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Joint Channel-Estimation and Equalization of
Single-Carrier Systems via Bilinear AMP

Peng Sun , Zhongyong Wang , and Philip Schniter , Fellow, IEEE

Abstract—We propose a novel soft-input soft-output equalizer
for single-carrier transmissions over unknown frequency-selective
block-fading channels. Our equalizer leverages the recently pro-
posed parametric bilinear generalized approximate message pass-
ing algorithm for joint channel-estimation and symbol-detection,
and exploits fast Fourier transform (FFT)-processing to achieve
a per-symbol complexity that grows only logarithmically in the
channel delay-spread. Furthermore, it supports the use of Gaus-
sian mixture models to support the approximately sparse nature
of wideband wireless channel responses. Numerical experiments,
conducted using physically motivated Saleh–Valenzuela channel
models, show that the proposed approach achieves channel nor-
malized mean square error and bit error rate that are significant
improved over existing turbo frequency-domain equalization ap-
proaches for unknown channels. Additional experiments show that
the proposed scheme facilitates much higher spectral efficiencies
than sparse deconvolution methods based on convex relaxation.

Index Terms—Single-carrier block transmission, joint channel
estimation and equalization, turbo equalization, approximate mes-
sage passage.

I. INTRODUCTION

S INGLE-CARRIER (SC) block transmission with fre-
quency domain equalization (FDE) [1], [2] is an attrac-

tive technology for communications across frequency-selective
channels, especially for short-burst communications. Compared
to orthogonal frequency division multiplexing (OFDM) [3],
SC-FDE has similar performance and complexity but much
lower peak-to-average power ratio (PAPR), which relaxes re-
quirements on power-amplifier linearity and thus enables the
use of more efficient and/or cheaper amplifiers. SC-FDE is also
less sensitive to frequency offsets and phase noise [4], [5].
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The SC-FDE receiver’s goal is to recover the information bits
from the received samples, which are corrupted by unknown
frequency-selective (FS) fading and additive noise. To facilitate
this task, it is common to transmit known pilot symbols [6].
This approach is justified by the fact that pilot-aided transmis-
sion can attain the maximum spectral efficiency achievable with
unknown FS Raleigh fading [7].

To infer the information bits, conventional SC-FDE receivers
perform channel estimation, equalization, and decoding in a de-
coupled manner. That is, pilots are first used to estimate the
channel, the channel estimate is then used to infer the data sym-
bols (i.e., “equalization”), and the symbol estimates are finally
used to infer the information bits (i.e., “decoding”). Computa-
tionally, this approach is very efficient: fast Fourier transforms
(FFTs) can be used for channel estimation and equalization, so
that the per-symbol estimation complexity grows only logarith-
mically with the channel delay spread L. The decoupling of these
tasks, however, leads to suboptimal decoding performance. Con-
sequently, many joint equalization/estimation/coding schemes
have been proposed, most of which are iterative in nature.

A. Turbo Equalization

Turbo equalization [8], [9] is a well-known example of it-
erative (joint) detection and decoding. There, information is
repeatedly exchanged between a soft-input soft-output (SISO)
equalizer and a SISO decoder. This information takes the form
of “extrinsic log-likelihood ratios (LLRs)” on the coded bits
that determine each symbol. Belief propagation (BP) [10], and
in particular the sum-product algorithm (SPA) [11], explains
why information should be exchanged in this way [9].

When the channel response is known, exact SISO equaliza-
tion [8], [9] can be accomplished using the trellis-based BCJR
algorithm1 [12]. But its complexity grows as O(AL ), where A
is the number of coded bits per quadrature amplitude modula-
tion (QAM) symbol, which is impractical for large A or L. The
soft-output Viterbi [13] and max-log-MAP [14] approximations
of BCJR also have O(AL ) complexity. A substantial reduction
in complexity can be obtained by reducing the number of trellis
states via, e.g., delayed decision-feedback sequence estimation
[15], [16]. Even more complexity reduction can be achieved
by using linear processing in place of trellis processing, which
can be justified by modeling the symbols as independent Gaus-
sian during SISO equalization. Many such schemes have been

1Also known as the forward-backward algorithm or symbol-MAP detection.
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proposed under different names, such as “soft inter-symbol in-
terference (ISI) cancellation” and “soft decision feedback equal-
ization (DFE).” See, e.g., [17]–[22].

The above discussion pertains to known-channel SISO equal-
ization. When the channel response is unknown, the complexity
of exact LLR computation grows as O(AM ), where M is the
block length [23]. Trellis-based approximations have been pro-
posed (e.g., [24]–[26]) but they remain impractical for large L.
Thus, most practical strategies iterate between channel estima-
tion (using symbol estimates) and SISO equalization (using a
channel estimate), as illustrated in Fig. 1(a). For channel esti-
mation, it has been proposed to use expectation maximization
(EM) [15], [27], [28], decision-directed least-squares (LS) [29],
linear minimum mean-squared error (LMMSE) estimation [30],
or adaptive strategies such as least mean square (LMS), recur-
sive least square (RLS), or Kalman filtering [31]–[33]. As an
alternative, linear equalizer coefficients can designed directly,
without explicit channel estimation (e.g., [34]).

Among the works cited above, the per-symbol complexity
of SISO equalization grows at least linearly in the number of
equalizer coefficients (and thus L), and often quadratically due
to the use of matrix inversion to design the equalizer and/or
estimate the channel. This stands in contrast to conventional
SC-FDE reception, whose per-symbol complexity grows only
logarithmically in L due to the use of FFTs for FDE and fre-
quency domain (FD) channel estimation. The use of FFTs in
SC block-transmission systems is facilitated by the use of guard
sequences (e.g., cyclic prefix (CP), zero prefix, unique word
(UW)) for block separation, which allows FS channel propaga-
tion to be modeled as circular convolution [1], [2].

Motivated by the possibility of “fast” (i.e., O(log L) per-
symbol complexity) processing, a number of SC-FDE SISO
equalization schemes have been proposed, including [35]–[38].
However, matrix inversion is used for FDE design in [36] and
channel-estimation in [37], so neither is fast overall. Further-
more, among the fast SC-FDE channel-estimation/equalization
schemes, we are not aware of any that can exploit the sparsity
exhibited by wideband FS channel responses [39]. As we show
in the sequel, exploiting such sparsity can lead to large gains in
performance.

Just as the SPA explains the messages passed between the
SISO equalizer and decoder in known-channel turbo equal-
ization [9], the SPA also provides a principled framework for
SISO equalization of an unknown channel. A direct application
of the SPA under FS Rayleigh-fading channels is, however,
impractical: it suggests passing messages with a Gaussian-
mixture form, where the mixture order grows exponentially in
the number of iterations [40]. Thus, for practical joint channel-
estimation/equalization, the SPA must be approximated.

B. Approximate Message Passing

“Approximate message passing” (AMP) [41] is a principled
approximation framework for the SPA. AMP leverages the
central limit theorem and other Taylor expansions to obtain
computationally efficient algorithms with predictable perfor-
mance. In particular, AMP’s large-system behavior is rigorously

characterized by a scalar state evolution whose fixed points,
when unique, attain MMSE performance [42]. Originally, AMP
was developed for sparse linear estimation problems [43], [44].
In this form, AMP is directly applicable to sparse FS channel
estimation (assuming independent channel taps with known
distribution), as well as SISO equalization, as was established
in several earlier works (e.g., [45]–[47]) before the name
“AMP” was crystallized. Subsequently, AMP was extended
to non-independent priors in [48], facilitating its application
to clustered-sparse channel estimation [49]. Meanwhile, AMP
was extended to generalized-linear estimation problems [50],
which enabled its application to joint channel-estimation/SISO-
equalization of OFDM [49]. Methods to deal with unknown
priors were subsequently developed in [51].

To our knowledge, there has been no work applying AMP
to joint channel-estimation/SISO-equalization of SC transmis-
sions over FS channels, mainly due to limitations in the
AMP methodology. However, a “parametric bilinear generalized
AMP” (PBiGAMP), which tackles generic bilinear estimation
problems, was recently proposed [52] and analyzed [53].

C. Contributions

In this paper, we will show that PBiGAMP offers an attractive
method for SISO equalization of SC block transmissions over
unknown FS channels. When used in a turbo configuration [48]
with an appropriate channel model and EM-learning of the chan-
nel statistics [51], PBiGAMP leads to a SC-FDE receiver that
i) has O(log L) per-symbol complexity, ii) can learn and lever-
age channel sparsity, and iii) performs close to oracle bounds.
Our claims are supported by numerical experiments with realis-
tic wireless channel models of the Saleh-Valenzuela (SV) form
[54] with parameters motivated by physical channel-sounding
experiments [39].

Although we focus on single-antenna systems and time-
invariant channels in this paper, our approach can be straight-
forwardly extended to multiple antenna systems, as well as
time-varying channels (e.g., through the use of basis-expansion
models [55]). Similarly, although we focus on SC systems, our
approach can be straightforwardly extended to discrete Fourier
transform (DFT)-precoded systems like [56]. We leave these
extensions to future work.

The paper is organized as follows. In Section II, we present
our SC block transmission model and SV channel model, as
well as a Gaussian-mixture channel model that is compatible
with PBiGAMP. In Section III, after a brief introduction to
belief propagation and PBiGAMP, we propose our PBiGAMP-
based SISO equalizer and explain how to integrate it into a turbo
receiver. We also describe methods to learn the statistical pa-
rameters of our channel model. In Section IV, we detail several
benchmark schemes that will be used in our numerical compar-
isons. They include traditional turbo SC-FDE schemes like [37]
and [38], as well as the recently proposed convex SparseLift
method from [57]. In Section V, we report numerical results,
and in Section VI we conclude.

Notation—We use boldface uppercase letters like B to denote
matrices and boldface lowercase letters like b to denote vectors,
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Fig. 1. The block diagram of SC block transmission and turbo reception, where π and π−1 represent interleaving and deinterleaving, respectively, and H
represents channel propagation. Diagram (a) shows reception using a SISO equalizer that iterates between symbol and channel estimation. By replacing the dashed
box in (a) with the dashed box in (b), we obtain the proposed receiver, which uses PBiGAMP for joint symbol and channel estimation.

Fig. 2. The transmitted block structure (showing K = 2 blocks).

where bi represents the ith element of b. The notation [B]i,j
extracts the ith row and jth column from the matrix B. IM

denotes the M × M identity matrix, 1M denotes the M -length
vector of ones, and 0M denotes the M -length vector of zeros.
Diag(b) is the diagonal matrix formed from the vector b. F N

is the N × N unitary discrete Fourier transform (DFT) matrix,
F 1:L

N is the matrix formed by the first L columns of F N , f i
N

is the ith column of F N , and fij
N is the (i + 1, j + 1)th ele-

ment of F N . For matrices and vectors, (·)T denotes transpose,
(·)H denotes conjugate transpose, and (·)∗ denotes conjugate.
Likewise, �, �, and | · |�2 denote elementwise multiplication,
division, and absolute-value squared, respectively. Finally, the
probability density function (pdf) of a multivariate complex
Gaussian random vector x with mean x̂ and covariance Σ will
be denoted by CN (x; x̂,Σ).

II. SYSTEM MODEL

A. SC Block Transmission Model

We consider a SC block transmission system, where the
kth block takes the form x[k] = [x0 [k], x1 [k], . . . , xM −1 [k]]T =
[xT

P ,xD[k]T,xT
G]T, with pilot sequence xP ∈ CNP , data se-

quence xD ∈ SND , and guard sequence xG ∈ CNG (see Fig. 2).
Here, S denotes the 2A -ary symbol alphabet, e.g., QAM. This
block structure covers CP transmission, where xG is constructed
from the last NG data symbols of the next xD, UW transmission,
where xG = xP is invariant across blocks, and zero-padded (ZP)
transmission, where xG = 0NG . (See [1] for a review of CP, UW,
and ZP.)

The data sequences xD[k] are constructed as follows. First,
Nb information bits b = [b1 , . . . , bNb ]

T are coded and inter-
leaved to yield the coded bits c ∈ {0, 1}AK ND , where the
code rate is R � Nb

AK ND
. The coded bits are then partitioned

into KND groups of A bits, c = [cT
0 , . . . , cT

K ND−1 ]
T, where

each group cn = [cn,1 , . . . , cn,A ]T determines the value of one

data symbol. The KND data symbols are then partitioned
into K blocks of ND symbols, {xD[k]}K

k=1 , where xD[k] =
[xNP [k], . . . , xNP+ND−1 [k]]T.

The blocks {x[k]}K
k=1 are modulated using the pulse shape

gt(τ), yielding the baseband transmission waveform

a(t) =
K

∑

k=1

M −1
∑

m=0

xm [k]gt(t − mT − (k − 1)MT ), (1)

where T is the baud interval. The waveform a(t) is then up-
converted, transmitted through a noisy and frequency selective
channel, and downconverted, yielding the received baseband
signal

ȳ(t) =
∫ τmax

τmin

g(t, τ)a(t − τ) dτ + w̄(t), (2)

where w̄(t) is Gaussian noise with flat power spectral density σ2
w̄

and g(t, τ) is the baseband-equivalent channel impulse response
at time t and lag τ , supported on the interval [τmin, τmax]. The
receiver filters ȳ(t) with gr(τ) and samples the result at integer
multiples of T seconds, yielding

ȳm [k] =
∫ ∞

−∞
ȳ(t)gr(mT + (k − 1)MT − t) dt, (3)

where again k is the block index and m is the sample index
within the block. Let us define the effective channel response

h(t, τ) � (gt � g � gr)(t, τ), (4)

where � denotes convolution in the τ domain. Assuming that
h(t, τ) is invariant over each time interval t ∈ [kMT, (k +
1)MT ) and supported on the lags τ ∈ [0, LT ), we can write

ȳm [k] =
L−1
∑

l=0

xm−l [k]hl [k] + w̄m [k] (5)

for k = 1, . . . , K and m = 0, . . . , M − 1, where

hl [k] � h((k − 1)MT, lT ), (6)

and where xq [k]|q<0 = xq+M [k − 1]. Assuming (gt � gr)(τ) is
a Nyquist pulse, w̄m [k] are i.i.d. Gaussian with variance σ2

w̄ .
When xG is identical across blocks (as in UW or ZP

systems) and NG ≥ L − 1, the linear convolution in (5) reduces
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to circular convolution2 with period M . Defining ȳ[k] �
[ȳ0 [k], . . . , ȳM −1 [k]]T, h[k] � [h0 [k], . . . , hL−1 [k]]T, and
w̄[k] � [w̄0 [k], . . . , w̄M −1 [k]]T, we have

ȳ[k] = H[k]x[k] + w̄[k], (7)

where H[k] is the M × M circulant matrix with first column
[h[k]T 0T

M −L ]T. The receiver converts to the frequency domain
via

y[k] � F M ȳ[k]/
√

M, (8)

after which H[k] = F H
M Diag(

√
MF 1:L

M h[k])F M implies that

y[k] = Diag(F 1:L
M h[k])F M x[k] + w[k], (9)

where w[k] � F M w̄[k]/
√

M is i.i.d. Gaussian with variance
σ2

w = σ2
w̄ /M .

B. Saleh-Valenzuela Model for the Continuous-Time Channel

We assume that the continuous-time channel impulse re-
sponses g(t, τ) obey the SV model [54]

g(t, τ) =
C

∑

c=1

V
∑

v=1

gv,ce
jφv , c δ(τ − Tc − τv,c), (10)

where C is the number of clusters, V is the number of
paths per cluster, Tc is the delay of the cth cluster, τv,c

are relative path delays, gv,c ≥ 0 are path amplitudes, φv,c ∈
[0, 2π) are path phases, and δ(·) is the Dirac delta. Here,
C, V, {Tc, {τv,c , gv ,c , φv,c}V

v=1}C
c=1 are random variables with

prescribed distributions, as detailed in Appendix A. We assume
block fading, where g(t, τ) is fixed during the time intervals
t ∈ [kMT, (k + 1)MT ) and is i.i.d. across k.

C. Gaussian-Mixture Model for the Discrete-Time Channel

The SV model is accurate (see, e.g., [39]) and so we will
use it to generate channel realizations for the simulations in
Section V. But it is not easy to exploit for channel estimation.
For example, the number of paths, V C, in the SV model (10)
is typically much larger than the number of parameters, L, in
the discrete-time model h[k]. So, we find it more efficient to
model the coefficients h[k] directly. Due to the block-fading
assumption, we will estimate the channel separately for each
block k, and so we drop the block index “[k]” for brevity.

We propose to use a D-state Gaussian-mixture model (GMM)
for the channel coefficients hl , which takes the form

p(hl) =
D

∑

d=1

λl,d CN (hl ; 0, νl,d), (11)

where νl,d > 0 are variances, λl,d ≥ 0 are weights (such that
∑

d λl,d = 1∀l), and a mean of zero has been assumed. We
note that a 2-state GMM was proposed in [49], while here we
consider a D-state GMM.

The GMM model (11) can be considered a simplification
of that proposed in [49], which used a hidden Markov model

2Likewise, in CP systems, when NG ≥ L − 1, (5) reduces to circular con-
volution with period M − NG. However, due to the advantages of UW and ZP
over CP [58], we focus on the former.

(HMM) to couple the coefficients hl across lag l, thus promot-
ing clustered sparsity. We will compare the performance of the
GMM (11) with the GMM/HMM from [49] in Section V.

III. TURBO EQUALIZATION WITH PBIGAMP

Our goal is to infer the information bits b from the frequency-
domain observations y � [y[1]T, . . . ,y[K]T] under the SC
block-transmission model from Section II-A and the GMM
channel model from Section II-C. In particular, our goal is
to compute the marginal posterior probabilities {p(bi |y)}Nb

i=1 ,
which take the form

p(bi |y) =
∑

b−i

p(b|y) =
∑

b−i

p(y|b)p(b)
p(y)

∝
∑

b−i

p(y|b) (12)

=
∑

b−i ,x,c

∫

h

p(y|h,x)p(h)p(x|c)p(c|b) (13)

=
∑

b−i ,c

p(c|b)
K
∏

k=1

∑

x[k ]

∫

h[k ]
p(y[k]|h[k],x[k]) (14)

×
[

L−1
∏

l=0

p(hl [k])

][

ND−1
∏

n=0

p(xNP+n [k]|c(k−1)ND+n )

]

where b−i � [b1 , . . . , bi−1 , bi+1 , . . . , bNb ]
T. Above, (12) fol-

lows from Bayes rule and the assumption that the informa-
tion bits b are uniformly distributed; (13) follows from the
dependency relationships among the random vectors y, h �
[h[1]T, . . . ,h[K]T]T, x � [x[1]T, . . . ,x[K]T]T, c, and b; and
(14) follows from the additive white Gaussian noise (AWGN)
assumption on y, the block-fading GMM model on h, and the
bit-to-symbol mapping. In particular,

p(y[k]|h[k],x[k])

= CN (

y[k]; Diag(F 1:L
M h[k])F M x[k], σ2

w IM

)

(15)

follows from (9), and p(xNP+n [k]|c(k−1)ND+n ) is determined
by the bit-to-symbol mapping.

Equation (14) can be visualized using the bipartite factor
graph in Fig. 3, where the open circles represent the variable
nodes and the solid rectangles represent the factors in (14). For
interpretability, the factor graph has been partitioned into two
subgraphs: the left subgraph corresponds to SISO decoding,
and the right subgraph to SISO equalization with an unknown
channel.

A. Belief Propagation

The posterior bit marginals {p(bi |y)}Nb
i=1 can in principle be

computed from (14), but doing so is intractable for complexity
reasons. An alternate approach is to perform BP using the SPA
[11], where messages are passed along the edges of the factor
graph in Fig. 3. These messages come in the form of pmfs for
discrete-valued variables like bi, cn,a , xn and pdfs for continu-
ous variables like hl . If there were no loops (or “cycles”) in the
graph, BP would compute exact marginals. But since there are
loops in Fig. 3, BP computes only approximate marginals, since
exact computation is actually NP hard [59]. Still, we expect
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Fig. 3. The factor graph corresponding to (14) for a toy example with
K = 1 blocks, Nb = 3 information bits, 4 coded and interleaved bits, A = 2
bits/symbol, ND = 2 data symbols, one pilot symbol x0 , one guard symbol
x3 , block length M = 4, and L = 3 channel taps. For simplicity, the block
index “[k]” has been suppressed. Node ym stands for p(ym |x, h) and node
Mi denotes the bit-to-symbol mapping.

good results from loopy BP, as it has been used successfully
in many problems, such as turbo decoding [60], low-density
parity-check (LDPC) decoding [61], turbo equalization [9], in-
ference on Markov random fields [62], multiuser detection [45],
and compressive sensing [43].

That said, for the factor graph in Fig. 3, and the SISO equal-
ization subgraph in particular, exact implementation of the SPA
is intractable. This is because the messages to and from the hl

nodes take the form of Gaussian mixtures with a mixture order
than grows exponentially as the iterations progress. One might
consider passing Gaussian approximations of those problematic
SPA messages, an approach known as expectation propagation
(EP) [63]. But since there are ML edges between the {hl} and
{ym} nodes in Fig. 3, the per-symbol complexity of EP is O(L)
and not the desired O(log L). Also, the fixed-points of EP are
not well understood.

As discussed in Section I, many approximate methods have
been proposed for SISO equalization of SC block transmissions
over unknown FS channels. But, to our knowledge, few have
the O(log L) per-symbol complexity of conventional SC-FDE
and none are able to handle a GMM channel prior. In the sequel,
we propose a new method, based on PBiGAMP, that has both
of these desirable features. Fig. 1(b) illustrates the proposed
system diagram.

B. Review of PBiGAMP

PBiGAMP [52] is an efficient scheme to compute approx-
imate marginal posteriors on independent random variables
{xn}N −1

n=0 and {hl}L−1
l=0 from observations y = [y0 , . . . , yM −1 ]T

under a likelihood model of the form

p(y|z) =
M
∏

m=1

pym |zm
(ym |zm ) (16a)

zm =
L−1
∑

l=0

N −1
∑

n=0

xnz(n,l)
m hl , (16b)

where z
(n,l)
m are known. Throughout this subsection, we type-

set random variables in san-serif font (e.g., ym ) and non-random

TABLE I
THE PBIGAMP ALGORITHM FROM [52]

variables in serif font (e.g., ym ) for clarity. Note that, in (16), zm

can be interpreted as noiseless bilinear measurements of the ran-
dom vectors x � [x0 , . . . , xN −1 ]T and h � [h0 , . . . , hL−1 ]T, and
pym |zm

(ym |zm ) can be interpreted as a noisy measurement chan-
nel. Applications of (16) include matrix compressive sensing,
self-calibration, blind deconvolution, and joint channel/symbol
estimation.

The PBiGAMP algorithm is stated in Table I. There, the
priors on xn and hl are denoted by pxn

(xn ) and phl
(hl), re-

spectively. The approximate marginal posteriors are denoted
by pxn |qn

(xn |q̂n ; νq
n ) and phl |rl (hl |r̂l ; νr

l ), and specified in lines
(D2)-(D3), where q̂n , νq

n , r̂l , ν
r
l are quantities computed itera-

tively by PBiGAMP.
The PBiGAMP algorithm was derived in [52] as a computa-

tionally tractable approximation of the SPA for (16), under the
assumption that z

(n,l)
m are independent realizations of a zero-

mean Gaussian random variable. In the large-system limit (i.e.,
M,N,L → ∞ with fixed N/M and L/M ) this approxima-
tion becomes exact. In [53], PBiGAMP was analyzed using
the replica method from statistical physics. There it was shown
that, in the large-system limit, the macroscopic performance of
PBiGAMP is predicted by a scalar state-evolution. This state
evolution was studied in detail for the case of i.i.d. Bernoulli-
Gaussian xn and hl and found to exhibit a sharp phase-transition
behavior. In particular, for some combinations of measurement
rates N/M and L/M and sparsity rates on xn and hl , PBiGAMP
converges to the MMSE estimates of x and h. For more
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difficult combinations of rates, PBiGAMP does not yield ac-
curate estimates, but it is conjectured that no other polynomial-
time method will yield accurate estimates for those rates.

C. SISO Equalization via PBiGAMP

We now detail how PBiGAMP can be applied to SISO equal-
ization of SC block transmissions over unknown FS channels.
The first step is to specialize the PBiGAMP model (16) to the
SC block-transmission model (9). In doing so, we omit the block
index notation “[k]” because PBiGAMP can be applied to each
block separately, as implied by the factorization (14). Rewriting
(9) as

ym =
M −1
∑

n=0

L−1
∑

l=0

xnfmn
M fml

M hl + wm (17)

for m = 0, . . . , M − 1, where fmn
M = e−j 2 π

M mn/
√

M is the
(m + 1, n + 1)th element of the unitary M -DFT matrix, we see
that the PBiGAMP quantities in (16) become (with N = M )

pym |zm
(ym |zm ) = CN (ym ; zm , σ2

w ) (18)

z(n,l)
m = fmn

M fml
M . (19)

PBiGAMP’s prior on hl takes the form of the GMM in
(11). For data-symbol indices n ∈ {NP, . . . , NP + ND − 1},
PBiGAMP’s prior on xn takes the form of the pdf

pxn
(xn ) =

2A
∑

j=1

γn,j δ(xn − s(j )), (20)

where δ(·) is the Dirac delta, {s(1) , . . . , s(2A )} = S is the
data-symbol alphabet, and γn,j = Pr{xn = s(j )} denotes the
prior data-symbol pmf. Although the data symbols xn are
discrete, PBiGAMP treats them as random variables in C.
For pilot indices n ∈ {0, . . . , NP − 1} and guard indices n ∈
{NP + ND, . . . , M − 1}, the PBiGAMP prior pxn

(xn ) is trivial
because the pilots and guards are known.

The data-symbol pmf is determined by the coded-bit priors
Pr{cn,a = c

(j )
a } coming from the SISO decoder:

Pr{xn = s(j )} =
2A
∑

j ′=1

Pr{xn = s(j ) , cn = c(j ′)} (21)

=
2A
∑

j ′=1

Pr{xn = s(j ) |cn = c(j ′)}
︸ ︷︷ ︸

δj−j ′

Pr{cn = c(j ′)} (22)

= Pr{cn = c(j )} =
A

∏

a=1

Pr{cn,a = c(j )
a }, (23)

where c(j ) = [c(j )
1 , . . . , c

(j )
A ]T ∈ {0, 1}A is the coded-bit se-

quence corresponding to the symbol value s(j ) and δj is the
Kronecker delta sequence.

Given the above, we are now in a position to apply PBiGAMP
from Table I. For brevity, we omit the iteration index “[t].” To
start, (19) and the definition of fmn

M imply that the quantities in

lines (R1)-(R3) of Table I become

ẑ(n,∗) = Diag(fn
M )F 1:L

M
̂h (24)

ẑ(∗,l) = Diag(f l
M )F M x̂ (25)

ẑ(∗,∗) = Diag(F M x̂)F 1:L
M

̂h. (26)

The quantities in lines (R4)-(R6) then become

ν̄p = |F 1:L
M

̂h|�2

(

1
M

N −1
∑

n=0

νx
n

)

+ |F M x̂|�2

(

1
M

L−1
∑

l=0

νh
l

)

νp = ν̄p +

(

1
M

M −1
∑

n=0

νx
n

)

︸ ︷︷ ︸

� νx

(

1
M

L−1
∑

l=0

νh
l

)

︸ ︷︷ ︸

� νh

1M (27)

p̂ = (F M x̂) � (F 1:L
M

̂h) − ŝ � ν̄p , (28)

where � denotes elementwise multiplication of two vectors and
| · |�2 denotes element-wise absolute-value squared. Note that,
since the individual terms in {νx

n} and {νh
l } are not used, it

suffices to track the average quantities νx and νh .
Due to the Gaussian form of the likelihood in (18), the pos-

terior mean and variance computations in (R8) and (R7) reduce
to

ẑm = νz � (y/σ2
w + p̂ � νp) (29)

νz = σ2
w νp � (σ2

w + νp), (30)

where � denotes elementwise division of two vectors.
Given the form of ẑ(n,∗) and ẑ(∗,l) in (24)-(25), the quantities

in (R11) and (R13) become

νr = 1LM/(νsT|F M x̂|�2) � νr1L (31)

νq = 1M M/(νsT|F 1:L
M

̂h|�2) � νq1M , (32)

where it suffices to track the scalars νr and νq . It can then be
shown that the quantities in (R12) and (R14) become

r̂ = ̂h + νrF 1:L
M

H
((F M x̂)∗ � ŝ) − νsνxνr

̂h (33)

q̂ = x̂ + νqF H
M ((F 1:L

M
̂h)∗ � ŝ) − νsνhνq x̂ (34)

for

νs � 1
M

M −1
∑

m=0

νs
m . (35)

To see this, we can start with (R12) to get

r̂l = ̂hl + νr
l

M −1
∑

m=0

ŝm ẑ(∗,l)∗
m − νr

l
̂hl

M −1
∑

m=0

νs
m

N −1
∑

n=0

νx
n |z(n,l)

m |2

= ̂hl + νr [ẑ(∗,l) ]Hŝ − νrνsνx
̂hl (36)

= ̂hl + νr (F M x̂)HDiag(f l
M )∗ŝ − νrνsνx

̂hl (37)

= ̂hl + νr (f l
M )H

(

(F M x̂)∗ � ŝ
) − νrνsνx

̂hl (38)

where in (36) we used the facts that νr
l = νr ∀l and |z(n,l)

m | =
1/M ∀m,n, l and the definitions of νx from (27) and of νs
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from (35). For (37), we used (25). Since (f l
M )H is the lth row of

F H
M , stacking (38) vertically for l = 0, . . . , L − 1 yields (33).

A similar derivation yields (34).
Lines (R15)-(R16) compute the mean and variance of the

approximate posterior on hl defined in (D2). As a result of the
GMM prior (11), this approximate posterior is [51]

phl |rl (hl | r̂l ; νr
l ) =

D
∑

d=1

λ̄l,dCN
(

hl ;
νl,d r̂l

νl,d + νr
l

,
νl,dν

r
l

νl,d + νr
l

)

(39)

λ̄l,d =
λl,dCN (r̂l ; 0, νl,d + νr

l )
∑D

d ′=1 λl,d ′ CN (r̂l ; 0, νl,d ′ + νr
l )

, (40)

which is also a GMM. The corresponding mean and variance
follow straightforwardly as

̂hl =
D

∑

d=1

λ̄l,d
νl,d r̂l

νl,d + νr
l

(41)

νh
l =

D
∑

d=1

λ̄l,d

(

νl,dν
r
l

νl,d + νr
l

+
∣

∣

∣

νl,d r̂l

νl,d + νr
l

∣

∣

∣

2
)

− |̂hl |2 . (42)

Finally, lines (R17)-(R18) compute the mean and variance of
the approximate posterior on xn defined in (D3). As a result of
the discrete prior (23), the approximate posterior is

pxn |qn
(xn | q̂n ; νq

n ) =
2A
∑

j=1

γ̄n,j δ(xn − s(j )) (43)

γ̄n,j =
Pr{xn = s(j )}CN (

s(j ) ; q̂n , νq
n

)

∑2A

j ′=1 Pr{xn = s(j ′)}CN (

s(j ′) ; q̂n , νq
n

)
, (44)

which is again a discrete distribution with support on S. The
posterior mean and variance of xn follow straightforwardly as

x̂n =
2A
∑

j=1

γ̄n,j s
(j ) (45)

νx
n =

2A
∑

j=1

γ̄n,j |s(j ) − x̂n |2 . (46)

Note that {γ̄n,j}2A

j=1 is the posterior pmf on xn . It can be con-
verted to posterior pmfs on the coded bits {cn,a}A

a=1 via

Pr{cn,a = 1 | q̂n} =
∑

j=1...2A |c( j )
a =1

Pr{cn = c(j ) | q̂n} (47)

=
∑

j = 1...2A

c
( j )
a = 1

2A
∑

j ′=1

Pr{cn = c(j ) |xn = s(j ′)}
︸ ︷︷ ︸

δj−j ′

Pr{xn = s(j ′) | q̂n}
︸ ︷︷ ︸

γ̄n,j ′

(48)

=
∑

j=1...2A |c( j )
a =1

γ̄n,j . (49)

TABLE II
SISO EQUALIZATION VIA PBIGAMP

The PBiGAMP-based SISO equalization procedure is sum-
marized in Table II.3 Its complexity is dominated by the DFT-
matrix multiplies in lines (B1), (B2), (B12), and (B14), which
consume O(M log M) operations per block, or O(log M) per
symbol, when an FFT is used. This complexity is often stated
as “O(log L)” in the literature, because the block length M is
chosen proportional to the delay spread L. The complexity of
all other lines in Table II consumes only O(M) operations per
block, or O(1) per symbol.

D. Turbo Equalization

As described in Section III-A, we compute (approximate)
posterior marginal bit probabilities {p(bi |y)}Nb

i=1 using the SPA,
which is the usual approach to “turbo equalization” [9]. How-
ever, because exact SPA is intractable for the SISO-equalization
subgraph in Fig. 3, we propose to use the PBiGAMP approxi-
mation described in Section III-B. We now detail the remaining
steps in the SPA, for completeness.

Roughly speaking, we pass messages on the factor graph
in Fig. 3 from the left to the right and back again. One such
forward-backward pass will be referred to as a “turbo iteration.”

3For simplicity, Table II assumes that the pilot and guards are in S.
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During a single turbo iteration, we alternate SISO equalization
using PBiGAMP and SISO decoding using an off-the-shelf de-
coder/interleaver (see, e.g., [61], [64]). The SPA dictates that we
pass “extrinsic” information between nodes on the graph, and
hence between the subgraphs in Fig. 3. For a discrete random
variable, the extrinsic message is a pmf formed by dividing the
posterior pmf by the prior pmf. Details are given below.

On a typical turbo iteration, extrinsic information on the coded
bits cn,a is passed from the SISO decoder to PBiGAMP, where
it is treated as prior information in (23) to determine the symbol
priors γn,j . PBiGAMP is then run to convergence, generating the
symbol posteriors γ̄n,j . The symbol posteriors are used in (49)
to determine the coded-bit posteriors, which are then converted
to extrinsic form and passed to the SISO decoder. The SISO de-
coder accepts this extrinsic information from PBiGAMP, treat-
ing it as a prior on the coded bits. It then computes posteriors
on the coded bits, converts them to extrinsic form, and passes
them to PBiGAMP for the next turbo iteration.

E. Learning the Channel Prior

The GMM denoising (41)-(42) assumes knowledge of the
GMM prior (11). We now suggest two ways to learn this prior
in practice.

If the receiver has successfully decoded transmissions over
many channel realizations from a statistically common ensem-
ble, then it has access to many (estimated) channel realizations
{̂h}. From these realizations, one could fit the parameters of
a GMM prior using, say, the standard EM-based approach to
fitting a GMM [65, p. 435].

In the case where very few (e.g., one) data blocks are available
to learn the prior, the above approach may not be appropriate. As
an alternative, an “EM-GM-AMP”-like approach could be used.
First consider the simple case where the channel coefficients
{hl}L−1

l=0 are modeled as identically distributed, in which case
the statistical parameters in (11) reduce to the GMM weights
and variances {λd, νd}D

d=1 . The paper [51] showed how these
GMM parameters can be learned from the observations y using
a combination of EM and AMP, and [52] showed how EM can be
combined with PBiGAMP in a similar manner. More generally,
one could partition the coefficients {hl}L−1

l=0 into subsets and
learn different parameters for each subset. In Section V, we
investigate the performance of this EM-GM-PBiGAMP method
for the Saleh-Valenzuela channels described in Section II-B.

IV. BENCHMARK SCHEMES

In this section, we briefly review several other approaches to
SISO equalization that will be used as benchmarks.

A. TD-DFE-LS

First we review the “time-domain (TD) decision-feedback
equalization (DFE) with least-squares (LS) channel estimation”
scheme from [37]. At turbo iteration i = 1, 2, . . . , soft symbol
estimates x̃(i) are constructed as

x̃(i) = F HW (i)y − G(i)x̂(i−1) , (50)

Fig. 4. Implementation of the TD-DFE-LS and FD-DFE-LS approaches.
Here, i denotes the turbo iteration and both W (i) and D(i) are diagonal
matrices.

where W (i) is a diagonal (frequency-domain forward filter)
matrix, G(i) is a circulant (time-domain feedback filter) matrix,
and x̂(i−1) are the symbol means computed from the most recent
decoder outputs, as in (45). The first iteration uses x̂(0) � 0. The
coefficients in W (i) and G(i) are designed to approximately
minimize the MSE of x̃(i) under the constraint Diag(G(i)) =
0, a time-domain channel estimate ̂h, and an estimate of the
error variance in ̂h. Decision-directed LS channel estimation
is used (except for the first turbo iteration, where only pilots
are used), and the estimation error variance is approximated
by assuming perfect decoding. Because G(i) is circulant, (50)
can be implemented in the frequency domain with O(log L) per-
symbol complexity, as illustrated in Fig. 4 with diagonal D(i) =
FG(i)F H. Given a channel estimate, the design of G(i) costs
O(L) operations per symbol via circulant matrix embedding.
But LS channel estimation raises the per-symbol complexity
to O(L2).

B. FD-DFE-LS

Next we review the “frequency-domain (FD) DFE with LS
channel estimation” from [38]. Like the TD-DFE-LS, the FD-
DFE-LS can be implemented as shown in Fig. 4. But, unlike
the TD-DFE-LS, the (diagonal, approximately MMSE) feed-
forward and feedback filter matrices W (i) and D(i) are de-
signed directly in the frequency domain. The FD-DFE-LS chan-
nel estimation procedure is also different: a decision-directed
LS estimate is computed in the frequency domain, converted
to the TD via inverse FFT (IFFT), truncated to length L, and
converted back to the FD via FFT. For the first turbo itera-
tion, the channel estimate is computed using only pilots. In
total, the per-symbol complexity of channel estimation, filter
design, and symbol estimation is O(log L) for FD-DFE-LS,
which is much more efficient than TD-DFE-LS. However, the
channel estimates of FD-DFE-LS are of lower quality, and their
error variance is not used in FD-DFE-LS filter design.

C. SparseLift

SparseLift [57] is a recently proposed convex method that is
applicable to joint sparse-channel-estimation/equalization. Its
goal is to jointly recover the vector x and the sparse vector h
from noisy observations y = Diag(Bh)Ax + w, where A and
B are known. It works by first rewriting y = Φvec(hxT) +
w with Φ � [Diag(a1)B · · ·Diag(aM )B], where am is the
mth column of A. It then uses LASSO [66] to estimate sparse
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vec(hxT) from y. The estimate of vec(hxT) is then reshaped
into a matrix and its principal rank-one component is extracted,
yielding an estimate of hxT, which implies estimates of h and
x up to a scalar ambiguity. An analysis of the noiseless case
shows that, under sufficiently sparse h, sufficiently tall A, and
sufficiently random B, SparseLift exactly recovers hxT with
high probability [57] . Further analysis shows that SparseLift is
robust to the presence of bounded noise [57].

The computational complexity of SparseLift is dominated by
its LASSO stage. For LASSO, efficient algorithms like SPGL1
[67] can be used, which iterate matrix-vector multiplications
with Φ and ΦH and soft thresholding steps.

Equation (9) suggests that a direct application of SparseLift
to SC channel-estimation/equalization would use A = F M ,
B = F 1:L

M , and x = [xT
P ,xT

D,xT
G]T. Our experiments with this

approach, and several variations, are discussed in Section V-C.

V. NUMERICAL RESULTS

We now present numerical results comparing the proposed
PBiGAMP scheme with the benchmark schemes discussed in
Section IV. As a reference, we also consider the performance
of PBiGAMP with perfect channel-state information (PCSI). In
this latter case, PBiGAMP reduces to AMP. The application of
AMP methods to soft symbol estimation can be traced back to
early works like [45]–[47].

Unless otherwise noted, the following setup was used in our
simulations. Recalling the SC block-transmission model from
Section II-A, Nb = 512 information bits were coded at rate
R = 1/3 by an irregular low-density parity-check (LDPC) code
with average column weight 3. The 1540 coded bits were ran-
domly interleaved and Gray-mapped to 16-QAM (i.e., A = 4),
resulting in ND = 385 data symbols. The data-symbol sequence
xD[1] was merged with a NP = 64-length pilot sequence xP and
an NG = 63-length guard sequence xG to yield a single (i.e.,
K = 1) transmitted block x[1] = [xT

P ,xD[1]T,xT
G]T of length

M = 512. The spectral efficiency of the resulting scheme is
thus 1 bit per channel use (bpcu). A Chu sequence [68] was used
for the pilots, and two forms of guard were considered: zero-
padding (ZP), where xG = 0; and unique-word (UW), where
xG repeats the last NG symbols in xP.

The transmission block x[1] (see Fig. 2 for an illustration) was
then modulated using a square-root raised cosine (SRRC) pulse
with parameter 0.5, propagated through a noisy continuous-time
channel, demodulated using a SRRC, and sampled at the baud
rate, as in (1)–(5). Channel realizations were generated using
the Saleh-Valenzuela model (10) with parameters specified in
Appendix A, among them L = 64.

With PBiGAMP’s GMM prior (11), we have several choices
for how it is configured. First, we must choose the GMM order
D ≥ 1. Next, we must choose whether {hl} are identically
distributed or whether the GMM parameters vary with the lag l.
Also, we must choose whether the coefficients {hl} are treated
as independent or coupled through a HMM, as in [49]. Finally,
we must decide whether the hyper-parameters are learned from
a large training corpus of 20 000 realizations of {h}, or a
the current measured block y using EM-GM-PBiGAMP. Our

Fig. 5. Channel estimate NMSE versus Eb /N0 for UW transmission.

experiments will investigate the following combinations of
such choices:

� G-iid: {hl} are modeled as i.i.d. zero-mean Gaussian. The
variance is learned from a large training corpus {h}.

� 2GM-iid: {hl} are modeled as i.i.d. from a zero-mean
GMM with D = 2 components. The weights and variances
are learned from a large training corpus {h}.

� 2GM-EM: {hl} are modeled as i.i.d. from a GMM with
D = 2 components. The weights and variances are learned
from each y using the EM-GM-PBiGAMP approach from
Section III-E.

� 3GM-EM: Like 2GM-EM but with a D = 3-term GMM.
� G-ind: {hl} are modeled as independent but non-

identically distributed zero-mean Gaussian. The PDP {νl}
is learned from a large training corpus {h}.

� 2GM-ind: {hl} are modeled as independent but non-
identically distributed from a zero-mean GMM with D =
2 components. The GMM parameters {λl,1 , νl,1 , νl,2}L−1

l=0
are learned from a large training corpus {h}.

� 2GM-nnd: {hl} are non-identical and non-independent
across l, and obey a GMM/HMM with D = 2 compo-
nents, as in [49]. The GMM/HMM parameters are learned
from a large training corpus {h}, as in [49].

Unless otherwise mentioned, all turbo methods were run for
20 iterations using the SISO LDPC decoder from [69].

A. Performance With UW Transmissions

We first investigate the performance of UW systems, where
the pilot sequence is repeated as a guard sequence.

Fig. 5 shows the channel estimate’s normalized mean squared
error (NMSE) E{‖h − ̂h‖2/‖h‖2} versus Eb/N0 for the var-
ious schemes under test. There we see that the NMSE of
TD-DFE-LS is significantly better than that of FD-DFE-LS,
although—as explained earlier—this comes at the cost of O(L2)
versus O(log L) implementation complexity. We also see that
the NMSE of G-iid PBiGAMP is only slightly better than TD-
DFE-LS. We attribute their similar performances to their use of
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Fig. 6. BER versus Eb /N0 for UW transmission and PBiGAMP with differ-
ent channel models.

similarly simple channel models: TD-DFE-LS essentially uses
no channel prior, while PBiGAMP’s i.i.d. zero-mean Gaus-
sian prior is parameterized by a single scalar variance. Still,
PBiGAMP is advantageous in that it costs O(log L) while TD-
DFE-LS costs O(L2).

Looking at the remainder of the NMSE traces in Fig. 5 for
Eb/N0 ≥ 8 dB, we see that PBiGAMP’s performance increases
with each step in the sequence G-ind, 2GM-EM, 3GM-EM,
2GM-iid, 2GM-ind, 2GM-nnd. Here we observe two key trends.
First, as the model gets more sophisticated, the NMSE perfor-
mance improves. This is seen when going from 2GM-EM to
3GM-EM, and also when going from 2GM-iid to 2GM-ind to
2GM-nnd. In both cases, though, the improvement is less than
1 dB. Second, sparse models are very effective. This is seen
when comparing G-ind (which has L parameters learned from
a large training corpus) to 2GM-EM (which has 3 parameters
learned without any training): the simpler 2GM-EM model ex-
ploits sparsity and works better as a result.

Fig. 6 shows bit error rate (BER) versus Eb/N0 for the various
schemes under test. There we first see that the BER of TD-DFE-
LS is significantly better than that of FD-DFE-LS, although at
the cost of O(L2) versus O(log L) complexity. Next we see that
the BER of G-iid PBiGAMP is noticeably better than that of
TD-DFE-LS, even though it costs only O(log L). Finally, the
remainder of the PBiGAMP traces are significantly better than
TD-DFE-LS and not far from the PCSI lower bound. Among the
different PBiGAMP channel models, the ordering of the BER
results matches that of the channel NMSE results, but the spread
in BER is rather small.

Fig. 7 shows BER versus turbo iteration at Eb/N0 = 12 dB.
There we see that the PBiGAMP schemes converge after only
3-4 iterations. The FD-DFE-LS and TD-DFE-LS schemes take
about 20 iterations to converge, suggesting further computa-
tional advantages for PBiGAMP.

B. Performance with ZP Transmissions

We now investigate the performance of ZP systems, which use
zero-valued guard symbols. Here we modified the FD-DFE-LS

Fig. 7. BER versus turbo iteration for UW transmission at
Eb /N0 = 12 dB.

Fig. 8. Channel estimate NMSE versus Eb /N0 for ZP transmission.

and TD-DFE-LS schemes to use LMMSE channel estimation,
instead of LS channel estimation, during the first turbo iteration,
since this improved their performance.

Fig. 8 shows the channel estimate’s NMSE versus Eb/N0
for the various schemes under test. Similar to the case of UW
guards, for ZP guards, we see that the NMSE of TD-DFE-LS is
significantly better than that of FD-DFE-LS, while the NMSE of
G-iid PBiGAMP is similar to that of TD-DFE-LS. Meanwhile,
the NMSEs of the other PBiGAMP variations are significantly
better than that of TD-DFE-LS, and the ranking among the
PBiGAMP variations matches that observed for UW guards.

Comparing the ZP results in Fig. 8 to the UW results in
Fig. 5, we see that the NMSEs of PBiGAMP and TD-DFE-LS
are similar for the two guard types, while the NMSE of FD-
DFE-LS is worse with ZP, especially at larger values of Eb/N0 .
We conjecture a reason for this behavior below.

Fig. 9 shows BER versus Eb/N0 for the various schemes
under test. Similar to the case of UW guards, for ZP guards,
we see that the BER of TD-DFE-LS is significantly better than
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Fig. 9. BER versus Eb /N0 for ZP transmission and PBiGAMP with different
channel models.

that of FD-DFE-LS, while the BER of G-iid PBiGAMP is sim-
ilar to that of TD-DFE-LS. Meanwhile, the BERs of the other
PBiGAMP variations are significantly better than that of TD-
DFE-LS, and not far from the PCSI lower bound. Among the
different PBiGAMP variations, the BER ordering matches that
of the NMSE ordering in Fig. 8, but the BER spread is rather
small.

Comparing the ZP results in Fig. 9 to the UW results in Fig. 6,
we see that the BERs for TD-DFE-LS, PBiGAMP, and PCSI are
all better in the ZP case. We attribute this behavior to the fact
that the ZP transmissions waste no energy on the guard sym-
bols (which are thrown away) leading to potentially improved
symbol recovery. However, the channel is less “visible” in the
ZP case, thus requiring a more sophisticated method to recover
it. For example, in the UW case, the channel can be easily es-
timated from any consecutive pair of guard and pilot sequences
by forming and inverting an NP × NP circulant pilot matrix. No
such approach exists in the ZP case. Of course, if those symbols
can be accurately estimated, then the interference diminishes,
but this never happens in the case of FD-DFE-LS.

Fig. 10 shows BER versus turbo iteration at
Eb/N0 = 12 dB. Here again we see that the PBiGAMP
schemes converge after only 3-4 iterations. FD-DFE-LS
converges after ≈10 iterations to a solution of poor quality,
while TD-DFE-LS takes at least 20 iterations to converge.

C. Comparison to SparseLift

As described in Section IV-C, SparseLift aims to recover (up
to a scalar ambiguity) x and sparse h from noisy measurements
y = Diag(Bh)Ax + w, and it performs provably well [57] for
sufficiently tall A and random B.

Equation (9) suggests that a direct application of SparseLift
to SC channel-estimation/equalization would use A = F M ,
B = F 1:L

M , and x = [xT
P ,xT

D,xT
G]T. Our experiments with this

approach were unsuccessful, however, probably because A was
not tall. Thus, to make A as tall as possible, we tried ZP trans-
mission with a single scalar-valued pilot xP = 1. This pilot can

Fig. 10. BER versus turbo iteration for ZP transmission at Eb /N0 = 12 dB.

be used to resolve the scalar ambiguity on the estimates h and
x. In this case, A = F

1:(M −2L+1)
M and x = [1,xT

D]T. But here
again, SparseLift was unsuccessful, probably due to the lack of
randomness in A and B.

Next, we tried randomly precoding the data symbols. That
is, we constructed a time-domain transmitted block of the
form [ Gx

0L −1
], where G ∈ R(M −L+1)×(ND+1) was drawn i.i.d.

{±1/
√

ND + 1} and x = [1,xT
D]T included a scalar pilot, as

before. In this case, SparseLift with A = F 1:M −L+1
M G was suc-

cessful in recovering scaled estimates of x and h. The scaling
ambiguity was then resolved using the pilot, and the data-symbol
estimates were passed to the LDPC coder, via (49), to obtain bit
estimates.

Note that this precoding scheme cannot be considered as
a “single carrier” scheme, since each transmitted sample is a
linear combination of many QAM symbols. Likewise, as a result
of the precoding, there is no clear way to exploit FFTs for
complexity reduction, thus preventing us from considering the
approach as “frequency-domain equalization.” Finally, there is
no clear way to incorporate prior knowledge of the symbols,
so the approach cannot be considered as “SISO.” Still, this
precoding framework allows us to compare SparseLift—one of
a new generation of convex blind-deconvolution algorithms—to
more traditional approaches to channel-estimation/equalization.
We believe that this is an important comparison since wireless
communications is among the principal applications touted for
SparseLift [57].

In benchmarking SparseLift, there remains the question of
what precoding rate to choose. Recall that, for a fixed spectral
efficiency, the precoding rate (ND + 1)/(M + L − 1) could be
increased if the LDPC coding rate R was decreased. We thus
tested SparseLift over a range of precoding rates, i.e., a range
of ND.

Fig. 11 plots BER versus spectral efficiency (in bpcu) at
SNR = 12 dB. To change the spectral efficiency, we varied
the LDPC code rate R (by varying the number of information
bits Nb ) while leaving all other modulation parameters (e.g., K,
M , ND, A) fixed. The figure suggests that, for any given spectral
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Fig. 11. BER versus spectral efficiency (in bpcu) at SNR = 12 dB with ZP
transmission. SparseLift used random precoding G and a single pilot xP = 1,
whereas the other approaches used the same Chu pilots as in Figs. 8–10. To
construct each solid curve, the LDPC code rate R was varied while the other
modulation parameters were fixed. The star-marked red curve used ND = 32
while the triangle-marked red curve used ND = 64. The greed dashed curve
was constructed by varying ND at the LDPC coding rate of R = 1, i.e., no
LDPC coding.

efficiency, SparseLift works best with LDPC code rate R = 1,
i.e., when no LDPC coding is used. But, even with R = 1,
SparseLift performs much worse than all of the other schemes
under test.

VI. CONCLUSION

In this paper, we proposed a new SISO equalizer for SC trans-
missions over unknown frequency-selective block-fading chan-
nels. Our equalizer leverages the recently proposed PBiGAMP
algorithm for joint channel-estimation and symbol-detection
and exploits FFTs to achieve a per-symbol complexity that
grows only logarithmically in the channel delay-spread L. A
D-state GMM channel prior was used to exploit the approxi-
mately sparse nature of realistic wireless channels, with statis-
tics learned via the EM-GM-AMP approach [51]. Our method-
olody also supports the more sophisticated clustered-sparse
GMM/HMM prior from [49], although the details are omitted
due to space limitations.

Numerical experiments conducted using realistic Saleh-
Valenzuela channel realizations and SRRC pulse-shaping sug-
gest that the proposed approach achieves channel NMSE and
BER that is significantly improved over existing turbo FDE
approaches like [37] and [38]. Additional experiments showed
that the proposed scheme facilitates much higher spectral effi-
ciencies than SparseLift, a recently proposed method for sparse
deconvolution based on convex relaxation.

The method we proposed could be straightforwardly extended
in several directions. One extension is to multi-antenna systems.
Another is to systems with fast-fading channels, where basis
expansion could be used to model time variation. Yet another is
to DFT-precoded systems, like those in [56].

APPENDIX A
SALEH-VALENZUELA CHANNEL PARAMETERS

Based on the 3–10 GHz experiments in [39], we assumed
the following regarding the parameters of the Saleh-Valenzuela
model (10).

� The cluster arrival times are a Poisson process with rate
Λ, i.e., p(Tc |Tc−1) = Λ exp(−Λ(Tc − Tc−1)). The initial
cluster delay T1 � τmin , as seen by the receiver, is a func-
tion of the timing synchronization algorithm.

� The component arrivals are a mixture of two Poisson pro-
cesses: p(τv,c |τv−1,c) = βλ1 exp(−λ1(τv,c − τv−1,c)) +
(1 − β)λ2 exp(−λ2(τv,c − τv−1,c)) with τ0,c = 0.

� The component energies obey

E{|gv,c |2} =
exp

(−Tc/Γ − τ(v ,c)/γ
)

γ [(1 − β)λ1 + βλ2 + 1]
, (51)

where Γ is the cluster decay time constant and γ is the
intra-cluster decay time constant.

� The amplitudes {gv,c} are independent and identically dis-
tributed (i.i.d.) Nakagami with m-factors randomly gener-
ated via i.i.d. m ∼ N (m0 , m̂

2
0).

� The phases {φv,c} are i.i.d. uniform on [0, 2π).
� The number of clusters C is Poisson distributed with mean

C̄, i.e., p(C) = (C̄)C exp(−C̄)/C!.
� The number of components per cluster V is set large

enough to yield a desired modeling accuracy.
Beyond the above specifications, we used:
� V = 100 components per cluster,
� pulses gt(τ) and gr(τ) that are square-root raised cosine

(SRRC) designs with parameter 0.5,
� a system bandwidth of T−1 = 64 MHz,
� L = 64 channel taps,
� an initial delay of T1 = LpreT + ˜T0 , where Lpre = 4 and

˜T0 is exponentially distributed with mean T , i.e., p( ˜T0) =
Γ0 exp(−Γ0 ˜T0) with Γ0 = 1/T . Here, we chose Lpre so

that {gl}Lpre

l=0 captures the “pre-cursor” energy contributed
by the pulse shape, while Γ0 models a positive syn-
chronization uncertainty. The “cursor” tap index is thus
l = Lpre + 1.
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