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A GAMP-Based Low Complexity Sparse Bayesian
Learning Algorithm

Maher Al-Shoukairi

Abstract—In this paper, we present an algorithm for the sparse
signal recovery problem that incorporates damped Gaussian gen-
eralized approximate message passing (GGAMP) into expectation-
maximization-based sparse Bayesian learning (SBL). In particular,
GGAMP is used to implement the E-step in SBL in place of ma-
trix inversion, leveraging the fact that GGAMP is guaranteed to
converge with appropriate damping. The resulting GGAMP-SBL
algorithm is much more robust to arbitrary measurement matrix
A than the standard damped GAMP algorithm while being much
lower complexity than the standard SBL algorithm. We then ex-
tend the approach from the single measurement vector case to the
temporally correlated multiple measurement vector case, leading
to the GGAMP-TSBL algorithm. We verify the robustness and
computational advantages of the proposed algorithms through nu-
merical experiments.

Index Terms—Compressed sensing, approximate message
passing (AMP), sparse Bayesian learning (SBL), expectation-
maximization algorithms, Gaussian scale mixture, multiple mea-
surement vectors (MMYV).

I. INTRODUCTION

A. Sparse Signal Recovery

HE problem of sparse signal recovery (SSR) and the re-

lated problem of compressed sensing have received much
attention in recent years [1]-[6]. The SSR problem, in the sin-
gle measurement vector (SMV) case, consists of recovering a
sparse signal € R from M < N noisy linear measurements
y € RM:

y=Azx+e, ey

where A € RM*V is a known measurement matrix and e €
RM is additive noise modeled by e ~ N(0, 0> I). Despite the
difficulty in solving this problem [7], an important finding in
recent years is that for a sufficiently sparse « and a well de-
signed A, accurate recovery is possible by techniques such as
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basis pursuit and orthogonal matching pursuit [8]-[10]. The
SSR problem has seen considerable advances on the algorith-
mic front and they include iteratively reweighted algorithms
[11]-[13] and Bayesian techniques [14]-[20], among others.
Two Bayesian techniques related to this work are the gener-
alized approximate message passing (GAMP) and the sparse
Bayesian learning (SBL) algorithms. We briefly discuss both
algorithms and some of their shortcomings that we intend to
address in this work.

B. Generalized Approximate Message Passing Algorithm

Approximate message passing (AMP) algorithms apply
quadratic and Taylor series approximations to loopy belief
propagation to produce low complexity algorithms. Based on
the original AMP work in [21], a generalized AMP (GAMP)
algorithm was proposed in [22]. The GAMP algorithm provides
an iterative Bayesian framework under which the knowledge
of the matrix A and the densities p(x) and p(y|x) can be
used to compute the maximum a posteriori (MAP) estimate
Ty ap = argming. gy p(x|y) when it is used in its max-sum
mode, or approximate the minimum mean-squared error
(MMSE) estimate &y a5 = [gv p(x|y)de = E(z|y)
when it is used in its sum-product mode.

The performance of AMP/GAMP algorithms in the large sys-
tem limit (M, N — oo) under an i.i.d zero-mean sub-Gaussian
matrix A is characterized by state evolution [23], whose fixed
points, when unique, coincide with the MAP or the MMSE es-
timate. However, when A is generic, GAMP’s fixed points can
be strongly suboptimal and/or the algorithm may never reach
its fixed points. Previous work has shown that even mild ill-
conditioning or small mean perturbations in A can cause GAMP
to diverge [24]-[26]. To overcome the convergence problem in
AMP algorithms, a number of AMP modifications have been
proposed. A “swept” GAMP (SwAMP) algorithm was pro-
posed in [27], which replaces parallel variable updates in the
GAMP algorithm with serial ones to enhance convergence. But
SwAMP is relatively slow and still diverges for certain A. An
adaptive damping and mean-removal procedure for GAMP was
proposed in [26] but it too is somewhat slow and still diverges
for certain A. An alternating direction method of multipliers
(ADMM) version of AMP was proposed in [28] with improved
robustness but even slower convergence.

In the special case that the prior and likelihood are both
independent Gaussian, [24] was able to provide a full charac-
terization of GAMP’s convergence. In particular, it was shown
that Gaussian GAMP (GGAMP) algorithm will converge if and
only if the peak to average ratio of the squared singular values
in A is sufficiently small. When this condition is not met, [24]
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proposed a damping technique that guarantees convergence of
GGAMP at the expense of slowing its convergence rate. Al-
though the case of Gaussian prior and likelihood is not enough
to handle the sparse signal recovery problem directly, it is suffi-
cient to replace the costly matrix inversion step of the standard
EM-based implementation of SBL, as we describe below.

C. Sparse Bayesian Learning Algorithm

To understand the contribution of this paper, we give a very
brief description of SBL [14], [15], saving a more detailed
description for Section II. Essentially, SBL is based on a
Gaussian scale mixture (GSM) [29]-[31] prior on @x. That
is, the prior is Gaussian conditioned on a variance vector -,
which is then controlled by a suitable choice of hyperprior
p(7). A large of number of sparsity-promoting priors, like
the Student-t and Laplacian priors, can be modeled using a
GSM, making the approach widely applicable [29]-[32]. In the
SBL algorithm, the expectation-maximization (EM) algorithm
is used to alternate between estimating -~ and estimating the
signal = under fixed «. Since the latter step uses a Gaussian
likelihood and Gaussian prior, the exact solution can be
computed in closed form via matrix inversion. This matrix
inversion is computationally expensive, limiting the algorithms
applicability to large scale problems.

D. Paper’s Contribution’

In this paper, we develop low-complexity algorithms for
sparse Bayesian learning (SBL) [14], [15]. Since the traditional
implementation of SBL uses matrix inversions at each itera-
tion, its complexity is too high for large-scale problems. In this
paper we circumvent the matrix inverse using the generalized
approximate message passing (GAMP) algorithm [21], [22],
[24]. Using GAMP to implement the E step of EM-based SBL
provides a significant reduction in complexity over the classical
SBL algorithm. This work is a beneficiary of the algorithmic
improvements and theoretical insights that have taken place in
recent work in AMP [21], [22], [24], where we exploit the fact
that using a Gaussian prior on p() can provide guarantees for
the GAMP E-step to not diverge when sufficient damping is used
[24], even for a non-i.i.d.-Gaussian A. In other words, the en-
hanced robustness of the proposed algorithm is due to the GSM
prior used on @, as opposed to other sparsity promoting priors
for which there are no GAMP convergence guarantees when A
is non-i.i.d.-Gaussian. The resulting algorithm is the Gaussian
GAMP SBL (GGAMP-SBL) algorithm, which combines the
robustness of SBL with the speed of GAMP.

To further illustrate and expose the synergy between the AMP
and SBL frameworks, we also propose a new approach to the
multiple measurement vector (MMYV) problem. The MMV prob-
lem extends the SMV problem from a single measurement and
signal vector to a sequence of measurement and signal vec-
tors. Applications of MMV include direction of arrival (DOA)
estimation and EEG/MEG source localization, among others.
In our treatment of the MMV problem, all signal vectors are
assumed to share the same support. In practice it is often the
case that the non-zero signal elements will experience tem-

!Part of this work was presented in the 2014 Asilomar conference on Signals,
Systems and Computers [33]

poral correlation, i.e., each non-zero row of the signal matrix
can be treated as a correlated time series. If this correlation
is not taken into consideration, the performance of MMV al-
gorithms can degrade quickly [34]. Extensions of SBL to the
MMV problem have been developed in [34]-[36], such as the
time varying sparse Bayesian learning (TSBL) and TMSBL al-
gorithms [34]. Although TMSBL has lower complexity than
TSBL, it still requires an order of O(N M?) operations per it-
eration, making it unsuitable for large-scale problems. To over-
come the complexity problem, [37] and [33] proposed AMP-
based Bayesian approaches to the MMV problem. However,
similar to the SMV case, these algorithms are only expected
to work for i.i.d zero-mean sub-Gaussian A. We therefore ex-
tend the proposed GGAMP-SBL to the MMYV case, to produce
a GGAMP-TSBL algorithm that is more robust to generic A,
while achieving linear complexity in all problem dimensions.

The organization of the paper is as follows. In Section II, we
review SBL. In Section III, we combine the damped GGAMP
algorithm with the SBL approach to solve the SMV problem
and investigate its convergence behavior. In Section IV, we use
a time-correlated multiple measurement factor graph to derive
the GGAMP-TSBL algorithm. In Section V, we present numer-
ical results to compare the performance and complexity of the
proposed algorithms with the original SBL and with other AMP
algorithms for the SMV case, and with TMSBL for the MMV
case. The results show that the new algorithms maintained the
robustness of the original SBL and TMSBL algorithms, while
significantly reducing their complexity.

II. SPARSE BAYESIAN LEARNING FOR SSR

A. GSM Class of Priors

We will assume that the entries of x are independent and
identically distributed, i.e. p(x) = IL,, p(x,, ). The sparsity pro-
moting prior p(z, ) will be chosen from the GSM class and so
will admit the following representation

p<xn) = /N(qhﬂof}’n )p(’Yn)d’Vru (2)

where NV(x,,; 0,7, ) denotes a Gaussian density with mean zero
and variance -, . The mixing density on hyperprior p(~y, ) con-
trols the prior on z,,. For instance, if a Laplacian prior is desired
for x,,, then an exponential density is chosen for p(~,,) [29].

In the empirical Bayesian approach, an estimate of the hyper-
parameter vector -y is iteratively estimated, often using evidence
maximization. For a given estimate 4, the posterior p(x|y) is
approximated as p(x|y;“), and the mean of this posterior is
used as a point estimate for . This mean can be computed
in closed form, as detailed below, because the approximate
posterior is Gaussian. It was shown in [38] that this empiri-
cal Bayesian method, also referred to as a Type II maximum
likelihood method, can be used to formulate a number of al-
gorithms for solving the SSR problem by changing the mix-
ing density p(~,, ). There are many computational methods that
can be employed for computing ~ in the evidence maximiza-
tion framework, e.g, [14], [15], [39]. In this work, we utilize
the EM-SBL algorithm because of its synergy with the GAMP
framework, as will be apparent below.
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B. SBL’s EM Algorithm

In EM-SBL, the EM algorithm is used to learn the un-
known signal variance vector ~y [40]-[42], and possibly also the
noise variance o>. We focus on learning -, assuming the noise
variance o is known. We later state the EM update rule for the
noise variance o for completeness.

The goal of the EM algorithm is to maximize the posterior
p(~|y) orequivalently? to minimize — log p(y, ). For the GSM
prior (2) and the additive white Gaussian noise model, this
results in the SBL cost function [14], [15],

x(v) = —logp(y,v)
1 L —
= 5log|By|+ 5y BTy —logp(y),  (3)
3, =0’ + ATA", T £ Diag(y).

In the EM-SBL approach, « is treated as the hidden variable
and the parameter estimate is iteratively updated as follows:

7i+1 = argm’gXEm‘y;—yi [logp(yﬂmvﬁy)} ’

“
where p(y, x, ) is the joint probability of the complete data
and p(x|y;~") is the posterior under the old parameter estimate
'yi7 which is used to evaluate the expectation. In each iteration,
an expectation has to be computed (E-step) followed by a max-
imization step (M-step). It is easy to show that at each iteration,
the EM algorithm increases a lower bound on the log posterior
log p(y|y) [40], and it has been shown in [42] that the algorithm
will converge to a stationary point of the posterior under a fairly
general set of conditions that are applicable in many practical
applications.

Next we detail the implementation of the E and M steps of
the EM-SBL algorithm.

SBL’s E-step: The Gaussian assumption on the additive noise
e leads to the following Gaussian likelihood function:

1 1
L2y _ _ 2
p(ylz; o) = Zro?)F exr>< 521y — Az| ) ©)

Due to the GSM prior (2), the density of & conditioned on  is

Gaussian:
’yn

Putting (5) and (6) together, the density needed for the E-step is
Gaussian:

(©)

p(@ly,v) = N(z; &, 3s) )

z=0’2,A"y (®)
S.=(?ATA+T !

=T -TA"(c’T+ ATA") ' AT. 9)

We refer to the mean vector as & since it will be used as the
SBL point estimate of x. In the sequel, we will use 7, when

2Using Bayes rule, p(v|y) = p(y,~)/p(y) where p(y) is a constant with
respect to ~y. Thus for MAP estimation of « we can maximize p(y,~y), or
minimize —log p(y, ).
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referring to the vector composed from the diagonal entries of
the covariance matrix 3. Although both & and 7, change with
the iteration ¢, we will sometimes omit their ¢ dependence for
brevity. Note that the mean and covariance computations in (8)
and (9) are not affected by the choice of p(-y). The mean and
diagonal entries of the covariance matrix are needed to carry out
the M-step as shown next.

SBL’s M-Step: The M-step is then carried out as follows.
First notice that

By 02 [~ logp(y, @, v;0%)] =

]Em\y:'y“ 02 [_ Ing(y|m7 02) - 1ng($|")’) - logp(’)/)} . (10)
Since the first term in (10) does not depend on -y, it will not be
relevant for the M-step and thus can be ignored. Similarly, in
the subsequent steps we will drop constants and terms that do
not depend on ~ and therefore do not impact the M-step. Since

o 21 _ 42
IEw\y;’y",a2 [mn] =Ty + T,

—logp(v)] =

5 (B 4 Liogs, —tog(an)
27 B g Tn gP(Yn) | -

n=1

]Ecc\y;'yf o2 [7 10gp(ﬂ)|’7)

(1)

Note that the E-step only requires z,,, the posterior mean from
(8), and 7, ,the posterior variance from (9), which are statistics
of the marginal densities p(x, |y,~). In other words, the full
joint posterior p(zx|y,~') is not needed. This facilitates the use
of message passing algorithms.

As can be seen from (7)—(9), the computation of & and 7, in-
volves the inversion of an N x /N matrix, which can be reduced
to M x M matrix inversion by the matrix inversion lemma.
The complexity of computing & and 7, can be shown to be
O(NM?) under the assumption that M < N. This makes the
EM-SBL algorithm computationally prohibitive and impractical
to use with large dimensions.

From (4) and (11), the M-step for each iteration is as follows:

- logp(%)ﬂ :

(12a)

N .9
i+1 : €, + Tz, IOg Tn
= argmin E +
Y ) ~ L—l ( 29 2

This reduces to N scalar optimization problems,

~2
‘rn + T‘TH

1
“log~, — 1 1. (12b
2 + 5 logy og p(v )} (12b)

771 = argmin [
Yn

The choice of hyperprior p(7) plays a role in the M-step,
and governs the prior for . However, from the computational
simplicity of the M-step, as evident from (12b), the hyperprior
rarely impacts the overall algorithmic computational complex-
ity, which is mainly that of computing the quantities & and 7,
in the E-step.

Often a non-informative prior is used in SBL. For the purpose
of obtaining the M-step update, we will also simplify and drop
p() and compute the Maximum Likelihood estimate of ~.
From (12b), this reduces to, 7/,*! = &2 + 7, .
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Fig. 1. GAMP Factor Graph.

2

Similarly, if the noise variance o is unknown, it can be

estimated using:

1+ 1
(0")" = argmaxE p(y, @,v;0%)]

|y yi(o*)'
i N Tan
ly - Azl + (o*) 20, (1-2)
- M
We note here that estimates obtained by (13) can be highly
inaccurate as mentioned in [35]. Therefore, it suggests that ex-

perimenting with different values of o2 or using some other
application based heuristic will probably lead to better results.

(13)

III. DAMPED GAUSSIAN GAMP SBL

We now show how damped GGAMP can be used to sim-
plify the E-step above, leading to the damped GGAMP-SBL
algorithm. Then we examine the convergence behavior of the
resulting algorithm.

A. GGAMP-SBL

Above we showed that, in the EM-SBL algorithm, the M-step
is computationally simple but the E-step is computationally de-
manding. The GAMP algorithm can be used to efficiently ap-
proximate the quantities & and 7, needed in the E-step, while the
M-step remains unchanged. GAMP is based on the factor graph
in Fig. 1, where for a given prior f, (z) = p(z,) and a likeli-
hood function g¢,, = p(y. |x), GAMP uses quadratic approx-
imations and Taylor series expansions, to provide approxima-
tions of MAP or MMSE estimates of «. The reader can refer to
[22] for detailed derivation of GAMP. The E-step in Table I, uses
the damped GGAMP algorithm from [24] because of its ability
to enhance traditional GAMP algorithm divergence issues with
non-i.i.d.-Gaussian A. The damped GGAMP algorithm has an
important modification over the original GAMP algorithm and
also over the previously proposed AMP-SBL [33], namely the
introduction of damping factors 6,6, € (0,1] to slow down
updates and enhance convergence. Setting 65 = 6, = 1 in the
damped GGAMP algorithm will yield no damping, and reduces
the algorithm to the original GAMP algorithm. We note here
that the damped GGAMP algorithm from [24] is referred to by
GGAMP, and therefore we will be using the terms GGAMP and
damped GGAMP interchangeably in this paper. Moreover, when

TABLE I
GGAMP-SBL ALGORITHM

Initialization
S < | A|? (component wise magnitude squared) 1)
Initialize 79,9, (62)° > 0 12)
39,2« o0 (13)
fori=1,2,...., Imax
Initialize 7} « ¥ &' « &' s 377!
E-Step approximation
for k =1,2,...., Kmax
1/7h « Stk (A1)
ph skl 4k AzP (A2)
Tk 'r];;gfS (pk,T’;) (A3)
sk (1 —65)sk—1 4 ngs(pk,‘rlg) (A4)
1)1k « STk (A5)
rk gk — Tk AT gk (A6)
rhtl Thg! (rF,TF) (A7)
&R (1= 0,)@" + 0pge (rF, 7F) (A8)
if [|&*tt — &%)2/(|2% Y% < €gamp , break  (A9)
end for %end of k loop
O R AT A=
M-Step
Y |22 4 FL (M1)
_ uy—Aiiu2+(o2>iz£Y=1(1—72")
(@)« - L)
if |&° — & 1||2/||%%|? < €em , break (M3)
end for %end of i loop

the components of the matrix A are not zero-mean, one can in-
corporate the same mean removal technique used in [26]. The
input and output functions g (p, 7,) and g, (r, 7, ) in Table I are
defined based on whether the max-sum or the sum-product ver-
sion of GAMP is being used. The intermediate variables r and
p are interpreted as approximations of Gaussian noise corrupted
versions of & and z = Ax, with the respective noise levels of
7, and 7. In the max-sum version, the vector MAP estimation
problem is reduced to a sequence of scalar MAP estimates given
r and p using the input and output functions, where they are
defined as:

P
[9s(, 7)),y =P — T, PIOX —L_ 15 (y,, |20 ) (T - ) (14)
[92(r,70)], = prox_, lllp(:b,,)(rn) 15)
1
prox () £ argmin f(z) + §|x —r]? (16)

Similarly, in the sum-product version of the algorithm, the
vector MMSE estimation problem is reduced to a sequence of
scalar MMSE estimates given r and p using the input and output
functions, where they are defined as:

[g (P - )] - fzmp(ymlzm )N(Zm; 7{:::1 y Tl71m )dzm
s\ Tp )y, fp(ym |Zm )j\/'(zm; 7{:]7:1” 1

7
Tpm

S wap(x )N (s 0,70, )y,
B fp(mn )N(xn Ty Ty, )dzn '

a7

)dZm

[gCU (T7T7')]n (18)

For the parametrized Gaussian prior we imposed on x in (2),
both sum-product and max-sum versions of g, (r, 7, ) yield the
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Fig. 2.
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same updates for & and 7, [22], [24]:

o

L(r,Tr) = ———7r 19
9o (7, T7) P 19)
ghr ) = ——. (20)
. ~y+ T,

Similarly, in the case of the likelihood p(y|x) given in (5),
the max-sum and sum-product versions of gs(p, T,) yield the
same updates for s and 7, [22], [24]:

- (p/Tp —y)
gs(p, Tp) = CESYN) 21
-2
9pT) = (22)

We note that, in (19), (20), (21) and (22), and for all equations
in Table I, all vector squares, divisions and multiplications are
taken element wise.

In Table I, K.« is the maximum allowed number of GAMP
algorithm iterations, €gamp is the GAMP normalized tolerance
parameter, I;,x is the maximum allowed number of EM itera-
tions and €.y, is the EM normalized tolerance parameter. Upon
the convergence of GAMP algorithm based E-step, estimates
for the mean & and covariance diagonal 7, are obtained. These
estimates can be used in the M-step of the algorithm, given by
(12b). These estimates, along with the s vector estimate, are also
used to initialize the E-step at the next EM iteration to accelerate
the convergence of the overall algorithm.

Defining S as the component wise magnitude squared of A,
the complexity of the GGAMP-SBL algorithm is dominated
by the E-step, which in turn (from Table I) is dominated by
the matrix multiplications by A, A", S and S' at each iter-
ation, implying that the computational cost of the algorithm is
O(N M) operations per GAMP algorithm iteration multiplied
by the total number of GAMP algorithm iterations. For large M,
this is much smaller than O(N M?), the complexity of standard
SBL iteration.

In addition to the complexity of each iteration, for the pro-
posed GGAMP-SBL algorithm to achieve faster runtimes it is
important for GGAMP-SBL total number of iterations to not
be too large, to the point where it over weighs the reduction
in complexity per iteration, especially when heavier damping is
used. We point out here that while SBL provides a one step exact
solution for the E-step, GGAMP-SBL provides an approximate
iterative solution. Based on that, the total number of SBL iter-
ations is the number of EM iterations needed for convergence,
while the total number of GGAMP-SBL iterations is based on
the number of EM iterations it needs to converge and the number
of E-step iterations for each EM iteration. First we consider the
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number of EM iterations for both algorithms. As explained in
Section I1I-B2, the E-step of GGAMP-SBL algorithm provides a
good approximation of the true posterior [43]. In addition to that
the number of EM iterations is not affected by damping, since
damping only affects the number of iterations of GGAMP in
the E-step, but it does not affect its outcome upon convergence.
Based on these two points, we can expect the number of EM
iterations for GGAMP-SBL to be generally in the same range as
the original SBL algorithm. This is also shown in Section IT1I-B2
Fig. 2(a) and (b), where we can see the two cost functions be-
ing reduced to their minimum values using approximately the
same number of EM iterations, even when heavier damping is
used. As for the GGAMP-SBL E-step iterations, because we are
warm starting each E-step with  and s values from the previ-
ous EM iteration, it was found through numerical experiments
that the number of required E-step iterations is reduced each
time, to the point where the E-step converges to the required
tolerance within 2-3 iterations towards the final EM iterations.
When averaging the total number of E-step iterations over the
number of EM iterations, it was found that for medium to large
problem sizes the average number of E-step iterations was just
a fraction of the measurements number M, even in the cases
where heavier damping was used. Moreover, it was observed
that the number of iterations required for the E-step to converge
is independent of the problem size, which gives the algorithm a
bigger advantage at larger problem sizes. Finally, based on the
complexity reduction per iteration and the total number of itera-
tions required for GGAMP-SBL, we can expect it to have lower
runtimes than SBL for medium to large problems, even when
heavier damping is used. This runtime advantage is confirmed
through numerical experiments in Section V.

B. GGAMP-SBL Convergence

We now examine the convergence of the GGAMP-SBL algo-
rithm. This involves two steps; the first step is to show that the
approximate message passing algorithm employed in the E-step
converges and the second step is to show that the overall EM
algorithm, which consists of several E and M-steps, converges.
For the second step, in addition to convergence of the E-step
(first step), the accuracy of the resulting estimates is important.
Therefore, in the second step of our convergence investigation,
we use results from [43], in addition to numerical results to show
that the GGAMP-SBL’s E and M steps are actually descending
on the original SBL’s cost function (3) at each EM iteration.

1) Convergence of the E-step With Generic Transformations:
For the first step, we use the analysis from [24] which shows
that, in the case of generic A, the damped GGAMP algorithm is
guaranteed to globally converge (to some values & and 7, ) when
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sufficient damping is used. In particular, since v is fixed in the
E-step, the prior is Gaussian and so based on results in [24],
starting with an initial estimate 7, > ~' the variance updates
T., Ts, T, and 7, will converge to a unique fixed point. In
addition, any fixed point (s, &) for GGAMP is globally stable if
0,0.||Al|3 < 1, where the matrix A is defined as given below
and is based on the fixed-point values of 7, and 7,.:

A := Diag'/?(1,q,) A Diag'/*(1,q,)
o2 Y
) y Ay = :
o+ Ty Y+ Ty

While the result above establishes that the GGAMP algorithm
is guaranteed to converge when sufficient amount of damping is
used at each iteration, in practice we do not recommend build-
ing the matrix A at each EM iteration and calculating its spec-
tral norm. Rather, we recommend choosing sufficiently small
damping factors 6, and 6, and fixing them for all GGAMP-
SBL iterations. For this purpose, the following result from [24]
for an i.i.d.-Gaussian prior p(x) = N (;0,,I) can provide
some guidance on choosing the damping factors. For the i.i.d.-
Gaussian prior case, the damped GAMP algorithm is shown to
converge if

q; =

Q(6s,0.) > | All3/IIAll%, (23)
where (0, 6,.) is defined as
2[(2—0,)N +0, M
Q(QS) 91) = [( GJ) + 04/ ] (24)

0,0, M N

Experimentally, it was found that using a threshold (6, 6,)
that is 10% larger than (24) is sufficient for the GGAMP-SBL
algorithm to converge in the scenarios we considered.

2) GGAMP-SBL Convergence: The result above guarantees
convergence of the E-step to some vectors & and 7, but it does
not provide information about the overall convergence of the
EM algorithm to the desired SBL fixed points. This convergence
depends on the quality of the mean & and variance 7, computed
by the GGAMP algorithm. It has been shown that for an arbitrary
A matrix, the fixed-point value of & will equal the true mean
given in (8) [43]. As for the variance updates, based on the state
evolution in [23], the vector 7, will equal the true posterior
variance vector, i.e., the diagonal of (9), in the case that A is
large and i.i.d. Gaussian, but otherwise will only approximate
the true quantity.

The approximation of 7, by the GGAMP algorithm in the
E-step introduces an approximation in the GGAMP-SBL algo-
rithm compared to the original EM-SBL algorithm. Fortunately,
there is some flexibility in the EM algorithm in that the M-step
need not be carried out to minimize the objective stated in (12a)
but it is sufficient to decrease the objective function as discussed
in the generalized EM algorithm literature [41], [42]. Given that
the mean is estimated accurately, EM iterations may be tolerant
to some error in the variance estimate. Some flexibility in this
regards can also be gleaned from the results in [44], where it
is shown how different iteratively reweighted algorithms corre-
spond to a different choice in the variance. However, we have not
been able to prove rigorously that the GGAMP approximation
will guarantee descent of the original cost function given in (3).

Nevertheless, our numerical experiments suggest that the
GGAMP approximation has negligible effect on algorithm

convergence and ability to recover sparse solutions. We se-
lect two experiments to illustrate the convergence behavior and
demonstrate that the approximate variance estimates are suffi-
cient to decrease SBL’s cost function (3). In both experiments &
is drawn from a Bernoulli-Gaussian distribution with a non-zero
probability A set to 0.2, and we set N = 1000 and M = 500.
Fig. 2 shows a comparison between the original SBL and the
GGAMP-SBL’s cost functions at each EM iteration of the algo-
rithms. A in Fig. 2(a) is i.i.d.-Gaussian, while in Fig. 2(b) itis a
column correlated transformation matrix, which is constructed
according to the description given in Section V, with correlation
coefficient p = 0.9.

The cost functions in Fig. 2(a) and (b) show that, although
we are using an approximate variance estimate to implement
the M-step, the updates are decreasing the SBL’s cost function
at each iteration. As noted previously, it is not necessary for
the M-step to provide the maximum cost function reduction,
it is sufficient to provide some reduction in the cost function
for the EM algorithm to be effective. The cost function plots
confirm this principle, since GGAMP-SBL eventually reaches
the same minimal value as the original EM-SBL. While the
two numerical experiments do not provide a guarantee that the
overall GGAMP-SBL algorithm will converge, they suggest that
the performance of the GGAMP-SBL algorithm often matches
that of the original EM-SBL algorithm, which is supported by
the more extensive numerical results in Section V.

IV. GGAMP-TSBL FOR THE MMV PROBLEM

In this section, we apply the damped GAMP algorithm to the
MMYV empirical Bayesian approach to derive a low complexity
algorithm for the MMV case as well. Since the GAMP algorithm
was originally derived for the SMV case using an SMV factor
graph [22], extending it to the MMV case requires some more
effort and requires going back to the factor graphs that are the
basis of the GAMP algorithm, making some adjustments, and
then utilizing the GAMP algorithm.

Once again we use an empirical Bayesian approach with a
GSM model, and we focus on the ML estimate of . We assume a
common sparsity profile between all measured vectors, and also
account for the temporal correlation that might exist between
the non-zero signal elements. Previous Bayesian algorithms that
have shown good recovery performance for the MMV problem
include extensions of the SMV SBL algorithm, such as MSBL
[35], TSBL and TMSBL [34]. MSBL is a straightforward ex-
tension of SMV SBL, where no temporal correlation between
non-zero elements is assumed, while TSBL and TMSBL ac-
count for temporal correlation. Even though the TMSBL algo-
rithm has lower complexity compared to the TSBL algorithm,
the algorithm still has complexity of O(N M?), which can limit
its utility when the problem dimensions are large. Other AMP
based Bayesian algorithms have achieved linear complexity in
the problem dimensions, like AMP-MMYV [37]. However AMP-
MMV’s robustness to generic A matrices is expected to be out-
performed by an SBL based approach.

A. MMV Model and Factor Graph
The MMV model can be stated as:

y(t) _ A.’B(t) + e(t)’ t=1,2,....T,
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where we have T measurement vectors [y(!), y(2)... y(T)]
with y") € RM. The objective is to recover X =
[ 22 2] with ) € RN, where in addition to the
vectors (') being sparse, they share the same sparsity pro-
file. Similar to the SMV case, A € RM™*N ig known, and
[e(l) , 6(2) ,eT)] is a sequence of i.i.d. noise vectors modeled
~ N (0,0%1). This model can be restated as:

§ = D(A)Z + &,

ase

wheregjé[y“)v,y( >T...,y<T)T]T,:T:é[:c<1>T,a:(Q)T...,:c(T)T}T,
g2 e e® e T and D(A) is ablock-diagonal ma-
trix constructed from T replicas of A.

The posterior distribution of Z is given by:

(tl)

p(Z | §) O<H prm Hp ® :
where
plyy) |21) = Nyl s ay, 2, 0%,
where am is the mth row of the matrix A. Similar to the

previous work in [36], [37], [45], we use an AR(1) process to
(t) (t=1)

model the correlation between x,,” and z,, "/, i.e.,
(t) — ﬁ:cﬁf’” +4/1— 521]7@
palf) &l ™Dy = N(@l); Bl ™, (1= %)), t> 1
pla)) = N(z(;0,7,),

where B € (—1,1) is the temporal correlation coefficient and

vn ~ N(0,~,). Following an empirical Bayesian approach
similar to the one proposed for the SMV case, the hyperparam-
eter vector -y is then learned from the measurements using the
EM algorithm. The EM algorithm can also be used to learn the
correlation coefficient 3 and the noise variance 2. Based on
these assumptions we use the sum-product algorithm [46] to
construct the factor graph in Fig. 3, and derive the MMV algo-
rithm GGAMP-TSBL. In the MMV factor graph the factors are

ggrt)( ) = P( rt) |w(t)1)’ ét)(xgj)) P(fﬂn) | xn )) fort >1
and £V (") = p(zi).

B. GGAMP-TSBL Message Phases and Scheduling (E-Step)

Due to the similarities between the factor graph for each time
frame of the MMV model and the factor graph of the SMV
model, we will use the algorithm in Table I as a building block
and extend it to the MMV case. We divide the message updates
into three steps as shown in Fig. 4.

For each time frame the “within” step in Fig. 4 is very similar
to the SMV GAMP iteration, with the only difference being
that each xsf) is connected to the factor nodes fy(f) and f,(LHl),
while it is connected to one factor node in the SMV case. This
difference is reflected in the calculation of the output function
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(Within Step)

(Backward Step)

Fig. 4. Message passing phases for GGAMP-TSBL.

g, and therefore in finding the mean and variance estimates for
. The details of finding g, and therefore the update equations

(t)

for 7\ and &) are shown in Appendix A. The input function

gs 1s the same as (21), and the update equations for Tﬁt) and s(*)
are the same as (A3) and (A4) from Table I, because an AWGN
model is assumed for the noise. The second type of updates are

(t=1) ()

passing messages forward in time from z, to x,,’ through

f,(lt) And the final type of updates is passing messages backward

in time from wg,fﬂ) to fo> through f,(f). The details for finding
the “forward” and “backward” message passing steps are also
shown in Appendix A.

We schedule the messages by moving forward in time first,
where we run the “forward” step starting at ¢ = 1 all the way to

t = T. We then perform the “within” step for all time frames,
this step updates rt) , T§-t>, *) and 13 (t) that are needed for the
“forward “and “backward” message passing steps. Finally we
pass the messages backward in time using the “backward” step,
starting at ¢ = 7" and ending at ¢ = 1. Based on this message

1.
’Y;Jrl :T |x |2+Tan

P+ 70 4+ p(a 12 4+ 771y —

28(@D el 4 iy . (25)
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TABLE II
GGAMP-TSBL ALGORITHM
Definitions
k() | nh() | gh(t)
B(E) T k(0 T k(D)
F(rk®), rf0)y = 2 (1)
5O T gEm T grm
G(rk®), Tf(t)) = (D2)
@ T gRm TG
Initialization
S < |A|? (component wise magnitude squared) (N1)
Initialize Vt : 72,40 > 0, 39 < 0 and #°® « 0 (N3)
fori=1,2,...., Imax
Initialize V¢ : 720 « #5710 310 gi-1(®)
sl(t) é’i—l(t)
E-Step approximation
for k=1,2,...., Kmax
nF1 0 (E1)
PrD (E2)
fort=2:T
k(t—1) k(t—1) k(t—1) k(t—1)
nk® g (:;:(t_m ,Zk(t—l) (’l:;“(t’l);:)rc(t_l)> (E3)
k(1) o [ kD D _ B2yai
v N ph(t=1) L EE=D +A =60 ED
end for %end of t loop
fort=1:T
1/rp® k0 (E5)
PPt gh=1(1) +T’;(t)A§:k(t) (E6)
k(t) o2,k
s g0 (E7)
PPy
k(t) 0 k—=1(t) 4 ¢ "'g(t) -
+— (1 —104 - s —LE— E8
s ( )s + (a2+1/7—§(")) (EB)
17k gTE® (E9)
k() G0 _ 2RO AT gk() (E10)
RO L Grk®) R0 (E11)
&F PO (1 - 0,)2R0) 4 0, F, (rk®) 250 (E12)
end for %end of t loop
fort=T—-1:1
k(t 1 k(t+1) gk (t+1) ¢k(f,+1)7_f(t+1)
k() 3 <:_5(t+1) + ¢k;(t+1)> <ek(t+1)+_’_fz(t+1) (E13)
k(t 1 R LR+ 2\ i
PO 72 d,k(f,mf,f;uw + (1 - 8%y (E14)
end for %end of t loop
. S k1(t) _ ak(t) )2
it &7, W) < €gamp - break (E15)
end for %end of k loop
Vi, 811 ght1(0) i) o ght1(0) 20 k1)
M-step
) ) ) Ji(t) 2, Li(t)
7 9 9 n +Ty,
=L PASIEISC) +T, %
e S (VR R0Y)
~2 T, (#0807 + 6%2’5*“)} W
) T Si(t) _gi—1(t) )2
it LT, (W < €em , break (U2)
end for %end of i loop

schedule, the GAMP algorithm E-step computation is summa-
rized in Table II. In Table II we use the unparenthesized su-
perscript to indicate the iteration index, while the parenthesized
superscript indicates the time frame index. Similar to Table I,
Kiax 1s the maximum allowed number of GAMP iterations,
€gamp 15 the GAMP normalized tolerance parameter, /i,y is the
maximum allowed number of EM iterations and €., is the EM
normalized tolerance parameter. In Table II all vector squares,
divisions and multiplications are taken element wise.

The algorithm proposed can be considered an extension of
the previously proposed AMP TSBL algorithm in [33]. The

extension to GGAMP-TSBL includes removing the averaging
of the matrix A in the derivation of the algorithm, and it includes
introducing the same damping strategy used in the SMV case
to improve convergence. The complexity of the GGAMP-TSBL
algorithm is also dominated by the E-step which in turn is domi-
nated by matrix multiplications by A, A", Sand S', implying
that the computational cost is O(M N) flops per iteration per
frame. Therefore the complexity of the proposed algorithm is
O(T'M N) multiplied by the total number of GAMP algorithm
iterations.

C. GGAMP-TSBL M-Step

Upon the convergence of the E-step, the M-step learns ~y from
the data by treating @ as a hidden variable and then maximizing

]E:ihj:'y’ 023 [10gp(g, i7 s 027 6)]

7Z+1 = argrrlyin ]Ei\'y;'yl 02,3 [_ logp(g, Z,"; 023 /6)]
The derivation of 7/ *! M-step update follows the same steps
as the SMV case. The derivation is omitted here due to space
limitation, and ™! update is given in (25) at the bottom of the
previous page. We note here that the M-step ~ learning rule in
(25) is the same as the one derived in [36]. Both algorithms use
the same AR(1) model for ) but they differ in the implemen-
tation of the E-step. In the case that the correlation coefficient
[ or the noise variance o2 are unknown, the EM algorithm can
be used to estimate their values as well.

V. NUMERICAL RESULTS

In this section we present a numerical study to illustrate the
performance and complexity of the proposed GGAMP-SBL and
GGAMP-TSBL algorithms. The performance and complexity
were studied through two metrics. The first metric studies the
ability of the algorithm to recover x, for which we use the
normalized mean squared error NMSE in the SMV case:

NMSE £ ||& — z|* /||,

and the time-averaged normalized mean squared error TNMSE
in the MMV case:

T
1 .
TNMSE £ o Z Hx(t) — ® ||2/||m(t) ||2.

t=1

The second metric studies the complexity of the algorithm by
tracking the time the algorithm requires to compute the final
estimate &. We measure the time in seconds. While the absolute
runtime could vary if the same experiments were to be run on
a different machine, the runtimes of the algorithms of interest
in relationship to each other is a good estimate of the relative
computational complexity.

Several types of non-i.i.d.-Gaussian matrix were used to ex-
plore the robustness of the proposed algorithms relative to the
standard SBL and TMSBL. The four different types of matrices
are similar to the ones previously used in [26] and are described
as follows:

-Column correlated matrices: The rows of A are indepen-
dent zero-mean Gaussian Markov processes with the following
correlation coefficient p = E{a', a ,11}/E{|a_,|*}, where
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a_, is the nth column of A. In the experiments the correla-
tion coefficient p is used as the measure of deviation from the
i.i.d.-Gaussian matrix.

-Low rank product matrices: We construct a rank deficient A
by A = %HG with H €¢ RM*t G e RPN and R < M.
The entries of H and G are i.i.d.-Gaussian with zero mean and
unit variance. The rank ratio R/N is used as the measure of
deviation from the i.i.d.-Gaussian matrix.

-1ll conditioned matrices: we construct A with a condition
number x > 1 as follows. A = UXV ", where U and V' | are
the left and right singular vector matrices of an i.i.d.-Gaussian
matrix, and X is a singular value matrix with 3, ; /%, 11,11 =
kM M=1) for § =1,2,...., M — 1. The condition number & is
used as the measure of deviation from the i.i.d.-Gaussian matrix.

-Non-zero mean matrices: The elements of A are a,, , ~
N(p, %) The mean 4 is used as a measure of deviation from
the zero-mean i.i.d.-Gaussian matrix. It is worth noting that in
the case of non-zero mean A, convergence of the GGAMP-
SBL is not enhanced by damping but more by the mean removal
procedure explained in [26]. We include it in the implementation
of our algorithm, and we include it in the numerical results to
make the study more inclusive of different types of generic A
matrices.

Although we have provided an estimation procedure, based
on the EM algorithm, for the noise variance o? in (13), in all
experiments we assume that the noise variance o2 is known. We
also found that the SBL algorithm does not necessarily have the
best performance when the exact o2 is used, and in our case, it
was empirically found that using an estimate 62 = 302 yields
better results. Therefore 62 is used for SBL, TMSBL, GGAMP-
SBL and GGAMP-TSBL throughout our experiments.

A. SMV GGAMP-SBL Numerical Results

In this section we compare the proposed SMV algorithm
(GGAMP-SBL) against the original SBL and against two AMP
algorithms that have shown improvement in robustness over the
original AMP/GAMP, namely the SWAMP algorithm [27] and
the MADGAMP algorithm [26]. As a performance benchmark,
we use a lower bound on the achievable NMSE which is similar
to the one in [26]. The bound is found using a “genie” that
knows the support of the sparse vector . Based on the known
support, A is constructed from the columns of A corresponding
to non-zero elements of , and an MMSE solution using A is
computed.

T = AT(AAT + oI 'y.

In all SMV experiments, « had exactly K non-zero elements in
random locations, and the nonzero entires were drawn indepen-
dently from a zero-mean unit-variance Gaussian distribution. In
accordance with the model (1), an AWGN channel was used
with the SNR defined by:

SNR = E{||Az|}/E{||y — A=|*}.

1) Robustness to Generic Matrices at High SNR: The first
experiment investigates the robustness of the proposed algo-
rithm to generic A matrices. It compares the algorithms of
interest using the four types of matrices mentioned above, over
a range of deviation from the i.i.d.-Gaussian case. For each
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Fig. 5. NMSE comparison of SMV algorithms under non-i.i.d.-Gaussian A
matrices with SNR = 60 dB.

matrix type, we start with an i.i.d.-Gaussian A and increase the
deviation over 11 steps. We monitor how much deviation the
different algorithms can tolerate, before we start seeing signif-
icant performance degradation compared to the “genie” bound.
The vector  was drawn from a Bernoulli-Gaussian distribution
with non-zero probability A = 0.2, with N = 1000, M = 500
and SNR = 60 dB.

The NMSE results in Fig. 5 show that the performance of
GGAMP-SBL was able to match that of the original SBL even
for A matrices with the most deviation from the i.i.d.-Gaussian
case. Both algorithms nearly achieved the bound in most cases,
with the exception when the matrix is low rank with a rank ratio
less than 0.45 where both algorithms fail to achieve the bound.
This supports the evidence we provided before for the conver-
gence of the GGAMP-SBL algorithm, which predicted its abil-
ity to match the performance of the original SBL. As for other
AMP implementations, despite the improvement in robustness
they provide over traditional AMP/GAMP, they cannot guaran-
tee convergence beyond a certain point, and their robustness is
surpassed by GGAMP-SBL in most cases. The only exception
is when A is non-zero mean, where the GGAMP-SBL and the
MADGAMP algorithms share similar performance. This is due
to the fact that both algorithms use mean removal to transform
the problem into a zero-mean equivalent problem, which both
algorithms can handle well.

The complexity of the GGAMP-SBL algorithm is studied
in Fig. 6. The figure shows how the GGAMP-SBL was able
to reduce the complexity compared to the original SBL imple-
mentation. It also shows that even when the algorithm is slowed
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Fig. 6. Runtime comparison of SMV algorithms under non-i.i.d.-Gaussian A
matrices with SNR = 60 dB.

down by heavier damping, the algorithm still has faster runtimes
than the original SBL.

2) Robustness to Generic Matrices at Lower SNR: In this
experiment we examine the performance and complexity of the
proposed algorithm at a lower SNR setting than the previous ex-
periment. We lower the SNR to 30 dB and collect the same data
points as in the previous experiment. The results in Fig. 7 show
that the performance of the GGAMP-SBL algorithm is still gen-
erally matching that of the original SBL algorithm with slight
degradation. The MADGAMP algorithm provides slightly bet-
ter performance than both SBL algorithms when the deviation
from the i.i.d.-sub-Gaussian case is not too large. This can be
due to the fact that we choose to run the MADGAMP algo-
rithm with exact knowledge of the data model rather than learn
the model parameters, while both SBL algorithms have infor-
mation about the noise variance only. As the deviation in A
increases, GGAMP-SBL’s performance surpasses MADGAMP
and SWAMP algorithms, providing better robustness at lower
SNR.

On the complexity side, we see from Fig. 8 that the GGAMP-
SBL continues to have reduced complexity compared to the
original SBL.

3) Performance and Complexity Versus Problem Dimen-
sions: To show the effect of increasing the problem dimensions
on the performance and complexity of the different algorithms,
we plot the NMSE and runtime against N, while we keep an
M/N ratio of 0.5, a K/N ratio of 0.2 and an SNR of 60 dB.
We run the experiment using column correlated matrices with
p=20.9.
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Fig. 7. NMSE comparison of SMV algorithms under non-i.i.d.-Gaussian A
matrices with SNR = 30 dB.
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Fig. 9. Performance and complexity comparison for SMV algorithms versus
problem dimensions.

As expected from previous experiments, Fig. 9(a) shows that
only GGAMP-SBL and SBL algorithms can recover  when we
use column correlated matrices with a correlation coefficient of
p = 0.9. The comparison between the performance of SBL and
GGAMP-SBL show almost identical NMSE.

As problem dimensions grow, Fig. 9(b) shows that the differ-
ence in runtimes between the original SBL and GGAMP-SBL
algorithms grows to become more significant, which suggests
that the GGAMP-SBL is more practical for large size problems.

4) Performance Versus Undersampling Ratio M /N : In this
section we examine the ability of the proposed algorithm to
recover a sparse vector from undersampled measurements at
different undersampling ratios M /N. In the below experiments
we fix N at 1000 and vary M. We set the Bernoulli-Gaussian
non-zero probability A so that M /K has an average of three
measurements for each non-zero component. We plot the NMSE
versus the undersampling ratio M /N for i.i.d.-Gaussian matri-
ces A and for column correlated A with p = 0.9. We run the
experiments at SNR = 60 dB and at SNR = 30 dB. In Fig. 10 we
find that for SNR = 60 dB and i.i.d.-Gaussian A, all algorithms
meet the SKS bound when the undersampling ratio is larger than
orequal to 0.25, while all algorithms fail to meet the bound at any
ratio smaller than that. When A is column correlated, SBL and
GGAMP-SBL are able to meet the SKS bound at M /N > 0.3,
while MADGAMP and SWAMP do not meet the bound even
at M/N = 0.5. We also note the MADGAMP’s NMSE slowly
improves with increased underasampling ratio, while SWAMP’s
NMSE does not. At SNR = 30 dB, with i.i.d.-Gaussian A all
algorithms are close to the SKS bound when the undersampling
ratio is larger than 0.3. At M /N < 0.3, SBL and GGAMP-
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Fig. 10. NMSE comparison of SMV algorithms versus the undersampling

rate M/N.

SBL are slightly outperformed by MADGAMP, while SwWAMP
seems to have the best performance in this region. When A is
column correlated, NMSE of SBL and GGAMP-SBL outper-
form the other two algorithms, and similar to the SNR = 60 dB
case, MADGAMP’s NMSE seems to slowly improve with in-
creased undersampling ratio, while SwWAMP’s NMSE does not
improve.

B. MMV GGAMP-TSBL Numerical Results

In this section, we present a numerical study to illustrate the
performance and complexity of the proposed GGAMP-TSBL
algorithm. Although the AMP MMYV algorithm in [37] can be
extended to incorporate damping, the current implementation of
AMP MMV does not include damping and will diverge when
used with the type of generic A matrices we are considering for
our experiments. Therefore, we restrict the comparison of the
performance and complexity of the GGAMP-TSBL algorithm
to the TMSBL algorithm. We also compare the recovery per-
formance against a lower bound on the achievable TNMSE by
extending the support aware Kalman smoother (SKS) from [37]
to include damping and hence be able to handle generic A ma-
trices. The implementation of the smoother is straight forward,
and is exactly the same as the E-step part in Table II, when the
true values of o2, ~ and (3 are used, and when A is modified
to include only the columns corresponding to the non-zero ele-
ments in ("), An AWGN channel was also assumed in the case
of MMV.

1) Robustness to Generic Matrices at High SNR: The ex-
periment investigates the robustness of the proposed algorithm
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Fig. 11.  TNMSE comparison of MMV algorithms under non-i.i.d.-Gaussian
A matrices with SNR = 60 dB.

by comparing it to the TMSBL and the support aware smoother.
Once again we use the four types of matrices mentioned at the
beginning of this section, over the same range of deviation from
the i.i.d.-Gaussian case. For this experiment we set N = 1000,
M =500, A =0.2, SNR = 60 dB and the temporal correla-
tion coefficient 3 to 0.9. We choose a relatively high value for
[ to provide large deviation from the SMV case. This is due
to the fact that the no correlation case is reduced to solving
multiple SMV instances in the E-step, and then applying the
M-step to update the hyperparameter vector -+, which is com-
mon across time frames [35]. The TNMSE results in Fig. 11
show that the performance of GGAMP-TSBL was able to match
that of TMSBL in all cases and they both achieved the SKS
bound.

Once again Fig. 12 shows that the proposed GGAMP-TSBL
was able to reduce the complexity compared to the TMSBL
algorithm, even when damping was used. Although the com-
plexity reduction does not seem to be significant for the selected
problem size and SNR, we will see in the following experiments
how this reduction becomes more significant as the problem size
grows or as a lower SNR is used.

2) Robustness to Generic Matrices at Lower SNR: The per-
formance and complexity of the proposed algorithm are exam-
ined at a lower SNR setting than the previous experiment. We
set the SNR to 30 dB and collect the same data points collected
as in the 60 dB SNR case. Fig. 13 shows that the GGAMP-TSBL
performance matches that of the TMSBL and almost achieves
the bound in most cases.

Similar to the previous cases, Fig. 14 shows that the complex-
ity of GGAMP-TSBL is lower than that of TMSBL.
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Fig. 12.  Runtime comparison of MMV algorithms under non-i.i.d.-Gaussian
A matrices with SNR = 60 dB.
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3) Performance and Complexity Versus Problem Dimension:
To validate the claim that the proposed algorithm is more suited
to deal with large scale problems we study the algorithms’ per-
formance and complexity against the signal dimension N. We
keep an M /N ratio of 0.5, a K /N ratio of 0.2 and an SNR of
60 dB. We run the experiment using column correlated matri-
ces with p = 0.9. In addition, we set 5 to 0.9, high temporal
correlation. In terms of performance, Fig. 15(a) shows that the
proposed GGAMP-TSBL algorithm was able to match the per-
formance of TMSBL. However, in terms of complexity, similar
to the SMV case, Fig. 15(b) shows that the runtime difference
becomes more significant as the problem size grows, making
the GGAMP-SBL a better choice for large scale problems.

VI. CONCLUSION

In this paper, we presented a GAMP based SBL algorithm
for solving the sparse signal recovery problem. SBL uses spar-
sity promoting priors on & that admit a Gaussian scale mixture
representation. Because of the Gaussian embedding offered by
the GSM class of priors, we were able to leverage the Gaussian
GAMP algorithm along with it’s convergence guarantees given
in [24], when sufficient damping is used, to develop a reliable
and fast algorithm. We numerically showed how this damped
GGAMP implementation of the SBL algorithm also reduces the
cost function of the original SBL approach. The algorithm was
then extended to solve the MMV SSR problem in the case of
generic A matrices and temporal correlation, using a similar
GAMP based SBL approach. Numerical results show that both
the SMV and MMV proposed algorithms were more robust to
generic A matrices when compared to other AMP algorithms. In
addition, numerical results also show the significant reduction in
complexity the proposed algorithms offer over the original SBL
and TMSBL algorithms, even when sufficient damping is used
to slow down the updates to guarantee convergence. Therefore
the proposed algorithms address the convergence limitations in
AMP algorithms as well as the complexity challenges in tra-
ditional SBL algorithms, while retaining the positive attributes
namely the robustness of SBL to generic A matrices, and the
low complexity of message passing algorithms.

APPENDIX A
DERIVATION OF GGAMP-TSBL UPDATES

A. The Within Step Updates
To make the factor graph for the within step in Fig. 4 exactly
the same as the SMV factor graph we combine the product of

the two messages incoming from ff,,t) and f,(,,Hl) to x,g,t) into
one message as follows:
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Combining these two messages reduces each time frame factor
graph to an equivalent one to the SMV case with a modified

prior on :c,(l> of (26). Applying the damped GAMP algorithm
from [24] with p(:pg,, >) given in (26):

W, 5 ) e
g - TLET e
T gt tam
=+ : T | } 1
co T To T gm T el

B. Forward Message Updates

Vi ,m o N (@ 0,7)
Vf(t () O(N(x 777n 7w7<1f))
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’”)dxﬁ’”
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N (@ Bzl (1 = B%)y,) dali =Y

Using rules for Gaussian pdf multiplication and convolution we
get the 77,(1 and ¢7, updates given in Table II (E3) and (E4).

C. Backward Message Updates

V (t+1)

fn —_— & ./\/(ng)

NN

M
O(/ HV(#H) ,(r+1) Vf(uz)_w
1=1 '

(1)

Pl | all)) daf+Y
/N (H+1), p(H+1) 2 (t41))
N(xglt+l);er(lt+l)7¢£lt+l))

( ey ﬁx (1 52)7")dx$f+1>.
Using rules for Gaussian pdf multiplication and convolution

we get the 97(1?) and ¢§f ) updates given in Table II (E13) and
(E14).
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