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Abstract—Gaussian and quadratic approximations of message
passing algorithms on graphs have attracted considerable recent
attention due to their computational simplicity, analytic tractabil-
ity, and wide applicability in optimization and statistical inference
problems. This paper presents a systematic framework for incor-
porating such approximate message passing (AMP) methods in
general graphical models. The key concept is a partition of depen-
dencies of a general graphical model into strong and weak edges,
with the weak edges representing small, linearizable couplings of
variables. AMP approximations based on the central limit theo-
rem can be readily applied to aggregates of many weak edges and
integrated with standard message passing updates on the strong
edges. The resulting algorithm, which we call hybrid generalized
approximate message passing (HyGAMP), can yield significantly
simpler implementations of sum-product and max-sum loopy be-
lief propagation. By varying the partition of strong and weak
edges, a performance-complexity tradeoff can be achieved. Group
sparsity and multinomial logistic regression problems are studied
as examples of the proposed methodology.

Index Terms—Approximate message passing, belief propaga-
tion, sum-product algorithm, max-sum algorithm, group sparsity,
multinomial logistic regression.

I. INTRODUCTION

OR high-dimensional optimization and inference prob-
lems, message-passing algorithms constructed from graph-
ical models have become widely-used in many fields [2]-[4].
The fundamental principle of graphical models is to decompose
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high-dimensional problems into sets of smaller low-dimensional
problems. The decomposition is represented using a bipartite
graph, where the problem variables and factors are represented
by the graph vertices and the dependencies between them repre-
sented by edges. Message passing methods such as loopy belief
propagation (BP) use this graphical structure to perform opti-
mization or approximate inference in an iterative manner. In
each iteration, optimization or inference is performed “locally”
on the sub-problems associated with each factor, and “mes-
sages” are passed between the variables and factors to account
for the coupling between these sub-problems.

Recently, so-called “approximate message passing” (AMP)
[5]-[7] and generalized AMP (GAMP) [8] methods have been
developed for the case where the measurement factors depend
weakly on a large number of random variables. By linearizing
these weak dependencies, one can simplify standard loopy-BP
algorithms and rigorously analyze their behavior in the high-
dimensional limit [7]. AMP algorithms of this form have been
proposed for maximum a posteriori (MAP) and minimum mean-
squared error (MMSE) inference in linear models [5], [6],
generalized linear models [8], and generalized bilinear mod-
els [9]-[11]. These AMP algorithms, however, assume that the
underlying random variables are independent. Similarly, they
assume that measurements are conditionally independent given
these random variables. Thus, one may wonder how to extend
these AMP methods to prior (and/or likelihood) models that
include dependencies among variables (and/or measurements).
By exploiting such dependencies, one can greatly improve the
performance of optimization or inference. (We will show an
example of this phenomenon in Section VI.)

As one solution, we present Hybrid GAMP (HyGAMP) algo-
rithms for what we call graphical model problems with linear
mixing. The basic idea is to partition the edges of the graphical
model into weak and strong subsets and represent the dependen-
cies among the weak edges using a linear transform. Assuming
that the individual components of this linear transform are indi-
vidually weak, the messages propagating on the weak edges can
be simplified using AMP-style approximations and combined
with standard loopy-BP messages on the strong edges. The pro-
posed approach is thus a hybrid of AMP and standard loopy-BP
techniques.

We detail the HyGAMP methodology using two common
variants of loopy BP: the sum-product algorithm for inference
(i.e., computation of the posterior mean) and the max-sum algo-
rithm for optimization (i.e., computation of the posterior mode).
For the sum-product loopy BP algorithm, we argue that the
weak-edge messages can be approximated by Gaussian densi-
ties whose mean and variance computations are simplified by the
Central Limit Theorem (CLT). For max-sum loopy BP, we ar-
gue that the weak-edge messages can use quadratic approxima-
tions whose parameters are easily computed using least-squares
techniques.
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The proposed approach can be considered as a generalization
of the turbo AMP method proposed in [12] for clustered-sparse
signal recovery. The idea behind turbo AMP is to i) partition
the overall factor graph into sub-graphs with weak edges and
sub-graphs with strong edges, ii) perform AMP-style message
passing within the weak sub-graphs and standard sum-product
BP within the strong sub-graphs, and iii) periodically inter-
change messages between neighboring sub-graphs. Although
the turbo-AMP idea has been applied to channel estimation and
equalization, wavelet image denoising, video compressive sens-
ing, hyperspectral unmixing, and other problems in, e.g., [13]-
[19], a concrete turbo-AMP algorithm that applies to generic
factor graphs has never been stated. HyGAMP fills this gap.
Furthermore, turbo AMP methods have been proposed exclu-
sively with sum-product message passing. HyGAMP extends
the turbo-AMP idea to max-sum message passing. Going further
still, the proposed HyGAMP method generalizes turbo-AMP by
allowing factor graphs with vector-valued variable nodes (in the
strong and/or weak sub-graphs). As such, HyGAMP facilitates
the application of AMP techniques to problems such as group-
sparse estimation and multinomial logistic regression, which
are outside the reach of AMP and turbo AMP.

The use of AMP-style approximations on portions of a factor
graph has also been applied with joint parameter estimation and
decoding for CDMA multiuser detection in [20]; in a wireless
interference coordination problem in [21], and in the context of
compressed sensing [22, Section 7]. The HyGAMP framework
presented here unifies and extends all of these examples and
thus provides a systematic procedure for incorporating Gaussian
approximations of message passing in a modular manner in
general graphical models.

A shorter version of this paper was published in [1]. This
longer version includes derivations of the proposed algorithms,
additional experiments, and many additional explanations, clar-
ifications, and examples throughout. Note that, since the pub-
lication of [1], the HyGAMP methodology has been used to
solve a variety of problems, including multiuser detection in
massive MIMO [23], [24], inference for neuronal connectivity
[25], fitting neural mass spatio-temporal models [26], user ac-
tivity detection in cloud-radio random access [27], and decoding
from pooled data [28].

II. GRAPHICAL MODEL PROBLEMS WITH LINEAR MIXING

Let x and z be real-valued block column vectors

X = [XI,...,XT]T, zZ = [ZI,... z! ]T, (D

= m
where T denotes transposition, and consider a function of these
vectors of the form

m

F(x,2) =Y fi(Xa(i)» 2i), 2)
i=1

where, for each ¢, f;(-) is a real-valued function; (%) is a subset
of the indices {1,...,n}; and x,;) is the concatenation of the
vectors {x;, j € «(i)}. We will be interested in computations
on this function subject to linear constraints of the form

zZ;, = ZA”‘XJ‘ = Al‘X, (3)
j=1
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Fig. 1. Factor graph representation of the linear mixing estimation and op-
timization problems. The variable nodes (circles) are connected to the factor
nodes (squares) either directly (strong edges) or via the output of the linear
mixing matrix A (weak edges). The basic GAMP algorithm [8] handles the
special case where there exists no strong edges and where the variables x; are
scalar valued.

where each A, is areal-valued matrix and A; is the matrix with
block columns {A;; }7_,. We will also let A be the matrix with
block rows {A; }I" , so that we can write the linear constraints
simply as z = Ax.

The function F'(x,z) is naturally described via a graphical
model as shown in Fig. 1. Specifically, we associate with F'(x, z)
a bipartite factor graph G = (V, E') whose vertices V' consist of
n variable nodes corresponding to the (vector-valued) variables
x; and m factor nodes corresponding to the factors f;(-) in
(2). There is an edge (i,j) € E in the graph if and only if the
variable x; has some influence on the factor f; (xam ,Z; ). This
influence can occur in one of two mutually exclusive ways:

e The index j is in (%), so that the variable x; directly

appears in the sub-vector x,, ;) in the factor f;(x. (i), ).
In this case, (4, ) will be called a strong edge, since x;
can have an arbitrary and potentially-large influence on the
factor.

¢ The matrix A;; is nonzero, so that x; affects f;(xq (i), z:)

through its linear influence on z; in (3). In this case, (3, j)
will be called a weak edge, since the approximations we
will make in the algorithms below assume that A,;; are
“small.” The set of weak edges into the factor node 7 will
be denoted (3(3).
When we say that A;; are “small,” we do not mean small in an
absolute sense, but rather that A;; are such that no individual
x; can have a significant effect on the sum 7%, A;;x;, and
likewise that no individual z; can have a significant effect on the
sum Y 1", zT A;;. One example is when A is drawn with i.i.d.
sub-Gaussian entries for sufficiently large m and n. Matrices
of this type are assumed in derivation and analysis of the AMP
methods [5]-[8].

Together, () and (5(i) comprise the set of all indices j for
which a variable node x; is connected to the factor node f;(-) in
the graph G. The union 9(¢) = «(4) U 8(i) is thus the neighbor
set of f;(-). Similarly, for any variable node x;, we let (with
some abuse of notation) () be the set of all indices ¢ for which
a factor node f;(-) is connected to x; via a strong edge, and let
(B(j) be the set of all indices ¢ for which there exists a weak
edge. The union J(j) = «(j) U (j) is thus the neighbor set
of x g



RANGAN et al.: HYBRID APPROXIMATE MESSAGE PASSING

Given these definitions, we are interested in two problems:
e Optimization problem P-OPT: Given a function F(x,z)
of the form (2) and a matrix A, compute the maximum:

X = argmax F'(x,z), z = AX. )

x:z=Ax
Also, for each j, compute the marginal value function

Aj(x;) = L F(x,2), (5)

where x ; is composed of {x; },;.

e Expectation problem P-EXP: Given a function F'(x, z) of
the form (2), a matrix A, and scale factor v > 0, define
the joint density

p(x) == Z ! (u) exp [uF (x,2)], z=Ax (6)
where Z (u) is a normalization constant called the partition
function (which is a function of w). Then, for this density,
compute the expectations

*=E}x], z=El )

Also, for each j, compute the log marginal

1
Aj(x5) := m log/exp [uF(x,2)] dx;. (8)
We include the scale factor w so that the definition of
F(x,z) allows an arbitrary scaling, as in (4).

We now show that P-OPT and P-EXP commonly arise in
statistical inference. Suppose that we are given a probability
density p(x) of the form (6) for some function F(x,z). The
function F'(x,z) may depend implicitly on some observed vec-
tor y, so that p(x) represents the posterior density of x given
y. In this context, the solution (X, z) to the problem P-OPT is
precisely the maximum a posteriori (MAP) estimate of x and
z given the observations y. Similarly, the solution (X, z) to the
problem P-EXP is precisely the minimum mean squared error
(MMSE) estimate. For P-EXP, the function A;(x;) is the log
marginal density of x;.

The two problems are related: A standard large deviations
argument [29] shows that, under suitable conditions, as © — oo
the density p(x) in (6) concentrates around the maxima (X, z)
in the solution to the problem P-OPT. As a result, the solution
(X,2z) to P-EXP converges to the solution to P-OPT.

A. Further Assumptions and Notation

In the analysis below, we will assume that, for each factor
node f; (), we have that

a(i) N B(i) =0, €)

i.e., the strong and weak neighbor sets are disjoint. This assump-
tion introduces no loss of generality: If an edge (4, j) is both
weak and strong, we can modify the function f;(x,;y,2;) to
“move” the influence of x; from the term z; into the direct term
Xa (i) For example, suppose that, for some ¢,

Z;, = AZ‘1X1 + AZ3X3 + Ai4X4 and Oé(Z) = {172}

In this case, the edge (i, 1) is both strong and weak. That is,
the function f;(x, (i), z;) depends on x; through both x,,(;) and
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through z;. To satisfy assumption (9), we define

new
o= Aysxsy 4+ Ajuxy

1
Y (Xag), 20 ™) = fil(x1,%2), Ajnxy +2;Y),

new

under which f;(xq(),2i) = fI'V (Xa(i), 2;"). Thus we can
replace f;(-) and z; with f7*V(-) and 2PV that obey (9).

Even when the dependence of a factor f;(x,(;),2;) on a
variable x; is only through the linear term z;, we may still
wish to “move” the dependence to a strong edge. The reason is
that the HyGAMP algorithm is designed around the assumption
that the linear dependence is weak, i.e., that the elements in
A;; are small. If these elements are not small, then modeling
the dependence with a strong edge improves the accuracy of
HyGAMP at the expense of greater computation.

One final notation: since A;; # 0 only when j € (i), we
may sometimes write the summation (3) as

b= X A A
jepi)

where x3(;) is the sub-vector of x with components j € (3(i)
and A; j5(;) is the corresponding sub-matrix of A;.

Z

(10)

III. MOTIVATING EXAMPLES

We begin with a basic development to show that problems
with a fully separable prior and likelihood fit within our model.
Then we show an extension to more complicated problems.
More detailed examples are deferred to Sections VI and VII.

Linear Mixing and General Output Channel—Independent
Sub-Vectors: As a simple example of a graphical model with
linear mixing, consider the following estimation problem: An
unknown vector x has independent sub-vectors x;, each with a
joint probability density p(x; ). The vector x is passed through a
linear transform to yield an output z = Ax. Each sub-vector z;
then randomly generates an output y; with conditional density
p(yi|zi). The goal is to estimate x given A, the observations y,
and knowledge of the densities.

Common applications of this formulation include the follow-
ing. In compressive sensing [22], x is a sparse vector and A
is a sensing matrix. The measurements y are usually modeled
as z plus Gaussian noise, in which case p(y;|z;) is Gaussian.
In binary linear classification [30], the rows of A are training
feature vectors, the elements of y are binary training labels, and
x is a weight vector learned to predict a label from its feature
vector. Here, p(y;|z;) is an “activation function” that accounts
for error in the linear-prediction model, often based on the lo-
gistic sigmoid. When n > m, a sparse weight vector x is sought
to avoid over-fitting [31]. In digital communications settings,
x might be a vector of finite-alphabet symbols and A a matrix
representing the cumulative effect of the modulation, propa-
gation channel, and demodulation [20]. Alternatively, x might
represent the channel impulse response, in which case A is con-
structed from a training symbol sequence [13]. In either case,
p(yi|z:) is usually chosen as Gaussian, although a heavy-tailed
distribution can be chosen to model impulsive noise [17].

Under the assumption that the components x; are independent
and the components y; are conditionally independent given z,
the posterior density on x factors as

m

p(xly) = % HP(Yi|Zi) HP(XJ‘), z = AX,

=1
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output measurement mixing input componentwise
measurements channels matrix variables prior
X1
p(y1lz1) —O— Il r(x
Y1 .—H p(x1)
X2
p(y2|z2) —O—. X
y2 .—H p(x2)
A X3
s —O— Ml p(xs)
P(Ym|Zm) : :
v @ I x,
—O— M r(x)

Fig. 2. An example of a simple graphical model for an estimation problem
where x has independent components with priors p(x;), z = Ax, and the
observation vector y is the output of a componentwise measurement channel
with transition function p(y;|z;).

output output
parameters  measurements

measurement
channels

mixing input  componentwise input
matrix variables prior parameters

p(xi|u)

y1 p(y1lz1,v)

p(y2|z2,v)

p(xn[u)

Fig.3. A generalization of the model in Fig. 2, where the input variables x are
themselves generated by a graphical model with latent variables u. Similarly,
the dependence of the observation vector y on the linear mixing output z is
through a second graphical model.

where Z(y) is a normalization constant. For a fixed observation
y, we can write this posterior as

p(X‘y) X exp [F(X7 Z)] ; Z = AX;
where F'(x,z) is the log posterior, i.e.,

m n

F(x,z) = Zlogp(yﬂzi) + Zlogp(xj),

Jj=1

and the dependence on y is implicit. The log posterior is there-
fore in the form of (2) with scale factor © = 1 and m + n factors
{fi(-)}™. The first m factors can be assigned as

fz(zz) ZIng(yi‘zi)a (1D

which do not directly depend on the terms x;. Thus a(i) = ()
foreach ¢ = 1, ..., m. The remaining n factors are then

t=1,...,m,

Jm+j(xj) =logp(x;),  j=1,...,n 12)

For these factors, the strong edge set is the singleton a(m +
j)={j} for j =1,...,n, and there is no linear term; we can
think of {z,,+; }}l: 1 as zero-dimensional. The corresponding
factor graph with the m + n factors is shown in Fig. 2.

In the case when all x; and z; are scalars, the estimation prob-
lem is precisely the one targeted by GAMP [8], as mentioned
in the introduction. The special subcase of measurements in
additive white Gaussian noise (AWGN)), i.e.,
wy ~ N (07 02 )7

Y, = % + wy, w (13)

is the one targeted by AMP [S]-[7].

Linear Mixing and General Output Channel—Dependent
Sub-Vectors: We now consider the significantly more general
graphical model framework shown in Fig. 3. In this case, the
input sub-vectors x; may be statistically dependent on one an-
other, with dependences described by a graphical model. Some
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additional latent variables, in a vector u, may also be involved.
For example, [12] used a discrete Markov chain to model clus-
tered sparsity, [16] used discrete-Markov and Gauss-Markov
chains to model slow changes in support and amplitude across
multiple measurement vectors, and [14] used a discrete Markov
tree to model persistence across scale in the wavelet coefficients
of an image. In Section VI, we will detail the application of
HyGAMP to group sparsity.

Similarly, the likelihood need not be separable in {y; }. For ex-
ample, the observations y; can depend on the outputs z; through
a second graphical model that may include additional latent vari-
ables v;. For example, the distribution of y; given z; may de-
pend on unknown parameters v that also affect the distribution
of yo given zs. This technique was used in [13] to incorporate
constraints on LDPC coded bits when performing turbo sparse-
channel estimation, equalization, and decoding using GAMP.
In Section VII, we will detail the application of HyGAMP to
multinomial logistic regression.

The preceding examples offer guidance on how weak versus
strong edges are typically assigned in practice. When a fac-
tor node f; depends on a variable x; as one component of a
large sum z; = >°"_; A;;x;, with {A;;}7_; of roughly simi-
lar norm, the edge between ¢ and j can be safely treated as weak.
Otherwise, the edge between f; and x; is typically treated as
strong. For example, in Fig. 3, the edge between each v, and
p(yilzi, v) is treated as strong, and the edge between each u,
and p(x;|u) is treated as strong.

IV. REVIEW OF LOOPY BELIEF PROPAGATION

Finding exact solutions to high-dimensional P-OPT and
P-EXP problems is generally intractable because they require
optimization or expectation over n variables x;. A widely-used
approximation method is loopy BP [3], [32], which reduces the
high-dimensional problem to a sequence of low-dimensional
problems associated with each factor f;(x,),2:). We con-
sider two common variants of loopy BP: the max-sum algorithm
(MSA) for the problem P-OPT and the sum-product algorithm
(SPA) for the problem P-EXP. This section will briefly review
these methods, as they will be the basis of the HyGAMP algo-
rithms described in Section V.

The MSA iteratively passes estimates of the marginal util-
ities Aj(x;) in (5) along the graph edges. Similarly, the SPA
passes estimates of the log marginals A (x;) in (8). For either
algorithm, we index the iterations by ¢ = 0, 1, 2, ... and denote
the “message” from the factor node f; to the variable node x;
in the tth iteration by A;_;(¢,x;) and the reverse message by
A,j —j (t, X]’ )

To describe the message updates, we introduce some addi-
tional notation. First, we note that SPA and MSA messages are
equivalent up to a constant offset. That is, adding any constant
(w.rt. x;) to either A;,;(t,x;) or A, ;(£,%;) has no effect
on the algorithm. Thus, we will use “=" for equality up to a
constant offset, i.e.,

Alx) =g(x) & AKX) =g(x) +C,

for some constant C' that does not depend on x. Similarly, we
write p(x) o< g(x) when p(x) = Cq(x) for some constant C.
Finally, for the SPA, we will fix the scale factor u > 0 in the
problem P-EXP, and, for any function A(-), we will write
E[g(x); A(+)] to denote the expectation of g(x) with respect
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to the density p(x) associated with A(-):

Elg(x); A()] = /'g<x>p<x> dx

p(x) o< exp [uA(x)] (15)

Given these definitions, the updates for the MSA and SPA vari-
ants of loopy BP are as follows:

Algorithm 1: Loopy BP: Consider the problems P-OPT or
P-EXP above for some function F(x,z) of the form (2) and
matrix A. For the problem P-EXP, fix the scale factor u >
0. The MSA for P-OPT and the SPA for P-EXP iterate the
following steps:

0) Initialization: Set t =0 and, for each (i,

Az\—j (t, Xj) = 0

1) Factor node update: For each edge (i,j) € E, compute

the function

Hi i (t,Xp(), %)

= f7 (Xa(z)

(14)

j) € E, set

z)+ > Di(tx). (16)
e {o(i)\s}
For the MSA, compute:

A’LH] (t XJ) = Igl(a))\( H’LH] (t X9 (i)r 2 )7
X9 (i)\j
=A;x

a7

where the maximization is over all variables x, with r €
d(2) \ j and subject to the constraint z; = A;x.
For the SPA, compute:

1
Ayt x;) = alog/piﬂj(tvxd( ) dxp(ip,  (18)

where the integration is over all variables x, with r €
d(i) \ j,and p;_.; (t,xp(;)) is the probability density

pi—j(t,Xa()) o exp [uH,_;(t,Xp(i),2; = Aix)] .
(19)
2) Variable node update: For each (i, j) € E:
Aijt+l,x) = >0 Arltx).  (20)
e {o(i)\i}
Also, let
Aj(t+1,x;) = Z At x;). 20
ied(j)
For the MSA, compute:
Xj(t+1) := argmax A (t+1,x;). (22)
X
For the SPA, compute:

3) Increment ¢ and return to Step 1 unless a maximum num-

ber of iterations is exceeded.

When the graph G is acyclic, it can be shown that the MSA
and SPA algorithms above converge to the exact solutions to
the P-OPT and P-EXP problems, respectively. When the graph
G has cycles, however, the above algorithms are—in general—
only approximate, but often quite accurate. The previous two
statements assume that the loopy-BP messages are computed
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exactly, which is feasible when all variables are either Gaussian
or discrete, but otherwise difficult—incurring a complexity that
is exponential in general. For more details on loopy BP, see [3],
[32], [33].

V. HYBRID GAMP

The HyGAMP algorithm modifies loopy BP by replacing the
weak edges with approximations of their cumulative effects.
By treating a subset of d dependencies as weak (as in AMP)
rather than strong (as in loopy BP), the complexity of handling
those dependencies shrinks from exponential in d to linear in
d. In particular, HyGAMP assumes the elements of A;; are
small along any weak edge (4, 7). Under this assumption, MSA-
HyGAMP uses a quadratic approximation of the messages along
the weak edges, reducing the factor-node update to a standard
least-squares problem. Similarly, SPA-HyGAMP uses a Gaus-
sian approximation of the weak-edge messages and applies the
CLT at the factor nodes.

A derivation of the HyGAMP algorithm is given in Ap-
pendix A for the SPA and Appendix B for the MSA. We note
that these derivations are “heuristic” in the sense that we do not
claim any formal matching between loopy BP and the HyGAMP
approximation.

To state the HyGAMP algorithm, we need additional notation.
Atiteration ¢, the HyGAMP algorithm produces estimates X (¢)
and Z, (t) of the vectors x; and z,. Several other intermediate
vectors, P; (t), 8;(t) and T;(¢), are also produced. Associated
with each of these vectors are matrices like Q7 () and Q; ()
that represent Hessians for the MSA and covariances for the
SPA. When referring to the inverses of these matrices, we use
the notation Q;* (¢) to mean (Qj (t))~!. Finally, for any positive
definite matrix Q and vector a, we define ||a||, := a’Qa,
which is a weighted two norm.

Algorithm 2: HyGAMP: Consider the problem P-OPT
or P-EXP for some function F'(x,z) of the form (2) and
matrix A. For the problem P-EXP, fix the scale factor u >
0. The MS-HyGAMP algorithm for P-OPT and the SP-
HyGAMP algorithm for P-EXP iterate the following steps:

0) Initialization: Set t =0 and s;(—1) = 0 Vi, and select
some initial values A;_,;(—1,x;) for each strong edge
(4,7), and j(—1) and Q] (—1) for each index j.

1) Variable node update, strong edges: For each strong edge
(i,7), compute

Azu;j (t,Xj) = Z Ag*}j (t—].7Xj)
£ e{a(d)\i}
1 .
- §Hrj(t_1) X]HQ’ 1) - (24)
2) Variable node update, weak edges: For each variable node
7, compute
Aj(tvxj)EHf(taxjv?j(t_l)vQ§(t_l)) (25)
and
Hf(mxjv?ja Q;)
Z A (t=1,%)) — H?j —x,llg; - 26)

iea(j)
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3)

4)

5)

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 65, NO. 17, SEPTEMBER 1, 2017

For MS-HyGAMP,

X;(t) = argmax A (t,x;) (27a)
»
Q;“(t) = —@AJ (t,x). (27b)
For SP-HyGAMP,
Xj(t) = E(xj;45(t)) (28b)
Qj (t) = uCov (x;;4(t,)). (28¢)

Factor node update, linear step: For each factor node i,
compute
zi(t)= Y Aux(t) (29a)
Jj € (i)
pi(t) = z(t) — QY (t)s;(t—1) (29b)
Q)= Y A;Qi1A]. (29¢)

J€p)

Factor node update, strong edges: For each strong edge
(4,7), compute:

Hizﬂj (tvx(y(i)vzivﬁia Qf) = fz (Xa(i)vzi)

1 ~
+ Z Az\—r (t,X7~) - §||Z1 - p’LH?QlI) . (30)

r€{a(i)\j}
Then, for MS-HyGAMP, compute:
At %))
= x I(n)%xz_ Hi,zﬁj(taxa(i);zivﬁi(t)vQ?(t))v (3D

where the maximization is jointly over z; and all compo-
nents x, with r € {a(¢) \ j}.
For SP-HyGAMP, compute:

1
Aii(tx)) = " log/piﬂ- (t, Xa (i), 2i) dXq i)\ j Az,
(32)
where the integral is over z; and all components x, with
r € {a(i) \ 7}, and p;; (t,x;) is the probability density
Di—j (ta Xa(i)s zi)
X exp (UH72—>j (t7 Xa(i)-Zi, ﬁi (t)a Q‘? (t))) . (33)

Factor node update, weak edges: For each factor node i,
compute

HT?Z (tv Xa(i)) Zi, ﬁia Qf) = fi (xa(i) ’ Zi)

1 ~
+ Z Air(t, %) — gHZi - PiH?yp (34a)
rea(i)
Then, for MS-HyGAMP, compute:
(Xo@i) (1), 2 (1))

= argmax sz (taxa(i,);zivﬁi(t)v Q?(t))v (34b)

0? N ~
D7 (t) :== —@Hf (t, X000 20, Di (1), QY (1)), (34c)

where the maximization in (34b) is over the sub-vector
Xq (i) and output vector z;.

For SP-HyGAMP, let
z () = E(z),

(3

D;*(t) = uCov(z;),

K3

(35)

where z; is the component of the pair (x,,(;,2;) with the
joint density

Di (ta Xa(i)s zi) X
exp (UHTZ (tvxa(i)vzivﬁi (t>7 Qf (t))) . (36)
Then, for either MS-HyGAMP or SP-HyGAMP compute

si(t) = Q7 () [7(1) - pi(1)] (372)
QI (1) = Q7(1) — Q" (D" ()Q; (1) (37b)
6) Variable node update, linear step: For each variable node
J compute
Q" ()= > AlQ(HAy, (38a)
i€p()
T = () +Qj(t) > AlSi(t). (38b)

i€ B(j)

Increment ¢ and return to Step 1 unless either a maximum
number of iterations is exceeded or ||X;(t) — X; (t—1)||
is sufficiently small.

Although the HyGAMP algorithm above appears much more
complicated than standard loopy BP (Algorithm 1), HyGAMP
can require dramatically less computation. Recall that the main
computational difficulty of loopy BP is Step 1, the factor update.
The updates (17) and (18) involve an optimization or expectation
over |0(4)| sub-vectors, where J(i) is the set of all sub-vectors
connected to the factor node ¢. In the HyGAMP algorithm,
these computations are replaced by (31) and (32), where the
optimization and expectation need only be computed over the
strong edge sub-vectors «(7). If the number of weak edges is
large, the computational savings can be dramatic. The other
steps of the HyGAMP algorithms are all linear, simple least-
square operations, or componentwise nonlinear functions on
the individual sub-vectors.

For ease of illustration, we have only presented one form of
the HyGAMP procedure. Several variants are possible:

® Discrete distributions: The above description assumed

continuous-valued random variables x;. The procedures
can be easily modified for discrete-valued variables by ap-
propriately replacing integrals with summations.

® Message scheduling: The above description also only con-

sidered a completely parallel implementation where each
iteration performs exactly one update on all edges. Other
so-called message schedules are also possible and may of-
fer more efficient implementations or better convergence
depending on the application (e.g., [34]-[36]).

VI. APPLICATION TO GROUP-SPARSE SIGNAL RECOVERY

To illustrate the HyGAMP method, we first consider the
group-sparse estimation problem [37], [38]. Although this prob-
lem does not utilize the full generality of HyGAMP, it provides
a simple example of the HyGAMP method and has a number of
existing algorithms that can be compared against.
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A. HyGAMP Algorithm

A general version of the group-sparsity problem that falls
within the HyGAMP framework can be described as follows. Let
x be an n-dimensional vector with scalar components {z; }_;.
Vector-valued components could also be considered, but we
restrict our attention to scalar components for simplicity. The
component indices j of the vector x are divided into K (possibly
overlapping) groups, G1,...,Gx C{1,...,n}. We letv( Jj) be
the set of group indices k such that je Gk That i is, y(j) is the
set of groups to which the component x; belongs.

Suppose that each group G can be “active” or “inactive”,
and each component z; can be non-zero only when at least one
group Gy, is active for some k € 7(j). Qualitatively, a vector x
is sparse with respect to this group structure if it is consistent
with only a small number of groups being active. That is, most
of the components of x are zero with the non-zero components
having support contained in a union of a small number of groups.
The group-sparse estimation problem is to estimate the vector x
from some measurements y. The traditional (non-group) sparse
estimation problem corresponds to the special case when there
are n groups of singletons, G; = {j}.

There are many ways to model the group-sparse structure in
a Bayesian manner, particularly with overlapping groups. For
sake of illustration, we consider the following simple model.
For each group Gy, let & € {0, 1} be a Boolean variable with
&:; =1 when the group G} is active and &; = 0 when it is
inactive. We call &, the “activity indicators” and model them as
i.i.d. with

P& =1)=1-P( =0)=p

for some sparsity rate p € (0, 1). We assume that, given the vec-
tor &, the components of x are independent with the conditional
densities

(39)

if & = 0 forall k € (j)

0
€ ~ 40
zlé { V' otherwise, “40)

where V' is a random variable having the distribution of the
component x; in the event that it belongs to an active group.
Finally, suppose that measurement vector y is generated by first
passing x through a linear transform z = Ax and then a sep-
arable componentwise measurement channel with likelihoods
p(yi|zi). Many other dependencies on the activities of x and
measurement models y are possible — we use this simple model
for illustration.

Under this model, the prior x and the measurements y are
naturally described by a graphical model with linear mixing.
Due to the independence assumptions, the posterior density of
x given y factors as

=

m

p(xy Hp yil2) HP i€, )

where P(z;|€,(;)) is the conditional density for the random
variable in (40). The factor graph corresponding to this distri-
bution is shown in Fig. 4.

Under this graphical model, [39, App. C] shows that SP-
HyGAMP from Algorithm 2 reduces to the simple procedure
outlined in Algorithm 3. A similar MS-HyGAMP variant could
also be derived. In lines 8 and 9 of Algorithm 3, we used
E(X|R;Q",p) and var(X|R; Q", p) to denote the expectation
and variance, respectively, of the scalar random variable X with

I

; (41)
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Fig. 4. Graphical model for the group sparsity problem with overlapping

groups. The group dependencies between components of the vector x are mod-
eled via a set of binary latent variables &.

Algorithm 3: SP-HyGAMP for Group Sparsity.

1: {Initialization}

2: t+—0

30 Qi(t—1) < o0

4: LLR; 4 (t—1) < log(p/(1 — p))

5: ﬁj (t) — 11— Hk () ]./(]. + exp LLR]Hk (t—l))
6: repeat

7:  {Basic GAMP update}

8 3(t) — E(X|R =75 (1~ 1) Q(t—1), 5 (1))
9: Q1) — var(X|R =7;(1-1); Qj(t=1), p; (1))

10: Z(t) — X, Ay (t)
1 QY () «— 30, [Ai [P Qi (t)

3 %®~4>Q%mum
13 Z0(t) «— E(z[pi (1), Qi’(t))

14: QZZ( ) — Var(zl pi (1), Q7 (1))

150 5(t) — (2] —pz())/ /(t)

16:  QF(t) — Q" (t)(1 — Q7 (1)/Q7 (1))
17 Q7 () « 3, Ay 2Q; (1)

(t

18: 75(t) () + Qj (1) 22; Aij5i(t)

19:  {Sparsity-rate update}

20 pj-k(t) =1 =Tl c ¢y ywy 1/ (1 +exp
LLR; 1 (t—1))

21:  Compute LLR;_ (¢) from (44)

22:  LLRjk(t) < log(p/(1 = p)) + X c (co\jy
LLR; (%)

23: ﬁ](t+1) — 1 71_[]667(]') 1/(1+€XpLLR]4_k(t))

24:  t—t+1

25: until Terminate

density
0  with probability 1 — p
X~ PRy (42)
V' with probability p;
and R is an AWGN corrupted version of X,
R=X+W, W~N(0,Q"). (43)

Algorithm 3 can be interpreted as the GAMP procedure from
[8] with an additional update of the sparsity rates. Specifically,
each iteration ¢ of the algorithm has two stages. The first stage,
labeled as the “basic GAMP update,” contains the updates from
the basic GAMP algorithm [8], which treats the components
x; as independent with sparsity rate p; (¢). The second stage of
Algorithm 3, labeled as the “sparsity-rate update,” updates the
sparsity rates p; (t) based on the estimates returned by the first
stage.
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The second stage of Algorithm 3 has a simple interpretation.
The quantities p;(t) and p;_.(t) can be interpreted, respec-
tively, as estimates for the probabilities

p; = Pr(& = 1forsome k € v(j)|y)

pj—r = Pr(& =1forsomei € {v(j) \ k}|y).

Thatis, p; (t) is an estimate of the probability that the component
x; belongs to at least one active group and p; _j, (¢) is an estimate
of the probability that it belongs to an active group other than
G. Similarly, the quantities LLR;_;.(¢) and LLR;._;(t) are
estimates for the log likelihood ratios

P(& =1]y)
P(& =0[y)’

Most of the updates in the second stage are natural conversions
from LLR values to estimates of p; and p;_.;. In line 3, the LLR
message is computed as

LLR; = log

pr(F():Q1(t),p=1)
pr(T;(1); Q5(t),p = ﬁjﬁk(t))> , (44

where pp (r; Q", p) is the probability density for the scalar ran-
dom variable R in (43), where X has the density (42). The
message (44) is the ratio of two likelihoods: the likelihood that
x; belongs to an active group and the likelihood that x; belongs
to an active group other than GY,.

To summarize, Algorithm 3 provides a simple and intuitive
way to extend the basic GAMP algorithm of [8] to group-
structured sparsity.

The HyGAMP algorithm for group sparsity is also extremely
general. The algorithm can apply to arbitrary priors and output
channels. In particular, the algorithm can incorporate logistic
outputs that are often used for group sparse classification prob-
lems [40]-[42]; details are provided in [43]. Also, the method
can handle arbitrary, even overlapping, groups. In contrast, the
extensions of other iterative algorithms to the case of over-
lapping groups sometimes requires approximations; see, for
example, [44]. In fact, the methodology is quite general and
likely may be applied to general structured sparsity, including
possibly the graphical-model-based sparse structures in image
processing considered in [45].

LLR; . (t) = log (

B. Computational Complexity

In addition to its generality, the HyGAMP procedure is among
the most computationally efficient for group sparsity. To illus-
trate this point, consider the special case when there are K
non-overlapping groups of d elements each. In this case, the
total vector dimension for x is n = Kd. We consider the non-
overlapping case since there are many algorithms that apply
to this case that we can compare against. For non-overlapping
uniform groups, Table I compares the computational cost of the
HyGAMP algorithm to other methods.

The computational cost of each iteration of the HyGAMP
algorithm, Algorithm 3, is dominated by the matrix multiplica-
tions by A (line 10) and AT (line 18) and by the componentwise
squares of A and AT (lines 11 and 17). Each of these operations
has O(mn) = O(mdK) cost. Note that the multiplications by
componentwise-square matrices can be eliminated by using the
scalar-variance version of GAMP [8]. Also, the multiplications
by A and AT are relatively cheap if the matrix has a fast trans-
form (e.g., FFT). The other per-iteration computations are the
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TABLE I
COMPLEXITY COMPARISON FOR DIFFERENT ALGORITHMS FOR GROUP
SPARSITY ESTIMATION OF A SPARSE VECTOR WITH K GROUPS, EACH
GROUP OF DIMENSION d. THE NUMBER OF MEASUREMENTS IS m
AND THE SPARSITY RATE IS p

Method Complexity

Group-OMP [47] O(pmn?)

Group-Lasso [37], [38], [48] O(mn) per iteration

Relaxed BP with vector components [46] | O(mn?) per iteration

HyGAMP with vector components O(mnd) per iteration

HyGAMP with scalar components O(mn) per iteration

m scalar estimates at the output (lines 13 and 14); the n scalar
estimates at the input (lines 8 and 9); and the updates of the
LLRs. All of these computations are relatively simple.

For the case of non-overlapping groups, the HyGAMP algo-
rithm could also be implemented using vector-valued compo-
nents. Specifically, the vector x can be regarded as a block vector
with K vector components, each of dimension d. The general
HyGAMP algorithm, Algorithm 2, can be applied on the vector-
valued components. To contrast this with Algorithm 3, we will
call Algorithm 3 HyGAMP with scalar components, and call
the vector-valued case HyGAMP with vector components.

The cost is slightly higher for HyGAMP with vector compo-
nents. In this case, there are no non-trivial strong edges since
the block components are independent. However, in the update
(29¢), each A;; is 1 x d and QF (t) is d X d. Thus, the com-

putation (29¢) requires m K computations of d* cost each for a
total cost of O(mKd*) = O(mnd), which is the dominant cost.
Of course, there may be a benefit in performance for HyGAMP
with vector components, since it maintains the complete corre-
lation matrix of all the components in each group. We do not
investigate this possible performance benefit in this paper.

Also shown in Table I is the cost of the relaxed BP method
from [46], which also uses approximate message passing similar
to HyGAMP with vector components. That method, however,
performs the same computations as HyGAMP on each of the
mK graph edges as opposed to the m + K graph vertices. It can
be verified that the resulting cost has an O(mK?2d?) = O(mn?)
term.

These message passing algorithms can be compared against
widely-used group LASSO methods [37], [38], which estimate
x by solving some variant of a regularized least-squares problem
of the form

N 1 S
X = arg min §Hy — Ax|]” + v; 1% |2, (45)

for some regularization parameter v > 0. The problem (45) is
convex and can be solved via a number of methods includ-
ing [48]-[50], the fastest of which is the SpaRSA algorithm
of [48]. Interestingly, this algorithm is similar to the GAMP
method in that the algorithm is an iterative procedure, where in
each iteration there is a linear update followed by a componen-
twise scalar minimization. Like the GAMP method, the bulk
of the cost is the O(mn) operations per iteration for the linear
transform. An alternative approach for group sparse estimation
is group orthogonal matching pursuit (Group-OMP) of [42],
[47], a greedy algorithm that detects one group at a time. Each
round of detection requires K correlations of cost md?. If there
are on average pK nonzero groups, the total complexity will
be O(pK*md?*) = O(pmn?). From the complexity estimates
summarized in Table I it can be seen that GAMP, despite its
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Fig. 5. Comparison of performances of various estimation algorithms for

group sparsity withn = 100 groups of dimension d = 4 with a sparsity fraction
of p=0.1.

generality, is computationally as simple (per iteration) as some
of the most efficient algorithms specifically designed for the
group sparsity problem.

Of course, a complete comparison requires that we consider
the number of iterations, not just the computation per iteration.
This comparison requires further study beyond the scope of this
paper. However, it is possible that the HyGAMP procedure will
be favorable in this regard. Our simulations below show good
convergence after only 10-20 iterations. Moreover, in the case of
independent (i.e. non-group) sparsity, the number of iterations
for AMP algorithms is typically small and often much less
than other iterative methods. Examples in [22] show excellent
convergence in 10 to 20 iterations, which is dramatically faster
than the iterative soft-thresholding method of [51].

C. Numerical Experiments

Fig. 5 shows a simple simulation comparison of the mean
squared error (MSE) of the HyGAMP method (Algorithm 3)
along with group OMP, group LASSO, basic GAMP, and the
simple linear MMSE estimator. The simulation used a vector
x with n = 100 groups of size d = 4 and sparsity fraction of
p = 0.1. The matrix was i.i.d. Gaussian and the observations
were with AWGN noise at an SNR of 20 dB. The number of
measurements m was varied from 50 to 200, and the plot shows
the MSE for each of the methods. The HyGAMP method was
run with 20 iterations. In group LASSO, at each value of m, the
algorithm was simulated with several values of the regulariza-
tion parameter +y in (45) and the plot shows the minimum MSE.
In Group-OMP, the algorithm was run with the true value of the
number of nonzero coefficients. It can be seen that the HyGAMP
method is consistently as good or better than both other meth-
ods. Furthermore, HyGAMP is significantly better than basic
GAMP, which exploits sparsity but not group sparsity. All code
for the simulations can be found in the GAMPmatlab package
[52].

We conclude that, for the problem of group-sparse recovery
from AWGN-corrupted measurements, the HyGAMP method is
at least comparable in performance and computational complex-
ity to the most competitive algorithms. On top of this, HyGAMP
offers a much more general framework that can include more
rich modeling in both the output and input.
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VII. APPLICATION TO MULTINOMIAL LOGISTIC REGRESSION

In a second example of the HyGAMP method, we apply
it to the problem of multiclass linear classification using the
approach known as multinomial logistic regression.

A. Multinomial Logistic Regression

In multiclass classification [30], one observes a training set
{(a;,y:)}I™, consisting of m pairs of a feature vector a; € R”
and a d-ary class label y; € {1,...,d}. The goal is then to
infer the unknown d-ary class label y, of an observed feature
vector ay. In the /inear approach to this problem, we design a
weight matrix X € R"*? from the training set. Then, given an
unlabeled feature vector ag, we first generate a vector of linear
“scores” zy := X 'a, € R, and estimate the class label y, as
the index of the largest score, i.e.,

Yo = arg;nax[zo]k. (46)

Multinomial linear regression (MLR) [30] is one of the best
known methods to design the weight matrix X. There, the labels
{y;} are modeled as conditionally independent given the scores
{z;}, where z; := X'a;,. That is,

m

Pr(y|X; A) = [ [ pmir(i [ X"a),

=1

(47a)

where pmir(y;|2z;) is the multinomial logistic pmf,

) exp ([Zz]y»)
Prir(Yi|2i) : ZZ:I exp ([z]k)

The rows ij- of the weight matrix X are then modeled as i.i.d.,

.y €{1,....d}. (47b)

p(X) = H p(x;). (48)

For log-convex p(x;), MAP estimation of X is a convex
problem. The log-convex Laplacian prior

Piap(x;) = (A/2)" exp (= Allx; 1)

is a popular choice for p(x;) that promotes sparsity in the de-

(49)

signed weight matrix X. Sparsity is essential in the case that the
feature dimension n is much larger than the number of train-
ing examples m. Fast implementations of sparse MLR were
proposed in [31] and refined in [53].

B. HyGAMP Algorithm

Max-sum HyGAMP (MS-HyGAMP) can be directly applied
to solve the above optimization problem. To do this, we set
A;; = [a];I; Vi,j and, recalling (11), we choose fi(z;) =
log pmir(yi|z:) Vi =1,...,m, and recalling (12), we choose
fm+j(xj) =log piap(x;) Vj = 1,...,n.Then (27a) boils down
to

- 1 -
%; = argmin 5[x =% [lg; +Allx]h. (50)
where ||x||2Q := x"Q~'x, and (34b) boils down to
~ 1 ~ 2
z; = argmin ||z — piflgr — logpmr(yilz). ()
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Both problems are convex and can be solved using standard
methods, e.g., majorization—-minimization or Newton’s method
in the case of (51). For more details, including the implementa-
tion of (27b) and (34c), we refer the reader to [54].
SP-HyGAMP can also be applied to MLR, again using the
likelihood (47). However, rather than the Laplacian prior (49),
we suggest choosing the Bernoulli-multivariate-Gaussian prior

p(X) = [ pogx,) (520)
j=1
Pog(X;) = B3(x;) + (1 — B)N(x;;0,qI) (52b)

with § € [0, 1), which promotes approximate row-sparsity in X
under sum-product inference. In this case, it can be shown [54]
that (28) can be computed in closed form as

1-3 N(0;1;,Q))

Cn =1+ = 53
B N(0;t;,qI+ Q) 6
1 1\
. 1 TN o T
Qj = C—n I+ aQJ QJ + (Cn - l)xjxj . (55)

Although we are not aware of a closed-form solution to (35), it
can be approximated using numerical integration.

C. Numerical Experiments

We will now describe the results of two experiments used to
evaluate the application of HyGAMP to sparse MLR. In these
experiments, SP-HyGAMP and MS-HyGAMP were compared
to two state-of-the-art sparse MLR algorithms: SBMLR from
[55] and GLMNET from [53].

1) Synthetic Data: We first performed an experiment on syn-
thetic data with d = 3 classes, n = 500 features, and m = 102
examples. The use of synthetic data allowed us to analytically
compute the expected test-error rate associated with the de-

signed weight matrices X.

To generate the synthetic data, we first constructed the set of
training labels {y; } such that m/d training samples were ded-
icated to each class. Then we drew feature vectors {a;} i.i.d.
from the class-conditional density a;|y; ~ A (1, ,vL,). The

class means {p,, }3:1 were 10-sparse, with support chosen uni-
formly at random and with non-zero entries chosen uniformly
from the columns of a 10 x 10 random orthonormal matrix. The
parameter v was then chosen to achieve a Bayes error rate of
10%. Thus, only 10 of the 500 features were discriminatory.
Note that the data-generation model is not matched to the sta-
tistical model assumed in the derivation of MS-HyGAMP or
SP-HyGAMP.

To test the algorithms, we performed 12 trials, where in each
trial we invoked each algorithm-under-test on randomly gener-
ated training data and then computed the resulting expected
test-error rate. The SP-HyGAMP algorithm used (52) with
parameters (3,¢) tuned over a 3 x 5 logarithmically-spaced
grid using 5-fold cross-validation (CV). The GLMNET algo-
rithm, which solves the same convex optimization problem as
MS-HyGAMP, tuned A in (49) over 25 logarithmically-spaced
values using 5-fold CV. The same CV-optimal A\ was then used
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TABLE II
RESULTS FOR THE SYNTHETIC DATA EXPERIMENT
Algorithm % Error K 99 K 20
GLMNET 14.787 13.25 | 25.75
MS-HyGAMP 14.787 13.25 | 25.75
SBMLR 14.059 15.08 | 28.92
SP-HyGAMP 13.981 16.08 | 1500

for MS-HyGAMP. Finally, SBMLR is parameter-free, and thus
did not require tuning.

For a designed weight matrix X = [X1,...,X4], the expected
test-error rate can be analytically computed [54] as

d
Pr{err} =1 — cliyzg Pr{cor|y} (56)

Pr{corly} =Pr (| {(X, —%)"a < (X, — %) "p, }, (57)
k#y

where a ~ A(0,v1,,) and the multivariate normal cdf in (57)
was computed using Matlab’s mvncdf.

In addition to computing the expected test-error rate, we com-
puted two metrics for the sparsity of the designed weight matri-
ces. The metric IAQO = || X||o quantifies absolute sparsity, i.c.,

the number of non-zero elements in X. But since the weights
returned by SP-HyGAMP are non-zero with probability one, we
also computed the “effective sparsity” K 99, which is defined as
the minimum number of elements in X required to reach 99%
of 12 o

Table II shows the expected test-error rate, Kgg, and K, of
each algorithm, averaged over 12 independent trials. From this
table, we see that MS-HyGAMP and GLMNET matched on all
metrics. This result is expected because the two algorithms aim
to solve the same convex problem, and it offers evidence that
they do in fact solve the problem. Thus, in the sequel, we report
only the results of GLMNET. Next, Table II shows that the SP-
HyGAMP achieved the best expected test-error rate of 13.981%,
with SBMLR achieving the second best. For comparison, we
recall that the Bayes (i.e., minimum) expected error rate was
10% in this experiment. The table also shows that the (average)
effective sparsity K 99 was similar for all algorithms, and smaller
than the sparsity of the Bayes’ optimal classifier for this dataset,
which is Ky, = 30.

2) Handwritten Digit Classification: In the second experi-
ment, we tested SP-HyGAMP, GLMNET, and SBMLR on the
Mixed National Institute of Standards and Technology (MNIST)
dataset [56]. The MNIST dataset consists of m = 70000 total
images of handwritten digits O through 9, hence d = 10. Each
image has n = 784 pixels. In this experiment we performed
24 trials, where in each trial we randomly partitioned the total
dataset into a training and testing portion. Within each trial, we
varied the number of image samples in the training partition
from m = 56 to m = 1000. Using the training data, we used
each algorithm-under-test to design a weight matrix, which was
then used to compute an empirical error-rate on the test partition
of the dataset. In this experiment, SP-HyGAMP and GLMNET
tuned their associated parameters in a similar manner as in the
synthetic experiment. However, they used 2-fold CV instead of
5-fold CV to reduce computation.
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Fig. 6. Classification results for MNIST dataset.

Figure 6 shows the empirical test-error rate versus the number
of training samples m, averaged over the 24 random trials. The
error bars indicate the standard deviation of the empirical error-
rate estimate. The figure shows that, for all m, SP-HyGAMP
achieved the best test-error rate and GLMNET achieved the
second best. The figure also shows that, for all algorithms, the
test-error rate decreased to a common value as the number of
training samples m increased. This is not surprising; we ex-
pect that, with enough training data, any reasonable approach
should recover a close approximation to the Bayes-optimal lin-
ear classifier. A much more difficult problem is designing a good
linear classifier from limited training data, and, for this problem,
Figure 6 shows that SP-HyGAMP beats the competition.

D. Simplified HyGAMP and EM/SURE Tuning

When directly applied to multinomial logistic regression,
each iteration of HyGAMP involves the update of O(m + n)
multivariate Gaussian pdfs, each of dimension d, for a total
complexity of O((m + n)d?) per iteration. This complexity can
be quite large in practice, especially relative to state-of-the-art
methods like GLMNET and SBMLR. Furthermore, in its more
direct form, HyGAMP assumes knowledge of the statistical
parameters of its prior and likelihood. In order to tune these
parameters to the data, it was suggested above to use cross-
validation (as with GLMNET). But K -fold cross-validation of
P parameters using G hypothesized values of each parameter
requires the training and evaluation of KG” classifiers, which
can be very expensive in practice.

Fortunately, for multinomial logistic regression, it is
possible to modify HyGAMP in such a way that the
complexity of the resulting method becomes competitive with
GLMNET and SBMLR. The modification consists of two parts:
1) a simplification of HyGAMP wherein the covariance matri-
ces Qf, Q7 ", Q7 are constrained to be diagonal; and ii) an
application of EM-based [57] and SURE-based [58] parameter
tuning to the priors and likelihoods relevant to multinomial lo-
gistic regression. A complete description of EM/SURE-tuned
simplified HyGAMP (SHyGAMP) for multinomial logistic re-
gression can be found in [59], with full derivations in [54]. In
[59], a detailed numerical study establishes that EM/SURE-
tuned SHyGAMP is competitive in both performance and
complexity with GLMNET and SBMLR. Due to space limi-
tations, we refer the interested reader to [54] and [59] for more
details.
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We conclude by saying that, although the “direct” application
of HyGAMP from Section V may not lead to a complexity that
is always competitive with state-of-the-art methods, it acts as an
important first step in deriving simplified and/or enhanced ver-
sion of HyGAMP. This underscores the importance of HyGAMP
as stated in Section V.

VIII. CONCLUSION

A general model for optimization and statistical inference
based on graphical models with linear mixing was presented.
The linear mixing components of the graphical model account
for interactions through aggregates of large numbers of small,
linearizable perturbations. Gaussian and second-order approx-
imations are shown to greatly simplify the implementation of
loopy BP for these interactions, and the HyGAMP framework
presented here enables these approximations to be incorporated
in a systematic manner in general graphical models. Simulations
were presented for group sparsity and multinomial logistic re-
gression, where the HyGAMP method has equal or superior
performance to existing methods. Although we saw that,
in multinomial logistic regression, a direct application of
HyGAMP does not lead to state-of-the-art computationally
complexity, a modification of the HyGAMP presented here suf-
fices to address the complexity issue [54], [59]. The generality
of the proposed HyGAMP algorithm also allows its application
to many other problems beyond these two examples, such as
multiuser detection in massive MIMO [23], [24], inference for
neuronal connectivity [25], fitting neural mass spatio-temporal
models [26], user activity detection in cloud-radio random ac-
cess [27], and decoding from pooled data [28]. In addition to
pursuing such applications, future work will focus on establish-
ing rigorous theoretical analyses along the lines of [7], [8] for
specific instances of HyGAMP.

APPENDIX A
DERIVATION OF SP-HYGAMP

A. Preliminary Lemma

Before deriving the SP-HyGAMP algorithm, we need the fol-
lowing result. Let H (w, v) be a real-valued function of vectors
w and v of the form

1
H(w,v) = Hy(w) = 5w = Vllg. (58)
for some positive definite matrix Q.

Lemma 1: Suppose that W and V are random vectors with

a conditional probability distribution function of the form

pwiv (W) = s exp [l (w,v).

where H(w,v) is given in (58), u > 0 is some constant and
Z(v) is a normalization constant (called the partition function).
Then,

J_, . .
8—Vx(v) = DQ (59a)
d —v (S
o logZ(v) = Q7" (X(v) — V) (59b)
82
L logZ(v) = —Q+QDQ (59)

ov?
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where

2(v) =

Proof: The relations are standard properties of exponential
families [3]. n

EW|V =v], D =uCov(WI|V =v).

B. SP-HyGAMP Approximation
First partition the objective function H,_.;(-) in (16) as

Hé%j (t7 Xa(i)> Zi)

= HU8 (6, Xa (i) 2i) + HY 35 (6, x50)),  (60)
where
H:Ejng(tvxry(i)vzi)
= fz (xa(i)7zi) + Z Az\—r (t,Xr), (613)
r e {a(i)\j}
HY(tx5)) = > Aiy(t,x,).  (61b)

re{B()\j}

That is, we have separated the terms in H;_,;(-) between the
strong and weak edges.

Then, the marginal distribution p; ; (¢, x;) of the distribution
Pi—j(t,Xp(;)) in (19) can be re-written as

pij(t,xj) = /pH;(t Xp(i))dXo ()

X /wjg;ng(ﬂxpzi)%i] (t XJ,ZZ)dZZ, (62)

where

’L/)strong

(t,x;j,2i)

o / exp [uH:;r?ng’ (t, Xa (), 2i)] dxq iy (632)
a (i)\

wzwijk (t> X, Zi)

k
x /Xxuw)\.; exp [uH,“_e,}i (t,xp(1))] dxp(i)\;
z;=A;x

(63b)

and the integration in (63a) is over the variables x, with r €
a(i) \ j, and and the integration in (63b) is over the variables
x, with 7 € 3(7) \ j, and z; = A;x.

To approximate p;_,;(t,x;) in (62), we separately consider
the cases when (7, j) is weak edge versus a strong edge. We
begin with the weak edge case. That is, j € (§(i). Let

X;(t) = Elx;;4;(¢,)], (64a)
Xij(t) = E[x;; Aij(t, )], (64b)
Qj (t) :== uCov[x;; A;(t, )] (64c)
iei(t) = uCov[x;; A (t, )], (64d)

where we have used the notation E[g(x); A(-)] from (14).
Now, using the expression for H 7k (t,x3(;)) in (61b), it can

i—]
be verified that 2% (¢, Xj,2;) is equivalent to the probability

i—j
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distribution of a random variable
z; = Aijx; + Z Airx,,
re{B(i)\s}

with the variables x,. being independent with probability distri-
bution

(65)

p(xr) S eXp(uAiHr (Xr))'

Moreover, X;.;(t) and Qf_;(t)/u in (64) are precisely the
mean and variance of the random variables x; under this dis-
tribution. Therefore, if the summation in (65) is over a large
number of terms, we can then use the CLT to approxi-
mate the variable in z; in (65) as Gaussian, with distribution

Z“f;‘»k(t, Xj,2;) given by
G () 2) ~ N (A + Pisy (1), Q1 (D)), (66)
where
pi—;(t) = Z A X, (t) (67a)
re{B(H)\i}
Q=Y AQOHA (67b)
re{B()\j}

Substituting this Gaussian approximation into the probability
distribution p; . (t, Xy(;), 2;) in (19), and then using the defini-
tions in (61a) and (63a), we obtain the following approximation
of the message in (18),

Aij(t,x)) = Gi(t, Aijx; + Pij(1), Q75 (1), (68)
where

Gi(t,pi, Q)

IOg/GXp UH (t Xa(i)s Zlaqu')] dxa (7) dzl

(69)
and where H? () is given in (34a).
Now define
Z A X X1<—7 (70a)
repi)
= > A,QI(HA;, (70b)
r e [(i)
so that the expressions in (67) can be re-written as
Pi—j(t) = Pi(t) — Ay (t) (71a)
() = QI(t) — A Qi (DA (71b)
Also, let
~ 0 N »
8i(t) = =Gt Bi(), Q[ (1) (724)
P
, 0?
Q7 (t) = —aTBQGi (t, pi(t), Q7 (). (72b)

Using Lemma 1, one can show that the definitions in (72) agree
with the updates (37) where Z! (¢) and Q; (¢) are the mean and
covariance of the random variable z; with the distribution (36).
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Applying (72), we can take a second-order approximation of
(68) as

Aiﬁ]’ (t, Xj) X const +§z (t)*A” (X]' — )?j (t))
1 -
- §HAZ;;' (xj =X (s 1)

*

const + [Aj;s;(t) + AJ;QF (t)Ai;X;(1)] x;

1 * Ak S
+ §Xinj Q; (t)Aijx; (73)
for all weak edges (i, j).

Next consider the case when j ¢ (3(7) so that (¢, j) is a strong
edge. In this case, fj?k (t,x;,2;) does not depend on x; and a

similar calculation as above shows that
YOk (t, x5, 2:) ~ T (t 2i) = N (D (1), QL () /w),

where p;(t) and QY (¢) are defined in (70). Substituting the
Gaussian approximation (74) into (19), and then using the defi-
nitions in (61a) and (63a), one can show that the marginal distri-
bution p;_; (t,x;) in (19) is equal to the marginal distribution of
Pi—j(t,Xa (i), 2i) in (33). Therefore, the message A; ;(t,x;)
in (18) can be written as (32) for all strong edges (%, 5).

We now turn to the variable node update (20) which we
partition as

(74)

Aij(txg) = A5 (%)) + ATITE (%)), (79)
where
NEPEEHLx) = Y Ar(txg)  (T6a)
(#i:jeal)
AV (E+Lx) = Y Arj(tx;). (76b)
(#i:j€pl)
Substituting the approximation (73) into (76b) gives
weak 1 ~ 9
AL+ Lxg) ~ —5lri— () = x5llq; > D)
where
QZ%J Z Af] QZ Af] (783)
l#£1
Fij(t) = Qi(t)| D ALS(t) + AL QI (1AL (1)
l#i
= w—j Z AZ] Sg (78b)

2
We again consider the case of a weak edge separately from
a strong edge. When (i,5) is weak edge, j € a(i), so that
A?f_ﬂ;ng(t—i—LXJ-) in (76a) does not depend on i. Combining
(75) and (77), we see that
Azu;j (t+1,Xj) ~ H];-I:(LXJ',/I'\Z'H]' (t), L—j (t)), (79)

where H (-) is defined in (26). Also, comparing (38) with (78),
we have that

Q7 ()~ Q" (1) (80a)
()~ B0 - Q(DALS (D). (80b)
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Substituting (80) into (79) we get

Ai“j (t+ L, Xj) ~ Hf (tv xjvi'\j (t) - Q; (t)A:]/S\z (t)a Q; (t))

(81)
A similar set of calculations shows that A; (t+1, x;) in (21) can
be approximated as

Aj(t+1,Xj) ~ Hf(t,X],?j(t),Qj(t)) (82)

Thus, the definitions of X;(¢t+1) and Qj (t+1) in (64) agree
with (28).
Finally, define

F.i(t’fj) =E [X];Hf(tv'v?jan(t_l))] )

where again we are using the notation (14) and H7 (+) is defined
in (26). It follows from (81), (82) and (64) that

X;j(t+1) =~ T';(t,7;(t))
Xij (t+1) = T (t,7;(t) — Q5 (1) A7;8i(1))
~ T, (t,7;(t)) ~
~ (1) — =2 Q ()AL S ().
J 61:] J
From the definition (83), Lemma 1 shows that
ar;(t,x;(t))
or;
and hence, from (84),

(83)

(84)

~Q"(1)Q (1), (85)

Substituting (86) into (70) we obtain

~ Y AR Z A;Q(H)AS (t—1)
J€p(i) jep
~zi(t) — Q' (t)si(t-1),

which agrees with the definition in (29).

(86)

APPENDIX B
DERIVATION OF MS-HYGAMP

The derivation of MS-HyGAMP is similar to the derivation
of SP-HyGAMP in Appendix A.

A. Preliminary Lemma

We begin by stating the analogue to Lemma 1. For each v, let

w(v) := argmax H(w, V), (87a)

G(v) = H(w(v),v) = max H(w,v),

w

(87b)

where H(w,v) was given in (58).
Lemma 2: Assume the maximization in (87) exists and is
unique and twice differentiable. Then,

OG(V) _ yi
e Q" (w(v) —v), (88a)
8W(V) — —Dilin, (88b)
ov
2
TEN) _ _qv-qplQ, (88¢)

ov?



4590

where

D_ 0*H(w,v)

2
ow w=w(v)

Proof: Since w = w(v) is a maximizer of H (w, v),

(89)

Therefore, (88a) follows from

oG(v)
ov

OH(w(v),v)
awaw(v) + OH(w(v),v)

ov ov

OHEMY) e
I Q (W<V) _V)’

where the last step is a result of the form of H(-) in (58). The
form of H(-) in (58) also shows that for all w and v

0?H(w,v)

owov Q.

Taking the derivative of (89),

OPH(w,v) O*H(w,v)ow(v) 0
owov ow? ov
which implies that
%) _ g
ov

which proves (88b). Finally, taking the second derivative of
(88a) along with (88b) shows (88c). [ |

B. MS-HyGAMP Approximation

Similar to the SPA derivation, we first partition the function
H;_.;(-) in (16) as in (60). We can also partition the maximiza-
tion (17) as

Aij (%) = max [ATF (8,3, 20) + AL (E x5, 2:)]
(90)
where
A?tj‘;“g(t,xj,zi) = xI}l(?\(l Hff?“g(t,xa(i),z,;), (91a)
A;‘_C,jk(t,zi,xj) = max Hl“fjlk(t,x/m)), (91b)

i)\Jj
z,:A,'x

with the maximization in (91a) being over all x, withr € a(7) \
Jj; and the maximization in (91b) over all x, with r € 5(3) \ j
subject to z; = A;x. The partitioning (90) is valid since the
strong and weak edges are distinct. This insures that for all
r € 6(i), either r € (i) or r € 3(i), but not both.
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The HyGAMP approximation applies to the weak term (91b).
For any j and all weak edges (i, j), define:

X;(t) == argmaxAj(t,x;), (92a)

Xij(t) == argmax A;;(t,x;), (92b)
»

Q;“(t) := "o At %)y, =5, (1) 0 (92¢)

Q) =~y Al g . O20
j

which are the maximum and Hessian of the incoming weak
messages. Since the assumption of the HyGAMP algorithm is
that A;, is small for all weak edges (i,7), the values of x,
in the maximization (91b) will be close to X;.,(¢). So, for all
weak edges, (i,7), we can approximate each term A, (¢,x, )
in (61b) with the second-order approximation

N 1 ~
Ny (%) = Ajy (8, Tier (8)) — inr — X (t )||Q1
(93)

where we have additionally made the approximation Q7_, (t) ~
Q7 (t) for all . Substituting (93) into (61b), the maximization
(91b) reduces to

Awmk (t, X;, Zi)

t—]

1
=~ t— 5 T
cons xr£1a)>\<j 5 [Ix;

=A;x

>

re{B(i)\j}

where the constant term does not depend on x; or z;.

To proceed, we need to consider two cases separately: when
J € B(i) and when j ¢ [3(4). First consider the case when j €
(B(7). That is, (i,7) is a weak edge. In this case, a standard
least-squares calculation shows that (94) reduces to

AWedk (t, Xj , Zi)

1—]

_iig,»(t)”?;zf(t) » 09

1 ~
~ const — *”ZZ‘ — Az'inHj (t) — Pi—j (t)”a;{;ﬂ () (95)

where p;;(t) and Q] ;(t) are given in (67). Also, when j €
((i), the assumption that «(¢) and [(7) are disjoint implies
that j & (7). In this case, Amjng (t,x;,2;) in (91a) with the
objective function (61a) will not depend on x;, so we can write

Abtloﬂg (t, X;, Zi) — A:tron%‘ (t, Zi)

=)
Z A7Hr t, Xr

rea(i)

fmax fi(x , (96)

where the maximization is over all x, for r € a(¢). Combining
(90), (95) and (96), we can write that, for all weak edges (4, j),

Aij(t,x)) = Gi(t, Piy(t) + Aijx;), 97)
where

Gi(t,p;) == max H;(t,

a (i) Zi

and H? (-) is defined in (34a).

Xa(i)7zi7ﬁi7 QI; (t)) (98)
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Now define p; () and QY (¢) as in (70). Using (71), neglecting
terms of order O(||A;;||?), and taking the approximation that
Xi—j(t) = X;(t), (97) can be further approximated as

Aij(t,x;) = Gi(t, Pi(t) + Agj (x5 — %(1))),

similar to (68). Now, similar to (72), let

. d .
si(t) = %Gz’ (t,pi(t)), (99a)
82
Q) = “ Gi(t,pi(t)). (99b)

Based on the definition of G;(+) in (98) with H? (-) defined in
(34a), one can apply Lemma 2 to show that (99) agrees with (37).
Using a similar approximation as in the derivation of the SPA-
HyGAMP, one can then obtain the quadratic approximation in
(73) for A;_;(t,x;) for all weak edges (4, j).

Next consider the case when j ¢ (3(i) so that (4, j) is a strong
edge. In this case, A;"_"f}k(t, Xj,2;) in (94) does not depend on
X, SO we can write

Az‘ff}k (t,xj,2;) ~ const + AVerk (L, z;), (100)
where
AYN(t,z;) = max  HY(t,x50)), (101)

x:z;,=A;x

with the maximization being over x such that z; = A;x. Us-
ing a similar least-squares calculation as above, AY°4% (¢, z,) is
given by
wee 1 =
AV (L, ;) = _5\\zi —pi(t)Hg;;(t), (102)
and p; () and QY (¢) are defined in (70). Combining (90), (100)
and (102), we can write that, for all strong edges (i, j),

Astrong

1 ~
Ai(txg) & max AT (8 x5, 20) = S llze = Bi(®)llge o

+ const (103)

From (61a) and (91a), we see that (103) agrees with the factor
node update (31) for the strong edges.

We now turn to the variable update steps of the MSA. Since
this step is identical to the SPA, one can follow the derivation
in Appendix A to show that A;_; (¢ + 1,x;) and A; (¢t + 1,x;)
are given by (81) and (82), respectively and T; (t) and Q] (t) are
given in (38). Also, the definitions of X; (¢) and QF () in (92)
are consistent with (27).

Also, if we let

Lj(t,7;) := argmax Hj (t,x;,7;, Q} (1)),

it follows from (92), (81), and (82) that
Xj(t+1)~T;(t,T;(t))
Xiej(t+1)=T;(t,1;(t) — Qj(t)Aj;si(t))
oy OL(tT;(1))

J

QOALS (D). (104)
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It can be shown from Lemma 2 that
-1
8F (tv T; (t)) 62 x o = —r
Sy i b (G IO O
~ Q'(H)QT (1),
and hence, from (104),
Xij(t+1) =x;(t+1) —Q (t+ 1)Afj’s\i(t). (105)

The proof now follows identically to the derivation of the SPA-
HyGAMP.
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