error functicf{-) depicted in Fig. 2. ?na:jlfdeggzmlzo?ut?lg rs]ioi(;l (3251 Flgdgr)]tgglc:e,v\i:rr?]}mﬁag;( aerg
A recent investigation into SE-CMA has shown that whil P 9 94 ) 9 b

) i - ; at such quantization noise could be “averaged out” by a
satisfaction of the PBE conditions and correct selection Q . ) ! N .

o Small step-size adaptive algorithm, yielding mean behavior

~ ensure mean convergence to PSR, violation of Al) can

severely hinder SE-CMA convergence behavior [11]. Specfeemlcal to thgt of |ts.unS|gned counterpart. These ideas are
made precise in Section IV-B.

?cally, th_ere may e>§ist va}st yet highly suboptimal _region; The real-valued dithered signed-error constant modulus al-
in equalizer space in which the expected update in (2) 'Srithm (DSE-CMA) is defined [17] by the update

zero. Fig. 3 presents an example of such behavior, in whidR

the trajectory labeled “B” appears not to converge. (See = ‘ 5 J 3

Fig. 7 for examples of CMA trajectories under identical con- J(n+1) = J(n) + pr(n) asgn (yn(y —4) +adn) - (3)
ditions.) Thus, while computationally efficient, SE-CMA does = o (Y dn)

not inherit the desirable robustness properties of CMA. This

faI'Ct r.nr?tlvatis t(;]e .Sﬁarf:h rf]or ComEUtatlona”y efﬁugnt b“ﬂd 5The authors acknowledge a previous application of controlled noise to
algorithms thatdo inherit these robustness properties. T SE-LMS in the context of echo cancellation [15], [16]. However, both the

following section describes one such algorithm. analyzes and goals were substantially different than those in this paper.

The real-valued SE-CMA algorithm [2] is specified as
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where {d,,} is an i.i.d. “dithering” process uniformly dis- B. DSE-CMA Transient Behavior

tributed on(—1,1], both v and o are positive constants, and  the ayerage transient behavior of DSE-CMA is completely
¢a(yn. dn) is the DSE-CMA error function. The practical Seyyetermined by the expected DSE-CMA error function

lection of the dispersion constaftand the “dither amplitude” 0o (yn) 1= E{u(yn, dn)lyn}. Equations (5)~(8) indicate that
« are discussed in Section V. It should become clear in ti&éx(.)n e

is a “hard-limited” version of the CMA error function

next section whyx appears twice in (3). B(), i
IV. THE FUNDAMENTAL PROPERTIES OFDSE-CMA <, v (y) >«
. . N . valy) =< P(y) v [P <o (10)
Sections IV-B to IV-D utilize an additive noise model of —a, i h(y) < —ar.

the dithered sign operation to characterize the transient and
steady-state behaviors of DSE-CMA. Before proceeding, Wég. 2 plots the various error functiogs, (-), ¢ (-), andé(-) for

present the details of this quantization noise model. comparison. In the theorems below, the implications of (10)
are formalized in terms of DSE-CMA behavior over specific
A. Quantization Noise Model of DSE-CMA ranges ofa.

At first glance, the nonlinear sign operator in (3) appears to Lemma 1: Define

complicate the behavioral analysis of DSE-CMA. Fortunately, ac = 2(v/3)%2, (11)
the theory of dithered quantizers allows us to subsume the
sign operator by adopting a quantization-noise model of tAdie choice of dither amplitude > «c ensures thap, (y) =
DSE-CMA error function (see Fig. 4). Appendix A collectg)(y) for all equalizer outputg satisfying the output amplitude
the key results from classical quantization theory that allogpnstraint|y| < ¢~ 1(«).
us to formulate this model. Proof: By evaluatingy at the locations wherg’ = 0, it
DSE-CMA can be connected to the quantization literatugan be seen that the “humps” of the cubic CMA error function
with the observation that the operatosgn(-) is identical to (see Fig. 2) occur at height&2(~/3)%/2. Thus, v () is
the two-level uniform quantizef)(-), specified by unique and well-defined far > 2(v/3)*? = ac. Since (10)
implies that such values ef prevent these humps from being
Qz) = { A2, 20 (4) clipped in forming the expected DSE-CMA error function,
—A/2, x<0 ands are identical over the intervéhv ! (a), 9~ («)] when

3/2
for quantizer spacing\ = 2«. Furthermore, the specification® ~ 2(v/3)7". u

1 . . .
that {d,,} be uniformly distributed on(—1,1] ensures that ' OF Valuesa>ac, 1 () is determined by the unique

. ' ial?
{ad,} satisfies the requirements for a valid dither proced§? \éalued root %f the cubic polynomialy” + vy + o and
outlined in Appendix A as long as is selected large enoughCan € expressed as

to satisfy P a) = 1 (12/81a? — 129 — 108a)*/?
a > |y (5) + 2v(12V/81a2 — 1293 — 108a)~ /3. (12)
for relevant values of the equalizer outpiit Recall that/(-) From (12), it can be shown thﬁtna_)a? P Ha) = 24/7/3.
denotes the CMA error function, defined in (1). Writing the system output ag = r'f for a (fixed) re-
Employing the model of Fig. 4, we write the DSE-CMAceived vector and arbitrary equalizef allows the following
error function in terms of the quantization noisg equalizer-space interpretation of Lemma 1.
Theorem 1: Denote the set of possible received vectors by
Palyn, dn) = P(yn) + cn 6) R, and defineF, to be the convex hull formed by the set

of hyperplanesB, :={f: |rif| = v~ («) for r € R}.

hich leads to the following DSE-CMA update expression:
wh wing "p P ! Then, choice of dither amplitude > - ensures that the

Fin+1) = f(n) + pr(n)(¥(yn) + €,)- (7) expected DSE-CMA update is identical to the CMA update
for equalizers withinF,.
When « andy,, satisfy (5), the properties of, follow from Proof: Choose any two equalizef§ and f, that satisfy

(28), (29), and (31) in Appendix A. Specifically, we havehe output constraintrtf| < ¥ ~!(a) for all r € R. (Re-
thate,, is an uncorrelated random process whose first momeyail that 1 ~*(«) is well defined fora > «.) The triangle

obeys inequality implies that any convex combination pf and f,
also satisfies this output constraint. Lemma 1 ensures that,
Eienlt(yn)} = E{en} =0 ®)  for y = r'f that satisfy the output amplitude constraint,
and whose conditional second moment is given by i_‘”(y) = (y). Hence, the two updates are identical V\:thm
E{E | (yn)} = o — 9 (y). 9) For anM-ary source, the sef of possible source vectors

s is of sizeM™«. Then, in the absence of channel noise, we
In (8) and (9), the expectation is taken over the dither processpect at most/ ¥+ equalizer input vectors = H's. Hence,
thus leaving a dependence gn. in this noiseless case,, is the convex hull formed by the
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finite set of MY« hyperplanes3, = {f: [stHf| = v 1(a) TABLE |
for s € S}. In other words,F, is a polytope formed by the CRITICAL VALUES OF o FOR M-PAM
boundary set3,. An illustrative example of7, and B, is Ml 21 a1 s8] 16] 32

provided by Fig. 6.

Next, we concern ourselves with neighborhoods of the zero- ac || 038 | 081 1 0.90 | 0.92 | 0.9

forcing (ZF) equalizerfs: 0 < 6 <Ny} az | 0 |0.64 087139171
Theorem 2: Define aos | 6 |279 | 224|212 | 200
azp := wax [1(s)]. (13)
4-PAM 16-PAM
Under satisfaction of the PBE conditions, choice of dither ; ;
amplitude« > azr ensures the existence of a neighborhoodsf 28
around every ZF solutioif; within which the expected DSE- oAU 7T

CMA update is identical to the CMA update. 2l
Proof: When f = f,, the satisfaction of the PBE

conditions implies thay, = s,—s for all s,. In this case, |

(10) and the definition ofzr imply that ¥/(y,) = v (yn) A AR RN os}

for @ > agp. In other words,« > azr guarantees that the

expected DSE-CMA update is identical to the CMA updatte

the zero-forcing solutions. e NIt nib -05p

Now, consider an open ba#f of radiusp centered atf. f ] Ll e
Equalizers within3 can be parameterized & = f; + f — ) v oo
for ||f|| < p. Then, there exists a finite constalit for which ~ -2f | o ¥is) T b o wE)
Y — Sn—s| < maxses |s'Hf| < Kp. From the continuity of - ZZF 2f |- :ZF 7777777
the polynomial function)(-), we claim the following: Forany -} |_. e [~~~ el |- %
e:=a—agzr >0 and anyr € R, there exists @ > 0 such that . : . :

-1 [+] 1 =

IfIl < p implies [1(r*f) — ¢(r* f5)| <e. Applying (10), we
conclude thaty = ¢, for any equalizer within the balB. m Fig. 5. CMA error function and critical values of for 4-PAM and 16-PAM
Note that the constantzr may be less thamn, in which sources.
case, there would exissolated “CMA-like” neighborhoods
around the ZF solutions—i.e., neighborhoods not containedwithin which the expected DSE-CMA update is identical to
any “CMA-like” convex hull. the CMA update.
Theorem 2 is of limited practical use since it requires Proof: The proof is identical to that of Theorem 2 after
satisfaction of the PBE conditions. Fortunately, the concegplacings € S by y € Yog. ]
is easily extended to the set of “open-eye” equaliz€rs:. In summary,ac is the lower limit of o for which the
Denoting the minimum distance between any pair of adjacesdnvex setF, exists, whereasvzr and aor are the lower
symbols inS by A,, we define the sefog asd limits of « for which “CMA-like” local neighborhoods around
) o + the zero-forcing and open-eye equalizers exist, respectively.
Fopi={f: = (F = F5)<As/2}. Table | quantifies the values dtvc, azr, aor} for M-PAM
r@éahabets, and Fig. 5 illustrates their relationship to the CMA
error function. Note that the difference betweesr andaor
narrows as the alphabet size increases. This can be attributed
Yor :={w: Iréig ly — s| < Ag/2}. to the fact that the open-eye neighborhoods shrink as the
° constellation becomes more dense.

The corresponding set of open-eye equalizer outputs is defi
by

For M-PAM, Yor becomes the open intervdlsyax —

Smin; Smax + smin) Minus the set of points halfway betweerb DSE-CMA Cost Surface
adjacent elements ¢f. Here, s,y ands,.x are used to denote _ _ _ .
the minimum and maximum positive-valued elementsSpf  Studies of the multimodal.., cost surface give substantial

respectively. insight into the transient behavior of CMA (see, e.g., [3]).
Theorem 3: Define Thus, we expect that an examination 4f.., which is the
cost stochastically minimized by DSE-CMA, should also prove
Qop = max [ ()l (14)  worthwhile. First, however, we need to construgt.. Since

) ) ) ) we know that a gradient descent algorithm minimizindnas
Choice of dither amplitude: > aor ensures the existence ofi,o general fornf(n+1) = f(n)—pVyJ, we conclude from
a neighborhood around every open-eye equalizet Fog 3) that VJuee = —E{pa(tn,dn)r(n)}. It is then possible

®We acknowledge that the definition oFor is overly strict in that to find Ju.(f) (to within a constant) by integrating s/ s
it bounds the outermost decision region from both sides. In addition, teg,er Nf-dimensional equalizer space.

definition of Fop only makes sense in the context of bounded inputs . . .
Although the AWGN channel model does not ensure boundedl practical Fig. 6 shows an illustrative example d[lse(f) contours

implementations do. superimposed on/.,,(f) contours in equalizer space for
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CM Error Surface

i
-1 -0.5 0 0.5 1 15 2

Fig. 6. Superimposed DSE-CMA (solid) and CMA (dotted) cost con-. ) . .
tours in equalizer space for BPSK, noiseless chankel = (0.1, Fig.7. Trajectories of DSE-CMA (rough) overlaid on those of
0.3,1,—0.1,0.5,0.2)" ande = 1. Dashed lines show the set of hyperplane$MA (smooth) for BPSK, noiseless channél = (0.1,0.3,1,—-0.1,

B, whose convex hullF,, ensures expected DSE-CMA behavior identica-5.0.2), ¢ = 5 x 107*, anda = 1. Solid lines areJ.., contours, and
to that of CMA. dashed lines form the boundary 8.

N; = 2. Note that the two sets of cost contours are identic&lTor function can be written as
within the convex polytope-, formed by the hyperplands,. o 2
Outside F,, the CMA cost contours rise much quicker than ¥lym) = 5 len + S"j' )(6n2+ )
the DSE-CMA contours. This observation can be attributed to =—c; — 3sp—sC;, — (35 — V)en T P(Sn—s).
the fact that for large|f||, Ju(f) is proportional to||f||*,
whereas the hard limiting og,, makesJ,..(f) proportional
to ||f]|- As a result, we expect that CMA exhibits muc
faster convergence for initializations far outside®f. Unlike P(yn) & (7 — 352 _g)en + 1(Sn_s). (15)
standard SE algorithms [13], however, DSE-CMA converges
as rapidlyas its unsigned version withif,,. Fortunately, there  |n the absence of channel noise, we can wete =
is no need to initialize the adaptive algorithm with laigi#l|; +*(n)f(n) using the parameter error vectgtn):= f(n) —
the “power constraint property” of CMA [8] ensures that ther, defined relative to the zero-forcing equalizgg. For
CMA minima lie in a hyperannulus that includ'eﬁf|| ~ 1 adequately small}'(n), (15) implies that the CMA error
(see, e.g., Fig. 9). Initialization of DSE-CMA is discussed ifunction has the approximate form
Section V. ~

Fig. 7 shows two low-dimensional examples of a DSE- P(yn) = (v = Bsp_s)r' (M) f(n) + ¢(sn—s).  (16)
CMA trajectory overlaid on a CMA trajectory. Note that the _
DSE-CMA trajectories closely follow the CMA trajectories but/nder the PBE assumptions and a reasonably small step-
exhibit more parameter “jitter.” The effect of this parametetiz€, We expect asymptotically smajl. Thus, the small-error
variation on steady-state MSE performance is quantified §pProximation (16) can be used to characterize the steady-state

For small output error (i.ele,| < 1), the error function can
hbe approximated by

the next section. behavior of DSE-CMA.
2) The Excess MSE of DSE-CMAle define EMSE at
D. DSE-CMA Steady-State Behavior time index n as the expected squared error above that

achieved by the (local) zero-forcing solutigiy. Since, under

The principle disadvantage of DSE-CMA concems itgatisfaction of the PBE conditiong, achieves zero error
steady-state behavior: The addition of dither leads to an

increase in excess mean-squared error (EMSE). EMSE is ,]ex(n);:E{|rt(n)}‘(n)|2}, a7
typically defined as the steady-state MSE above the level
attained by the fixed locally minimum MSE solution. ThéMe are interested in quantifying the steady-state EMSE:
subsections below quantify the EMSE of DSE-CMA undefex := lim,, ... Jex(n). Our derivation of steady-state EMSE
the satisfaction (or near-satisfaction) of the PBE conditionsassumes the following:

1) Small-Error Approximation of the CMA Updatdy B1) The equalizer parameter error veciffn) is statisti-
writing the equalizer outpug, in terms of the delayed source cally independent of the equalizer inp(n).
sn—s and defining the output erraer, :=y,, — s, s, the CMA B2) The dither amplitudex is chosen sufficiently greater

7Assuming that the equalizer input is power-normalized, as occurs in thal’! azr SO thata > [1(y, )| for all y, under consid-
practice. eration.
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B3) The PBE conditions A1)-A4) are satisfied to the extent V. DSE-CMA DeSIGN GUIDELINES
that the zero-forcing solution attains near-zero error,
i.e., E{lsn—s —r'(n)fs]*} = 0. A. Selection of Dispersion Constamnt

B4) The step size is chosen small enough for the small-

error approximation (15) to hold asymptotically. We take the "Bussgang” approach used in [1], whergby

) i o ~ o is selected to ensure that the mean equalizer update is zero
The classical assumption B1) implies ttfdt) is independent \hen perfect equalization has been achieved. From (3), (10),
of the source procesgs, }. Assumption B2) is needed for 54 the system model in Section II-A, we can write the mean
the results of the quantization noise model in Section 'V'ﬁpdate term of DSE-CMA aff, (in the absence of noise)

0 ho_Id. as pHE{s(n)@a(sn—s)}. FOr an ii.d. sourcep,(s,—s) is
Using the facts that {td) = A for any scalarA and that independent of all but one element in), namely, s, s.

~t = ~~t
tr(f Af) = tr(ff A) and E{tr (4)} = tr(E{A}) for any Hence, we require that the value9fin ¢, be chosen so that
matrix 4, the EMSE at time index can be written

E{3n76¢a(3n76)} =0. (24)

Tux(n) :tr<E{Jf<n>f<n>r<n>rt<n>}>

B ~t . When « > ayzr, Theorem 2 ensures the existence of a
=B (MEr()r(n)}) (18) neighborhood around; within which ¢, (y,.) = ¥(y.). For

where the second step follows from B1). Defining the expectéHChgi{|(2|3§}mf}ifls \t/r\}ﬁtgnshould be;gs:gr;;fnfzz(cr'\élgigﬁ;
-~ ~F f— . -
equalizer outer product matri€(n) := E{f(n)f (n)} and R @< azr, P

the source-power-normalized regressor autocorrelation ma
R:=(1/02)E{r(n)rt(n)}, we can write the EMSE as

for ~ in the case ofi/-PAM DSE-CMA are difficult to derive.
tI%wever,fy satisfying (24) for these cases can be determined
numerically.
Jex = a2tr (RF(n)). (19)
B. Selection of Dither Amplitude
Note that since{s,.} is i.i.d. andr(n) = Hs(n), we have  Ajthough Section IV-D demonstrated that EMSE is pro-
R = HH'". portional to o2, Section IV-B showed that larger values of
Appendix B uses the quantization noise model fromy jncrease the region within which DSE-CMA behaves like
Section IV-A and the error function approximation from (16\A. The selection of dither amplitudeis therefore a design
to derive the following recursion faF'(n), which is valid for  {radeoff between CMA-like robustness and steady-state MSE
equalizer lengthsVy > 1: performance
Theorems 1 and 2 imply that the choiee> max{ac, azr
F(n+1) =F(n) — p(3 = #5)o(F(n)R + RF(n)) ensures that the zero-forcing equalizers are cgntained}in the
+pa’olR. (20)  convex polytopeF, . Thus, under near-satisfaction of the PBE
_ _ _ ) conditions,oc = max {a¢, azr} could be considered a useful
Using (19) and (20), Appendix C derives the following apgesign guideline since the CMA minima are expected to be in
proximation to the steady-state EMSE of DSE-CMA: close proximity to the zero-forcing solutions [3]. In fact, since
F. is convex and contains the origin, we expect that a small-
(21) norm initialization (see Section V-D) will lead to equalizer
trajectories completely contained withifi,. Such a strategy
is advantageous from the point of robustness.
In situations where the PBE conditions are more
rely violated and CMA can do no better than “open

T~ po?Nyo?
X 23— ky)o?
where o2 := E{|rx|?}. The approximation in (21) closely
matches the outcomes of experiments conducted using mi
crowave channel models obtained from the SPIB databaéngye Y . . . :

the eye,” selection of dither amplitude in the range

The simulation results are presented in Section VI. . ded
Equation (21) can be compared with an analogous expré&®* {ac, azr} <a < max{ac,aop} is recommende

sion for the EMSE of CMA [12]; to retain CMA-like robustne_s_s. _
Table | presents these critical values w@ffor various M-
uNfo'z E{st} 5\ 4 PAM constellations. Note that the value abg for BPSK
Jex|ema & 2(3_%)( o6 - 5>05~ (22) appears unusually large because near-closed-eye operating

conditions for BPSK are quite severe.
It is apparent that the EMSE of CMA and DSE-CMA differ

by the multiplicative factor C. Selection of Step-Size
o? As in “classical” LMS theory, the selection of step size
Ka,s1= E{s6} — k200 (23) becomes a tradeoff between convergence rate and EMSE.
" o If convergence rate in noncriticaly could be selected with
via Jex = Ko sJexjema- NOte the dependence on both theobustness in mind and selected to meet steady-state MSE

dither amplitude « and the source distribution. Table lIrequirements.
presents values of, s for various M/-PAM sources and Say that the goal was to attain the same steady-state MSE
particular choices ofr (to be discussed in Section V-B). performance as CMA. Then, under satisfaction of the PBE
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TABLE 1l TABLE 111
STEADY-STATE MSE RELATIVE PERFORMANCE FACTOR: Jox = Ko 5 Jox|cma Jex DEVIATION FROM PREDICTED LEVEL
FOR VARIOUS SPIB CQHANNELS AND M -PAM
M-PAM 2| 4 8 | 16 | 32
- 1 32
Ko 5loe max{ocage] 2916|3348 M-PAM | 2 | 4 8 6

34 198 | 76| 7.2 SPIB #2 || 1.3% | -0.5% | -0.5% | -0.7% | -0.5%
SPIB #3 || 1.2% | -0.2% | -0.6% | -1.0% | -1.0%
SPIB #4 || 1.4% | -0.6% | -0.6% | -0.7% | -0.7%

Ko

) [a:max{ac ,¢0E}

conditions, i« should be choserK;iq times that of CMA,
where K, s was defined in (23). Table Il presents values of
K. s over the recommended range @fand can be used to o T : T T T
predict the typical range of CMA convergence speed relative T DRE-CMA
to DSE-CMA (for equal steady-state performance). -5 EMSE bound
When neither convergence rate nor steady-state MSE per-
formance can be sacrificed, Table Il suggests choosing ]\
closer tomax {ac, azr}. In this case, CMA-like robustness
is sacrificed instead. For such, however, it becomes hard
to predict the effects of PBE violations on the transient and |
steady-state performance of DSE-CMA. Loosely speaking, as
« is decreased belownax {ac,azr}, the performance of
DSE-CMA becomes more like that of SE-CMA.

—15}

-25[

~-30

D. Initialization of DSE-CMA

The single-spike initialization [1] has become a popular |
initialization strategy for baud-spaced CMA, as has double-
spike initialization [3], which is itsI’/2-spaced counterpart. % 08 1 s 2 25 3
The similarities between DSE-CMA and CMA suggest that e X1

these initialization strategies should work well for DSE-CMATig. 8. Averaged MSE trajectories for DSE-CMA and CMA initialized at
as well the same locations using 8-PAM and (normalized) SPIB channels 1, 2, 6, 8,

) . . and 13. For all simulations: SNR 40 dB, Ny = 32,p = 2 x 1072, and
In the interest of preserving CMA-like robustness, howeves, = oo = 2.25.

it is suggested the norm of the DSE-CMA initialization be kept

small® Under proper selection ef (i.e.,« > ac), this strategy . . . .

ensures that the parameter trajectories begin within the conv a"of‘s- Qverall, the simulation results closely match our
region 7, (see Fig. 9). Extending this idea, Section |\v-gftPproximation (21).

implies that large enough choices of (e.g., &« = aor) ) )

ensure that theentire mean trajectory will stay within7,, B. Average Transient Behavior

(and for adequately small step-sizes, the actual trajectoriesThroughout the paper, we have emphasized the importance
should closely approximate the mean trajectory). To concludsf,performance evaluation in realistic (nonideal) environments.
proper choice of initialization norm and dither amplitude It is only proper to present a comparison of DSE-CMA
will guarantee that the mean behavior of DSE-CMA nevep CMA in this context as well. Fig. 8 shows ensemble-

differs from that of CMA. averaged MSE trajectories of the two algorithms operated
under identical conditions and initialized at the same locations
VI. SIMULATION RESULTS using various SPIB microwave channels. Noise levels (SNR
= 40 dB) and equalizer lengthgV, = 32) were selected
A. Excess MSE Under PBE Conditions to represent typical applications while providing open-eye

) ) o performance (for an 8-PAM source) at convergence. The
Table Il presents simulation results verifying the approxy|iowing “double-spike” equalizer initialization was used in

mation of the excess MSE of DSE-CMA given in (21). They| simylations: taps 10 and 11 were set to 0.5, and all
simulations were conducted using length-64 MMSE approxiihers were set to zero. Although (purposely) sub-optimal,
mations of three (noiseless) SPIB microwave channels, lengiys initialization represents a reasonable choice given the
62 T'/2-spaced FSE's, and various i.i.dd-PAM sources. microwave channel profiles and the discussion in Section V-D.
In other words, PBE conditions Al) to A4) were salisfiedas evident in Fig. 8, the DSE-CMA trajectories track the CMA

The step sizes were chosen so that B4) was satisfied, &iflectories closely until the effects of EMSE take over. Fig. 8
the dither amplitude otv = 2 satisfied B2). Table Il gives 554 suggests that the EMSE approximation in (21) remains

percentage deviations from the EMSE levels predicted by (21).yseful guideline even under typical violations of the PBE
which were obtained by averaging the results of 2.510° conditions.

8This is consistent with recent recommendations on the initialization of_AIthOUgh parameter trajec.tor_y comparlson_s ar? |mpract|cal
CMA in single-user applications [18]. with length-32 equalizers, it is easy to visualize two-tap
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CMA Error Surface -5 T T ¥ T T T T T T

_— DSE-CMA
--= UD-CMA
e EMSE bound

iterations X 105

ig. 10. Averaged MSE trajectories for DSE-CMA and update-decimated

Fig. 9. Averaged DSE-CMA and CMA tap trajectories initialized at théy‘ T ] -
: ! A initialized at the same locations using 8-PAM and SPIB channel 8.
same locations and superimposed on CMA cost contours for chan elevant parameters: SNR 40 dB, Ny = 32,0 = aop = 2.25, and

h = (0.1,1,0.5,—0.1,0.2,0.1)*, SNR = 30 dB, 4-PAM, anda = 2. date-decimation factob — 16
Dotted lines indicate CMA power constraint boundaries and dashed lind -
indicate B...

factor D > K, s. (Recall that typical values ok, s appear

examples. Fig. 9 shows ensemble-averaged DSE-CMA t}g_TabIe I)

. : . i ; .__As verification of our claim, Fig. 10 presents ensemble-
jectories overlaid on ensemble-averaged CMA trajecton%%eraged MSE trajectories comparing DSE-CMA with UD-

for a noisy undermodeled channel and 4-PAM. The tWBMA for o — aop and D — 16. The operating environment

trajectories in each pair correspond so closely that they are : » .
) fies In each p P y ey .and design quantities used were the same as those of Fig. 8,
nearly indistinguishable from one another. The trajectories

. - 1 i .
were initialized from various locations on the inner CM With the exception thas = 2 x 107 for UD-CMA. This

power constraint boundary and remain, for the most part, ]JnD'CMA step size was adjusted to equate steady-state per-

F... Note that for trajectories that cross a single boundafy "2NCe: and thus, the advantage of DSE-CMA appears in
I(::ne in the sei3 thje expected DSE-CMA u gdate diﬁers[xe form of increased convergence rate. Checking Table I,
P o pect P . e find that for dither amplitude:.or and an 8-PAM source,
from CMA for only oneelement in the set of possible receive SE-CMA i ted to “beat” UD-CMA wh & t
vectorsR. In other words, loss of CMA-like behavior outside ) 'S expected fo “bea i whenevermus

F. occurs gradually. be selected>10.

VIl. CONCLUSIONS

C. Comparison with Update-Decimated CMA This paper has derived the fundamental properties of the

One popular technique used to reduce the computatidithered signed-error constant modulus algorithm. In sum-
requirements of CMA involves updating the equalizer evemary, we have found that under proper selection of algorithmic
D baud samples [rather than every sample, as (1) suggediskign quantities, the expected transient behavior of DSE-
This is possible in situations where the channel time variatio@MA is identical to that of CMA. Although the steady-state
are slow with respect to the equalizer adaptation speed. ASMBE of DSE-CMA is larger than that of CMA, its value is well
example, fixed-site microwave applications can often toleratbaracterized and can be accounted for in the design procedure.
update decimations ab = 16 and higher [19]. The funda- With the exception of computational complexity, the new
mental drawback to these decimated algorithms is that thalgorithm has been designed to mimic CMA rather than
convergence rates decrease in proportioto “improve” on its performance. Our primary motivation for

Since DSE-CMA and update-decimated CMA (UD-CMA}his is twofold. First, CMA is well-regarded by practitioners.
both present strategies for computationally efficient CMA-liket has established itself over the last 20 years as the most
blind adaptation, a comparison is in order. In Section V-C, weopular practical blind equalization algorithm, due in large
discussed how DSE-CMA step size may be selected to achigast to its robustness properties [3]. It is precisely these
steady-state MSE levels on par with CMA and argued thadbustness properties that we have attempted to preserve.
the penalty is DSE-CMA convergence rdtg, s times slower Second, CMA has been extensively analyzed by theoreticians.
than CMA. Although, for a given step size, UD-CMA shouldrhe bulk of these analyses apply directly to DSE-CMA. As
achieve the same steady-state performance as CMA, we exfieet often the case that modifications of classic algorithms
a convergence rate that i3 times slower. Taken together, wehave disadvantages that outweigh the proposed advantages,
anticipate advantages in using DSE-CMA in situations whetiee spirit of DSE-CMA is a computationally efficient algorithm
the implementation budget demands a UD-CMA decimatidhat “leaves well enough alone.”
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Although we have restricted our focus to the real-valugtie average noise poweE{¢2} increases [14], but more
case, a straightforward complex-valued extension of DSHnportantly, the class of information signals satisfying (26)
CMA is obtained by replacing the real-valued ggnin (3) for a fixed A shrinks. Take, for example, the case where
with the complex-valued operator csgr :=sgn(Rex) + L = 2 so that{w,} has a triangular distribution ofi-A, A].
jsgn(lmz) and by replacing the real-valued dither proceds this case, (26) is only guaranteed whep| = 0. Worse yet,
{d,} with the complex-valued{d"’} + ;j{d’1. Here, choices ofL > 3 fail to meet (26) for anys,,. In other words,
j:=+/—1, and the processdg’ } and{d"’} are real-valued, {w»} uniformly distributed on[—(A/2), (A/2)] is the only
independent, and distributed identically fal,}. It can be dither process that yields a useful quantization noise model
shown that with minor modifications, the properties of reafor the two-level quantizer of (4).
valued DSE-CMA apply to its complex-valued counterpart We will now quantify £{e? |z, } for uniformly distributed
[20] Hence, the design guide"nes of Section V app|y to bomther. Note that the quantization noise takes on the values
the real- and complex-valued cases. en € {=(A/2) — 2, (A/2) — 2} with conditional proba-

Finally, we mention a potentially useful modification tddilities {(1/2) — (zn/A),(1/2)+ (z/A)}, respectively. The
DSE-CMA. In the case of SE-LMS, the extension of the siggPnditional expectation then becomes
operator to a multilevel quantizer has been shown to yield ) 1z, \ /A 2
significant performance improvements at the expense of a E{c len} = <§ - X) <§ +xn>
modest increase in computational complexity [21]. Perhaps 2
multilevel quantization would yield similar advantages for + <1 + “7_"> <é —xn>

DSE-CMA: most importantly, a reduction in EMSE. 2 AJ\2
AQ
=— —z;. 31
APPENDIX A 4 (31)
FUNDAMENTAL PROPERTIES OF
NONSUBTRACTIVELY DITHERED QUANTIZERS
APPENDIX B

In this appendix, we review the key results from the
theory of dithered quantizers that allow us to formulate a
guantization-noise model for the DSE-CMA error function. This appendix derives a recursion for the DSE-
Fig. 4 illustrates the model described below. CMA parameter-error-vector  expected-outer-product

We define the quantization noise arising from the nodf(n):=FE{f(n)f (n)}. We assume that B1)-B4), which
subtractively dithered quantization of information signa) were stated in Section IV-D2, hold. In the sequel, the notation

DERIVATION OF F'(n + 1)

as [a; ;] will be used to denote a matrix whogg, j)th entry
is specified bya; ;.
en = Qxn +wn) — xn (25) _ Under B2), subtractingf; from both sides of (7) yields
for a dither procesgw,} and forQ(-) defined in (4). When J(+1) = f(n) + ur(n)(/(yn) + €a). Thus, the expectation
the quantizer spacing is large enough to satisfy of the outer product off(n + 1) is

F(n +1) =F(n) + nE{(Y(yn) + e2) f(n)r'(n)}

|$n, + wn| S A (26) ~t
+ uE{((y,) + e,)r(n n
and the dither is the sum dfi.i.d. random variables uniformly HQE{W W )t )2 (m)f (n)}
distributed on(—(A/2), (A/2)] (and statistically independent +p E{r(n)r' (n)9" (yn)
of z,,), the quantization noise has the following properties [14]: + 20 E{r(n)r" (n)y (yn)en
Blekle.} = B{el} @7) B ne,).
. 2 The quantization noise properties (8) and (9) can be applied
E{epemt =E{c; }onm. (28) L X .
to simplify the previous expression.
In words, (27) and (28) state that the quantization nejse F(n+ 1) =F(n) + pE{p(y) F(n)rt(n)}
is an uncorrelated random process whdshh moment is ' _t '
uncorrelated with the information signal,. Note that for all + pE{Y(yn)r(n)f (n)}
values of L, we have the important property that quantization + 2 ® E{r(n)r'(n)}.
noisee, is uncorrelated with the information signaj.: Applying the small-error approximation (16), the outer product
Eleden) = E{e,} = 0. (29) recursion is well described, for smafin), ltay
_ a2 NF(o\T t
For L = 1, however, we have the property that the quantizatior]f‘(n ) =Fn)+ By 33"*")1.(”){ (n)j(n)r (n)}
noise powerlis correlated with the information signal + pE{(y = 3% _s)r(n)r(n) f(n)f (n)}
B{2len) £ BI2). 50) B (50 ) ()

~t
E{tp(s5_s
Although dither processes characterized by higher values +u2 {;/}(3 O)Tt(n)f ()}
of L make the quantization noise “more independent” of the +pta Bir(n)r'(n)}. (32)
information signalz,,, it is not without penalty. For one, The individual terms in (32) are successively analyzed below.
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The second and third terms in (32) are transposes of ofiee diagonal nature off implies Jex(n) = o2 %; \izi(n),
another. For now, we concentrate on the first of the pair, fathere \; and z;(n) represent théth diagonal elements ol
which we can use B1) and the fact th&{r(n)r*(n)} = andX(n), respectively.

o?HH' = %R to write The similarity transformation can be applied to (20) to
L obtain a recursion in terms oX(n).
E{(v=3s;, ) f()f (n)yr(n)r'(n)}
= F(n)(o?yR — 3E{s>_sr(n)r'(n)}). X(n+1)=X(n) — n(3 - r,)o (X (n)A+ AX (n))
+ 1o’ oy 2A.
SinceE{s2_,r(n)rt(n)} = HE{s? ,s(n)s'(n)}H", we de-
fine the matrix(a; ;] = E{s>_ss(n)s ( )} with elements For the characterization af., we are interested in only the
L steady-state values of the diagonal elements). In terms
0, 1F ] .
5 s of the ith element
a;; = E{s;_sSn_isn—j} =< 05, . i=j#0
E{snsh 1=5=¢ zi(n+1) = zi(n) — 2u(3 — K)otz (n) N + o .
Then in matrix notationfa; ;] = 021 + (E{st_;} — oc})esel

Becausdz;(n + 1) — z;(n)| — 0 asn — oo, the limit of the

(wherees is a vector with a one in théth position and zeros i .
previous equation becomes

elsewhere). Incorporating the definition ef from A3), we
conclude that
2u(3 — ks )otz\i = p2ala? )
BE{s?_sr(n)r'(n)} = o*HH' 4+ 0}(ks — 1)Heses H'.
where we have introduced the shorthand notatign =
For long equalizers (i.e.N; > 1), the second term in the lim, ... z;(n). We can now sum over to obtain
preceding equation is dominated by the first so that we can

apprOX|mate Jex B Z )\
- "vs 4
E{s2_yr(n)r'(n)} ~ o*HH' = o*R.

Finally, sincey = o2k,, these approximations yield Using the fact that¥; \; = tr(R) = E{r'(n)r(n)} =
Nso? /o2, we finalize our approximation fod.., which is
pE{(y = 352_)f(n)f (n) (n)rt(n)} the asymptotic EMSE of DSE-CMA:
~t
+ pB{(y = 355 _s)r(n)r'(n)f(n)f (n)} 1Ny

= — (3 — k)0 (F(n)R + RF(n)). Jox =

2(3 = o)l

~As for the fourth and fifth terms (:f (32), no-an alternate, although useful, form fok, can be obtained
tice that BI1) implies E{¢(sn—s)f(n)r'(n)} = using the relatiors; \; = tr (HH') = (N;/2)||h|* for even
E{f(n)}E{¢(sn—s)s'(n)}H"'. As we know from ..

Section V-A, the dispersion constant is selected to force

E{t(sn_s)s'(n)} = 0. Thus, the fourth and fifth terms g N[
of (32) vanish. 4B -k,
Rewriting the final term of (32), the approximated outer
product recursion (valid for smafi(n) andN; > 1) becomes REFERENCES
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