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Sparse Multinomial Logistic Regression via
Approximate Message Passing

Evan Byrne and Philip Schniter, Fellow, IEEE

Abstract—For the problem of multi class linear classification
and feature selection, we propose approximate message passing
approaches to sparse multinomial logistic regression (MLR). First,
we propose two algorithms based on the Hybrid Generalized Ap-
proximate Message Passing framework: one finds the maximum
a posteriori linear classifier and the other finds an approxima-
tion of the test-error-rate minimizing linear classifier. Then we de-
sign computationally simplified variants of these two algorithms.
Next, we detail methods to tune the hyperparameters of their as-
sumed statistical models using Stein’s unbiased risk estimate and
expectation-maximization, respectively. Finally, using both syn-
thetic and real-world datasets, we demonstrate improved error-
rate and runtime performance relative to existing state-of-the-art
approaches to sparse MLR.

Index Terms—Classification, feature selection, multinomial
logistic regression (MLR), belief propagation, approximate
message passing.

1. INTRODUCTION
A. Objective

E consider the problems of multiclass (or polytomous)
W linear classification and feature selection. In both prob-
lems, one is given training data of the form {(y,,,a, )}Y_,,
where a,,, € RY is a vector of features and y,,, € {1,...,D}
is the corresponding D-ary class label. In multiclass classifi-
cation, the goal is to infer the unknown label y, associated
with a newly observed feature vector ag. In the linear ap-
proach to this problem, the training data are used to design
a weight matrix X € R™*P that generates a vector of “scores”
2o 2 X"ay € RP, the largest of which can be used to predict
the unknown label, i.e.,

Yo = argm(?x [z0]a- (1

In feature selection, the goal is to determine which subset of the
N features a is needed to accurately predict the label .

We are particularly interested in the setting where the num-
ber of features, [V, is large and greatly exceeds the number of
training examples, M. Such problems arise in a number of im-
portant applications, such as micro-array gene expression [1],
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[2], multi-voxel pattern analysis (MVPA) [3], [4], text mining
[5], [6], and analysis of marketing data [7].

Inthe N > M case, accurate linear classification and feature
selection may be possible if the labels are influenced by a suffi-
ciently small number, K, of the total NV features. For example,
in binary linear classification, performance guarantees are pos-
sible with only M = O(K log N/K) training examples when
a,, is i.i.d. Gaussian [8].

Note that, when K < N, accurate linear classification can
be accomplished using a sparse weight matrix X, i.e., a matrix
where all but a few rows are zero-valued.

B. Multinomial Logistic Regression

For multiclass linear classification and feature selection, we
focus on the approach known as multinomial logistic regression
(MLR) [9], which can be described using a generative proba-
bilistic model. Here, the label vector y £ [y, . . .,ya]" is mod-
eled as a realization of a random' vectory = [y, ...,Y;,]", the
“true” weight matrix X is modeled as a realization of a random
matrix X, and the features A = [ay, ... ,aM]T are treated as
deterministic. Moreover, the labels y,, are modeled as condi-
tionally independent given the scores z,, £ XTam ,1.e.,

M
Priy =y |X=X; A} = [] pyem|X an), @

m=1

and distributed according to the multinomial logistic (or soft-
max) pmf:

2 ) = exp([2mly,, )
PreelEn) = S ezl

The rows X! of the weight matrix X are then modeled as i.i.d.,

s ym €{1,...,D}. (3

px(X) = [ palan). @

n=1

where px may be chosen to promote sparsity.

C. Existing Methods

Several sparsity-promoting MLR algorithms have been pro-
posed (e.g., [10]-[15]), differing in their choice of px and
methodology of estimating X. For example, [11]-[13] use the
i.i.d. Laplacian prior

D
px(xnin) =[]
d=1

GXp(—)\.|l‘m1|), (5)

N>

IFor clarity, we typeset random quantities in sans-serif font and deterministic
quantities in serif font.
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with A tuned via cross-validation (CV). To circumvent this tun-
ing problem, [14] employs the Laplacian scale mixture

px@Bn)==fi‘/w[gexp(—A:muD}zﬁl)dk, ©

d=1

with Jeffrey’s non-informative hyperprior p(A) o £1; . The
relevance vector machine approach [10] uses the Gaussian scale
mixture

D
MW=H/MW%WWW ™

d=1

with inverse-gamma p(v) (i.e., the conjugate hyperprior), re-
sulting in an i.i.d. student’s t distribution for px. However,
other choices are possible. For example, the exponential hy-
perprior p(v; A) = % exp(—%l/)l,, >0 would lead back to the
i.i.d. Laplacian distribution (5) for py [16]. Finally, [15] uses

px(wn§)‘) o<exp(f)\||a:"||2), (8)

which encourages row-sparsity in X.

Once the probabilistic model (2)—(4) has been specified, a
procedure is needed to infer the weights X from the training data
{(Ym , am ) }M_,. The Laplacian-prior methods [11]-[13], [15]
use the maximum a posteriori (MAP) estimation framework:

X =arg maxlog p(X|y; A) ()

M N
= 1 m | XT 1 1
arg m}%X Z:l ngy\z(ym| am,) + Z ngx($71,)a ( O)

= n=1

where Bayes’ rule was used for (10). Under py from (5) or
(8), the second term in (10) reduces to —A Y. ||z, || or
—A 23:1 ||, ||2, respectively. In this case, (10) is concave and
can be maximized in polynomial time; [11]-[13], [15] employ
(block) coordinate ascent for this purpose. The papers [10] and
[14] handle the scale-mixture priors (6) and (7), respectively,
using the evidence maximization framework [17]. This approach
yields a double-loop procedure: the hyperparameter A or v is
estimated in the outer loop, and—for fixed A or v—the resulting
concave (i.e., o or {1 regularized) MAP optimization is solved
in the inner loop.

The methods [10]-[15] described above all yield a sparse
point estimate X. Thus, feature selection is accomplished by
examining the row-support of X and classification is accom-
plished through (1).

D. Contributions

In Section II, we propose new approaches to sparse-weight
MLR based on the hybrid generalized approximate message
passing (HyGAMP) framework from [18]. HyGAMP offers
tractable approximations of the sum-product and min-sum mes-
sage passing algorithms [19] by leveraging results of the central
limit theorem that hold in the large-system limit: limy 37 o0
with fixed N/M . Without approximation, both the sum-product
algorithm (SPA) and min-sum algorithm (MSA) are intractable
due to the forms of py|; and px in our problem.
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For context, we note that HyGAMP is a generalization of the
original GAMP approach from [20], which cannot be directly
applied to the MLR problem because the likelihood function
(3) is not separable, i.e., pyjz(Ym |2im ) # [ 14 P(Ym |2ma). GAMP
can, however, be applied to binary classification and feature
selection, asin [21]. Meanwhile, GAMP is itself a generalization
of the original AMP approach from [22], [23], which requires
Dy|z to be both separable and Gaussian.

With the HyGAMP algorithm from [18], message pass-
ing for sparse-weight MLR reduces to an iterative update of
O(M + N) multivariate Gaussian pdfs, each of dimension D.
Although HyGAMP makes MLR tractable, it is still not compu-
tationally practical for the large values of M and /N in contempo-
rary applications (e.g., N ~ 10* to 10° in genomics and MVPA).
Similarly, the non-conjugate variational message passing tech-
nique from [24] requires the update of O(M N) multivariate
Gaussian pdfs of dimension D, which is even less practical for
large M and N.

Thus, in Section III, we propose a simplified HyGAMP
(SHyGAMP) algorithm for MLR that approximates HyGAMP’s
mean and variance computations in an efficient manner. In par-
ticular, we investigate approaches based on numerical integra-
tion (NI), importance sampling (IS), Taylor-series (TS) approxi-
mation, and a novel Gaussian-mixture (GM) approximation, and
we conduct numerical experiments that suggest the superiority
of the latter.

In Section IV, we detail two approaches to tune the hy-
perparameters that control the statistical models assumed by
SHyGAMP, one based on the expectation-maximization (EM)
methodology from [25] and the other based on a variation of
the Stein’s unbiased risk estimate (SURE) methodology from
[26]. We also give numerical evidence that these methods yield
near-optimal hyperparameter estimates.

Finally, in Section V, we compare our proposed SHyGAMP
methods to the state-of-the-art MLR approaches [13], [14] on
both synthetic and practical real-world problems. Our exper-
iments suggest that our proposed methods offer simultaneous
improvements in classification error rate and runtime.

Notation: Random quantities are typeset in sans-serif (e.g.,
X) while deterministic quantities are typeset in serif (e.g., x).
The pdf of random variable X under deterministic parameters 6
is written as py(x; ), where the subscript and parameterization
are sometimes omitted for brevity. Column vectors are typeset
in boldface lower-case (e.g., y or ), matrices in boldface upper-
case (e.g., X or X), and their transpose is denoted by (-)T. E{-}
denotes expectation and Cov{-} autocovariance. I x denotes the
K x K identity matrix, ey, the kth column of I i, 1 the length-
K vector of ones, and Diag(b) the diagonal matrix created from
the vector b. [ B],,, ,, denotes the element in the mth row and nth
column of B, and || - || r the Frobenius norm. Finally, 6,, denotes
the Kronecker delta sequence, 6 () the Dirac delta distribution,
and 14 the indicator function of the event A.

II. HYGAMP FOR MULTICLASS CLASSIFICATION

In this section, we detail the application of HyGAMP [18] to
multiclass linear classification. In particular, we show that the
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(a) Full graph

(b) Reduced graph

Fig. 1. Factor graph representations of (14), with white/gray circles denot-
ing unobserved/observed random variables, and gray rectangles denoting pdf
“factors”. (a) Full graph. (b) Reduced graph.

SPA variant of HyGAMP is a loopy belief propagation (LBP)
approximation of the classification-error-rate minimizing linear
classifier and that the MSA variant is an LBP approach to solving
the MAP problem (10).

A. Classification via Sum-Product HyGAMP

Suppose that we are given M labeled training pairs
{(Ymam )}ﬁl[:1 and T test feature vectors {a; }f‘i}[f 1 Associ-
ated with unknown test labels {y, };” 1 [ | , all obeying the MLR
statistical model (2)—(4). Consider the problem of computing the

classification-error-rate minimizing hypotheses {y; f‘f]{[T s

Dy, lyi.m (yt ‘yl:J\I;A)7 (11)

,..D}

| and A
a,..., aM+T]T. The probabilities in (11) can be computed
via the marginalization

under known py|z and px, where y,., 2y, ..
A
=

Py, lyi.u (yt |y1:M§A) =Dy, Viu (l/t/yl:M%A)Z;l (12)

=2,0 Y [ pyx(y, X; A)dX, (13)
yeyt(?/f)
with scaling constant Z !, label vector y = [y1,...,ya 7] s

and constraint set Y (y) = {y e {1,..., D} st [y
=yand [Yly =y Vm=1,..., M} which fixes the tth el-
ement of y at the value y and the first M elements of y at the
values of the corresponding training labels. Due to (2) and (4),
the joint pdf in (13) factors as

M+T N
pyx(¥, X; A) = [ pyelvm | X an) [ px(=.). (14

m=1 n=1

The factorization in (14) is depicted by the factor graph in
Fig. 1(a), where the random variables {y,, } and random vectors
{X,, } are connected to the pdf factors in which they appear.
Since exact computation of the marginal posterior test-label
probabilities is an NP-hard problem [27], we are interested in
alternative strategies, such as those based on LBP by the SPA
[19]. Although a direct application of the SPA is itself intractable
when py|, takes the MLR form (3), the SPA simplifies in the
large-system limit under i.i.d. sub-Gaussian A, leading to the

5487

HyGAMP approximation [18] given? in Algorithm 1. Although
in practical MLR applications A is not i.i.d. Gaussian,® the
numerical results in Section V suggest that treating it as such
works sufficiently well.

We note from Fig. 1(a) that the HyGAMP algorithm is ap-
plicable to a factor graph with vector-valued variable nodes.
As such, it generalizes the GAMP algorithm from [20], which
applies only to a factor graph with scalar-variable nodes. Be-
low, we give a brief explanation for the steps in Algorithm 1.
For those interested in more details, we suggest [18] for an
overview and derivation of HyGAMP, [20] for an overview and
derivation of GAMP, [28] for rigorous analysis of GAMP under
large i.i.d. sub-Gaussian A, and [29], [30] for fixed-point and
local-convergence analysis of GAMP under arbitrary A.

Lines 6 and 7 of Algorithm 1 produce an approximation of
the posterior mean and covariance of X, at each iteration t.
Similarly, lines 15 and 16 produce an approximation of the
posterior mean and covariance of z,, = X'a,,. The posterior
mean and covariance of X,, are computed from the intermediate
quantity 7, (t), which behaves like a noisy measurement of
the true «,,. In particular, for i.i.d. Gaussian A in the large-
system limit, 7, (¢) is a typical realization of the random vector
r, =x, +V, withv,, ~ N(0,QY (t)). Thus, the approximate
posterior pdf used in lines 6 and 7 is

Pxr(T |? . r) _ pX(wn)N(wm?n’Q:z) )
R ok )N (@37, Q) da,
A similar interpretation holds for HyGAMP’s approximation of
the posterior mean and covariance of z,, in lines 15 and 16,
which uses the intermediate vector p,, (t) and the approximate

posterior pdf

15)

pz\y‘p(zm [Ym » P Q!?n)

_ py|z<ym ‘Zm )N(zm ; ﬁm ) Q?n )
fpy|z(ym ‘Z;n )N(Z;n ) ﬁm ’ Q'r::b) dzin

(16)

B. Classification via Min-Sum HyGAMP

As discussed in Section I-C, an alternative approach to linear
classification and feature selection is through MAP estimation
of the true weight matrix X . Given a likelihood of the form (2)
and a prior of the form (4), the MAP estimate is the solution to
the optimization problem (10).

Similar to how the SPA can be used to compute approximate
marginal posteriors in loopy graphs, the MSA [19] can be used
to compute the MAP estimate. Although a direct application
of the MSA is intractable when py, takes the MLR form (3),
the MSA simplifies in the large-system limit under i.i.d. sub-
Gaussian A, leading to the MSA form of HyGAMP specified in
Algorithm 1.

As described in Section II-A, when A is large and i.i.d.
sub-Gaussian, the vector 7, (¢) in Algorithm 1 behaves like a

>The HyGAMP algorithm in [18] is actually more general than what is
specified in Algorithm 1, but the version in Algorithm 1 is sufficient to handle
the factor graph in Fig. 1(a).

3We note that many of the standard data pre-processing techniques, such as
z-scoring, tend to make the feature distributions closer to zero-mean Gaussian.
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Algorithm 1: HyGAMP.
Require: Mode € {SPA,MSA}, matrix A, vector y, pdfs Dxir

and pg)y p from (15)-(16), initializations 7, (0), " (0).

Ensure: ¢t —0; 3, (0)«0.
1: repeat
2: ifMsAthen {forn=1...N}
3: Z,(t) —

arg maxg, 1ngx\r(xn |?n (t_1)§ :L (t_l))
4: X(t) «—

[ — i 1og pae (B ()7 (t—1); QF (£ —1))]
5: elseif SPA then {forn=1... N}
6: Z,(t) — E{x, |r, =7,(t-1); Q% (t—1)}
7: :E(t) «— Cov {xn ‘rn :Fn(tfl);Q;(t*l)}
8: endif
9: vm Qm( ) Zn 1A2n X( )

10:  Vm: By, (1) — SN Apn @ (t) —
11:  ifMSA then {form =1... M}
12: Z (t) —

arginax, log pz|y,p (Zm ’ym 7ﬁm (t)v an (t))
13: Q% (t) —

Qn, ()8m (t—1)

[~ 3% 108 payp (B (8)] i B (0: Q5 (1))]

14:  elseif SPA then {for m = 1. M}
15: Zn(t) — E{Zn | Ym P = P ()}
16: an( ) — Cov {Zm ’yma pm = )7 gm(ﬂ}
17:  end if
18: Vm: Qm( ) —

(@ @] — Q% (@]~ 1Qz ek, @)
19: Vm:s, (t) [ '37,( )} ( ( ) pm( ))
20: W0 = [0 45, Q5 (0]

21: Vn : Tn(t) —x, (t )+ Q’( )Zm 1 Amn 8 (t)
22: t+—t+1
23: until Terminated

Gaussian-noise-corrupted observation of the true x,, with noise
covariance @, (t). Thus, line 3 can be interpreted as MAP esti-
mation of x,, and line 4 as measuring the local curvature of the
corresponding MAP cost. Similar interpretations hold for MAP
estimation of z,, via lines 12 and 13.

C. Implementation of Sum-Product HyGAMP

From Algorithm 1, we see that HyGAMP requires inverting
M + N matrices of size D x D (for lines 18 and 20) in addition
to solving M + N joint inference problems of dimension D in
lines 3—7 and 12—16. We now briefly discuss the latter problems
for the sum-product version of HyGAMP.

1) Inference of x,,: One choice of weight-coefficient prior
px, that facilitates row-sparse X and tractable SPA inference is
Bernoulli-multivariate-Gaussian, i.e.,

px(@n) = (1= B)d(zn) + BN (,;0,0I), an
where §() denotes the Dirac delta and 3 € (0, 1]. In this case,
it can be shown [31] that the mean and variance computations
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in lines 67 of Algorithm 1 reduce to
1-8 N(0;7,,Q)
C,=1 — z 18
* B N(O;7,,vI +Q) (18)
z, =C, ' (I+v'Q))'? (19)
Q =C ' (I+v7'Q)7'Q" + (C, — 1)@,2),  (20)

which requires a D x D matrix inversion at each n.

2) Inference of z,,: When py, takes the MLR form in (3),
closed-form expressions for 2, () and QZ, (¢) from lines 15-16
of Algorithm 1 do not exist. While these computations could be
approximated using, e.g., NI or IS, this is expensive because
Zm (t) and Q% (t) must be computed for every index m at every
HyGAMP iteration t. More details on these approaches will be
presented in Section III-C, in the context of SHyGAMP.

D. Implementation of Min-Sum HyGAMP

1) Inference of x,: To ease the computation of line 3 in
Algorithm 1, it is typical to choose a log-concave prior px so that
the optimization problem (10) is concave (since pyz in (3) is also
log-concave). As discussed in Section I-C, a common example
of a log-concave sparsity-promoting prior is the Laplace prior
(5). In this case, line 3 becomes
#, = argmax — (2 —7,)7(@)] (@ — 7.) ~ Azl @D
which is essentially the LASSO [32] problem. Although (21)
has no closed-form solution, it can be solved iteratively using,
e.g., minorization-maximization (MM) [33].

To maximize a function J(x), MM iterates the recursion

i(kJrl)

= argmax J(x;2")), (22)
where J | (z; ) is a surrogate function that minorizes J(x)
at z. In other words, J(x;Z) < J(Z)Va for any fixed Z,
with equality when & = Z. To apply MM to (21), we iden-
tify the utility function as J, (z) £ —4(x — 7,)T[Q}] ' (& —
7y, ) — A||[1. Next we apply a result from [34] that estab-
lished that .J,, () is minorized by I (z; :n<k)) —2(x—7,)"
@] (@ —7,) = 5 (@TA@ )z + |2 3) with A@)
£ Diag {|z1|7',...,|Zp|" 1}. Thus (22) implies

2 = argmax J, (z; 27)) (23)
x
T B
= argmaxz Q'] T, — —x
z 2
(@1 +2A@)))z (24)
= (@) +2A@) QR 29)

where (24) dropped the @-invariant terms from J, (z; 2)).
Note that each iteration k of (25) requires a D x D matrix
inverse for each n.

Line 4 of Algorithm 1 then says to set Q% equal to the
Hessian of the objective function in (21) at Z,,. Recalling that
the second derivative of |x,,4| is undefined when z,; = 0 but
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otherwise equals zero, we set Q% = Q' but then zero the dth
row and column of Q% for all d such that Z,,; = 0.

2) Inference of z,,: Min-sum HyGAMP also requires the
computation of lines 12 and 13 in Algorithm 1. In our MLR ap-
plication, line 12 reduces to the concave optimization problem

- ﬁm )T[Q%]71 (Z

+ log Pyjz (ym |Z) :

Zm = argmax —=(z — D)
z 2

(26)

Although (26) can be solved in a variety of ways (see [31] for
MM-based methods), we now describe one based on Newton’s
method [35], i.e

Zn =20 - oV HD gl @7)
where gg,,) and H¥) are the gradient and Hessian of the objec-
), and o®) € (0, 1] is a stepsize. From

logpy‘z(y|z) = 0y_i — Pyz(i]2), and

tive function in (26) at 2
(3), it can be seen that 57~
)

gsrl;) = ’u’(/z\gr]z{)) - [Qm}

where e, denotes the yth column of I'p and u(z) € RP*! is
defined elementwise as

(28)

€y ( m _pm)

[w(z)]i £ py(ilz). (29)

Similarly, it is known [36] that the Hessian takes the form
H) = u(Z,)u(Z,)" - Diag{u(z,)} - [QR]7", (30)

m
which also provides the answer to line 13 of Algorithm 1. Note
that each iteration k of (27) requires a D x D matrix inverse for
each m.
It is possible to circumvent the matrix inversion in (27) via
componentwise update, i.e.,

S0 _ 50 0 (6) ()

md gmd md (3 1)

where g(kd) and H (} are the first and second derivatives of the

objective function in (26) with respect to z, at z = z( ) From
(28)—(30), it follows that

gffd) = pY‘z(d"/z\S?];)) Jm -4+ [[Qm] ] ( gr]:) - Am) (32)
k ~(k A : —
HY) = pya(dZP)? = pya(dz®) - [[QR] Y], 63

E. HyGAMP Summary

In summary, the SPA and MS A variants of the HyGAMP algo-
rithm provide tractable methods of approximating the posterior
test-label probabilities py, |y, ., (v ‘ Y1.a3A) and computing
the MAP weight matrix X = argmaxx py,., XY, X; A),
respectively, under a separable likelihood (2) and a separable
prior (4). In particular, HyGAMP attacks the high-dimensional
inference problems of interest using a sequence of M + N low-
dimensional (in particular, D-dimensional) inference problems
and D x D matrix inversions, as detailed in Algorithm 1.

As detailed in the previous sections, however, these D-
dimensional inference problems are non-trivial in the sparse
MLR case, making HyGAMP computationally costly. We refer
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TABLE I
A SUMMARY OF THE D-DIMENSIONAL INFERENCE SUB-PROBLEMS
ENCOUNTERED WHEN RUNNING SPA-HYGAMP OR MSA-HYGAMP, AS
WELL AS THEIR ASSOCIATED COMPUTATIONAL COSTS

Algorithm Quantity | Method Complexity
z CF O(D3)
SPA- Q* CF o(D3?)
HyGAMP z NI O(DX)
Q* NI O(D¥)
z MM O(KD3)
MSA- Qx CF o(D3?)
HyGAMP z CWN | O(KD?+D3)
Q* CF O(D?)
‘CF” = ‘closed form’, ‘NI’ = ‘numerical integration’, ‘MM’ =
‘minorization-maximization’, and ‘CWN’ = ‘component-wise Newton’s

method’. For the NI method, K denotes the number of samples per di-
mension, and for the MM and CWN methods K denotes the number of
iterations.

the reader to Table I for a summary of the D-dimensional infer-
ence problems encountered in running SPA-HyGAMP or MSA-
HyGAMP, as well as their associated computational costs. Thus,
in the sequel, we propose a computationally efficient simplifi-
cation of HyGAMP that, as we will see in Section V, compares
favorably with existing state-of-the-art methods.

III. SHYGAMP FOR MULTICLASS CLASSIFICATION

As described in Section II, a direct application of HyGAMP
to sparse MLR is computationally costly. Thus, in this section,
we propose a simplified HyGAMP (SHyGAMP) algorithm for
sparse MLR, whose complexity is greatly reduced. The simpli-
fication itself is rather straightforward we constrain the covari-
ance matrices Q' , Q%, QP , and Q?, to be diagonal. In other
words,

n?

Q) = Diag {q},,... (34)

and similar for Q% , QP , and Q?,. As a consequence, the D x D
matrix inversions in lines 18 and 20 of Algorithm 1 each reduce
to D scalar inversions. More importantly, the D-dimensional
inference problems in lines 3—7 and 12—16 can be tackled using
much simpler methods than those described in Section II, as we
detail below.

7q/yr1,D}7

A. Scalar Variance Approximation

We further approximate the SHyGAMP algorithm using the
scalarvariance GAMP approximation from [ 18], which reduces
the memory and complexity of the algorithm. The scalar vari-
ance approximation first approximates the variances {¢X,} by a
value invariant to both n and d, i.e.,

T
X A& X
T =ND quw (33)
n=1d=1
Then, in line 9 in Algorithm 1, we use the approximation
(a) ||A
Ga = ZAm,,q 2l ]\JFq* = ¢ (36)

n=1
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The approximation (a), after precomputing || A||%, reduces the
complexity of line 9 from O(N D) to O(1). We next define

L1 M D .
q:mzzqmd

(37)

m=1d=1

and in line 20 we use the approximation

M -1
N
r 2 S A X
g ~ Amn,q N <A —4- (38)
(Z ) FAT

The complexity of line 20 then simplifies from O(M D) to
O(1). For clarity, we note that after applying the scalar variance
approximation, we have Q% = ¢*Ip Vn, and similar for Q"

Qp and Q'Hl

n?’

B. Sum-Product SHyGAMP: Inference of x,,

With diagonal Q!, and Q2 the implementation of lines 67
is greatly simplified by choosmg a sparsifying prior px with the
separable form px(x, ) = Hd 1 Px(@nd). A common example
is the Bernoulli-Gaussian (BG) prior

= (1= Ba)d(xpa) + BaN (xng; ma, vaI).

For any separable py, lines 6 and 7 reduce to computing the
mean and variance of the distribution

Dx (Ind) (39)

px(In{1>/\/(Ind§Fnrl-,qn,1)
T =
px\r( Tnd| ”d’q”d) Jox(@, N (@, g5Tnasar, ) dal

foralln=1...Nand d=1...D, as in the simpler GAMP
algorithm [20]. With the BG prior (39), these quantities can be
computed in closed form (see, e.g., [37]).

(40)

C. Sum-Product SHyGAMP: Inference of z,

With diagonal QP, and Q?,, the implementation of lines 15
and 16 can also be greatly simplified. Essentially, the problem
becomes that of computing the scalar means and variances

D
Zmd - C / Zd py\z(ym | ) H N(Zk ) ﬁmka qs,k> dz (41)

k=1

D
qmd Cm / Zd pylz Ym |Z H N Zk ; ﬁmk? CIZA) dz — ETQnd
k=1
“2)

form=1...Mandd=1...D. Here, py; has the MLR form
in (3) and C),, is a normalizing constant defined as

Cm £ /]R py\z ym H N Zkypmk7 qu) dz. (43)

Note that the likelihood py, is not separable and so inference
does not decouple across d, as it did in (40). We now describe
several approaches to computing (41) and (42).

1) Numerical Integration: A straightforward approach to
(approximately) computing (41)—(43) is through NI. For this,
we propose to use a hyper-rectangular grid of z values where,

qﬁld,ﬁmd + ay/ qf,’ld} is sampled
at K equi-spaced points. Because a D-dimensional numerical

for z4, the interval D, —
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integral must be computed for each index m and d, the complex-
ity of this approach grows as O(M DK P'), making it impractical
unless D, the number of classes, is very small.

2) Importance Sampling: An alternative approximation of
(41)—(43) can be obtained through IS [9, §11.1.4]. Here, we
draw K independent samples {Z,, [k]}£_, from N'(p,,,QP))
and compute

K
Cm, ~ Zpy\z(ym |Em [kD (44)
k=1
K
Zind = Cn Z Zmd | py\z(ym |z [K]) (45)
k=1

qrznd, ~ m Z md py\z Ym |z"1[ D - E?%zd (46)

for all m and d. The complexity of this approach grows as
O(MDK).

3) Taylor-Series Approximation: Another approach is to ap-
proximate the likelihood py, using a second-order TS about p,,, ,

i.e., py‘z(ym |Z) ~ fm (z;ﬁm) with

fm (Z; f)m) é py\Z(ym |ﬁm) + gm (ﬁm )T(z - ﬁm)
1 B ~ ~
+ 5('2 - Pn )THm (pm )(Z - pm) (47)

for gradient g,,(p) = (.)%py‘z(ym|z)‘z:i) and Hessian

H, (p) 2 %py\z(ym |z)‘zf' In this case, it can be shown
[31] that
1 D
Con = fo (D) + 2 Z Ho, (f)m)q":’k “%)
k=1
/Z\md ~ C,;l (fm (pm ) Prna + Gmd (pm)qmd
1 D
5 Z: kqu mk pm )) (49)

qrznd ~ C;ll <fm (ﬁm) (ﬁ?nd + qzd) + 29md (f)m )ﬁmdq::ld

1 g ~
+ iquld (pgnd + 3q7‘:uj) Hmd (pm )

1, . . ~
+ 5 (pizd + qzd)Hmd (D) Z qsm) - zgzd’ (50)
itd

where H,,4(p) = [H , (P)]4a. The complexity of this approach
grows as O(M D).

4) Gaussian Mixture Approximation: It is known that the
logisticcdf 1/(1 + exp(—x)) is well approximated by a mixture
of a few Gaussian cdfs, which leads to an efficient method
of approximating (41) and (42) in the case of binary logistic
regression (i.e., D = 2) [38]. We now develop an extension of
this method for the MLR case (i.e., D > 2).
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To facilitate the GM approximation, we work with the differ-
ence variables

Y — d
N {ZJ za d#y 51)
2y d=uy.
Their utility can be seen from the fact that (recalling (3))
(412) : (52)
Pyz\Y =
iz L4220, exp(za — zy)
1

which is smooth, positive, and bounded by 1, and strictly in-

(v)

creasing iny,;””. Thus,* for appropriately chosen {ay, pgi, opi }s

Zalncp(’)’k MH) AA(y( ),

=1 k#y

(54)

where ®(z) is the standard normal cdf, oy; > 0, oy > 0, and
>, a; = 1. In practice, the GM parameters { oy, (57, 0% } could
be designed off-line to minimize, e.g., the total variation distance
sup,ego 1V () =19 (y)].

Recall from (41)—(43) that our objective is to compute quan-
tities of the form

/]RU (e}z) Pyie(y|2)N (z: D, QP) dz 2 S5, (55)

where i € {0, 1,2}, QP is diagonal, and e, is the dth column of
Ip. To exploit (54), we change the integration variable to

W =71,z (56)
with
-1, Ly-1x1 Oy-1)x(D—y)
T, = 01x(y-1) 1 01x(D—y) (57)
O0p-y)x-1) Lp-yx1  —Ib—y
to get (since det(T',) = 1)

s = [ () 190N (37,51, QP ) dy
58)

Then, applying the approximation (54) and

N1 1,0PT) < ()
* HN(%;% —ﬁk,q,‘:) (59)

k#y

4Note that, since the role of in7t) (4) is merely to ignore the yth component
of the input ~y, we could have instead written [1%) () = I(Jy~y) for y-invariant
I(-) and J, constructed by removing the yth row from the identity matrix.
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to (58), we find that
L
S((li/) ~ Zal/ ’YJapJa(L |:/ Ty 7
=1 R
— Mkl
< T[N (s — Broaf) ( )dw} dy -
k#y
(60)
Noting that T; = T,, we have
Yy — d
Yy d=y.

Thus, for a fixed value of vy, = ¢, the inner integral in (60) can
be expressed as a product of linear combinations of terms

/vi/\/(v;c—@q)¢(7_u) dy £ T,
R g

with ¢ € {0, 1,2}, which can be computed in closed form. In
particular, defining = £ <=L we have
\/27

(62)

T, — () (63)
T\ = (c - pa(e) + L) (64)
o +q

_(Tv)? ¢’ 9(x) P(x)
T = gy + 020 - 02+q(x+@>, (65)

which can be obtained using the results in [39, §3.9]. The outer
integral in (60) can then be approximated via NI.

If a grid of K values is used for NI over v, in (60), then the
overall complexity of the method grows as O(M DLK). Our
experiments indicate that relatively small values (e.g., L = 2
and K = 7) suffice.

5) Performance Comparison: Above we described four
methods of approximating lines 15 and 16 in Algorithm 1 un-
der diagonal QP and Q?. We now compare the accuracy and
complexity of these methods. In particular, we measured the
accuracy of the conditional mean (i.e., line 15) approximation
as follows (for a given p and QP):

1) generate i.i.d. samples zyue[t] ~ N (2;p,QP) and

Ytrue[t] ~ Dyz(y | Ztruet]) fort =1...T,

2) compute  the  approximation  Z[t] = E{z|y =
Yrue[t], P = D; QP} using each method described in
Sections III-C1-I1I-C4,

3) compute average MSE £ 1 S | Ztruel?]
each method,

and we measured the combined runtime of lines 15 and 16 for
each method. Unless otherwise noted, we used D = 4 classes,
p=-e;, Q° = ¢PIp, and ¢° = 1 in our experiments. For NI,
we used a grid of size K = 7 and radius of @ = 4 standard
deviations; for IS, we used K = 1500 samples; and for the GM
method, we used L = 2 mixture components and a grid size
of K = 7. Empirically, we found that smaller grids or fewer
samples compromised accuracy, whereas larger grids or more
samples compromised runtime.

[t] Hz for
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Fig.2. MSE/qP versus variance ¢P for various methods to compute line 15 in
Algorithm 1. Each point represents the average of 5 x 105 independent trials.
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Fig. 3. Cumulative runtime (over M = 500 samples) versus number-of-
classes D for various methods to compute lines 15 and 16 in Algorithm 1.
Each point represents the average of 2000 independent trials.

Fig. 2 plots the normalized MSE versus variance ¢P for the
four methods under test, in addition to the trivial method Z[t]
= p. The figure shows that the NI, IS, and GM methods per-
formed similarly across the full range of ¢P and always outper-
form the trivial method. The TS method, however, breaks down
when ¢P > 1. A close examination of the figure reveals that GM
gave the best accuracy, IS the second best accuracy, and NI the
third best accuracy.

Fig. 3 shows the cumulative runtime (over M = 500 training
samples) of the methods from Sections III-C1-III-C4 versus the
number of classes, D. Although the TS method was the fastest,
we saw in Fig. 2 that it is accurate only at small variances ¢P.
Fig. 3 then shows GM was about an order-of-magnitude faster
than IS, which was several orders-of-magnitude faster than NI.

Together, Figs. 2 and 3, show that our proposed GM method
dominated the IS and NI methods in both accuracy and runtime.
Thus, for the remainder of the paper, we implement sum-product
SHyGAMP using the GM method from Section I1I-C4.

D. Min-Sum SHyGAMP: Inference of x,,

With diagonal Q!, and Q7 , the implementation of lines 3 and

4 in Algorithm 1 can be significantly simplified. Recall that,
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when the prior py is chosen as i.i.d. Laplace (5), line 3 manifests

as (21), which is in general a non-trivial optimization problem.

But with diagonal Q' , (21) decouples into D instances of the
scalar optimization

_ 1 (2 = Tu)®

Tpd = ATGMAX — o ———p——

— A
3 el

(66)
which is known to have the closed-form “soft thresholding”
solution

Tna = sgn(Thg) max{0, [Tha| — Aqhy}- (67)

Above, sgn(r) = 1 when r > 0 and sgn(r) = —1 when r < 0.
Meanwhile, line 4 reduces to
+ k|x|>

& (1 (2 —Fua)’ h

. T — Tnd

|9 (L@ —Tw)? 68
nd l o2 <2 q;;d J,’—End‘| 7 o

which equals ¢/, when Z,; # 0 and is otherwise undefined.
When z,; = 0, we set ¢%; = 0.

E. Min-Sum SHyGAMP: Inference of z,,

With diagonal QP and Q?,, the implementation of lines 12
and 13 in Algorithm 1 also simplifies. Recall that, when the
likelihood py|, takes the MLR form in (3), line 12 manifests
as (26), which can be solved using a component-wise New-
ton’s method as in (31)-(33) for any QP and Q7% . When

Q,'gl is diagonal, the first and second derivatives (32) and (33)
reduce to

g'r(r]:(i) = Dylz (d|2$)) =0y, —a+ (/Z\frfd) - ﬁrnd)/qsld (69)

2
k ~(k ~(k
Hr(nd) = Dy|z <d|Z£n)) — Py|z (d|Z5n)) - 1/qszd7

which leads to a reduction in complexity.

Furthermore, line 13 simplifies, since with diagonal Q?, it
suffices to compute only the diagonal components of H 555 in
(30). In particular, when Q,Bq is diagonal, the result becomes

1
1/ab, + pyiz(dlZn) — py2(d]Zn)?

(70)

Qri = (71)

F. SHYGAMP Summary

In summary, by approximating the covariance matrices as di-
agonal, the SPA-SHyGAMP and MSA-SHyGAMP algorithms
improve computationally upon their HyGAMP counterparts. A
summary of the D-dimensional inference problems encountered
when running SPA-SHyGAMP or MSA-SHyGAMP, as well as
their associated computational costs, is given in Table II. A high-
level comparison between HyGAMP and SHyGAMP is given
in Table III.

IV. ONLINE PARAMETER TUNING

The weight vector priors in (5) and (39) depend on modeling
parameters that, in practice, must be tuned. Although CV is the
customary approach to tuning such model parameters, it can
be very computationally costly, since each parameter must be
tested over a grid of hypothesized values and over multiple data
folds. For example, K -fold CV tuning of P parameters using G
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TABLE I
A SUMMARY OF THE D-DIMENSIONAL INFERENCE SUB-PROBLEMS
ENCOUNTERED WHEN RUNNING SPA-SHYGAMP OR MSA-SHYGAMP,
AS WELL AS THEIR ASSOCIATED COMPUTATIONAL COSTS

Algorithm Quantity | Method | Complexity
z CF o(D)
SPA- Q* CF O(D)
SHyGAMP z GM | O(LKD)
Q* GM O(LKD)
z ST o(D)
MSA- Q" CF o(D)
SHyGAMP z CWN O(KD)
Q? CF O(D3)
‘CF’ = ‘closed form’, ‘GM’ = ‘Gaussian mixture’, ‘ST’ = ‘Soft-
thresholding’, and ‘CWN’ = ‘component-wise Newton’s method’. For

the GM, L denotes the number of mixture components and /& the number
of samples in the 1D numerical integral, and for CWN K denotes the
number of iterations.
TABLE III
HIGH-LEVEL COMPARISON OF SHYGAMP AND HYGAMP

Algorithm HyGAMP | SHyGAMP
Diagonal covariance matrices v
Simplified D-dimensional inference v
Scalar-variance approximation v
Online parameter tuning v

hypothesized values of each parameter requires the training and
evaluation of KG?' classifiers.

A. Parameter Selection for Sum-Product SHyGAMP

For SPA-SHyGAMP, we propose to use the zero-mean BG
prior in (39), which has parameters 3;, mg, and v,. Instead of
CV, we use the EM-GM-AMP framework described in [25] to
tune these parameters online. See [31] for details regarding the
initialization of (3;, mg, and vy.

B. Parameter Selection for Min-Sum SHyGAMP

To use MSA-SHyGAMP with the Laplacian prior in (5),
we need to specify the scale parameter A. For this, we use a
modification of the SURE-AMP framework from [26], which
adjusts A to minimize the SURE of the weight-vector MSE.

We describe our method by first reviewing SURE and SURE-
AMP. First, suppose that the goal is to estimate the value of z,
which is a realization of the random variable X, from the noisy
observation r, which is a realization of

r=x-+/q'w,

with w ~ A(0,1) and ¢" > 0. For this purpose, consider an
estimate of the form = = f(r, ¢"; ) where € contains tunable
parameters. For convenience, define the shifted estimation func-
tion g(r,q";0) = f(r,q";0) — r and its derivative ¢'(r,¢"; 6)
=S (% g(r,q"; 0). Then Stein [40] established the following re-
sult on the mean-squared error, or risk, of the estimate Z:

E{X-x’} =¢"+E{g°(r.d":0) +2¢"¢'(r,¢";0)}.

The implication of (73) is that, given only the noisy observation
r and the noise variance ¢', one can compute an estimate

(72)

(73)

SURE(r,q";0) = ¢" + ¢*(r,¢";0) + 2¢"¢'(r,q";0) (74
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of the MSE(0) £ E {[X — x]?} that is unbiased, i.e.,

E {SURE(r, ¢";8)} = MSE(®). (75)

These unbiased risk estimates can then be used as a surrogate
for the true MSE when tuning 6.

In [26], it was noticed that the assumption (72) is satisfied
by AMP’s denoiser inputs {7, }>"_;, and thus [26] proposed to
tune the soft threshold A to minimize the SURE:

N
h=argmin Y g% (7, 4) +2¢"9' (Far g3 1) (76)
)\ n=1

Recalling the form of the estimator f(-) from (67), we have

A2 (gN)? if|r,| > Aq"
g (Fdih) =1 , (77
T otherwise
o =1 if|r| < Aqd"
g (T, qd" 1) = _ (78)
0 otherwise.

However, solving (76) for X is non-trivial because the objective is
non-smooth and has many local minima. A stochastic gradient
descent approach was proposed in [26], but its convergence
speed is too slow to be practical.

Since (72) also matches the scalar-variance SHyGAMP
model from Section III-A, we propose to use SURE to tune
A for min-sum SHyGAMP. But, instead of the empirical aver-
age in (76), we propose to use a statistical average, i.e.,

% =argminE {¢*(r,q"; 1) +2¢"¢'(r, ¢ 1)}, (79)
A

£ J(A)

by modeling the random variable r as a GM whose parameters
are fitted to {7,,4}. As a result, the objective in (79) is smooth.
Moreover, by constraining the smallest mixture variance to be at
least ¢", the objective becomes unimodal, in which case A from
(79) is the unique root of --.J(1). To find this root, we use the
bisection method. In particular, due to (77)—(78), the objective
in (79) becomes

g Ag"
JO) = / (P2 (F)2 dr 4+ / () (2 — 27 dr
— —Aq"
+ T 2 dr, (80)
rq"

from which it can be shown that [31]

d

aJ(A) =2x(¢")?*[1 = Pr{—r¢" <r < Aq"}]

— [pr(rg") + pe(—2q")]2(q")7. 1)

For GM fitting, we use the standard EM approach [9] and find
that relatively few (e.g., L = 3) mixture terms suffice. Note
that we re-tune A using the above technique at each iteration of
Algorithm 1, immediately before line 3. Experimental verifica-
tion of our method is provided in Section V-B.
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V. NUMERICAL RESULTS

In this section we describe the results of several experiments
used to test SHyGAMP. In these experiments, EM-tuned SPA-
SHyGAMP and SURE-tuned MSA-SHyGAMP were compared
to two state-of-the-art sparse MLR algorithms: SBMLR [14]
and GLMNET [13]. We are particularly interested in SBMLR
and GLMNET because [13], [14] show that they have strong
advantages over earlier algorithms, e.g., [10]-[12]. As de-
scribed in Section I-C, both SBMLR and GLMNET use /;
regularization, but SBMLR tunes the regularization parameter
A using evidence maximization while GLMNET tunes it us-
ing CV (using the default value of 10 folds unless otherwise
noted). For SBMLR and GLMNET, we ran code written by
the authors® under default settings (unless otherwise noted).
For SHyGAMP, we used the damping modification described
in [30]. We note that the runtimes reported for all algorithms
include the total time spent to tune all parameters and train the
final classifier.

Due to space limitations, we do not show the performance
of the more complicated HyGAMP algorithm from Section II.
However, our experience suggests that HyGAMP generates
weight matrices X that are very similar to those generated
by SHyGAMP, but with much longer runtimes, especially as D
Srows.

A. Synthetic Data in the M < N Regime

We first describe the results of three experiments with syn-
thetic data. For these experiments, the training data were ran-
domly generated and algorithm performance was averaged over
several data realizations. In all cases, we started with balanced
training labels y,,, € {1,...,D}form=1,..., M (i.e., M/D
examples from each of D classes). Then, for each data realiza-
tion, we generated M i.i.d. training features a,, from the class-
conditional generative distribution a,, |y, ~ N (1, ,vIN).
In doing so, we chose the intra-class variance, v, to attain a
desired Bayes error rate (BER) of 10% (see [31] for details),
and we used randomly generated K -sparse orthonormal class
means, p, € RV In particular, we generated [py, ..., up] by
drawing a K x K matrix withi.i.d. N'(0, 1) entries, performing
a singular value decomposition, and zero-padding the first D
left singular vectors to length N. We note that our generation of
y, A, X is matched [41] to the multinomial logistic models (2)
and (3).

Given a training data realization, each algorithm was invoked
to yield a weight matrix X = [@1,...,Zp]. The corresponding
expected test-error rate was then analytically computed as

1 D
Prier} = 1- — ; Pr{corly} (82)

Pr{corly} = Pr () {@, — 2s)"a < (&, — ) ps, }, (83)
d#y

SSBMLR obtained from http://theoval.cmp.uea.ac.uk/matlab/
SGLMNET obtained from http://www.stanford.edu/~hastie/glmnet_matlab/
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TABLE IV
CONFIGURATIONS OF THE SYNTHETIC-DATA EXPERIMENTS

Experiment M N K D
1 {100, ...,5000} 10000 10 4
2 300 30000 {5,...,30} 4
3 200 {10%,...,10°%} 10 4
4 300 30000 25 4

0.2

——— SPA SHyGAMP]
—o6— MSA SHyGAMA
SBMLR
——+— GLMNET H
- — - BER

0.18f

Test Error Rate

Number of Training Samples M
(a)

Runtime [sec]

——— SPA SHyGAMP]
—o&— MSA SHyGAMA
SBMLR

—+— GLMNET

10 10°
Number of Training Samples M

(b)

Fig. 4. Synthetic Experiment 1: expected test-error rate and runtime versus
M .Here, D = 4, N = 10000, and K = 10. (a) Error. (b) Runtime.

where @ ~ N (0,vI y) and the multivariate normal cdf in (83)
was computed using Matlab’s mvncdf.

For all three synthetic-data experiments, we used D =4
classes and K < M < N. In the first experiment, we fixed
K and N and we varied M in the second experiment, we fixed
K and M and we varied K; and in the third experiment, we
fixed K and M and we varied IN. The specific values/ranges of
K, M, N used for each experiment are given in Table IV.

Fig. 4(a) and (b) show the expected test-error rate and run-
time, respectively, versus the number of training examples, M,
averaged over 12 independent trials. Fig. 4(a) shows that, at all
tested values of M, SPA-SHyGAMP gave the best error-rates
and MSA-SHyGAMP gave the second best error-rates, although
those reached by GLMNET were similar at large M. More-
over, the error-rates of SPA-SHyGAMP, MSA-SHyGAMP, and
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Fig. 5. Synthetic Experiment 2: expected test-error rate and runtime versus
K.Here, D = 4, M = 300, and N = 30 000. (a) Error. (b) Runtime.

GLMNET all converged towards the BER as M increased,
whereas that of SBMLR did not. Since MSA-SHyGAMP, GLM-
NET, and SBMLR all solve the same ¢; -regularized MLR prob-
lem, the difference in their error-rates can be attributed to the
difference in their tuning of the regularization parameter X.
Fig. 4(b) shows that, for M > 500, SPA-SHyGAMP was the
fastest, followed by MSA-SHyGAMP, SBMLR, and GLMNET.
Note that the runtimes of SPA-SHyGAMP, MSA-SHyGAMP,
and GLMNET increased linearly with M, whereas the runtime
of SBMLR increased quadratically with M.

Fig. 5(a) and (b) show the expected test-error rate and runtime,
respectively, versus feature-vector sparsity, K, averaged over 12
independent trials. Fig. 5(a) shows that, at all tested values of K,
SPA-SHyGAMP gave the best error-rates and MSA-SHyGAMP
gave the second best error-rates. Fig. 5(b) shows that SPA-
SHyGAMP and MSA-SHyGAMP gave the fastest runtimes.
All runtimes were approximately invariant to K.

Fig. 6(a) and (b) show the expected test-error rate and runtime,
respectively, versus the number of features, [V, averaged over
12 independent trials. Fig. 6(a) shows that, at all tested values
of N, MSA-SHyGAMP gave lower error-rates than SBMLR
and GLMNET. Meanwhile, SPA-SHyGAMP gave the lowest
error-rates for certain values of N. Fig. 6(b) shows that SPA-
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Fig. 6. Synthetic Experiment 3: expected test-error rate and runtime versus
N.Here, D = 4, M = 200, and K = 10. (a) Error. (b) Runtime.

SHyGAMP and MSA-SHyGAMP gave the fastest runtimes for
N >10000, while SBMLR gave the fastest runtimes fo
N < 3000. All runtimes increased linearly with N.

B. Example of SURE Tuning

Although the good error-rate performance of MSA-
SHyGAMP in Section V-A suggests that the SURE A-tuning
method from Section I'V-B is working reliably, we now describe
amore direct test of its behavior. Using synthetic data generated
as described in Section V-A with D = 4 classes, N = 30000
features, M = 300 examples, and sparsity /K = 25, we ran
MSA-SHyGAMP using various fixed values of A. In the se-
quel, we refer to this experiment as “Synthetic Experiment 4.”
The resulting expected test-error rate versus A (averaged over
10 independent realizations) is shown in Fig. 7. For the same
realizations, we ran MSE-SHyGAMP with SURE-tuning and
plot the resulting error-rate and average Xin Fig. 7. From Fig. 7,
we see that the SURE A-tuning method matched both the min-
imizer and the minimum of the error-versus-A trace of fixed-A
MSA-SHyGAMP.
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Fig. 7. Synthetic experiment 4: expected test-error rate versus regulariza-
tion parameter A for fixed-A MSA-SHyGAMP. Here, D =4, M = 300,
N = 30000, and K = 25. Also shown is the average test-error rate for SURE-

tuned MSA-SHyGAMP plotted at the average value of 5y

C. Micro-Array Gene Expression

Next we consider classification and feature-selection using
micro-array gene expression data. Here, the labels indicate
which type of disease is present (or no disease) and the fea-
tures represent gene expression levels. The objective is 1) to
determine which subset of genes best predicts the various dis-
eases and 2) to classify whether an (undiagnosed) patient is at
risk for any of these diseases based on their gene profile.

We tried two datasets: one from Sun ef al. [1] and one from
Bhattacharjee et al. [2]. The Sun dataset includes M = 179
examples, N = 54613 features, and D = 4 classes; and the
Bhattacharjee datasetincludes M = 203 examples, N = 12600
features, and D = 5 classes. With the Sun dataset, we applied
alog, (+) transformation and z-scored prior to processing, while
with Bhattacharjee we simply z-scored (since the dataset in-
cluded negative values).

The test-error rate was estimated as follows for each dataset.
We consider a total of 1" “trials.” For the tth trial, we 1) partition
the dataset into a training subset of size Miain,; and a test subset
of size Miest ¢, 2) design the classifier using the training subset,
and 3) apply the classifier to the test subset, recording the test er-
rors { et },‘nj‘f{' , where e;,,, € {0, 1} indicates whether the mth
example was in error. We then estimate the average test-error
rate using the empirical average 7i & ML S/, Z:\n[‘f{’
where Miegt = ZtT:I Miegt . If the test sets are constructed
without overlap, we can model {es,, } as i.i.d. Bernoulli(u),
where j denotes the true test-error rate. Then, since ji is
Binomial(u, Miest), the standard deviation (SD) of our error-
rate estimate [ is /var{zi} = /u(1 — p1)/Miest. Since p is
unknown, we approximate the SD by \/[i(1 — f1) /Miest.

Tables V and VI show, for each algorithm, the test-error rate
estimate [, the approximate SD +/[i(1 — 1) /Miest of the esti-

mate, the average runtime, and two metrics for the sparsity of
X . The || X || metric quantifies the number of non-zero entries

tm s
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TABLE V
ESTIMATED TEST-ERROR RATE, STANDARD DEVIATION OF ESTIMATE,
RUNTIME, AND SPARSITIES FOR THE SUN DATASET

Algorithm % Error (SD) | Runtime (s) 1?99 [1X1lo

SPA-SHyGAMP 33.3 (3.8) 6.86 20.05 | 218452

MSA-SHyGAMP 31.0 (3.7) 13.59 93.00 145.32

SBMLR 31.6 (3.7) 22.48 49.89 72.89

GLMNET 33.9 (3.8) 31.93 10.89 16.84
TABLE VI

ESTIMATED TEST-ERROR RATE, STANDARD DEVIATION OF ESTIMATE,
RUNTIME, AND SPARSITIES FOR THE BHATTACHARIJEE DATASET

Algorithm % Error (SD) | Runtime (s) Kog [ X o
SPA-SHyGAMP 9.5 (2.1) 3.26 16.15 | 63000
MSA-SHyGAMP 10.5 (2.2) 6.11 5520 | 84.65
SBMLR 9.5 (2.1) 6.65 4425 | 79.10
GLMNET 12.0 (2.4) 13.67 49.65 89.40

inX (i.e., absolute sparsity), while the I?gg metric quantifies the
number of entries of X needed to reach 99% of the Frobenius
norm of X (i.e., effective sparsity). We note that the reported
values of Koo and ||/X\||0 represent the average over the 7" folds.
For both the Sun and Bhattacharjee datasets, we used 7' = 19
trials and Miest; = |M/20] Vt.

Table V shows results for the Sun dataset. There we see
that MSA-SHyGAMP gave the best test-error rate, although the
other algorithms were not far behind and all error-rate estimates
were within the estimator standard deviation. SPA-SHyGAMP
was the fastest algorithm and MSA-SHyGAMP was the second
fastest, with the remaining algorithms running 3x to 5x slower
than SPA-SHyGAMP. GLMNET’s weights were the sparsest
according to both sparsity metrics. SPA-SHyGAMP’s weights
had the second lowest value of Kyg, even though they were
technically non-sparse (i.e., ||/)Z||0 = 218452 = ND) as ex-
pected. Meanwhile, MSA-SHyGAMP’s weights were the least
sparse according to the Koy metric.

Table VI shows results for the Bhattacharjee dataset. In this
experiment, SPA-SHyGAMP and SBMLR were tied for the best
error rate, MSA-SHyGAMP was 0.5 standard-deviations worse,
and GLMNET was 1.2 standard-deviations worse. However,
SPA-SHyGAMP ran about twice as fast as SBMLR, and 4x
as fast as GLMNET. As in the Sun dataset, SPA—SAHyGAMP
returned the sparsest weight matrix according to the Kyg metric.
The sparsities of the weight matrices returned by the other three
algorithms were similar to one another in both metrics. Unlike
in the Sun dataset, MSA-SHyGAMP and SBMLR had similar
runtimes (which is consistent with Fig. 6(b) since N is lower
here than in the Sun dataset).

D. Text Classification With the RCV1 Dataset

Next we consider text classification using the Reuter’s Corpus
Volume 1 (RCV1) dataset [6]. Here, each sample (y,, , a,, ) rep-
resents a news article, where y,,, indicates the article’s topic and
a,, indicates the frequencies of common words in the article.
The version of the dataset that we used’ contained N = 47 236

7http://www.csie.ntu.edu.tw/sim;cjlin/libsvmtools/datasets/multiclass.html.
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Fig. 8.  Test-error rate versus runtime for the RCV1 dataset.

features and 53 topics. However, we used only the first D = 25
of these topics (to reduce the computational demand). Also, we
retained the default training and test partitions, which resulted
in the use of M = 14147 samples for training and 469 571
samples for testing.

The RCV1 features are very sparse (only 0.326% of the fea-
tures are non-zero) and non-negative, which conflicts with the
standard assumptions used for the derivation of AMP algo-
rithms: that A is i.i.d. zero-mean and sub-Gaussian. Interest-
ingly, the RCV1 dataset also caused difficulties for SBMLR,
which diverged under default settings. This divergence was
remedied by decreasing the value of a step-size parameter® to
0.1 from the default value of 1.

Fig. 8 shows test-error rate versus runtime for SPA-
SHyGAMP, MSA-SHyGAMP, SBMLR, and GLMNET on
the RCV1 dataset. In the case of SPA-SHyGAMP, MSA-
SHyGAMP and SBMLR, each point in the figure rep-
resents one iteration of the corresponding algorithm. For
GLMNET, each data-point represents one iteration of the
algorithm after its CV stage has completed.” We used 2
CV folds (rather than the default 10) in this experiment
to avoid excessively long runtimes. The figure shows that
the SHyGAMP algorithms converged more than an order-
of-magnitude faster than SBMLR and GLMNET, although
the final error rates were similar. SPA-SHyGAMP displayed
faster initial convergence, but MSA-SHyGAMP eventually
caught up.

E. MNIST Handwritten Digit Recognition

Finally, we consider handwritten digit recognition using the
Mixed National Institute of Standards and Technology (MNIST)
dataset [42]. This dataset consists of 70 000 examples, where
each example is an N = 784 pixel image of one of D = 10
digits between 0 and 9. These features were again non-negative,

8See the variable scale on lines 129 and 143 of sbmlr.m.

9GLMNET spent most of its time on CV. After CV, GLMNET took 25.26
seconds to run, which is similar to the total runtimes of SPA-SHyGAMP and
MSE-SHyGAMP.
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bars indicating the standard deviation of the estimate.

which conflicts with the standard AMP assumption of i.i.d. zero-
mean A.

Our experiment characterized test-error rate versus the num-
ber of training examples, M, for the SPA-SHyGAMP, MSA-
SHyGAMP, SBMLR, and GLMNET algorithms. For each value
of M, we performed 50 Monte-Carlo trials. In each trial, M
training samples were selected uniformly at random and the
remainder of the data were used for testing. Fig. 9 shows the
average estimated test-error rate fi versus the number of training
samples, M, for the algorithms under test. The error-bars in the
figure correspond to the average of the per-trial estimated SD
over the 50 trials. For SBMLR, we reduced the stepsize to 0.5
from the default value of 1 to prevent a significant degradation
of test-error rate. The figure shows SPA-SHyGAMP attaining
significantly better error-rates than the other algorithms at small
values of M (and again at the largest value of M considered for
the plot). For this plot, M/ was chosen to focus on the M < N
regime.

VI. CONCLUSION

For the problem of multi-class linear classification and fea-
ture selection, we proposed several AMP-based approaches to
sparse MLR. We started by proposing two algorithms based on
HyGAMP [18], one of which finds the MAP linear classifier
based on the multinomial logistic likelihood and a Laplacian
prior, and the other of which finds an approximation of the
test-error-rate minimizing linear classifier based on the multi-
nomial logistic likelihood and a BG prior. The numerical im-
plementation of these algorithms is challenged, however, by the
need to solve D-dimensional inference problems of multiplicity
M at each HyGAMP iteration. Thus, we proposed simplified
HyGAMP (SHyGAMP) approximations based on a diagonal-
ization of the message covariances and a careful treatment of the
D-dimensional inference problems. In addition, we described
EM- and SURE-based methods to tune the hyperparameters
of the assumed statistical model. Finally, using both synthetic
and real-world datasets, we demonstrated improved error-rate
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and runtime performance relative to the state-of-the-art SBMLR
[13] and GLMNET [14] approaches to sparse MLR.
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