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Abstract—We develop a broadband channel estimation algo-
rithm for millimeter wave (mmWave) multiple input multiple
output (MIMO) systems with few-bit analog-to-digital convert-
ers (ADCs). Our methodology exploits the joint sparsity of the
mmWave MIMO channel in the angle and delay domains. We for-
mulate the estimation problem as a noisy quantized compressed-
sensing problem and solve it using efficient approximate message
passing (AMP) algorithms. In particular, we model the angle-delay
coefficients using a Bernoulli–Gaussian-mixture distribution with
unknown parameters and use the expectation-maximization forms
of the generalized AMP and vector AMP algorithms to simulta-
neously learn the distributional parameters and compute approxi-
mately minimum mean-squared error (MSE) estimates of the chan-
nel coefficients. We design a training sequence that allows fast, fast
Fourier transform based implementation of these algorithms while
minimizing peak-to-average power ratio at the transmitter, making
our methods scale efficiently to large numbers of antenna elements
and delays. We present the results of a detailed simulation study
that compares our algorithms to several benchmarks. Our study
investigates the effect of SNR, training length, training type, ADC
resolution, and runtime on channel estimation MSE, mutual infor-
mation, and achievable rate. It shows that, in a mmWave MIMO
system, the methods we propose to exploit joint angle-delay spar-
sity allow 1-bit ADCs to perform comparably to infinite-bit ADCs
at low SNR, and 4-bit ADCs to perform comparably to infinite-bit
ADCs at medium SNR.

Index Terms—Low resolution analog-to-digital converter, mil-
limeter wave, channel estimation, approximate message passing.

I. INTRODUCTION

M ILLIMETER wave (mmWave) communication is a
promising technology for future outdoor cellular sys-

tems due to its potential to use very high bandwidth channels
[2]. But larger bandwidths place difficult demands on the re-
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ceiver’s analog-to-digital converters (ADCs). For example, at
rates above 100 Msamples per second, ADC power consump-
tion increases quadratically with sampling frequency [3]. High-
precision ADCs (e.g., ≥ 6 bits) with bandwidths sufficient for
mmWave systems (e.g., ≥ 1 Gsamples/s) are either unavailable
or may be too costly and power-hungry for portable devices [4].
One possible solution is to employ low-resolution ADCs, which
enjoy low power consumption and simple hardware implemen-
tations. Low resolution ADCs have further benefits in MIMO
systems, where a large number of ADCs are needed when dig-
ital baseband processing of all antenna outputs is desired. For
example, in massive MIMO systems, it has been suggested to
equip the base station with dozens of antennas and the same
number of 1-bit ADCs [5]–[7].

In this paper, we consider a receiver architecture based on
few-bit (i.e., 1-4 bit) ADCs, which act to quantize the inphase
and quadrature baseband received signals. The achievable rate of
the quantized MIMO channel was studied in [8]–[10] assuming
channel-state information at the receiver (CSIR) was perfect but
channel-state information at the transmitter (CSIT) was absent.
In the latter case, and assuming equal transmission power at
each antenna, [9] showed that QPSK is the optimum signaling
strategy at low SNR. The perfect-CSIT case was studied in
our previous work [11], where constellation design methods
were proposed to maximize the achievable rate. These methods
achieve much higher rates than QPSK signaling, especially at
high SNR, but require CSIT.

Due to the nonlinear nature of quantization, channel esti-
mation with few-bit ADCs is challenging. To estimate broad-
band SISO channel coefficients, the work [12], [13] proposed
to transmit periodic bursty training sequences, dither the ADCs,
and estimate each tap separately. MIMO channel estimation is
even more challenging because the linear combination of trans-
mitted signals from different antennas is quantized. In [14] and
[15], the MIMO channel was estimated using least squares (LS)
methods. In particular, the quantization error was treated as ad-
ditive white Gaussian noise. As a result, a large estimation error
was introduced.

To take into account quantization effects, iterative channel es-
timation methods using Expectation Maximization (EM) were
proposed and analyzed in [1], [16], [17]. The proposed meth-
ods have high complexity, however, since each EM iteration
computes a matrix inverse and many iterations are needed for
convergence. In addition, [16], [17] considered the MIMO chan-
nel with small antenna arrays in the lower frequency UHF (ultra
high frequency) band, and thus did not take into account the
sparsity of mmWave channels [1], [18]–[20].

In recent work [6], [21]–[23], Approximate Message Passing
(AMP) algorithms were used for channel estimation and (or)
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symbol detection in the massive MIMO channel with few-bit
ADCs. These works assumed that the channel coefficients fol-
low an IID Gaussian distribution and did not exploit the sparsity
inherent in mmWave channels. (Delay-domain sparsity was ex-
ploited in [23] but not angle-domain sparsity.) Also, since they
were based on the massive-MIMO channel, these works did not
exploit structures present in the broadband mmWave model that
can be exploited for significant complexity reduction.

In this paper, we propose high-performance AMP-based
channel estimation schemes for broadband mmWave MIMO
channels with few-bit ADCs. The main contributions of our
work are summarized as follows.

� We formulate the problem of estimating broadband
mmWave channels under few-bit ADCs as a noisy, quan-
tized, compressed-sensing problem. By leveraging sparsity
in both the angle and delay domains, the massive MIMO
channel can be accurately estimated by efficient algorithms
and with relatively short training sequences. To our knowl-
edge, our work is the first to take this approach.

� For channel estimation, we consider two AMP algorithms:
the Generalized AMP (GAMP) algorithm from [24] and
the Vector AMP (VAMP) algorithm from [25], [26]. For
both, we use EM extensions [27], [28] to avoid the need
to specify a detailed prior on the channel distribution. The
GAMP and VAMP algorithms provide nearly minimum-
MSE estimates with relatively low complexity in large-
scale estimation problems and are therefore suitable for
estimating broadband massive MIMO channels.

� We propose a novel training sequence design that results
in low channel-estimation error, low complexity, and low
peak-to-average power ratio. Low complexity is achieved
through a novel FFT-based implementation that will be
described in the sequel.

� We undertake a detailed experimental study of impor-
tant design choices, such as ADC precision, the type and
length of training sequence, and the type of estimation al-
gorithm. When evaluating algorithms, we consider both
performance and complexity. For performance, we con-
sider several metrics: mean-square error (MSE), mutual
information, and achievable rate.

From our experimental study, our main findings are as follows.
� Compared to other algorithms of which we are aware,

the EM-VAMP algorithm has a superior performance-
complexity tradeoff.

� Our FFT-based implementation facilitates low-complexity
estimation of channels with large antenna numbers (e.g.,
64× 64) and delay spreads (e.g., 16 symbol intervals).

� Relative to infinite-bit ADCs, 1-bit ADCs incur only small
performance losses at low SNR, and 3-4-bit ADCs incur
only small losses up to medium SNRs.

� The MSEs of the EM-GAMP and EM-VAMP algorithms
decay exponentially with training length, and the achiev-
able rate is usually maximized by sending a relatively short
training sequence.

A simple version of our proposed methodology was first
published in [1]. Relative to [1], our current work expands from
one-bit to few-bit ADCs, expands from narrowband to broad-
band channels, considers leakage effects in sparse-channel
modeling, considers four training sequence designs instead of
one, considers the VAMP algorithm as well as the GAMP al-

Fig. 1. A Nr ×Nt MIMO system with one-bit quantization at the receiver.
For each receiver antenna, there are two few-bit ADCs. Note that there is no
limitation on the structure of the transmitter.

gorithm, proposes an FFT-based implementation that facilitates
many more antennas and delays, considers Gaussian-mixture
(GM) as well as Bernoulli-Gaussian priors, and incorporates
EM learning of the prior parameters. Also, relative to [1],
the experimental study in our current work is much more
elaborate.

The paper is organized as follows. In Section II, we de-
scribe the broadband MIMO system model with few-bit ADCs.
The channel characteristics of mmWave communications are
then summarized in Section III. In Section IV, we present our
channel-estimation algorithms and training-sequence designs.
Simulation results are presented in Section V, followed by con-
clusions in Section VI.

Notation : a is a scalar, a is a vector and A is a matrix. tr(A),
AT, A∗ and ||A||F represent the trace, transpose, conjugate
transpose and Frobenius norm of a matrix A. A⊗B denotes
the Kronecker product of A and B. vec(A) is a vector stack-
ing all the columns of A. unvec(·) is the opposite operation
of vec(·). CN (x;μ, σ2) � 1

πσ 2 exp(−|x− μ|2/σ2) is the prob-
ability density function of the circularly symmetric complex-
Gaussian distribution with mean μ and variance σ2 . Finally,
j �
√−1.

II. BROADBAND MIMO WITH FEW-BIT ADC

We consider a MIMO system with few-bit ADCs, as illus-
trated in Fig. 1. The transmitter is equipped with Nt antennas
and the receiver is equipped with Nr antennas. A total of 2Nr
few-bit ADCs separately quantize the real and imaginary parts
of the received signal of each antenna. Assuming that the de-
lay spread of the channel is limited to L symbol intervals and
that carrier and symbol synchronization have already been per-
formed, the quantizer output y[i] ∈ CN r×1 at time i can be
written as

y[i] = Q
(

L−1∑
�=0

H[�]t[i− �] + w[i]

)
, (1)

where H[�] ∈ CN r×N t is the baseband channel impulse re-
sponse at lag �, t[i] ∈ CN t×1 is the transmitted symbol at
time i with average transmit power E [t[i]∗t[i]] = Pt , and
w[i] ∼ CN (0, σ2

w IN r ) is additive white Gaussian noise. Fur-
thermore, Q(·) denotes the quantization function, which is ap-
plied component-wise and separately to the real and imaginary
parts.

In this paper, we assume that uniform mid-rise quantization
is used. In particular, if x is a complex-valued scalar x, then
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TABLE I
THE OPTIMUM UNIFORM QUANTIZER FOR A GAUSSIAN UNIT-VARIANCE INPUT SIGNAL [29]

y = Q(x) means

y = sign (Re(x))
(

min
(⌈ |Re(x)|

ΔRe

⌉
, 2b−1

)
− 1

2

)
ΔRe

+ j sign (Im(x))
(

min
(⌈ |Im(x)|

ΔIm

⌉
, 2b−1

)
− 1

2

)
ΔIm ,

(2)

where ΔRe �
(
E
[|Re(x)|2]) 1

2 Δb and ΔIm � (E[|Im(x)|2 ]) 1
2

Δb , and where Δb is a stepsize that will be discussed in the
sequel. In the special case of one-bit quantization, (2) becomes

y = sign (Re(x))

√
2
π

(
E
[|Re(x)|2]) 1

2

+ j sign (Im(x))

√
2
π

(
E
[|Im(x)|2]) 1

2 . (3)

The average powers E
[|Re(x)|2] and E

[|Im(x)|2] can be
easily measured by analog circuits before the ADC, as in
automatic gain control (AGC). In this paper, x is circularly
symmetric, and so E

[|Re(x)|2] = E
[|Im(x)|2] = 1

2 E
[|x|2],

implying that ΔRe = ΔIm .
The quantization stepsize Δb is usually chosen to minimize

the quantization MSE assuming a Gaussian input signal (see,
e.g., [29]). These values of Δb are given in Table I assuming
a unit-power input. The normalized MSE (NMSE), defined as
ηb � E

[ |Q(x)− x|2 ]/E
[ |x|2 ], and the signal to quantization

noise ratio (SQNR), defined as 10 log10
1
ηb

, are also listed in

Table I. From the table it can be seen that Δb ∼ 2−b , ηb ∼ 2−2b

and SQNR ≈ 5b dB. Notice that 4-bit ADCs yield quantization
noise power around 20 dB below the signal power, which sug-
gests that increasing ADC resolution beyond 4 bits should yield
negligible performance improvement in the low and medium
SNR regimes. This intuition will be verified by our simulations
in Section V.

III. SPARSITY OF THE MMWAVE CHANNEL MODEL

In this section, we present the mmWave channel model as-
sumed in our paper. The characteristics of the mmWave chan-
nel, especially the sparsity in the angle-delay domain, will be
exploited by our proposed channel estimation algorithm.

A. Clustered MIMO Channel Model

The mmWave channel can be modeled using Ncl multi-
path clusters, where the nth cluster comprises Nn

path paths
[19]. For the mth path of the nth cluster, we use αn,m , τn,m ,
ϕr

n,m (or θr
n,m ), ϕt

n,m (or θt
n,m ) to denote the complex gain, de-

lay, azimuth (or zenith) angle of arrival, and azimuth (or zenith)
angle of departure, respectively. Using these quantities, the

channel impulse response from (1) can be written as

H[�] =
N c l∑
n=1

N n
p a t h∑

m=1

αn,mar(ϕr
n,m , θr

n,m )a∗t (ϕ
t
n,m , θt

n,m )

× p(�T − τn,m ), 0 ≤ � < L, (4)

where p(t) includes the effects of pulse shaping and analog/
digital filtering, and where ar and at are the array response
vectors of the receive and transmit antenna arrays, respectively.

We assume that the receive and transmit arrays are each con-
figured as a uniform planar array (UPA). This assumption is
quite common. For example, in the massive MIMO systems de-
scribed in [30], [31], UPAs with more than 100 antennas were
tested. In the mmWave 5G cellular system prototype described
in [32], there is a 256-element (16× 16) UPA array panel at the
base station, and two sets of 1× 16 UPA arrays in the top and
bottom portions of the mobile phone.

B. Angle-Delay Representation

The MIMO channel coefficients H[�] ∈ CN r×N t are ex-
pressed in what is known as the “antenna aperture domain.”
We find it convenient to instead work with “angle domain”
coefficients X[�] ∈ CN r×N t , as proposed in [33]. The two rep-
resentations are connected through

H[�] = BN r X[�]B∗N t
, 0 ≤ � < L, (5)

where BN r ∈ CN r×N r and BN t ∈ CN t×N t are the steering ma-
trices for the transmitter and receiver arrays, respectively. De-
note N e

r (N a
r ) as the number of receive antennas in the el-

evation (azimuth) direction, and N e
t (N a

t ) as the number of
transmit antennas in the elevation (azimuth) direction. With an
N e

r ×N a
r receive UPA and an N e

t ×N a
t transmit UPA, we have

that Nr = N a
r N e

r , Nt = N a
t N e

t , and [34]

H[�] =
(
FN a

r
⊗ FN e

r

)
X[�]

(
FN a

t
⊗ FN e

t

)∗
, (6)

whereFN a
r
∈ CN a

r ×N a
r ,FN e

r
∈ CN e

r ×N e
r ,FN a

t
∈ CN a

t ×N a
t , and

FN e
t
∈ CN e

t ×N e
t are unitary Discrete Fourier Transform (DFT)

matrices. The (i, j)th entry of the matrix X[�] can be interpreted
as the channel gain between the jth discrete transmit angle and
the ith discrete receive angle [33].

According to the measurement results reported in [19], the
number of clusters Ncl tends to be relatively few in the mmWave
band as compared to lower-frequency bands. Also, the number
of antenna elements used tends to be large in order to counter-
act the effects of path loss, which is much more severe in the
mmWave band as compared to low-frequency bands. Hence, in
mmWave applications, the number of channel clusters is usually
much fewer than the number of scalar coefficients in {H[�]}L−1

l=0
or {X[�]}L−1

l=0 , i.e., Ncl 
 NrNtL.
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Fig. 2. An example of a broadband MIMO channel with Ncl = 2 multipath
clusters, as seen through a link with 8 × 8 UPAs at both ends. Subfigure (a) plots
in linear scale the mean-squared coefficient magnitude in the antenna aperture

domain
√∑

�
|[H[�]]i ,j |2 , and subfigure (b) plots in linear scale the same for

the angle domain
√∑

�
|[X[�]]i ,j |2 . The angle domain representation in (b)

clearly shows two groups of large-magnitude entries, each of which corresponds
to one multipath cluster.

To show precisely how channel sparsity manifests in the angle
domain, Fig. 2 provides an example of a simulated broadband
mmWave channel with delay spread L = 16 and Ncl = 2 mul-
tipath clusters, each consisting of 10 paths and 7.5 degrees of
azimuth and elevation angular spread, as seen through 8× 8
UPAs at both ends of the link (i.e., Nt = Nr = 64) and raised-
cosine pulse-shape filtering with roll-off factor = 0. These pa-
rameters follow the urban macro (UMa) NLOS channel mea-
surements at 28 GHz reported in [19]. Fig. 2(a) plots the
mean-squared coefficient magnitude in the antenna aperture
domain, i.e.,

√∑
� |[H[�]]i,j |2 , while subfigure (b) plots the

mean-squared coefficient magnitude in the angle domain, i.e.,√∑
� |[X[�]]i,j |2 . Fig. 2(b) shows that, in the angle domain,

the channel energy is concentrated in two locations, each corre-
sponding to one multipath cluster.

We emphasize that the angle-delay channel {X[�]}L−1
�=0 is

jointly sparse in the angle and delay domains. This joint spar-
sity is illustrated in Fig. 3(a) for a 4× 16 MIMO channel with
delay spread L = 16 (see the details in Section V). However,

{X[�]}L−1
�=0 is not exactly sparse, exhibiting what is known as

leakage, in that none of its coefficients are expected to be exactly
zero valued. The approximate nature of the sparsity is also vis-
ible in Fig. 3(a). Our approach based on GAMP will be robust
to leakage effects.

IV. PROPOSED CHANNEL ESTIMATION ALGORITHM

Motivated by the channel model given in the last section,
we now develop an efficient algorithm to estimate the approx-
imately sparse angle-delay domain channel from few-bit mea-
surements and a known training sequence.

A. Problem Formulation

We assume that the training consists of a block transmission
of length Np , denoted as T ∈ CN t×Np , with a cyclic prefix of
length L. After discarding the cyclic prefix, the measurements
take the form

Y = Q(Z + W), (7)

where W is additive Gaussian noise and Z ∈ CN r×Np is the
unquantized noiseless received signal block, of the form

Z =
L−1∑
�=0

H[�]TJ� (8)

=
L−1∑
�=0

BN r X[�]B∗N t
TJ� (9)

= BN r

[
X[0] X[1] X[2] · · · X[L− 1]

]
︸ ︷︷ ︸

� X

×

⎡
⎢⎢⎢⎣

B∗N t

B∗N t

. . .

B∗N t

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
= IL ⊗B∗N t

⎡
⎢⎢⎢⎣

TJ0

TJ1

...
TJL−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
� T̃

(10)

= BN r X

⎡
⎢⎢⎢⎣

B∗N t
TJ0

B∗N t
TJ1

...
B∗N t

TJL−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
� C

, (11)

where J� ∈ RNp×Np is the �-circulant-delay matrix.
We now rewrite Z in vector form z � vec(Z) as

z =
(
CT ⊗BN r

)
vec(X). (12)

Defining y � vec(Y), x � vec(X), and w � vec(W), the
quantized noisy output becomes

y = Q
((

CT ⊗BN r

)
︸ ︷︷ ︸

� A

x + w

)
. (13)

The channel-estimation problem reduces to the following: esti-
mate the angle-delay channel coefficients x ∈ CN t N r L from the
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Fig. 3. The true angle-delay channel magnitudes are plotted in (a), the magnitudes of the EM-GM-VAMP estimate in (b), and the estimation error magnitudes
in (c) in linear scale. In particular, (a) shows |[X[�]]i ,j | at the (x, y) location x = 4� + i and y = j . For this example, there were 2 clusters in a 4 × 16 MIMO
channel with a delay spread of 16 samples. The block length of the training signal was 512 and the SNR was 10 dB. The ADC had 4-bit resolution.

noisy quantized received signal y ∈ CN r Np×1 under the known
linear transform A ∈ CN r Np×N t N r L . For use in the sequel, we
define Ny � NrNp and Nx � NtNrL.

Because the angle-delay channel is sparse (approximately
due to leakage), this channel estimation problem can be viewed
as an instance of noisy quantized compressed sensing. Several
methods have been proposed for noisy quantized compressed
sensing, including quantized iterative hard thresholding (QIHT)
[35], [36], convex relaxation [37], [38], and GAMP [39], [40].
It has also been proposed to treat the quantization error as if
it were additive white Gaussian noise [14], [15]. All of these
methods are strongly dependent on the sparsity rate assumed
for the channel, either explicitly or through the specification of
a regularization term or prior distribution. In practice, though,
the the channel sparsity rate, 1− λ0 in (17) and (18), is a priori
unknown.

B. EM-AMP Algorithms

For channel estimation, we propose to modify two approaches
that combine expectation maximization (EM) with AMP as a
means of avoiding the need to specify a prior. The first is based
on a combination of generalized AMP (GAMP) [24] and EM,
which was proposed in [27] but, to our knowledge, has never
been applied to noisy few-bit quantized compressive sensing.
The second is based on a combination of the recently proposed
vector AMP (VAMP) [25], [26] and EM [28]. To our knowledge,
neither VAMP nor EM-VAMP have been applied to noisy few-
bit quantized compressive sensing. We focus on these AMP
approaches because they offer nearly minimum MSE (MMSE)
performance while being computationally efficient. We provide
background on these methods here to make our paper self-
contained.

1) EM-GAMP: Suppose that a random vector x with IID
components xi ∼ pX is linearly transformed to produce z =
Ax, which then propagates through a probabilistic measure-
ment channel p(y|z) =

∏
i pY |Z (yi |zi). Given knowledge of y,

A, pX , and pY |Z , we would like to compute the MMSE esti-
mate of x. The GAMP algorithm [24] approaches this compu-
tationally difficult problem through a sequence of simple scalar
estimation problems and matrix multiplies. Remarkably, when
A is very large with IID (sub)Gaussian entries, the behavior
of GAMP is rigorously characterized by a scalar state evolution
[24], [41]. When this state evolution has a unique fixed point,
GAMP converges to the MMSE solution. In practice, A may

Algorithm 1: The EM-GAMP Algorithm.
1: define:

pZ |Y ,P (zi |yi, p̂i ; νp) �
pY |Z (yi |zi)CN (zi ; p̂i , νp)∫
z pY |Z (yi |z)CN (z; p̂i , νp)

(14)

pX |R (xi |r̂i ; νr ,θ) � pX (xi ;θ)CN (xi ; r̂i , νr )∫
x pX (x;θ)CN (x; r̂i , νr )

(15)

2: initialize: ŝ = 0, θ, x̂i =
∫

x x pX (x;θ) ∀i,
νx =

∫
x |x− x̂1 |2pX (x;θ),

3: for k = 0, 1, . . . , Nmax do
4: νp ← ‖A‖2F νx/Ny

5: p̂← Ax̂− νp ŝ
6: νz ← Ny

−1 ∑Ny

i=1 VarZ |Y ,P

[
zi

∣∣ yi, p̂i ; νp

]
7: ẑi ← EZ |Y ,P

[
zi

∣∣ yi, p̂i ; νp

]
, ∀i

8: νs ←
(
1− νz/νp

)
/νp

9: ŝi ← ν−1
p (ẑi − p̂i) , ∀i

10: ν−1
r ← ‖A‖2F νs/Nx

11: r̂← x̂ + νrA∗ ŝ
12: νx ← Nx

−1 ∑Nx

i=1 VarX |R
[
xi

∣∣ r̂i ; νr ,θ
]

13: x̂i ← EX |R
[
xi

∣∣ r̂i ; νr ,θ
]
, ∀i

14: update the parameters θ using EM algorithm;
15: end for
16: return x̂.

not be a very large IID (sub)Gaussian matrix, in which case the
theoretical guarantees of GAMP do not hold. Still, the estimates
it provides after a few (e.g., < 25) iterations are often very close
to MMSE (see, e.g., [27]).

GAMP requires specification of pX , which is unknown in
practice. To circumvent this problem, [27] proposed to approx-
imate the true pX by a Gaussian-mixture with parameters θ
learned by an EM algorithm. In the E-step of the EM algo-
rithm, GAMP’s posterior approximation is used in place of the
true posterior, which is NP-hard to compute. The resulting EM-
GAMP algorithm was empirically analyzed in [27], where it
was shown to give similar performance to true-pX GAMP for
a wide range of true pX (e.g., sparse, heavy tailed, discrete).
Generalizations of EM-GAMP were theoretically analyzed in
[42] using the GAMP state evolution.

Algorithm 1 details the steps of EM-GAMP. Lines 1-13 are
from the original GAMP algorithm and line 14 is the EM
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Algorithm 2: The EM-VAMP Algorithm.

1: define: pZ |Y ,P and pX |R from (14)-(15).
2: initialize: r1 ,p1 , ν1 , τ1 and θ.
3: for k = 0, 1, . . . , Nmax do
4: // Scalar estimation of xi

5: x̂1i ← EX |R [xi | r1i ; ν1 ,θ], ∀i
6: α1 ← ν−1

1 Nx
−1 ∑Nx

i=1 VarX |R [xi | r1i ; ν1 ,θ]
7: r2 ← (x̂1 − α1r1)/(1− α1), ν2 ← ν1α1/(1− α1)
8: // Scalar estimation of zi

9: ẑ1i ← EZ |Y ,P [zi | yi, p1i ; τ1 ], ∀i
10: β1 ← τ−1

1 Ny
−1 ∑Ny

i=1 VarZ |Y ,P [zi | yi, p1i ; τ1 ]
11: p2 ← (ẑ1 − β1p1)/(1− β1), τ2 ← τ1β1/(1− β1)
12: // LMMSE estimation of x
13: x̂2←VA (S∗ASAν2/τ2 + I)−1

(
S∗AU∗Ap2ν2/τ2

+V∗Ar2
)

14: α2 ← Nx
−1 ∑Nx

n=1 τ2/(s2
nν2 + τ2)

15: r1 ← (x̂2 − α2r2)/(1− α2), ν1 ← ν2α2/(1− α2)
16: // LMMSE estimation of z
17: ẑ2 ← Ax̂2
18: β2 ← (1− α2)Ny/Nx

19: p1 ← (ẑ2 − β2p2)/(1− β2), τ1 ← τ2β2/(1− β2)
20: update the parameters θ using EM algorithm;
21: end for
22: return x̂1 .

update. Lines 6-7 can be interpreted as computing the posterior
mean and variance of zi under the likelihood pY |Z (yi |zi) and a
pseudo-prior zi ∼ CN (p̂i , νp), where p̂i and νp are updated in
lines 4-5. Likewise, lines 12-13 can be interpreted as computing
the posterior mean and variance of xi under the prior pX (xi ;θ)
and pseudo-measurement r̂i = xi + CN (0, νr ), where r̂i and
νr are updated in lines 8-11. We note that, if A has a fast (e.g.,
FFT-based) implementation, then EM-GAMP can leverage this
in lines 5 and 11. For more details on EM-GAMP, we refer the
reader to [24], [27].

2) EM-VAMP: The VAMP algorithm [25], [26] aims to
solve exactly the same problem targeted as GAMP and—like
GAMP—is rigorously characterized by a scalar state-evolution.
But VAMP’s state evolution holds for a much broader class of
matrices A: those that are right-rotationally invariant (RRI). For
A to be RRI, its SVD A = UASAV∗A should have VA drawn
uniformly from the set of unitary matrices; there is no restriction
on UA and SA . For MMSE estimation, VAMP must be given
the prior pX and likelihood pY |Z . When they are not available,
approximations can be learned through the EM methodology,
as described in [28].

Algorithm 2 details the steps of EM-VAMP. As can be seen,
it alternates between nonlinear scalar estimations (lines 4-11),
linear vector estimations (lines 12-19), and an EM update
(line 20). For scalar estimation, the conditional mean and
variance of xi under prior pX (xi) and pseudo-measurements
r1i = xi + CN (0, ν1) are computed in lines 5-6, and the con-
ditional mean and variance of zi under likelihood pY |Z (yi |zi)
and pseudo-prior zi ∼ CN (p1i , τ1) are computed in lines 9-10.
Lines 13 and 17 then compute the joint MMSE estimate of x

and z under the pseudo-prior[
x
z

]
∼ CN

([
r2
p2

]
,

[
ν2I

τ2I

])
(16)

and the constraint z = Ax. We note that EM-VAMP can lever-
age fast implementations of UA and VA if they exist. For more
details, we refer the reader to [25], [26], [28].

C. EM-AMP Algorithms for mmWave Channel Estimation
with Few-bit ADCs

To apply EM-GAMP and EM-VAMP to mmWave channel-
estimation with few-bit ADCs, we choose the (approximating)
prior family as either a Bernoulli Gaussian-mixture (GM) or
Bernoulli-Gaussian (BG), with unknown parameters θ.1 That
is, the coefficients xi of x are assumed to be drawn from one of
the following:

GM: pX (xi ;θ) = λ0δ(xi) +
∑

i

λi CN (xi ;μi, φi) ∀i, (17)

BG: pX (xi ;θ) = λ0δ(xi) + (1− λ0)CN (xi ; 0, φ) ∀i, (18)

where λ0 = Prob{x = 0} and {λi}, {μi}, {φi} are the weights,
means, and variances of the Gaussian mixture, respectively
(which are all included in θ), and δ(·) is the Dirac delta dis-
tribution. Since GM has more degrees of freedom than BG, it
can form a better fit to the true channel distribution and thus
leads to better estimation performance than BG. As shown in
the simulations, the complexity of GM is a bit higher than
BG since more parameters have to be estimated. The expres-
sions for EX |R [xi | r̂1 ; νr ,θ] and VarX |R [xi | r̂i ; νr ,θ] needed
in lines 12-13 of Algorithm 1 and lines 5-6 of Algorithm 2 can
be found in [27], as can the EM-update expressions for θ.

For the few-bit quantizer (2), the likelihood pY |Z is

pY |Z (yi |zi) � Prob {yi = Q(zi + wi) | zi} (19)

=
∫

w∈Q−1 (yi )−zi

CN (w; 0, σ2
w ). (20)

The expressions for EZ |Y ,P [zi | yi, p̂i ; νp ] and VarZ |Y ,P [zi |
yi, p̂i ; νp ] needed in lines 6-7 of Algorithm 1 and lines 9-10 of
Algorithm 2 can be obtained by following the procedures in [43,
Chapter 3.9]. Further details can be found in [6, Appendix A].

D. Computational Issues and Training Sequence Design

In practical mmWave applications, the dimensions Ny =
NrNp and Nx = NtNrL of the matrix A are expected to be very
large. For example, in our simulations, we consider Nt = Nr =
64, Np = 1024, and L = 16, which yield Ny = Nx = 65536.
Storing such an A as an explicit matrix using 4-bytes each for the
real and imaginary components would require 32 GB of mem-
ory, which is inconvenient in many applications. Even when A
fits in memory, the computational complexity of EM-GAMP
and EM-VAMP (or any known algorithm, for that matter) will
be impractical if A is treated as an explicit matrix, due to, e.g.,
per-iteration matrix-vector multiplies with A and A∗.

1In this paper, we model x using an IID sparse prior. We do not exploit
possible correlation within x, which may improve estimation accuracy.
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For EM-GAMP, these problems are avoided if A and A∗
can be represented as implicit fast operators. Likewise, for EM-
VAMP, UA , U∗A , V∗A , and VA should be fast operators. Re-
calling from (13) that A = CT ⊗BN r with Fourier BN r and
T-dependent CT, we see that the training sequence T will de-
termine whether A is a fast operator. Thus, the design of the
training signal plays a vital role in the practical implementability
of mmWave channel estimation.

There are, in fact, three considerations for the design of the
training signal T:

1) For GAMP to be computationally efficient, A and A∗
should be fast operators, and for VAMP to be computa-
tionally efficient, UA , U∗A , V∗A , VA should be.

2) For GAMP to converge to a good solution, A should
be sufficiently dense and have sufficiently low peak-to-
average squared-singular-value ratio [44].

3) To improve the efficiency of the power amplifier at the
transmitter, the elements of T should have low peak-to-
average power ratio (PAPR).

1) Training Structure: To satisfy these three considerations,
we propose to structure T ∈ CN t×Np as follows. Denote the
first row of T, i.e., the signal sent by the first transmit antenna,
as tT � [t [0] , . . . , t [Np − 1]]. We fix Np at an integer multiple
of NtL and construct T such that its nth row (for n ≥ 0) is
the nL-place circular shift of tT. That is, each antenna sends a
circularly shifted version of the signal transmitted by the first
antenna. The elements of T (for m ≥ 0) are then

[T]n,m = t[〈m− nL〉Np ], (21)

where 〈·〉Np is the modulo-Np remainder. With the con-
struction in (21), TJ0 from (10) contains the {0, L, 2L,
..., (Nt − 1)L} shifts of t. Likewise, TJ1 contains the
{1, L + 1, 2L + 1, ..., (Nt − 1)L + 1} shifts of t, and TJL−1
contains the {L− 1, 2L− 1, 3L− 1, ..., NtL− 1} right shifts
of t. Altogether, the rows of T̃ in (10) will consist of the first
NtL circular shifts of the sequence t. We can thus re-order the
rows in T̃ to make it a Toeplitz matrix, which we will denote by
T in the sequel.

2) Fast Implementation of Ax̂ and A∗ŝ: Using the structure
above, Ax̂ and A∗ŝ can be efficiently computed. Notice

unvec (Ax̂)

= BN r X̂
(
IL ⊗B∗N t

)
T̃ (22)

(a)
= BN r X̂

(
IL ⊗B∗N t

)
K(L,N t )T (23)

(b)
= BN r X̂K(L,N t )K(N t ,L) (IL ⊗B∗N t

)
K(L,N t )T (24)

(c)
= BN r X̂K(L,N t )

(
B∗N t

⊗ IL

)
T (25)

(d)
= BN r

[
T

T (
B∗N t

⊗ IL

)
X
]T

, (26)

where (a) follows with commutation matrix2 K(L,N t ) ∈
RN t L×N t L ; (b) follows from K(L,N t )K(N t ,L) = IN t L ; (c) fol-
lows from K(N t ,L)

(
IL ⊗B∗N t

)
K(L,N t ) = B∗N t

⊗ IL ; and (d)

2The commutation matrix matrix K(m ,n ) is the mn ×mn matrix
which, for any m × n matrix M, transforms vec(M) into vec(MT), i.e.,
K(m ,n ) vec(M) = vec(MT).

follows from X � (X̂K(L,N t ))T, (A⊗B)T = AT ⊗BT, and
the symmetry of B∗N t

. Note that X̂K(L,N t ) is merely a reorder-

ing of the columns in X̂.
We now show that (26) has a fast implementation. First, for

any v ∈ CLN t×1 , notice that(
B∗N t

⊗ IL

)
v = vec

(
VB∗N t

)
= vec ((BN t V

∗)∗) , (27)

where V ∈ CL×N t is the column-wise matricization of v. Sec-
ond, for any u ∈ CN t×1 , notice that

BN t u =
(
FN a

t
⊗ FN e

t

)
u = vec

(
FN e

t
UFN a

t

)
, (28)

where U ∈ CN e
t ×N a

t is the column-wise matricization of u.
Therefore, each of the Nr columns of the multiplication(
B∗N t

⊗ IL

)
X in (26) can be accomplished by N e

t -point and
N a

t -point FFTs.3 The result of that multiplication is then left-

multiplied by T
T
, which can be performed via fast convolution

using an Np -point FFT (since T
T

contains the first NtL columns
of an Np ×Np circulant matrix). Finally, the left-multiplication
by BN r can be performed, as in (28), using N a

r -point and N e
r -

point FFTs. In summary, there are a total of NrL FFTs of length
Np , one inverse-FFT of length Np , N a

t Nr FFTs of length N e
t ,

N e
t Nr FFTs of length N a

t , N a
r Np FFTs of length N e

r , and N e
r Np

FFTs of length N a
r . Multiplications of the form A∗ŝ can be

computed similarly. Note also that the memory footprint of A
reduces to that of t ∈ CNp .

3) Choice of the Training Sequence t: For GAMP to work
well, we want the measurement matrixA to have sufficiently low
peak-to-average squared-singular-value ratio [44]. Likewise, for
VAMP to be fast, we want the singular-vector matrices UA and
VA of A to be fast operators. We now show that both concerns
can be addressed through the design of t.

From (10), (11), and (13), the matrix A can be written as

A =
((

IL ⊗B∗N t

)
T̃
)T
⊗BN r . (29)

Since IL ⊗B∗N t
and BN r are unitary matrices, the singular

values of A have the form

λ1 , . . . , λ1︸ ︷︷ ︸
N r

, λ2 , . . . , λ2︸ ︷︷ ︸
N r

, . . . , λN t L , . . . , λN t L︸ ︷︷ ︸
N r

, (30)

where λ1 , λ2 , . . . , λN t L are the singular values of T̃. Therefore,
we want T̃ to have sufficiently low peak-to-average squared-
singular-value ratio. One way to ensure this property is to choose
t as a Zadoff-Chu (ZC) sequence [45].

A length-Np ZC sequence is defined as

t[k] =

⎧⎪⎪⎨
⎪⎪⎩

√
Pt

Nt
exp

(
j
πk(k + 1)

Np

)
if Np is odd,√

Pt

Nt
exp

(
j
πk2

Np

)
if Np is even.

(31)

3To see this, note that each column of the multiplication (B∗N t
⊗ IL )X can

be represented as (27) with appropriate v, and thus computed via BN t V
∗ due

to (27). Then, BN t V
∗ can be computed columnwise through subproblems of

the form (28) with appropriate u, which in turn can be tackled through N e
t -point

FFTs of the columns of U and N a
t -point FFTs of the rows of U = unvec(u),

as shown by the right side of (28).
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The periodic autocorrelation of a ZC sequence equals a scaled
Kronecker delta. As a result, T̃T̃∗ = P t Np

N t
IN t L , and so λ1 =

λ2 = · · · = λN t L =
√

PtNp/Nt . Consequently, A will have
the minimum possible peak-to-average squared-singular-value
ratio, which is good for GAMP. Furthermore, this singular-value
structure implies that the singular-vector matrices can be chosen

as VA = I and UA =
√

N t
P t Np

A. Since VA and UA have fast

implementations, they are good for VAMP.
An additional benefit of choosing the ZC sequence for t

is its constant-modulus property, which ensures that T has a
low peak-to-average power ratio PAPR. For this reason, ZC
sequences are currently used as reference signals in LTE [46].

4) Other Choices of T: In Section V, we investigate other
training designs, for example, T composed of Golay comple-
mentary sequences, IID QPSK entries, and IID Gaussian en-
tries. Although their recovery performance is comparable to
our proposed design, they lead to GAMP and VAMP algo-
rithms with much higher complexity due to the lack of fast
methods to compute the matrix-vector multiplications with
A,A∗,UA ,U∗A ,VA ,V∗A .

E. Benchmark Algorithms

In this section, we describe several other signal reconstruction
approaches that we will use as benchmarks. The first approach
is the LS estimator adopted in [5], [14], [15]. In this case

X̂LS = B∗N r
YC†, (32)

where C† is the Moore-Penrose pseudo-inverse of C. When C
has full row-rank, we have

X̂LS = B∗N r
YC∗ (CC∗)−1 . (33)

Another approach is obtained by linearizing the quantizer and
applying LMMSE [47], [48]. We explain the linearization pro-
cedure because it will be used later for achievable-rate analysis.
Using Bussgang’s theorem, the quantizer output y can be de-
composed into a signal component plus a distortion wq that is
uncorrelated with the signal component [10], i.e.,

y = Q (Ax + w)

= (1− ηb) (Ax + w) + wq , (34)

where ηb is the NMSE given in Table I. Under additional mild
assumptions, [10, eq. (30)] showed that the “effective” noise
ŵ � (1− ηb)w + wq in the linearized model

y = (1− ηb)Ax + ŵ (35)

has covariance Σŵ that is well approximated as

Σŵ ≈ (1− ηb)
(
(1− ηb)E [ww∗]

+ ηbdiag
(
E [Axx∗A∗] + E [ww∗]

))
� Σ̂ŵ , (36)

where diag(M) is formed by zeroing the off-diagonal elements
of M. If we furthermore assume E[xx∗] = σ2

xI with σ2
x given

in (45) then, due to the independence of x and A,

Σ̂ŵ = (1− ηb)σ2
w IN r Np + ηb(1− ηb)σ2

xdiag
(
E[AA∗]

)
(37)

(a)
= (1− ηb)σ2

w IN r Np + ηb(1− ηb)σ2
xdiag

(
E[T̃∗T̃]T ⊗ IN r

)
=

(
(1− ηb)σ2

w + ηb(1− ηb)PtLσ2
x

)
IN r Np , (38)

where (a) uses AA∗ = (C∗C)T ⊗ IN r = (T̃∗T̃)T ⊗ IN r ,
which follows from from (13), the unitary property of BN r , and
(10)–(11), and (38) uses diag(E[T̃∗T̃]) = PtLINp , which fol-
lows from the transmitter power constraint. Thus, the effective
noise ŵ can be approximated as spectrally white with variance

σ2
ŵ = (1− ηb)

(
σ2

w + ηbPtLσ2
x

)
. (39)

The approximation (36) has been shown to be quite accurate for
MIMO communication, especially at low SNR [10], [49]. Note,
however, that ŵ is non-Gaussian.

Assuming E[xx∗] = σ2
xI (as above) and leveraging the result

(38) that E[ŵŵ∗] ≈ σ2
ŵ I, one can straightforwardly derive the

linear MMSE (LMMSE) estimator of x from y in (35). We
will refer to it as the “approximate LMMSE (ALMMSE) es-
timator” due to the approximation (36). Expressed in terms of
X = unvec(x), it takes the form

X̂ALMMSE

= B∗N r
YC∗

(
(1− ηb)CC∗ +

(
σ2

w

σ2
x

+ ηbPtL

)
IN t L

)−1

,

(40)

which is similar to (33) but with a regularized inverse.
A third benchmark algorithm follows by applying sparse re-

construction to the linearized model (35), which—unlike the
methods above—leverages the fact that x is approximately
sparse due to leakage. In particular, we used the “SPGL1” algo-
rithm [50] to solve the basis pursuit denoising (BPDN) problem

arg min ‖x‖1 s.t. ‖y − (1− ηb)Ax‖2 ≤ σ2
ŵ NpNr , (41)

with σ2
ŵ defined in (39).4 Similar to EM-GAMP and EM-

VAMP, the computational complexity of SPGL1 is dominated
by matrix-vector multiplications with A and A∗, and so the fast
implementation (26) is used.

A fourth benchmark algorithm is the quantized iterative hard
thresholding (QIHT) algorithm proposed in [35], [36]. At itera-
tion k = 1, 2, . . . , the estimate is updated as

ŝ(k) = Q
(
y −Ax̂(k)

)
, (42)

x̂(k+1) = hK

(
x̂(k) + τA∗ŝ(k)

)
, (43)

where hK (x) is the hard thresholding operator that zeros all but
the K largest (in magnitude) components of x. For convergence,
it is suggested that τ < ‖A‖−2

2 for spectral norm ‖A‖2 . Our
simulations used x̂(1) = 0, τ = 0.1 N t

P t Np
, and K = Nx/100.

That is, QIHT kept only the largest 1% of the elements in each
iteration.

4We also tried the �1 -based method from [37], but we experienced numerical
problems with their first-order method. Since our A was too large to fit in
memory, we could not use the CVX implementation of [37] nor [38].
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F. Norm Estimation of the Channel

With a one-bit ADC, all amplitude information is lost during
quantization. Therefore, it is difficult to precisely recover the
channel norm ‖x‖, especially at high SNR. In previous work
[6], [7], the variance of the channel was assumed to be known to
avoid this issue. However, it is possible in practice to estimate
the channel norm from the average signal power received by
the antenna circuit before quantization, for example, the AGC
circuit.

Let us use ẑ � (CT ⊗BN r )x + w to denote the noisy un-
quantized signal. We assume that it is possible to measure the
total received power across all antennas, which is E[‖ẑ‖2 ]. Un-
der the assumption that E[xx∗] = σ2

xI, it is straightforward to
show that

E[‖ẑ‖2 ] = ‖CT ⊗BN r ‖2F σ2
x + NpNrσ

2
w . (44)

In the UPA case, we have ‖CT ⊗BN r ‖2F = Nr‖C‖2F , and for
ZC training we have ‖C‖2F = PtNpL, which implies that

σ2
x =

E[‖ẑ‖2 ]−NpNrσ
2
w

PtLNpNr
. (45)

Under E[xx∗] = σ2
xI, the law of large numbers then says that

‖x‖ ≈ σx

√
NrNtL for large NrNtL. Thus, for all channel es-

timators, we normalized the channel estimate x̂ as follows,

x̃ = x̂
‖̂x‖
‖x̂‖ for ‖̂x‖ � σx

√
NrNtL, (46)

since it reduced the channel estimation error in all cases.

V. SIMULATION RESULTS

We first provide an illustrative example to visualize the behav-
ior of the proposed channel estimation procedure. In Fig. 3, we
show the result of estimating a broadband Nr ×Nt = 4× 16
MIMO channel. The transmitter was equipped with a 4× 4 UPA
and the receiver with a 2× 2 UPA. The channel had Ncl = 2
clusters and delay spread of at most L = 16 samples. 4-bit ADCs
and raised-cosine pulse-shaping with roll-off factor zero was
used. The training length was shifted-ZC of length Np = 512.
The true magnitudes of the angle-delay channel are plotted in
Fig. 3(a) while the estimated magnitudes are plotted in Fig. 3(b).
As seen in the figure, the EM-GM-VAMP algorithm can esti-
mate the channel X quite accurately: the two clusters can be
easily identified in Fig. 3(b) and the estimation error in Fig. 3(c)
is small. The joint angle-delay sparsity of the mmWave chan-
nel is visible in Fig. 3(a), as is the approximate nature of the
sparsity.

In the following subsections, we consider a more practical
scenario, where the transmitter and receiver are both equipped
with 8× 8 UPAs. We consider a channel with 4 clusters, each
of 10 paths, with azimuth and elevation angular spread of
7.5 degrees. The delay spread was at most 16 samples. These
numbers were chosen according to the urban macro (UMa)
NLOS channel measurement results at 28 GHz, as given in the
white paper [19]. The results we report are the average of 100
different channel realizations. The channel was normalized so

Fig. 4. EM-GM-VAMP recovery performance versus SNR for training matrix
T constructed from IID Gaussian entries, IID QPSK entries, Golay comple-
mentary sequences, and shifted-ZC sequences. Here, Nt = Nr = 64, L = 16,
Ncl = 4, and Np = 2048.

that E
[∑

� ‖H[�]‖2F
]

= E
[‖x‖2] = NtNr . We define

SNR � E[‖z‖2 ]
E[‖w‖2 ] =

E[tr {Axx∗A∗}]
NrNpσ2

w

=
PtLNpNr

LNrNpσ2
w

=
Pt

σ2
w

.

A. Choice of Training Matrix

We first investigate the performance of various choices of
training matrixT. In addition to the circularly-shifted-ZC design
proposed in Section IV-D, we try T constructed from Golay
complementary sequences, IID random Gaussian entries, and
IID random QPSK entries. The channel estimation NMSEs of
EM-GM-VAMP with these T are compared in Fig. 4, where

NMSE(x̃) � E

[‖x̃− x‖2
‖x‖2

]
, (47)

for x̃ normalized according to (46). As seen in the figure, the
NMSEs of the four training designs are very close. However,
the Golay sequence, random QPSK, and ZC sequences are pre-
ferred because of their constant modulus property, which leads
to low PAPR. Furthermore, the ZC-based design allows efficient
implementation of the matrix-vector multiplications in VAMP,
as discussed in Section IV-D.

The runtime of the matrix-vector multiplications Ax̂ and
A∗ŝ and their fast implementations (using MATLAB R2016a
on a standard desktop computer) are shown in Fig. 5. In the
baseline implementation, Ax̂ was computed via vec(BN r X̂C)
to avoid generating and storing the high-dimensional matrix
A, and the computation of A∗ŝ was done similarly. The fast
implementation was described in Section IV-D. As seen in the
figure, the fast implementation consumes much less time than
the baseline implementation. Much faster runtimes would be
possible if the FFTs were implemented in hardware.

B. Algorithm Complexity

We now investigate the computational complexity of the var-
ious algorithms under test. Fig. 6 shows NMSE versus itera-
tion for EM-GAMP, EM-VAMP, and QIHT. The figure shows
the VAMP algorithms converging in ≈3 iterations, the GAMP
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Fig. 5. Runtime versus training length Np to compute the matrix-vector mul-

tiplications Ax̂ and A∗ŝ implemented via Ax̂ = vec
(
BN r X̂C

)
or via the

fast method from Section IV-D. Here, Nt = Nr = 64 and L = 16, so that the
dimensions of A are (64Np ) × 65536.

Fig. 6. NMSE versus iteration for several algorithms. Here, SNR = 0 dB, the
ADC had 4 bits, and the training was shifted ZC of length Np = 2048.

algorithms converging in ≈8 iterations, and QIHT converging
in ≈ 35 iterations.

To further investigate algorithm complexity, we plot NMSE
versus runtime in Fig. 7. We controlled the runtime of the QIHT,
EM-GAMP and EM-VAMP algorithms by varying the number
of iterations. The other three (non-iterative) algorithms are each
represented by a single point on the plot. The figure shows
that EM-GM-VAMP gives the best NMSE-complexity trade-
off for runtimes >0.4 s, while EM-BG-VAMP gives the best
trade-off for runtimes between 0.17 s and 0.4 s. The relatively
long time required to complete the first iteration of EM-VAMP
is likely due to the object-oriented MATLAB implementation5

and would likely not be an issue in a dedicated implementation.
Although QIHT can complete a few of its iterations before
the first EM-BG-VAMP iteration, the corresponding estimates
are probably not useful because their NMSE is so poor. The
figure also shows that the NMSE-complexity frontier of EM-
BG-GAMP is not too far away from that of EM-GM-VAMP, and

5MATLAB codes for EM-GAMP and EM-VAMP are available from
http://sourceforge.net/projects/gampmatlab/.

Fig. 7. NMSE versus runtime for several algorithms, where the number of
algorithm iterations was varied to obtain different runtimes. Here, SNR = 0 dB,
the ADC had 4 bits, and the training was shifted ZC of length Np = 2048.

TABLE II
ALGORITHMIC COMPLEXITY

that SPGL1 achieves one specific point on the EM-BG-GAMP
frontier. Finally, the figure shows that the LS and ALMMSE
algorithms are far from optimal.

Table II summarizes the complexity scalings of the algo-
rithms under test. The complexities of the LS and ALMMSE
approaches are dominated by the inversion of an Np ×Np
matrix, where Np is an integer multiple of NtL, and so
their complexities scale as O(Nt

3L3). The complexities of
the EM-AMP, SPGL1, and QIHT algorithms are dominated
by the matrix-vector multiplications with A and A∗. Matrix
A is of size Nx ×Ny , where Nx = NtNrL and Ny = NrNp .
Since Np is an integer multiple of NtL, both Nx and Ny

are O(NtNrL). And since we use an FFT-like algorithm to
implement the matrix-vector multiplies with A and A∗, the
complexity order of EM-AMP, SPGL1, and QIHT scales as
O(NtNrL log(NtNrL)

)
. In our simulations, Nt and Nr are of

a similar size, and so we conclude that the complexity scaling
of EM-AMP, SPGL1, and QIHT is much lower than that of LS
and ALMMSE.

C. Effect of SNR, ADC Resolution, and Training Length

We now investigate estimation performance versus SNR,
ADC resolution, and training length. Fig. 8 shows the NMSE
of the VAMP algorithms versus SNR. The figure shows that, at
low SNR (< 0 dB), the performance gap between 1-bit ADC
and infinite-bit ADC is only 2 dB. But as the SNR increases, the
gap between 1-bit and infinite-bit performance grows. Thus,
higher resolution ADCs provide significant benefits only at
higher SNRs. To reduce power consumption and cost, few-bit
ADCs should be deployed when the SNR is low.
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Fig. 8. NMSE versus SNR for the EM-VAMP algorithm under various ADC
resolutions. Here, the training was shifted ZC with length Np = 2048.

Fig. 9. NMSE versus ADC resolution for several algorithms. Here,
SNR = 10 dB and the training was shifted ZC with length Np = 2048.

Fig. 9 shows NMSE versus ADC resolution for all algorithms
under test when SNR = 10 dB. The figure shows that NMSE
decreases with ADC resolution for all algorithms, but not in a
uniform way. For example, SPGL1 and QIHT perform similarly
with 1 and 2 bits of resolution, but SPGL1 benefits from higher
ADC resolution while QIHT does not. In fact, SPGL1 performs
as good as EM-BG-GAMP/VAMP for > 7 bits, but significantly
worse with few bits, because it does not leverage the structure
of the quantization error. The figure also shows that, when the
EM-GAMP/VAMP are used, there is little benefit in increasing
the ADC resolution above 4 bits at this SNR.

Fig. 10 shows the NMSE of the VAMP algorithms versus
training length Np . We note that, as the training length varies
from 1024 to 5120, the sampling rate relative to Nyquist, i.e.,
Ny

Nx
= Np N r

LN t N r
= Np

1024 , varies from 1 to 5. The figure shows that
the NMSE decays polynomially with the training length. In
particular, NMSE ∝ Np

−α with α ≈ 1/2.

D. Mutual Information and Achievable Rate Bounds

In this section, we investigate the effect of channel-estimation
accuracy on mutual information and achievable rate, which are

Fig. 10. NMSE versus training length for the EM-VAMP algorithm under
various ADC resolutions. Here, the training was shifted ZC and SNR = 0 dB.
It is observed that the estimation error exponentially decreases with the training
length.

important metrics for communication systems. Our methodol-
ogy is inspired by that in [20].

We consider OFDM transmission with Nb subcarriers. For
the kth subcarrier, denote the true frequency-domain MIMO
channel by Gk ∈ CN r×N t , the transmitted signal by sk , and
the variance-σ2

w f
additive Gaussian noise by wk . Using the lin-

earized model (35), the kth subcarrier output is

yk = (1− ηb)Gksk + ŵk , (48)

with effective noise ŵk = (1− ηb)wk + wq,k . Using the Buss-
gang approximation (36), we can approximate its covariance
(conditional on {Gl}Nb

l=1) by

E [ŵk ŵ∗k | {Gl}] ≈ (1− ηb)

[
σ2

w f
IN r (49)

+ ηbdiag

(
1

Nb

Nb∑
l=1

GlRlG∗l

)]
� Σ̂ŵ k

,

where Rk � E[sks∗k ] and the averaging over Nb subcarriers
occurs because quantization is performed in the time-domain.

Suppose that sk is precoded based on the estimated frequency-
domain channel Ĝk , which is computed from the estimated
time-domain channel {Ĥ[�]}L−1

�=0 . In particular,

sk =
min(N t ,N r )∑

m=1

v̂km
√

pkm dkm , (50)

where v̂km is the mth right-singular vector of Ĝk , pkm ≥ 0 are
the powers allocated by the waterfilling algorithm, and dkm is a
unit-variance message-bearing symbol.

If each stream is decoded independently and the effective
noise ŵk is treated as if it has the worst-case Gaussian distribu-
tion with covariance Σ̂ŵ k

, then the mutual information between
{sk}Nb

k=1 and {yk}Nb
k=1 conditioned on {Gk}Nb

k=1 (in units of
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Fig. 11. Mutual information lower bound (51) versus SNR for EM-VAMP
under various ADC resolutions. Here, the training was shifted ZC with length
Np = 2048.

bps/Hz) is lower bounded by [51]

I
(
{sk}Nb

k=1 , {yk}Nb
k=1

∣∣∣{Gk}Nb
k=1

)

� E

⎧⎨
⎩ 1

Nb

Nb∑
k=1

min(N t ,N r )∑
m=1

log2

(
1 (51)

+
(1− ηb)2 |û∗kmGk v̂km |2pkm

û∗km Σ̂ŵ k
ûkm +

∑
n �=m (1− ηb)2 |û∗kmGk v̂kn |2pkn

)}

where ûkm is the mth left-singular vector of Ĝk . The expec-
tation in (51) is taken over {Gk}Nb

k=1 and the effective noise
{ŵk}Nb

k=1 . (Because the channel estimates depend on Gk and
ŵk , so do ûkm and v̂km .) If the coherence time of the channel
is Nco symbols, then a lower bound on the achievable rate (in
bps/Hz) is given by [51]

R ≥ Nco −Np

Nco
I
(
{sk}Nb

k=1; {yk}Nb
k=1

∣∣∣{Gk}Nb
k=1

)
, (52)

where N c o−Np
N c o

represents loss due to training overhead.
Fig. 11 plots the mutual information lower bound (51)

versus SNR under EM-GAMP/VAMP channel estimates and
perfect CSI at various ADC resolutions, using Monte-Carlo
to approximate the expectation. The figure shows that using
EM-GAMP/VAMP channel estimates results in a relatively
small loss in mutual information compared to perfect CSI. It
also shows that, at low SNR, the mutual information loss of
few-bit ADC relative to infinite-bit ADC is small.

Fig. 12 plots the mutual information lower bound (51) ver-
sus ADC resolution for all the channel-estimation algorithms
under test at SNR = 10 dB. The figure shows that the EM-GM-
GAMP/VAMP algorithms achieve the highest mutual informa-
tion, with EM-BG-GAMP/VAMP close behind at low ADC
resolutions. The figure also shows that the mutual information
saturates when the ADC resolution is >5 bits at this SNR.

Fig. 13 shows the achievable rate lower bound (52) versus
training length Np for the EM-VAMP algorithms. For this ex-
periment, the channel coherence time was assumed to be Nco =
10240 symbols. The figure shows that, under these conditions,

Fig. 12. Mutual information lower bound (51) versus ADC resolution for
several algorithms. Here, SNR = 10 dB and the training was shifted ZC with
length Np = 2048.

Fig. 13. Achievable rate lower bound (52) versus training length Np for the
EM-VAMP algorithm under various ADC resolutions. Here, SNR = 10 dB, the
coherence time was Nco = 10240, and the training was shifted ZC.

the optimal training length is Np = 1536 when the ADC has 1
or 2 bits of resolution. When the ADC resolution increases to 3
or 4 bits, a shorter training length (e.g., Np = 1024) is preferred
because the cost of each training symbol (in bps/Hz) is larger.

Fig. 14 shows the achievable rate lower bound (52) versus the
training length Np for all the channel estimation algorithms un-
der test. For this experiment, the ADC has 2-bit resolution. The
EM-GM-GAMP and EM-GM-VAMP algorithms provide high-
est achievable rate and their optimal training length is 1536. Note
that, for the LS and ALMMSE algorithms, the optimal training
length is 2048, which is longer than the other algorithms.

According to Figs. 13 and 14, the training overhead is around
10%–20% when the channel coherence length is 10240. The
overhead percentage is thus comparable to that used in [47] for
sub-6 GHz massive MIMO channel estimation with a flat fad-
ing channel [47]. Our channel, however, is frequency-selective
fading and thus more difficult to estimate. In addition, a training
duration of 1024–2048 symbols seems appropriate for mmWave
broadband communication. Comparing to the 802.11ad stan-
dard, for example, if 8× 8 UPA arrays are used with the standard
DFT-based codebook, then 128 pilot frames, each consisting of
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Fig. 14. Achievable rate lower bound (52) versus training length for several
algorithms under 2-bit ADC. Here, SNR = 10 dB, the coherence time was
Nco = 10240, and the training was shifted ZC.

26 bytes, would be transmitted [52]. The total training length in
802.11ad is thus much longer than what we propose.

VI. CONCLUSION

In this paper, we propose a methodology for estimation of
broadband mmWave MIMO channels at receivers with few-bit
ADCs. The broadband mmWave MIMO channel is sparse in
both angle and delay domains, making it natural to apply com-
pressed sensing techniques. We propose to use computationally
efficient AMP algorithms (i.e., EM-GAMP and EM-VAMP) that
accurately estimate the channel in the absence of prior informa-
tion about its distribution (e.g., sparsity), and we enhance those
methods with separate channel-norm estimation. We also design
a training scheme, based on shifted ZC sequences, that leads to
accurate and computationally efficient estimation with minimal
transmitter PAPR. Finally, we report the results of an extensive
simulation study that tests various algorithms, ADC precisions,
training sequences, training lengths, SNRs, and runtime limits.
Our simulations investigated channel-estimation MSE as well
as mutual information and achievable rate bounds.

From the results of our study, we draw several conclusions.
First, it is important to exploit the available joint angle-delay
domain sparsity in channel estimation. Second, the ADC preci-
sion should be chosen based on the SNR; at low SNR, the use of
few-bit ADCs results in very small loss (in MSE or achievable
rate) compared to infinite-bit ADCs. Third, the training length
should be chosen based on the ADC precision; at lower ADC
precision, the achievable rate is maximized by a longer training
sequence.

In this paper, the correlation among angle-delay channel co-
efficients was neglected. A possible direction to improve the
channel estimation accuracy is to exploit this correlation.
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[23] C. Stöckle, J. Munir, A. Mezghani, and J. A. Nossek, “Channel esti-
mation in massive MIMO systems using 1-bit quantization,” in Proc.
IEEE Workshop Signal. Process. Adv. Wireless Commun., Jul. 2016,
pp. 1–6.

[24] S. Rangan, “Generalized approximate message passing for estimation with
random linear mixing,” in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2011,
pp. 2168–2172.

[25] S. Rangan, P. Schniter, and A. Fletcher, “Vector approximate message
passing,” arXiv preprint arXiv:1610.03082, Oct. 10, 2016.

[26] P. Schniter, S. Rangan, and A. K. Fletcher, “Vector approximate message
passing for the generalized linear model,” in Proc. Asilomar Conf. Signals,
Syst. Comput., 2016, pp. 1525–1529.



1154 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 5, MARCH 1, 2018

[27] J. Vila and P. Schniter, “Expectation-maximization Gaussian-mixture ap-
proximate message passing,” IEEE Trans. Signal Process., vol. 61, no. 19,
pp. 4658–4672, Oct. 2013.

[28] A. K. Fletcher and P. Schniter, “Learning and free energies for vector
approximate message passing,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2017, pp. 4247–4251.

[29] J. Max, “Quantizing for minimum distortion,” IRE Trans. Inf. Theory,
vol. 6, no. 1, pp. 7–12, 1960.

[30] X.-P. Chen, K. Wu, L. Han, and F. He, “Low-cost high gain planar an-
tenna array for 60-GHz band applications,” IEEE Trans Antennas Propag.,
vol. 58, no. 6, pp. 2126–2129, Jun. 2010.

[31] F. Guidi, A. Guerra, and D. Dardari, “Personal mobile radars with
millimeter-wave massive arrays for indoor mapping,” IEEE Trans. Mobile
Comput., vol. 15, no. 6, pp. 1471–1484, Jun. 2016.

[32] W. Hong, K.-H. Baek, Y. Lee, Y. Kim, and S.-T. Ko, “Study and proto-
typing of practically large-scale mmWave antenna systems for 5G cellular
devices,” IEEE Commun. Mag., vol. 52, no. 9, pp. 63–69, Sep. 2014.

[33] A. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Trans.
Signal Process., vol. 50, no. 10, pp. 2563–2579, Oct. 2002.

[34] J. Brady and A. Sayeed, “Beamspace MU-MIMO for high-density gigabit
small cell access at millimeter-wave frequencies,” in Proc. IEEE Workshop
Signal Process. Adv. Wireless Commun., Jun. 2014, pp. 80–84.

[35] L. Jacques, J. Laska, P. Boufounos, and R. Baraniuk, “Robust 1-bit com-
pressive sensing via binary stable embeddings of sparse vectors,” IEEE
Trans. Inf. Theory, vol. 59, no. 4, pp. 2082–2102, Apr. 2013.

[36] L. Jacques, K. Degraux, and C. De Vleeschouwer, “Quantized iterative
hard thresholding: Bridging 1-bit and high-resolution quantized com-
pressed sensing,” arXiv preprint arXiv:1305.1786, May 8, 2013.

[37] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensing with quantized
measurements,” IEEE Signal Process. Lett., vol. 17, no. 2, pp. 149–152,
Feb. 2010.

[38] Y. Plan and R. Vershynin, “Robust 1-bit compressed sensing and sparse
logistic regression: A convex programming approach,” IEEE Trans. Inf.
Theory, vol. 59, no. 1, pp. 482–494, Jan. 2013.

[39] U. Kamilov, V. Goyal, and S. Rangan, “Message-passing de-quantization
with applications to compressed sensing,” IEEE Trans. Signal Process.,
vol. 60, no. 12, pp. 6270–6281, Dec. 2012.

[40] A. Mezghani and J. Nossek, “Efficient reconstruction of sparse vectors
from quantized observations,” in Proc. ITG Workshop Smart Antennas,
Mar. 2012, pp. 193–200.

[41] A. Javanmard and A. Montanari, “State evolution for general approximate
message passing algorithms, with applications to spatial coupling,” Inf.
Inference, vol. 2, no. 2, pp. 115–144, 2013.

[42] U. S. Kamilov, S. Rangan, A. K. Fletcher, and M. Unser, “Approximate
message passing with consistent parameter estimation and applications to
sparse learning,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2969–2985,
May 2014.

[43] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learn-
ing. Buckinghamshire, U.K.: Univ. Press Group Limited, 2006.

[44] S. Rangan, P. Schniter, and A. Fletcher, “On the convergence of approxi-
mate message passing with arbitrary matrices,” in Proc. IEEE Int. Symp.
Info. Theory., Jun. 2014, pp. 236–240.

[45] D. Chu, “Polyphase codes with good periodic correlation properties,”
IEEE Trans. Inf. Theory, vol. 18, no. 4, pp. 531–532, Jul. 1972.

[46] Physical Channels and Modulation, 3GPP TS 36.211 V12.7.0 Std., 2015.
[47] Y. Li, C. Tao, G. Seco-Granados, A. Mezghani, A. L. Swindlehurst, and

L. Liu, “Channel estimation and performance analysis of one-bit massive
MIMO systems,” IEEE Trans. Signal Process., vol. 65, no. 15, pp. 4075–
4089, Aug. 2017.

[48] C. Mollen, J. Choi, E. G. Larsson, and R. W. Heath, “Uplink performance
of wideband massive MIMO with one-bit ADCs,” IEEE Trans. Wireless
Commun., vol. 16, no. 1, pp. 87–100, Jan. 2017.

[49] K. Roth and J. A. Nossek, “Achievable rate and energy efficiency of
hybrid and digital beamforming receivers with low resolution ADC,” arXiv
preprint arXiv:1610.02909, Oct. 10, 2016.

[50] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for
basis pursuit solutions,” SIAM J. Sci. Comput., vol. 31, no. 2, pp. 890–912,
2009.

[51] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. New
York, NY, USA: Cambridge Univ. Press, 2005.

[52] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C.
Widmer, “IEEE 802.11ad: Directional 60 GHz communication for multi-
gigabit-per-second wi-fi [invited paper],” IEEE Commun. Mag., vol. 52,
no. 12, pp. 132–141, Dec. 2014.

Jianhua Mo (S’12–M’17) received the B.S. and
M.S. degrees from Shanghai Jiao Tong University,
Shanghai, China, in 2010 and 2013, respectively, and
the Ph.D. degree from the University of Texas at
Austin, Austin, TX, USA, in 2017, all in electrical
engineering. He is currently a Senior Engineer with
Samsung Research America, Dallas, TX, USA. His
areas of interests included the physical layer security,
MIMO communications with low-resolution ADCs.
He is currently working on the mmWave wireless
backhaul transmission. He was a co-recipient of the

Heinrich Hertz Award for best communications letter in 2013. He was rec-
ognized as an exemplary reviewer of the IEEE WIRELESS COMMUNICATIONS

LETTERS in 2012 and the IEEE COMMUNICATIONS LETTERS in 2015.

Philip Schniter (S’92–M’93–SM’05–F’14) received
the B.S. and M.S. degrees in electrical engineering
from the University of Illinois at Urbana-Champaign,
Champaign, IL, USA, in 1992 and 1993, respectively,
and the Ph.D. degree in electrical engineering from
Cornell University, Ithaca, NY, USA, in 2000. From
1993 to 1996, he was employed with Tektronix Inc.,
Beaverton, OR, USA, as a Systems Engineer. After
receiving the Ph.D. degree, he joined the Department
of Electrical and Computer Engineering, Ohio State
University, Columbus, OH, USA, where he is cur-

rently a Professor. In 2008–2009, he was a Visiting Professor with Eurecom,
Sophia Antipolis, France, and with Supelec, Gif-sur-Yvette, France. In 2016–
2017, he was a Visiting Professor with Duke University, Durham, NC, USA.
His areas of interests currently include signal processing, wireless communica-
tions, and machine learning. In 2002, he was the recipient of the NSF CAREER
Award, in 2016 the IEEE Signal Processing Society Best Paper Award, and in
2017 the Qualcomm Faculty Award. He currently serves on the IEEE Sensor
Array and Multichannel Technical Committee and the IEEE Computational
Imaging Special Interest Group.

Robert W. Heath, Jr. (S’96–M’01–SM’06–F’11)
received the B.S. and M.S. degrees from the Univer-
sity of Virginia, Charlottesville, VA, USA, in 1996
and 1997, respectively, and the Ph.D. degree from
Stanford University, Stanford, CA, USA, in 2002, all
in electrical engineering. From 1998 to 2001, he was
a Senior Member of the Technical Staff then a Se-
nior Consultant with Iospan Wireless Inc., San Jose,
CA, USA, where he worked on the design and imple-
mentation of the physical and link layers of the first
commercial MIMO-OFDM communication system.

Since January 2002, he has been with the Department of Electrical and Com-
puter Engineering, University of Texas at Austin, Austin, TX, USA, where he is
a Cullen Trust for Higher Education Endowed Professor, and is a Member of the
Wireless Networking and Communications Group. He is also the President and
CEO of MIMO Wireless Inc. He has authored “Introduction to Wireless Digital
Communication” (Prentice Hall, 2017) and “Digital Wireless Communication:
Physical Layer Exploration Lab Using the NI USRP” (National Technology and
Science Press, 2012), and co-authored “Millimeter Wave Wireless Communi-
cations” (Prentice Hall, 2014). He was a Distinguished Lecturer in the IEEE
Signal Processing Society and is an ISI Highly Cited Researcher. He is also
an elected member of the Board of Governors for the IEEE Signal Processing
Society, a licensed Amateur Radio Operator, a Private Pilot, and a registered
Professional Engineer in Texas. He has been a co-author of a number of award
winning conference and journal papers including the 2010 and 2013 EURASIP
Journal on Wireless Communications and Networking best paper awards, the
2012 Signal Processing Magazine best paper award, a 2013 Signal Processing
Society best paper award, 2014 EURASIP Journal on Advances in Signal Pro-
cessing best paper award, the 2014 Journal of Communications and Networks
best paper award, the 2016 IEEE Communications Society Fred W. Ellersick
Prize, the 2016 IEEE Communications and Information Theory Societies Joint
Paper Award, and the 2017 Marconi Prize Paper Award. He was the recipient
of the 2017 EURASIP Technical Achievement award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


