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Dithered Signed-Error CMA:
Robust, Computationally Efficient

Blind Adaptive Equalization
Philip Schniter and C. Richard Johnson, Jr.

Abstract—Adaptive blind equalization has gained widespread
use in communication systems that operate without training
signals. In particular, the constant modulus algorithm (CMA)
has become a favorite of practitioners due to its LMS-like
complexity and desirable robustness properties. The desire for
further reduction in computational complexity has motivated
signed-error versions of CMA, which have been found to lack
the robustness properties of CMA. This paper presents a simple
modification of signed-error CMA, based on the judicious use of
dither, that results in an algorithm with robustness properties
closely resembling those of CMA. In this paper, we establish
the fundamental transient and steady-state properties of dithered
signed-error CMA and compare them with those of CMA.

Index Terms—Adaptive equalizers, adaptive signal processing,
blind equalization, constant modulus algorithm, deconvolution,
dither techniques, HDTV.

I. INTRODUCTION

T HE CONSTANT modulus algorithm (CMA) [1]–[3] has
gained widespread practical use as a blind adaptive

equalization algorithm for digital communications systems
operating over intersymbol interference channels. Modern
receiver implementations often realize the advantages offered
by a fractionally spaced equalizer (FSE), i.e., an equalizer
operating at a rate higher than the baud rate [4] and/or
processing data from multiple sensors (see, e.g., [5]). Under a
set of perfect blind equalizability (PBE) conditions (listed in
Section II-B), CMA-adaptation of a FSE is known to converge
in mean to an equalizer setting capable of perfect symbol
recovery [6], [7].

Although assumptions of ideality are convenient for the
theoretical analysis of blind equalization schemes, they are
unconditionally violated in physical implementations of com-
munication systems. This fact motivates the consideration of
algorithm performance under realistic (nonideal) conditions.
We will use the termrobust when referring to a blind algo-
rithm’s ability to perform “well” under violations of the PBE
conditions. It has been reasoned that the widespread practical
use of fractionally spaced CMA bears testament to its superior
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robustness properties. A sizeable body of theoretical analysis
exists to support this claim [3], including, for example, studies
on CMA’s robustness to noise [8], channel undermodeling [9],
and lack of disparity [10].

Low-cost consumer applications (e.g., HDTV) motivate
blind equalization techniques requiring minimum implemen-
tation cost. Although it is noted for its LMS-like complexity,
CMA may be further simplified by transforming the bulk of
its update multiplications into sign operations [2]. A recent
study suggests, however, that straightforward implementations
of signed-error CMA (SE-CMA) do not inherit the desirable
robustness properties of CMA [11]. In this paper, we present
a simple modification of SE-CMA based on the judicious
incorporation of controlled noise (sometimes referred to as
“dither”) that results in an algorithm with robustness properties
closely resembling the standard (unsigned) CMA. In fact, we
show that the mean behavior of dithered signed-error CMA
(DSE-CMA) isidenticalto CMA under realistically achievable
conditions. The anticipated drawback to this dithering is a
degradation in steady-state mean-square error (MSE) perfor-
mance. Hence, we derive an expression for the excess MSE
(EMSE) of DSE-CMA and discuss implications on step-size
and equalizer-length selection. We note in advance that the
EMSE expression for DSE-CMA bears close resemblance to
an analogous expression derived for CMA in [12].

The paper is partitioned as follows. Section II presents
the fractionally spaced system model and reviews some fun-
damental properties of fractionally-spaced CMA. Section III
discusses computationally-efficient blind equalization and in-
troduces the new algorithm. The transient and steady-state
properties of DSE-CMA are studied in Section IV and result
in the design guidelines of Section V. Simulation results based
on the Signal Processing Information Base (SPIB)1 microwave
channel models are presented in Section VI. Section VI also
includes a comparison study with another robust computa-
tionally constrained implementation of CMA. For simplicity,
we restrict the focus of this paper to the case of real-valued
quantities. As discussed in Section VII, however, extension to
the complex-valued case is straightforward.

The following is a word on notation: We use lower-case
bold-face quantities (e.g.,) to denote vectors and upper-case
bold-face quantities (e.g., ) to denote matrices. Conjugation

1The Rice University Signal Processing Information Base (SPIB) mi-
crowave channel database resides at http://spib.rice.edu/spib/microwave.html.
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Fig. 1. T=2-spaced baseband communication system model.

is denoted by , transposition by , and the norm by
Finally, the variable is reserved for the baud-rate time

index.

II. FRACTIONALLY SPACED CMA

A. The Fractionally Spaced System Model

In this section, we construct a received signal model based
on a single-sensor receiver operating at twice the baud rate.2

Note that an equivalent model results from the use of two sen-
sors and that generalization to multiple sensors/oversampling
is straightforward [5]. Consider a baseband communication
system operating at baud interval A -spaced symbol
sequence is transmitted through a linear time-invariant
and finite impulse response channel characterized by, which
is a length- vector of -spaced impulse response co-
efficients In addition to intersymbol interference, the

-spaced received signal is also corrupted by an
additive noise process The baseband receiver consists of
a -spaced linear equalizer specified by the coefficients
in the vector At baud time index , the receiver forms the
symbol estimate from the previous received
samples, as collected in the vector Fig. 1 shows the
linear system relating transmitted symbols to the system
outputs We assume that the source symbolsare drawn
from a finite, zero-mean, symmetric alphabetwith variance

Defining the fractionally spaced convolution
matrix , we have the equation at the bottom of the page,
which allows us to write the received vector as

, where is a vector containing the pre-
vious samples of the channel noise process. The baud-
rate linear system relating to is now compactly de-
scribed by the -spaced impulse response vector
so that with length- source vector

The structure of implies
that

2A more tutorial (and more complete) development of the fractionally
spaced system model can be found in [3].

Perfect symbol recovery (PSR) occurs when the channel
noise is absent, and whenand are such that
for all , some fixed system delay , and some
fixed scalar such that The PSR system responses
are characterized by (where denotes a vector with
1 in the th position and zeros elsewhere). We refer to PSR-
inducing equalizers as zero-forcing,3 and denote a zero-forcing
equalizer associated with system delayby The goal of
blind equalization can be considered the achievement (or near-
achievement4) of PSR based only on knowledge of the system
output and the (marginal) statistics of the source process

B. The Constant Modulus Algorithm

The CMA is a stochastic gradient algorithm minimizing
the Godard criterion: The positive
constant is referred to as the dispersion constant and is
chosen in accordance with the source statistics. Conceived
independently in [1] and [2], the Godard criterion penalizes
the dispersion of the squared output modulus away from

As an FSE update algorithm, CMA takes the form

(1)

where is a (small) positive step size. The function
identified in (1) is referred to as the CMA error function and
will appear many times throughout this paper.

The following perfect blind equalizability (PBE) conditions
are known to be sufficient to guarantee that equalizers mini-
mizing achieve perfect symbol recovery [3]:

A1) full column-rank ;
A2) no additive channel noise;
A3) sub-Gaussian source: the source’s normalized kurto-

sis must be less than that of a
Gaussian process;

A4) i.i.d. zero-mean source (circularly symmetric in the
complex-valued case:

Note that A1) and A2) pertain to the channel-equalizer pair’s
ability to achieve PSR, whereas A3) and A4) pertain specifi-
cally to blind adaptive equalization using the Godard criterion.

3The terminology “zero-forcing” stems from the equalizer’s ability to force
the symbol estimation error to zero.

4When used for blind startup, i.e., those situations in which training is
not present and the system error rate is too high for decision-directed (DD)
techniques to function reliably, the goal of the blind algorithm may be that of
reducing error rate to a level adequate for successful decision-direction.
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Fig. 2. CMA, SE-CMA, and DSE-CMA error functions.

III. COMPUTATIONALLY EFFICIENT CMA

Straightforward implementations of LMS-like adaptive al-
gorithms (such as CMA) require a multiplication between
the error function and every regressor element [see update
(1)]. Many practical applications benefit from eliminating
these regressor multiplies. Signed-error (SE) algorithms
present one method for doing so, whereby only the sign of
the error function is retained [13]. When a SE algorithm is
combined with a power-of-two step size, it is possible to
construct a multiply-free fixed-point implementation of the
equalizer update algorithm. The subsections below discuss
two versions of SE-CMA. (For the remainder of the paper,
we restrict our focus to the case where all quantities are real
valued. Extensions to the complex-valued case are discussed
in Section VII.)

A. Signed-Error CMA

The real-valued SE-CMA algorithm [2] is specified as

sgn (2)

where sgn denotes the standard signum function. Equation
(2) defines the SE-CMA error function depicted in Fig. 2.

A recent investigation into SE-CMA has shown that while
satisfaction of the PBE conditions and correct selection of

ensure mean convergence to PSR, violation of A1) can
severely hinder SE-CMA convergence behavior [11]. Specif-
ically, there may exist vast yet highly suboptimal regions
in equalizer space in which the expected update in (2) is
zero. Fig. 3 presents an example of such behavior, in which
the trajectory labeled “B” appears not to converge. (See
Fig. 7 for examples of CMA trajectories under identical con-
ditions.) Thus, while computationally efficient, SE-CMA does
not inherit the desirable robustness properties of CMA. This
fact motivates the search for computationally efficient blind
algorithms thatdo inherit these robustness properties. The
following section describes one such algorithm.

Fig. 3. SE-CMA trajectories for BPSK transmitted over noiseless channel
hhh = (0:1; 0:3; 1;�0:1;0:5; 0:2)t superimposed onJcm cost contours.
Dotted lines delineate SE-CMA constant-gradient facets.

Fig. 4. Quantization noise model (right) of the dithered quantizer (left).

B. Dithered Signed-Error CMA

“Gimme noise, noise, noise, noise”—The Replacements,
Stink, 1982.

In this section, we describe a simple modification to SE-
CMA that results in an algorithm whose mean behavior closely
matches that of standard (unsigned) CMA.

Viewing the SE-CMA error function as a one-bit quantizer,
we might wonder whether a suitable dithering technique [14]
would help to remove the unwanted behavioral artifacts caused
by the sign operator.5 Dithering refers to the addition of a
random signal before quantization in an attempt to preserve the
information lost in the quantization process. From an additive
noise perspective, dithering is an attempt to make the so-
called quantization noise (see Fig. 4) white, zero-mean, and
independent of the signal being quantized. We might expect
that such quantization noise could be “averaged out” by a
small step-size adaptive algorithm, yielding mean behavior
identical to that of its unsigned counterpart. These ideas are
made precise in Section IV-B.

The real-valued dithered signed-error constant modulus al-
gorithm (DSE-CMA) is defined [17] by the update

(3)

5The authors acknowledge a previous application of controlled noise to
SE-LMS in the context of echo cancellation [15], [16]. However, both the
analyzes and goals were substantially different than those in this paper.
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where is an i.i.d. “dithering” process uniformly dis-
tributed on , both and are positive constants, and

is the DSE-CMA error function. The practical se-
lection of the dispersion constantand the “dither amplitude”

are discussed in Section V. It should become clear in the
next section why appears twice in (3).

IV. THE FUNDAMENTAL PROPERTIES OFDSE-CMA

Sections IV-B to IV-D utilize an additive noise model of
the dithered sign operation to characterize the transient and
steady-state behaviors of DSE-CMA. Before proceeding, we
present the details of this quantization noise model.

A. Quantization Noise Model of DSE-CMA

At first glance, the nonlinear sign operator in (3) appears to
complicate the behavioral analysis of DSE-CMA. Fortunately,
the theory of dithered quantizers allows us to subsume the
sign operator by adopting a quantization-noise model of the
DSE-CMA error function (see Fig. 4). Appendix A collects
the key results from classical quantization theory that allow
us to formulate this model.

DSE-CMA can be connected to the quantization literature
with the observation that the operatorsgn is identical to
the two-level uniform quantizer specified by

(4)

for quantizer spacing Furthermore, the specification
that be uniformly distributed on ensures that

satisfies the requirements for a valid dither process
outlined in Appendix A as long as is selected large enough
to satisfy

(5)

for relevant values of the equalizer output Recall that
denotes the CMA error function, defined in (1).

Employing the model of Fig. 4, we write the DSE-CMA
error function in terms of the quantization noise

(6)

which leads to the following DSE-CMA update expression:

(7)

When and satisfy (5), the properties of follow from
(28), (29), and (31) in Appendix A. Specifically, we have
that is an uncorrelated random process whose first moment
obeys

(8)

and whose conditional second moment is given by

(9)

In (8) and (9), the expectation is taken over the dither process,
thus leaving a dependence on

B. DSE-CMA Transient Behavior

The average transient behavior of DSE-CMA is completely
determined by the expected DSE-CMA error function

Equations (5)–(8) indicate that
is a “hard-limited” version of the CMA error function

, i.e.,

(10)

Fig. 2 plots the various error functions and for
comparison. In the theorems below, the implications of (10)
are formalized in terms of DSE-CMA behavior over specific
ranges of

Lemma 1: Define

(11)

The choice of dither amplitude ensures that
for all equalizer outputs satisfying the output amplitude

constraint
Proof: By evaluating at the locations where , it

can be seen that the “humps” of the cubic CMA error function
(see Fig. 2) occur at heights Thus, is
unique and well-defined for Since (10)
implies that such values of prevent these humps from being
clipped in forming the expected DSE-CMA error function,
and are identical over the interval when

For values is determined by the unique
real-valued root of the cubic polynomial and
can be expressed as

(12)

From (12), it can be shown that

Writing the system output as for a (fixed) re-
ceived vector and arbitrary equalizer allows the following
equalizer-space interpretation of Lemma 1.

Theorem 1: Denote the set of possible received vectors by
, and define to be the convex hull formed by the set

of hyperplanes for
Then, choice of dither amplitude ensures that the
expected DSE-CMA update is identical to the CMA update
for equalizers within

Proof: Choose any two equalizers and that satisfy
the output constraint for all (Re-
call that is well defined for ) The triangle
inequality implies that any convex combination of and
also satisfies this output constraint. Lemma 1 ensures that,
for that satisfy the output amplitude constraint,

Hence, the two updates are identical within

For an -ary source, the set of possible source vectors
is of size Then, in the absence of channel noise, we

expect at most equalizer input vectors Hence,
in this noiseless case, is the convex hull formed by the
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finite set of hyperplanes
for In other words, is a polytope formed by the
boundary set An illustrative example of and is
provided by Fig. 6.

Next, we concern ourselves with neighborhoods of the zero-
forcing (ZF) equalizers

Theorem 2: Define

(13)

Under satisfaction of the PBE conditions, choice of dither
amplitude ensures the existence of a neighborhood
around every ZF solution within which the expected DSE-
CMA update is identical to the CMA update.

Proof: When , the satisfaction of the PBE
conditions implies that for all In this case,
(10) and the definition of imply that
for In other words, guarantees that the
expected DSE-CMA update is identical to the CMA updateat
the zero-forcing solutions.

Now, consider an open ball of radius centered at
Equalizers within can be parameterized as
for Then, there exists a finite constant for which

From the continuity of
the polynomial function , we claim the following: For any

and any , there exists a such that
implies Applying (10), we

conclude that for any equalizer within the ball
Note that the constant may be less than , in which

case, there would existisolated “CMA-like” neighborhoods
around the ZF solutions—i.e., neighborhoods not contained in
any “CMA-like” convex hull.

Theorem 2 is of limited practical use since it requires
satisfaction of the PBE conditions. Fortunately, the concept
is easily extended to the set of “open-eye” equalizers
Denoting the minimum distance between any pair of adjacent
symbols in by , we define the set as6

The corresponding set of open-eye equalizer outputs is defined
by

For -PAM, becomes the open interval
minus the set of points halfway between

adjacent elements of Here, and are used to denote
the minimum and maximum positive-valued elements of,
respectively.

Theorem 3: Define

(14)

Choice of dither amplitude ensures the existence of
a neighborhood around every open-eye equalizer

6We acknowledge that the definition ofFOE is overly strict in that
it bounds the outermost decision region from both sides. In addition, the
definition of FOE only makes sense in the context of bounded inputsrrr:

Although the AWGN channel model does not ensure boundedrrr, all practical
implementations do.

TABLE I
CRITICAL VALUES OF � FOR M -PAM

Fig. 5. CMA error function and critical values of� for 4-PAM and 16-PAM
sources.

within which the expected DSE-CMA update is identical to
the CMA update.

Proof: The proof is identical to that of Theorem 2 after
replacing by

In summary, is the lower limit of for which the
convex set exists, whereas and are the lower
limits of for which “CMA-like” local neighborhoods around
the zero-forcing and open-eye equalizers exist, respectively.
Table I quantifies the values of for -PAM
alphabets, and Fig. 5 illustrates their relationship to the CMA
error function. Note that the difference between and
narrows as the alphabet size increases. This can be attributed
to the fact that the open-eye neighborhoods shrink as the
constellation becomes more dense.

C. DSE-CMA Cost Surface

Studies of the multimodal cost surface give substantial
insight into the transient behavior of CMA (see, e.g., [3]).
Thus, we expect that an examination of , which is the
cost stochastically minimized by DSE-CMA, should also prove
worthwhile. First, however, we need to construct Since
we know that a gradient descent algorithm minimizinghas
the general form , we conclude from
(3) that It is then possible
to find (to within a constant) by integrating
over -dimensional equalizer space.

Fig. 6 shows an illustrative example of contours
superimposed on contours in equalizer space for
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Fig. 6. Superimposed DSE-CMA (solid) and CMA (dotted) cost con-
tours in equalizer space for BPSK, noiseless channelhhh = (0:1;
0:3; 1;�0:1;0:5; 0:2)t and� = 1: Dashed lines show the set of hyperplanes
B� whose convex hullF� ensures expected DSE-CMA behavior identical
to that of CMA.

Note that the two sets of cost contours are identical
within the convex polytope formed by the hyperplanes
Outside , the CMA cost contours rise much quicker than
the DSE-CMA contours. This observation can be attributed to
the fact that for large is proportional to ,
whereas the hard limiting on makes proportional
to As a result, we expect that CMA exhibits much
faster convergence for initializations far outside of Unlike
standard SE algorithms [13], however, DSE-CMA converges
as rapidlyas its unsigned version within Fortunately, there
is no need to initialize the adaptive algorithm with large ;
the “power constraint property” of CMA [8] ensures that the
CMA minima lie in a hyperannulus that includes7

(see, e.g., Fig. 9). Initialization of DSE-CMA is discussed in
Section V.

Fig. 7 shows two low-dimensional examples of a DSE-
CMA trajectory overlaid on a CMA trajectory. Note that the
DSE-CMA trajectories closely follow the CMA trajectories but
exhibit more parameter “jitter.” The effect of this parameter
variation on steady-state MSE performance is quantified in
the next section.

D. DSE-CMA Steady-State Behavior

The principle disadvantage of DSE-CMA concerns its
steady-state behavior: The addition of dither leads to an
increase in excess mean-squared error (EMSE). EMSE is
typically defined as the steady-state MSE above the level
attained by the fixed locally minimum MSE solution. The
subsections below quantify the EMSE of DSE-CMA under
the satisfaction (or near-satisfaction) of the PBE conditions.

1) Small-Error Approximation of the CMA Update:By
writing the equalizer output in terms of the delayed source

and defining the output error , the CMA
7Assuming that the equalizer input is power-normalized, as occurs in

practice.

Fig. 7. Trajectories of DSE-CMA (rough) overlaid on those of
CMA (smooth) for BPSK, noiseless channelhhh = (0:1;0:3; 1;�0:1;
0:5;0:2)t; � = 5 � 10�4; and� = 1: Solid lines areJcm contours, and
dashed lines form the boundary setB�:

error function can be written as

For small output error (i.e., ), the error function can
be approximated by

(15)

In the absence of channel noise, we can write
using the parameter error vector

defined relative to the zero-forcing equalizer For
adequately small , (15) implies that the CMA error
function has the approximate form

(16)

Under the PBE assumptions and a reasonably small step-
size, we expect asymptotically small Thus, the small-error
approximation (16) can be used to characterize the steady-state
behavior of DSE-CMA.

2) The Excess MSE of DSE-CMA:We define EMSE at
time index as the expected squared error above that
achieved by the (local) zero-forcing solution Since, under
satisfaction of the PBE conditions, achieves zero error

(17)

We are interested in quantifying the steady-state EMSE:
Our derivation of steady-state EMSE

assumes the following:

B1) The equalizer parameter error vector is statisti-
cally independent of the equalizer input

B2) The dither amplitude is chosen sufficiently greater
than so that for all under consid-
eration.
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B3) The PBE conditions A1)–A4) are satisfied to the extent
that the zero-forcing solution attains near-zero error,
i.e.,

B4) The step size is chosen small enough for the small-
error approximation (15) to hold asymptotically.

The classical assumption B1) implies that is independent
of the source process Assumption B2) is needed for
the results of the quantization noise model in Section IV-A
to hold.

Using the facts that tr for any scalar and that

tr tr and tr tr for any
matrix , the EMSE at time index can be written

tr

tr (18)

where the second step follows from B1). Defining the expected
equalizer outer product matrix and
the source-power-normalized regressor autocorrelation matrix

, we can write the EMSE as

tr (19)

Note that since is i.i.d. and , we have

Appendix B uses the quantization noise model from
Section IV-A and the error function approximation from (16)
to derive the following recursion for , which is valid for
equalizer lengths :

(20)

Using (19) and (20), Appendix C derives the following ap-
proximation to the steady-state EMSE of DSE-CMA:

(21)

where The approximation in (21) closely
matches the outcomes of experiments conducted using mi-
crowave channel models obtained from the SPIB database.
The simulation results are presented in Section VI.

Equation (21) can be compared with an analogous expres-
sion for the EMSE of CMA [12]:

(22)

It is apparent that the EMSE of CMA and DSE-CMA differ
by the multiplicative factor

(23)

via Note the dependence on both the
dither amplitude and the source distribution. Table II
presents values of for various -PAM sources and
particular choices of (to be discussed in Section V-B).

V. DSE-CMA DESIGN GUIDELINES

A. Selection of Dispersion Constant

We take the “Bussgang” approach used in [1], whereby
is selected to ensure that the mean equalizer update is zero
when perfect equalization has been achieved. From (3), (10),
and the system model in Section II-A, we can write the mean
update term of DSE-CMA at (in the absence of noise)
as For an i.i.d. source, is
independent of all but one element in , namely,
Hence, we require that the value ofin be chosen so that

(24)

When , Theorem 2 ensures the existence of a
neighborhood around within which For
such , (24) implies that should be chosen as for CMA, i.e.,

[1]. When , closed-form expressions
for in the case of -PAM DSE-CMA are difficult to derive.
However, satisfying (24) for these cases can be determined
numerically.

B. Selection of Dither Amplitude

Although Section IV-D demonstrated that EMSE is pro-
portional to , Section IV-B showed that larger values of

increase the region within which DSE-CMA behaves like
CMA. The selection of dither amplitudeis therefore a design
tradeoff between CMA-like robustness and steady-state MSE
performance.

Theorems 1 and 2 imply that the choice
ensures that the zero-forcing equalizers are contained in the
convex polytope Thus, under near-satisfaction of the PBE
conditions, could be considered a useful
design guideline since the CMA minima are expected to be in
close proximity to the zero-forcing solutions [3]. In fact, since

is convex and contains the origin, we expect that a small-
norm initialization (see Section V-D) will lead to equalizer
trajectories completely contained within Such a strategy
is advantageous from the point of robustness.

In situations where the PBE conditions are more
severely violated and CMA can do no better than “open
the eye,” selection of dither amplitude in the range

is recommended
to retain CMA-like robustness.

Table I presents these critical values offor various -
PAM constellations. Note that the value of for BPSK
appears unusually large because near-closed-eye operating
conditions for BPSK are quite severe.

C. Selection of Step-Size

As in “classical” LMS theory, the selection of step size
becomes a tradeoff between convergence rate and EMSE.
If convergence rate in noncritical, could be selected with
robustness in mind and selected to meet steady-state MSE
requirements.

Say that the goal was to attain the same steady-state MSE
performance as CMA. Then, under satisfaction of the PBE
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TABLE II
STEADY-STATE MSE RELATIVE PERFORMANCE FACTOR: Jex = K�;SJexjcma

conditions, should be chosen times that of CMA,
where was defined in (23). Table II presents values of

over the recommended range ofand can be used to
predict the typical range of CMA convergence speed relative
to DSE-CMA (for equal steady-state performance).

When neither convergence rate nor steady-state MSE per-
formance can be sacrificed, Table II suggests choosing
closer to In this case, CMA-like robustness
is sacrificed instead. For such, however, it becomes hard
to predict the effects of PBE violations on the transient and
steady-state performance of DSE-CMA. Loosely speaking, as

is decreased below , the performance of
DSE-CMA becomes more like that of SE-CMA.

D. Initialization of DSE-CMA

The single-spike initialization [1] has become a popular
initialization strategy for baud-spaced CMA, as has double-
spike initialization [3], which is its -spaced counterpart.
The similarities between DSE-CMA and CMA suggest that
these initialization strategies should work well for DSE-CMA
as well.

In the interest of preserving CMA-like robustness, however,
it is suggested the norm of the DSE-CMA initialization be kept
small.8 Under proper selection of (i.e., ), this strategy
ensures that the parameter trajectories begin within the convex
region (see Fig. 9). Extending this idea, Section IV-B
implies that large enough choices of (e.g.,
ensure that theentire mean trajectory will stay within
(and for adequately small step-sizes, the actual trajectories
should closely approximate the mean trajectory). To conclude,
proper choice of initialization norm and dither amplitude
will guarantee that the mean behavior of DSE-CMA never
differs from that of CMA.

VI. SIMULATION RESULTS

A. Excess MSE Under PBE Conditions

Table III presents simulation results verifying the approxi-
mation of the excess MSE of DSE-CMA given in (21). The
simulations were conducted using length-64 MMSE approxi-
mations of three (noiseless) SPIB microwave channels, length-
62 -spaced FSE’s, and various i.i.d. -PAM sources.
In other words, PBE conditions A1) to A4) were satisfied.
The step sizes were chosen so that B4) was satisfied, and
the dither amplitude of satisfied B2). Table III gives
percentage deviations from the EMSE levels predicted by (21),
which were obtained by averaging the results of 2.5108

8This is consistent with recent recommendations on the initialization of
CMA in single-user applications [18].

TABLE III
Jex DEVIATION FROM PREDICTED LEVEL

FOR VARIOUS SPIB CHANNELS AND M -PAM

Fig. 8. Averaged MSE trajectories for DSE-CMA and CMA initialized at
the same locations using 8-PAM and (normalized) SPIB channels 1, 2, 6, 8,
and 13. For all simulations: SNR= 40 dB,Nf = 32; � = 2� 10

�5; and
� = �OE = 2:25:

iterations. Overall, the simulation results closely match our
approximation (21).

B. Average Transient Behavior

Throughout the paper, we have emphasized the importance
of performance evaluation in realistic (nonideal) environments.
It is only proper to present a comparison of DSE-CMA
to CMA in this context as well. Fig. 8 shows ensemble-
averaged MSE trajectories of the two algorithms operated
under identical conditions and initialized at the same locations
using various SPIB microwave channels. Noise levels (SNR

40 dB) and equalizer lengths were selected
to represent typical applications while providing open-eye
performance (for an 8-PAM source) at convergence. The
following “double-spike” equalizer initialization was used in
all simulations: taps 10 and 11 were set to 0.5, and all
others were set to zero. Although (purposely) sub-optimal,
this initialization represents a reasonable choice given the
microwave channel profiles and the discussion in Section V-D.
As evident in Fig. 8, the DSE-CMA trajectories track the CMA
trajectories closely until the effects of EMSE take over. Fig. 8
also suggests that the EMSE approximation in (21) remains
a useful guideline even under typical violations of the PBE
conditions.

Although parameter trajectory comparisons are impractical
with length-32 equalizers, it is easy to visualize two-tap
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Fig. 9. Averaged DSE-CMA and CMA tap trajectories initialized at the
same locations and superimposed on CMA cost contours for channel
hhh = (0:1; 1; 0:5;�0:1;0:2; 0:1)t; SNR = 30 dB, 4-PAM, and� = 2:
Dotted lines indicate CMA power constraint boundaries and dashed lines
indicateB�:

examples. Fig. 9 shows ensemble-averaged DSE-CMA tra-
jectories overlaid on ensemble-averaged CMA trajectories
for a noisy undermodeled channel and 4-PAM. The two
trajectories in each pair correspond so closely that they are
nearly indistinguishable from one another. The trajectories
were initialized from various locations on the inner CMA
power constraint boundary and remain, for the most part, in

Note that for trajectories that cross a single boundary
plane in the set , the expected DSE-CMA update differs
from CMA for only oneelement in the set of possible received
vectors In other words, loss of CMA-like behavior outside

occurs gradually.

C. Comparison with Update-Decimated CMA

One popular technique used to reduce the computation
requirements of CMA involves updating the equalizer every

baud samples [rather than every sample, as (1) suggests].
This is possible in situations where the channel time variations
are slow with respect to the equalizer adaptation speed. As an
example, fixed-site microwave applications can often tolerate
update decimations of and higher [19]. The funda-
mental drawback to these decimated algorithms is that their
convergence rates decrease in proportion to

Since DSE-CMA and update-decimated CMA (UD-CMA)
both present strategies for computationally efficient CMA-like
blind adaptation, a comparison is in order. In Section V-C, we
discussed how DSE-CMA step size may be selected to achieve
steady-state MSE levels on par with CMA and argued that
the penalty is DSE-CMA convergence rate times slower
than CMA. Although, for a given step size, UD-CMA should
achieve the same steady-state performance as CMA, we expect
a convergence rate that is times slower. Taken together, we
anticipate advantages in using DSE-CMA in situations where
the implementation budget demands a UD-CMA decimation

Fig. 10. Averaged MSE trajectories for DSE-CMA and update-decimated
CMA initialized at the same locations using 8-PAM and SPIB channel 8.
Relevant parameters: SNR= 40 dB, Nf = 32; � = �OE = 2:25; and
update-decimation factorD = 16:

factor (Recall that typical values of appear
in Table II.)

As verification of our claim, Fig. 10 presents ensemble-
averaged MSE trajectories comparing DSE-CMA with UD-
CMA for and The operating environment
and design quantities used were the same as those of Fig. 8,
with the exception that for UD-CMA. This
UD-CMA step size was adjusted to equate steady-state per-
formance, and thus, the advantage of DSE-CMA appears in
the form of increased convergence rate. Checking Table II,
we find that for dither amplitude and an 8-PAM source,
DSE-CMA is expected to “beat” UD-CMA whenever must
be selected

VII. CONCLUSIONS

This paper has derived the fundamental properties of the
dithered signed-error constant modulus algorithm. In sum-
mary, we have found that under proper selection of algorithmic
design quantities, the expected transient behavior of DSE-
CMA is identical to that of CMA. Although the steady-state
MSE of DSE-CMA is larger than that of CMA, its value is well
characterized and can be accounted for in the design procedure.

With the exception of computational complexity, the new
algorithm has been designed to mimic CMA rather than
“improve” on its performance. Our primary motivation for
this is twofold. First, CMA is well-regarded by practitioners.
It has established itself over the last 20 years as the most
popular practical blind equalization algorithm, due in large
part to its robustness properties [3]. It is precisely these
robustness properties that we have attempted to preserve.
Second, CMA has been extensively analyzed by theoreticians.
The bulk of these analyses apply directly to DSE-CMA. As
it is often the case that modifications of classic algorithms
have disadvantages that outweigh the proposed advantages,
the spirit of DSE-CMA is a computationally efficient algorithm
that “leaves well enough alone.”
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Although we have restricted our focus to the real-valued
case, a straightforward complex-valued extension of DSE-
CMA is obtained by replacing the real-valued sgnin (3)
with the complex-valued operator csgn sgn Re

sgn Im and by replacing the real-valued dither process
with the complex-valued Here,

and the processes and are real-valued,
independent, and distributed identically to It can be
shown that with minor modifications, the properties of real-
valued DSE-CMA apply to its complex-valued counterpart
[20]. Hence, the design guidelines of Section V apply to both
the real- and complex-valued cases.

Finally, we mention a potentially useful modification to
DSE-CMA. In the case of SE-LMS, the extension of the sign
operator to a multilevel quantizer has been shown to yield
significant performance improvements at the expense of a
modest increase in computational complexity [21]. Perhaps
multilevel quantization would yield similar advantages for
DSE-CMA: most importantly, a reduction in EMSE.

APPENDIX A
FUNDAMENTAL PROPERTIES OF

NONSUBTRACTIVELY DITHERED QUANTIZERS

In this appendix, we review the key results from the
theory of dithered quantizers that allow us to formulate a
quantization-noise model for the DSE-CMA error function.
Fig. 4 illustrates the model described below.

We define the quantization noise arising from the non-
subtractively dithered quantization of information signal
as

(25)

for a dither process and for defined in (4). When
the quantizer spacing is large enough to satisfy

(26)

and the dither is the sum of i.i.d. random variables uniformly
distributed on (and statistically independent
of ), the quantization noise has the following properties [14]:

(27)

(28)

In words, (27) and (28) state that the quantization noise
is an uncorrelated random process whoseth moment is
uncorrelated with the information signal Note that for all
values of , we have the important property that quantization
noise is uncorrelated with the information signal :

(29)

For , however, we have the property that the quantization
noise poweris correlated with the information signal

(30)

Although dither processes characterized by higher values
of make the quantization noise “more independent” of the
information signal , it is not without penalty. For one,

the average noise power increases [14], but more
importantly, the class of information signals satisfying (26)
for a fixed shrinks. Take, for example, the case where

so that has a triangular distribution on
In this case, (26) is only guaranteed when Worse yet,
choices of fail to meet (26) for any In other words,

uniformly distributed on is the only
dither process that yields a useful quantization noise model
for the two-level quantizer of (4).

We will now quantify for uniformly distributed
dither. Note that the quantization noise takes on the values

with conditional proba-
bilities , respectively. The
conditional expectation then becomes

(31)

APPENDIX B
DERIVATION OF

This appendix derives a recursion for the DSE-
CMA parameter-error-vector expected-outer-product

We assume that B1)–B4), which
were stated in Section IV-D2, hold. In the sequel, the notation

will be used to denote a matrix whose th entry
is specified by

Under B2), subtracting from both sides of (7) yields
Thus, the expectation

of the outer product of is

The quantization noise properties (8) and (9) can be applied
to simplify the previous expression.

Applying the small-error approximation (16), the outer product
recursion is well described, for small , by

(32)

The individual terms in (32) are successively analyzed below.
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The second and third terms in (32) are transposes of one
another. For now, we concentrate on the first of the pair, for
which we can use B1) and the fact that

to write

Since , we de-
fine the matrix with elements

Then in matrix notation,
(where is a vector with a one in theth position and zeros
elsewhere). Incorporating the definition of from A3), we
conclude that

For long equalizers (i.e., ), the second term in the
preceding equation is dominated by the first so that we can
approximate

Finally, since , these approximations yield

As for the fourth and fifth terms of (32), no-
tice that B1) implies

As we know from
Section V-A, the dispersion constant is selected to force

Thus, the fourth and fifth terms
of (32) vanish.

Rewriting the final term of (32), the approximated outer
product recursion (valid for small and ) becomes

APPENDIX C
DERIVATION OF

In this appendix, we use (20) to determine an expression for
the steady-state EMSE achieved by DSE-CMA. A similarity
transformation of the symmetric Toeplitz matrixis employed
to simplify the derivation , where the matrix
is diagonal, and the matrix is orthogonal. Applying this
transformation to yields , where

is, in general,not diagonal. Using the properties of the
trace operator and the fact that , we can express the
EMSE from (19) in terms of the transformed variables

tr

The diagonal nature of implies ,
where and represent theth diagonal elements of
and , respectively.

The similarity transformation can be applied to (20) to
obtain a recursion in terms of

For the characterization of , we are interested in only the
steady-state values of the diagonal elements In terms
of the th element

Because as , the limit of the
previous equation becomes

where we have introduced the shorthand notation
We can now sum over to obtain

Using the fact that tr
, we finalize our approximation for , which is

the asymptotic EMSE of DSE-CMA:

An alternate, although useful, form for can be obtained
using the relation tr for even
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