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Compressive Phase Retrieval via Generalized
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Abstract—In phase retrieval, the goal is to recover a signal
from the magnitudes of linear measurements .

While recent theory has established that intensity mea-
surements are necessary and sufficient to recover generic , there
is great interest in reducing the number of measurements through
the exploitation of sparse , which is known as compressive phase
retrieval. In this work, we detail a novel, probabilistic approach
to compressive phase retrieval based on the generalized approx-
imate message passing (GAMP) algorithm. We then present a
numerical study of the proposed PR-GAMP algorithm, demon-
strating its excellent phase-transition behavior, robustness to
noise, and runtime. Our experiments suggest that approximately

intensity measurements suffice to recover
-sparse Bernoulli-Gaussian signals for with i.i.d Gaussian

entries and . Meanwhile, when recovering a 6678-sparse
65536-pixel grayscale image from 32768 randomly masked and
blurred Fourier intensity measurements at 30 dB measurement
SNR, PR-GAMP achieved an output SNR of no less than 28 dB in
all of 100 random trials, with a median runtime of only 7.3 seconds.
Compared to the recently proposed CPRL, sparse-Fienup, and
GESPAR algorithms, our experiments suggest that PR-GAMP
has a superior phase transition and orders-of-magnitude faster
runtimes as the sparsity and problem dimensions increase.

Index Terms—Belief propagation, compressed sensing, estima-
tion, phase retrieval.

I. INTRODUCTION

A. Phase Retrieval

I N phase retrieval, the goal is to recover a signal
from the magnitudes of possibly noisy linear

measurements . This
problem is motivated by the fact that it is often easier to build
detectors (e.g., photographic plates or CCDs) that measure in-
tensity rather than phase [3], [4]. Imaging applications of phase
retrieval include X-ray diffraction imaging [5], X-ray crystal-
lography [6], [7], array imaging [8], optics [9], speckle imaging
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in astronomy [10], and microscopy [11]. Non-imaging applica-
tions include acoustics [12], interferometry [13], and quantum
mechanics [14].
To reconstruct (up to a global phase uncertainty),

it has been recently established that inten-
sity measurements are necessary [15] and are
sufficient [16] through appropriate design of the linear trans-
form . Meanwhile, to reconstruct (up to a global sign
uncertainty), it has been shown that measure-
ments are both necessary and sufficient [12]. However, there
exist applications where far fewer measurements are available,
such as sub-wavelength imaging [17], [18], Bragg sampling
from periodic crystalline structures [19], and waveguide-based
photonic devices [20]. To facilitate these compressive phase re-
trieval tasks, it has been proposed to exploit sparsity1in . In
fact, very recent theory confirms the potential of this approach:
to reconstruct -sparse -length using a generic (e.g., i.i.d
Gaussian) , only intensity measurements suf-
fice in the complex case and suffice in the real case
(where is also necessary) when [21]. While
these bounds are extremely encouraging, achieving them with a
practical algorithm remains elusive.
To our knowledge, the first algorithm for compressive phase

retrieval was proposed by Moravec, Romberg, and Baraniuk in
[22] and worked by incorporating an -norm constraint into
a traditional Fienup-style [3] iterative algorithm. However, this
approach requires that the norm of the true signal is known,
which is rarely the case in practice. Recently, a more practical
sparse-Fienup algorithm was proposed by Mukherjee and See-
lamantula [23], which requires knowledge of only the signal
sparsity but is applicable only to measurement matrices
for which . Although this algorithm guarantees that
the residual error is non-increasing over the
iterations , it succumbs to local minima and, as we show in
Section IV-D, is competitive only in the highly sparse regime.
To circumvent the local minima problem, Ohlsson, Yang,

Dong, and Sastry proposed the convex relaxation known as
Compressive Phase Retrieval via Lifting (CPRL) [24], which
adds regularization to the well-known PhaseLift algorithm
[8], [25]. Both CPRL and PhaseLift “lift” the unknown vector

into the space of rank-one matrices and
solve a semidefinite program in the lifted space, requiring

complexity, which is impractical for practical image
sizes . Subsequent theoretical analysis [21] revealed that,
while intensity measurements suffice for

1 may represent the sparse transform coefficients of a non-sparse signal-of-
interest in a sparsifying basis (or frame) , in which case the intensity
measurements would be and .

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1044 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 63, NO. 4, FEBRUARY 15, 2015

CPRL when , measurements
are necessary, which is disappointing because this greatly
exceeds the measurements that suffice for the optimal
solver [21]. That said, the noise-robustness of PhaseLift-type
algorithms and the sufficiency of samples
for -sparse signals with power-law decay has been recently
established [26, Thm. 4]. Also, a cleverly initialized alternating
minimization (AltMin) approach was recently proposed by
Natrapalli, Jain, and Sanghavi in [27] that gives CPRL-like
guarantees/performance with only complexity. How-
ever, this is still too complex for practical sparsities , which
tend to grow linearly with image size .
Recently, Shechtman, Beck, and Eldar proposed the GrEedy

Sparse PhAse Retrieval (GESPAR) algorithm [28], which
applies fast 2-opt local search [29] to a sparsity constrained
non-linear optimization formulation of the phase-retrieval
problem. Numerical experiments (see Section IV-D) sug-
gest that GESPAR handles higher sparsities than the
sparse-Fienup technique from [23], but at the cost of signif-
icantly increased runtime. In fact, due to the combinatorial
nature of GESPAR’s support optimization, its complexity scales
very rapidly in , making it impractical for many problems of
interest.
In this work, we describe a novel2 approach to compres-

sive retrieval that is based on loopy belief propagation and,
in particular, the generalized approximate message passing
(GAMP) algorithm from [30]. In addition to describing and
deriving our phase-retrieval GAMP (PR-GAMP) algorithm,
we present a detailed numerical study of its performance. For
i.i.d Gaussian, Fourier, and masked-Fourier matrices , we
demonstrate that PR-GAMP performs far better than existing
compressive phase-retrieval algorithms in terms of both success
rate and runtime for large values and . Our experiments
suggest that PR-GAMP requires approximately the number
of measurements as phase-oracle GAMP (i.e., GAMP given the
magnitude-and-phase measurements ). Interest-
ingly, for non-sparse signals in , the ratio of magnitude-only
to magnitude-and-phase measurements necessary and sufficient
for perfect recovery is also known to be (as ) [15],
[16]. Our experiments also suggest that PR-GAMP is robust
to additive noise, giving mean-squared error that is only 3 dB
worse than phase-oracle GAMP over a wide SNR range.

Notation

For matrices, we use boldface capital letters like , and we
use , , and to denote the transpose, Hermitian trans-
pose, and Frobenius norm, respectively. For vectors, we use
boldface small letters like , and we use
to denote the norm, with representing the el-
ement of . For random variable , we write the pdf as ,
the expectation as , and the variance as . In some
cases where it does not cause confusion, we drop the subscript
on and write the pdf simply as . For a “circular
Gaussian” random variable with mean and variance
, we write the pdf as

2We described an earlier version of PR-GAMP in the conference paper [1]
and the workshop presentation [2].

Fig. 1. GAMP factor graph, with white circles denoting random variables and
black squares denoting pdf factors, for the case and .

. Note that has real and imaginary com-
ponents that are jointly Gaussian, uncorrelated, and of equal
variance . For the point mass at , we use the Dirac
delta distribution . Finally, we use for the real field, for
the complex field, and for the real and imaginary
parts of , and for the complex conjugate of .

II. BACKGROUND ON GAMP

The approximate message passing (AMP) algorithm was
recently proposed by Donoho, Maleki, and Montanari [31],
[32] for the task estimating a signal vector from
linearly transformed and additive-Gaussian-noise corrupted
measurements3

(1)

The Generalized-AMP (GAMP) algorithm proposed by Rangan
[30] then extends the methodology of AMP to the generalized
linear measurement model

(2)

where is a component-wise nonlinearity. This nonlinearity
facilitates the application of AMP to phase retrieval.
Both AMP and GAMP can be derived from the perspective

of belief propagation [33], a Bayesian inference strategy that
is based on a factorization of the signal posterior pdf
into a product of simpler pdfs that, together, reveal the prob-
abilistic structure in the problem. Concretely, if we model the
signal coefficients in and noise samples in from (1)–(2) as
statistically independent, so that and

for , then we can factor
the posterior pdf as

(3)

(4)

yielding the factor graph in Fig. 1.
In belief propagation [33], beliefs about the unknown vari-

ables are passed among the nodes of the factor graph until all
agree on a common set of beliefs. The set of beliefs passed

3Here and elsewhere, we use when referring to the measurements that are
available for signal reconstruction. In the canonical (noisy) compressive sensing
problem, the measurements take the form , but in the (noisy)
compressive phase retrieval problem, the measurements instead take the form

.
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TABLE I
THE GAMP ALGORITHM FROM [30] WITH ITERATIONS

into a given variable node are then used to determine the pos-
terior pdf of that variable, or an approximation thereof. The
sum-product algorithm [34] is perhaps the most well-known in-
carnation of belief propagation, wherein the messages take the
form of pdfs and exact posteriors are guaranteed whenever the
graph does not have loops. For graphs with loops, exact infer-
ence is known to be NP hard, and so loopy belief propagation
(LBP) is not guaranteed to produce correct posteriors. Still, LBP
has shown state-of-the-art performance on many problems in,
e.g., decoding, computer vision, and compressive sensing [35].
The conventional wisdom surrounding LBP says that accu-

rate inference is possible only when the circumference of the
loops are relatively large. With (1)–(2), this would require that
is a sparse matrix, which precludes most interesting cases of

compressive inference, including compressive phase retrieval.
Hence, the recent realization by Donoho, Maleki, Montanari,
and Bayati that LBP-based compressive sensing is not only fea-
sible [31], [32] for densematrices , but provably accurate [36],
[37], was a breakthrough. In particular, they established that, in
the large-system limit (i.e., as with fixed)
and under i.i.d sub-Gaussian , the iterations of AMP are gov-
erned by a state-evolution whose fixed points describe the algo-
rithm’s performance. To derive the AMP algorithm, [31], [32]
proposed an ingenious set of message-passing approximations
that become exact in the limit of large sub-Gaussian .
Remarkably, the “approximate message passing” (AMP)

principles in [31], [32]—including the state evolution—can be
extended from the linear model (1) to the generalized linear
model in (2), as established in [30]. The GAMP algorithm
from [30] is summarized in Table I. It is possible to recover the
Bayesian AMP algorithm [32] from Table I by considering the
special case of in line
(D2) and by replacing all terms in lines (R1) and (R5)
with the constant value (assuming that ). In
the AMP literature, the term in (R2) is often
referred to as the “momentum” or “Onsager correction” term.

As in [30], we state the GAMP algorithm in a way that facil-
itates the use of complex-valued quantities, which is the case of
interest in phase retrieval. However, we note that the GAMP al-
gorithm as stated in Table I is fully justified only in the case that
all Gaussian random variables are circular (i.e., having indepen-
dent real and imaginary components with identical variances),
and we use to denote the circular-Gaussian pdf in
variable with mean and variance . In the sequel, we detail
how GAMP allows us to tackle the compressive phase retrieval
problem.

III. PHASE RETRIEVAL GAMP

To apply the GAMP algorithm outlined in Table I to com-
pressive phase retrieval, we specify a measurement likelihood
function that models the lack of phase information
in the observations and a signal prior pdf that facil-
itates measurement compression, e.g., a sparsity-inducing pdf.
In addition, we propose several extensions to the GAMP algo-
rithm that aim to improve its robustness, and we propose an ex-
pectation-maximization method to learn the noise variance that
parameterizes .

A. Likelihood Function

Before deriving the likelihood function , we in-
troduce some notation. First, we will denote the noiseless trans-
form outputs by

(5)

where is the th row of and . Next, we will
assume the presence of additive noise and denote the noisy
transform outputs by

(6)

Our (noisy) intensity measurements are then

(7)

Henceforth, we assume additive white circular-Gaussian
noise (AWGN) . Thus, if we condition on ,
then is circular Gaussian with mean and variance ,
and is Rician with pdf [38]

(8)

where is the -order modified Bessel function of the first
kind.
The functions and defined in lines

(D1)–(D3) of Table I can be computed using the expressions

(9)

(10)
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and

(11)

(12)

where

(13)

as shown in Appendix A.
Whereas the above assumes that AWGN is added prior to the

intensity step (7), it is also possible to consider post-intensity
noise models, i.e.,

(14)

where common examples of include and
(see, e.g., [25]) and where for a

specified noise distribution . The likelihood would then
become

(15)

and the functions and defined in lines
(D1)–(D3) of Table I would be computed as described in
Appendix B. Note that, to assign zero likelihood to negative
intensity measurements , the assumed noise density
must have zero measure on the negative reals.

B. EM Update of the Noise Variance

Until now we have treated the noise variance as a known
parameter. In practice, however, may be unknown, in which
case it is not clear what value to use in (10) and (12). To ad-
dress this problem, we now describe how can be learned
using an expectation-maximization (EM) [39] procedure. The
methodology is similar to that proposed in [40] for the case of
a Gaussian , but is more involved due to the fact
that the used for phase-retrieval (recall (8)) is non-
Gaussian.
Choosing as the hidden data, the standard form of the th

EM update is [39]

(16)

where square brackets are used to distinguish EM iterations
from GAMP iterations (recall Table I). Because the true poste-
rior pdf needed for (16) is generally NP-hard to compute
[41], Appendix C describes an approximate EM update of the
form

(17)

which performs one EM iteration for every GAMP iteration ,
allowing us to state the EM update (17) using GAMP iterations.
In (17), is a certain Bethe free entropy and are the
results of lines (R5)-(R6) in Table I when GAMP is run under
the noise variance . (See Appendix C for details.)

C. Signal Prior Distribution

GAMP offers great flexibility with respect to the
choice of prior distribution on the signal vector . In this
work, we focus on separable priors, which have the form

with arbitrary (recalling (4)),
but we note that various forms of non-separable priors can be
supported using the “turbo GAMP” formulation proposed in
[42] or the “analysis GAMP” formulation proposed in [43].
For separable priors, should be chosen to reflect what-

ever form of probabilistic structure is known about coefficient
. For example, if is known to be -sparse, but

nothing is know about the support, then it is typical to choose
the Bernoulli-Gaussian (BG) model

(18)

with sparsity rate and non-zero-coefficient variance
that, if unknown, can be estimated from the observations via
[44, eqn. (71)]

(19)

where denotes the Frobenius norm. For this BG prior, ex-
pressions for the thresholding functions and
defined in lines (D5)-(D6) of Table I were given in [42]. When
the sparsity rate in (18) is unknown, it can be learned using the
EM-BG procedure described in [44]. In most cases, improved
performance is obtained when a Gaussian mixture (GM) pdf is
used in place of the Gaussian pdf in (18) [44].
Various extensions of the above are possible. For example,

when all coefficients are known to be real-valued or posi-
tive, the circular-Gaussian pdf in (18) should be replaced by a
real-Gaussian or truncated-Gaussian pdf, respectively, or even a
truncated-GM [45]. Furthermore, when certain coefficient sub-
sets are known to be more or less sparse than others, a non-uni-
form sparsity [46] rate can be used in (18).

D. GAMP Normalization and Damping

To increase the numerical robustness of GAMP, we propose
to normalize certain internal GAMP variables. To do this, we de-
fine (which tends to grow very small
with at high SNR), normalize both and (which
tend to grow very large) by , and normalize (which
tends to grow very small) by . This prevents the normal-
ized variables , , and from growing very large
and causing numerical precision issues in Matlab. We note that,
under infinite precision, these normalizations would cancel each
other out and have absolutely no effect. The resulting normal-
ized GAMP iterations are shown in Table II.
To reduce the chance of GAMP divergence, we propose

to “damp” certain variable updates. Damping is a technique
commonly used in loopy belief propagation (see, e.g., [47])
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TABLE II
GAMP STEPS WITH VARIANCE NORMALIZATION AND DAMPING

PARAMETER

to reduce the chance of divergence, although at the cost of
convergence speed. For GAMP, it was established in [48] that
damping is both necessary and sufficient to guarantee global
convergence under arbitrary in the case of Gaussian
and . Similarly, [48] established that damping is
both necessary and sufficient to guarantee the local convergence
of GAMP under arbitrary in the case of strictly log-concave

and . For general and ,
theory is (to the authors’ knowledge) lacking, but empirical re-
sults (see, e.g., [49]) suggest that the use of damping in GAMP
can be very effective. Table II presents a version of damped
GAMP that uses a common damping parameter
throughout the algorithm: when , the algorithm reduces
to the original GAMP algorithm, but when , the updates
in lines (S1), (S4), (S5), and (S7) are slowed. Our numerical
experiments suggest that the value works well for
phase retrieval. One consequence of the proposed damping
implementation is the existence of additional state variables
like . To avoid the need to initialize these variables, we
use during the first iteration. We note that the damping
modification described here is the one included in the public
domain GAMPmatlab implementation,4 which differs slightly
from the one described in [48].

E. Avoiding Bad Local Minima

As is well known [22], [23], [27], [28], the compressive phase
retrieval problem is plagued by bad local minima. We now pro-
pose methods to randomly initialize and restart PR-GAMP that
aim to avoid these bad local minima. Our empirical experience
(see Section IV) suggests that the existence of bad local minima
is a more serious issue with Fourier than with randomized
(e.g., i.i.d Gaussian or masked-Fourier) .
1) GAMP Initialization: The GAMP algorithm in Table I

requires an initialization of the signal coefficient estimates
, their variances , and the state vari-

ables (which can be interpreted as Lagrange
multipliers [48]). The standard procedure outlined in [30] uses
the fixed initialization , ,

. But, from this fixed initialization, GAMP may
converge to a bad local minimum. To allow the possibility
of avoiding this bad local minima, we propose to randomly
initialize and restart GAMP multiple times if needed. For the

4http://sourceforge.net/projects/gampmatlab/

random initializations, we propose to draw each as an
independent realization of the random variable . This way,
the empirical mean of matches that of the standard
initialization from [30]. Likewise, we propose to initialize

, for all , at the empirical variance of .
2) EM Initialization: For the EM algorithm described in

Section III-B, we must choose the initial noise-variance esti-
mate . Even when accurate knowledge of is available,
our numerical experience leads us to believe that setting
at a relatively large value can help to avoid bad local minima.
In particular, our empirical experience leads us to suggest set-
ting in correspondence with an initial SNR estimate of

10, i.e., with .
3) Multiple Restarts: To further facilitate the avoidance

of bad local minima, we propose to run multiple attempts of
EM-GAMP, each using a different random GAMP initialization
(constructed as above). The attempt that yields the lowest
normalized residual ( ) is then selected
as the algorithm output. The efficacy of multiple attempts is
numerically investigated in Section IV.
Furthermore, to avoid unnecessary restarts, we allow the al-

gorithm to be stopped as soon as the drops below a user-
defined stopping tolerance of . When the true SNR is
known, we suggest setting .
Algorithm Summary: The PR-GAMP algorithm is summa-

rized in Table III, where controls the number of attempts,
controls the initial SNR, and controls the stop-

ping tolerance.

IV. NUMERICAL RESULTS

In this section we numerically investigate the performance
of PR-GAMP5 under various scenarios and in comparison
to several existing algorithms: Compressive Phase Retrieval
via Lifting (CPRL) [24], GrEedy Sparse PhAse Retrieval
(GESPAR) from [28], and the sparse Fienup technique from
[23], As a benchmark, we also compare to “phase oracle” (PO)
GAMP, i.e., GAMP operating on the magnitude-and-phase
measurements rather than on the intensity mea-
surements .
Unless otherwise noted, we generated random realizations

the true signal vector as -sparse length- with support
chosen uniformly at random and with nonzero coefficients
drawn i.i.d zero-mean circular-Gaussian. Then, for a given
matrix , we generated noisy intensity measurements

, where was i.i.d circular-Gaussian with
variance selected to achieve a target signal-to-noise ratio of

. Finally, each algorithm computed
an estimate from in an attempt to best match up
to the inherent level of ambiguity. We recall that, for any ,
the magnitude is invariant to global phase rotations in .
For Fourier and real-valued , the magnitudes of are
also invariant to flips and circular shifts of . Performance
was then assessed using normalized mean-squared error on the
disambiguated estimate:

(20)

5PR-GAMP is part of the GAMPmatlab package at http://sourceforge.net/
projects/gampmatlab/.
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TABLE III
PROPOSED PR-GAMP ALGORITHM WITH ATTEMPTS, SNR

INITIALIZATION SNR , AND STOPPING RESIDUAL NR

where are the ambiguity parameters. When computing empir-
ical phase-transition curves, we defined a “successful” recovery
as one that produced .

A. Empirical Phase Transitions: I.I.D Gaussian

First we investigated the phase-transition performance of
PR-GAMP with i.i.d circular-Gaussian sensing matrices .
Fig. 2 plots the empirical success rate (averaged over 100 inde-
pendent problem realizations) as a function of signal sparsity
and measurement length for a fixed signal length of

. Here we used , which makes the ob-
servations essentially “noiseless,” and we allowed PR-GAMP
up to 10 attempts from random initializations (i.e.,
in Table III). The figure shows a “phase transition” behavior that
separates the plane into two regions: perfect recovery
in the top-left and failure in the bottom-right. Moreover, the
figure suggests that, to recover -sparse Bernoulli-Gaussian
signals with , approximately
intensity measurements suffice for PR-GAMP.
To investigate how well (versus how often) PR-GAMP re-

covers the signal, we plot the median achieved over the
same problem realizations in Fig. 3. There we see that the signal
estimates were extremely accurate on the good side of the phase
transition.
To investigate the effect of number-of-attempts , we

extracted the 50%-success contour (i.e., the phase-transition
curve) from Fig. 2 and plotted it in Fig. 4, along with the cor-
responding contours obtained under different choices of .
Fig. 4 suggests that, in the case of i.i.d , there is relatively
little to gain from multiple restarts from random realizations.
With Fourier , however, we will see in the sequel that multiple
restarts are indeed important.
Fig. 4 also plots the phase-transition curve of phase-oracle

(PO)-GAMP calculated from the same problem realizations.

Fig. 2. Empirical probability of successful PR-GAMP recovery of an
-length signal, versus signal sparsity and number of intensity measure-

ments , using i.i.d Gaussian at SNR . Here, PR-GAMP was
allowed up to 10 attempts from different random initializations.

Fig. 3. Median NMSE for PR-GAMP recovery of an -length signal,
versus signal sparsity and number of intensity measurements , using i.i.d
Gaussian at SNR . Here, PR-GAMP was allowed up to 10 attempts
from different random initializations.

A comparison of the PO-GAMP phase transition to the
PR-GAMP phase transition suggests that PR-GAMP requires
approximately the number of measurements as PO-GAMP,
regardless of sparsity rate , for Bernoulli-Gaussian signals.
Remarkably, this “ ” rule generalizes what is known about the
recovery of non-sparse signals in , where the ratio of (nec-
essary and sufficient) magnitude-only to magnitude-and-phase
measurements is also (as ) [15], [16].
Overall, Figs. 2–4 demonstrate that PR-GAMP is indeed ca-

pable of compressive phase retrieval, i.e., successful -signal
recovery from intensity measurements, when the
signal is sufficiently sparse. Moreover, to our knowledge, these
phase transitions are far better than those reported for existing
algorithms in the literature.
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Fig. 4. 50%-success contours for PR-GAMP and phase-oracle GAMP re-
covery of an -length signal, versus signal sparsity and number
of intensity measurements , using i.i.d Gaussian at SNR .
PR-GAMP- denotes PR-GAMP under a maximum of attempts.

Fig. 5. Median NMSE for PR-GAMP and phase-oracle GAMP recovery of an
-length -sparse signal, versus SNR, from

measurements and i.i.d Gaussian .

B. Robustness to Noise

We now demonstrate the robustness of PR-GAMP to
non-trivial levels of additive white circular-Gaussian noise
in the intensity measurements . As before,
we use -length -sparse Bernoulli-Gaussian signals
and i.i.d Gaussian , but now we focus on sparsity and
number of measurements . We note that
these pairs are all on the good side of the phase-transi-
tion in Fig. 2, although is near the boundary.
Fig. 5 shows median performance over 200 independent
problem realizations as a function of .
There we see that, for most of the tested pairs,
PR-GAMP performs only about 3 dB worse than PO-GAMP.
This 3 dB gap can be explained by the fact that PO-GAMP

TABLE IV
EMPIRICAL SUCCESS RATE AND MEDIAN RUNTIME OVER 100 PROBLEM
REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTH ,

MEASUREMENT LENGTH , AND SIGNAL SPARSITY

TABLE V
EMPIRICAL SUCCESS RATE AND MEDIAN RUNTIME OVER 100 PROBLEM
REALIZATIONS FOR SEVERAL COMBINATIONS OF SIGNAL LENGTH ,

MEASUREMENT LENGTH , AND SIGNAL SPARSITY

is able to average the noise over twice as many real-valued
measurements as PR-GAMP (i.e.,
versus ). Fig. 5 shows that the performance gap
grows beyond 3 dB when both the is very low and the
measurements are very few. But this may reflect a fundamental
performance limitation rather than a weakness in PR-GAMP.

C. Comparison to CPRL

In this section, we present compare PR-GAMP to the state-of-
the-art convex-relaxation approach to compressive phase re-
trieval, CPRL [24]. To implement CPRL, we used the authors’
CVX-basedmatlab code6 under default algorithmic settings.We
also tried the authors’ ADMM implementation, but found that
it gave significantly worse performance. As before, we examine
the recovery of a -sparse signal in from intensity mea-
surements , but now we use with i.i.d
circular-Gaussian and discrete Fourier transform (DFT) , to
be consistent with the setup assumed in [24].
Table IV shows empirical success7 rate and runtime (on

a standard personal computer) for a problem with sparsity
, signal lengths , and compressive

measurement lengths . The table shows that,
over 100 problem realizations, both algorithms were 100%
successful in recovering the signal at all tested combinations
of . But the table also shows that CPRL’s runtime
increased rapidly with the signal dimensions, whereas that of
PR-GAMP remained orders-of-magnitude smaller and rela-
tively independent of over the tested range.8

Table V repeats the experiment carried out in Table IV, but
at the sparsity . For this more difficult problem, the table
shows that CPRL was much less successful at recovering the
signal than PR-GAMP. Meanwhile, the runtimes reported in
Table V again show that CPRL’s complexity scaled rapidly with
the problem dimensions, whereas GAMP’s complexity stayed
orders-of-magnitude smaller and relatively constant over the
tested problem dimensions. In fact, the comparisons conducted

6http://users.isy.liu.se/rt/ohlsson/code/CPRL.zip
7Since CPRL rarely gave , we reduced the definition of “suc-

cess” to for this subsection only.
8Although the complexity of GAMP is known to scale as for this

type of , the values of and in Tables IV and V are too small for this
scaling law to manifest. Instead, the runtime values in these tables are biased by
the overhead computations associated with Matlab’s object-oriented program-
ming environment.
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Fig. 6. Empirical success rate versus sparsity in the recovery of an
-length real-valued signal from 2D-Fourier intensities

at SNR . PR-GAMP- denotes PR-GAMP under a maximum of
attempts.

Fig. 7. Median runtime versus sparsity in the recovery of an
-length real-valued signal from 2D-Fourier intensities at

SNR . PR-GAMP- denotes PR-GAMP under a maximum of
attempts.

in this section were restricted to very small problem dimensions
precisely due to the poor complexity scaling of CPRL.

D. Comparison to Sparse-Fienup and GESPAR: Fourier

In this section, we compare PR-GAMP to the sparse-Fienup
[23] and GESPAR9[28] algorithms. This comparison requires10

that we restrict our attention to Fourier-based and real-valued

9For GESPAR, we used the November 2013 version of the Matlab code pro-
vided by the authors at https://sites.google.com/site/yoavshechtman/resources/
software.
10The sparse Fienup from [23] requires to be a (scaled) identity matrix.

Although GESPAR can in principle handle generic , the implementation pro-
vided by the authors is based on 1D and 2D Fourier and is not easily modified.

Fig. 8. Empirical success rate versus sparsity in the recovery of an
-length real-valued signal from 1D-Fourier intensities at SNR

. PR-GAMP- denotes PR-GAMP under a maximum of attempts.

sparse vectors . For the experiments below, we generated real-
izations of as described earlier, but now with the non-zero el-
ements drawn from a real-Gaussian distribution. Also, we used

in GESPAR as recommended by the authors in
[28], and we allowed sparse-Fienup 1000 attempts from random
initializations.
We first consider 2D Fourier , which is especially impor-

tant for imaging applications. In particular, we repeat an ex-
periment from [28], where the measurement and signal lengths
were fixed at and the signal sparsity was varied.
For , Fig. 6 shows the empirical success rate (over
200 realizations) for PR-GAMP, GESPAR, and sparse Fienup.
Meanwhile, Fig. 7 shows the corresponding median runtime
for each algorithm, where all algorithms leveraged fast Fourier
transform (FFT) implementations of . From Fig. 6, we can see
that PR-GAMP produced a significantly better phase-transition
than GESPAR and sparse Fienup. Meanwhile, from Fig. 7 we
see that, for the challenging case of , PR-GAMP-10
had uniformly better runtime and success rate than GESPAR
and sparse Fienup.
Next we consider 1D Fourier . Again, we repeat an ex-

periment from [28], where the measurement and signal lengths
were fixed at and the signal sparsity was varied.
For , Fig. 8 shows the empirical success rate (over
200 realizations) for PR-GAMP, GESPAR, and sparse Fienup,
and Fig. 7 shows the corresponding median runtimes. From
Fig. 8, we can see that PR-GAMP produced a significantly better
phase-transition than GESPAR and sparse Fienup. Meanwhile,
from Fig. 9 we see that, for the challenging case of ,
PR-GAMP-20 had uniformly better runtime and success rate
than GESPAR and sparse Fienup.
Comparing the results in this section to those in Section IV-A,

we observe that the PR-GAMP, GESPAR, and Fienup algo-
rithms had a much more difficult time with Fourier matrices
than with i.i.d matrices . Similar observations were made in
previous studies, leading to proposals of randomized Fourier-
based phase retrieval, e.g., using “coded” binary masks [50].
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Fig. 9. Median runtime versus sparsity in the recovery of an
-length real-valued signal from 1D-Fourier intensities at

SNR . PR-GAMP- denotes PR-GAMP under a maximum of
attempts.

Also, we notice that the use of multiple restarts in PR-GAMP
was much more important with Fourier than it was with i.i.d
.

E. Practical Image Recovery With Masked Fourier

Finally, we demonstrate practical image recovery from com-
pressed intensity measurements. For this experiment, the signal
was the -pixel grayscale image shown on the left

of Fig. 10, which has a sparsity of . Since this image
is real and non-negative, we ran PR-GAMP with a non-nega-
tive-real-BG prior [45], as opposed to the BG prior (18) used in
previous experiments.
For the first set of experiments, we used a “masked” Fourier

transformation of the form

(21)

where was a 2D DFT matrix of size , were diag-
onal “masking” matrices of size with diagonal entries
drawn uniformly at random from , and were “selec-
tion” matrices of size constructed from rows of the iden-
tity matrix drawn uniformly at random. The matrices and
help to “randomize” the DFT, and they circumvent unicity is-
sues such as shift and flip ambiguities. For phase retrieval, the
use of image masks was discussed in [50]. Note that, because
and are sparse and has a fast FFT-based implementa-

tion, the overall matrix has a fast implementation.
To eliminate the need for the expensive matrix multipli-

cations with the elementwise-squared versions of and ,
as specified in lines (S1) and (S6) of Table II, GAMP was
run in “uniform variance” mode, meaning that
were approximated by ; similar
was done with , , and .
The result is that lines (S1)-(S2) in Table II become

Fig. 10. Original image (left) and a typical PR-GAMP-recovery (right) from
masked-Fourier intensity measurements at SNR , which took

1.8 seconds.

and line (S6) becomes .
As before, the observations took the form ,

but now the noise variance was adjusted to yield a nontrivial
. To demonstrate compressive phase retrieval,

only intensity measurements were used.
Running PR-GAMP on 100 problem realizations (each with dif-
ferent random and , and allowing at most 10 restarts per
realization), we observed for all 100 real-
izations and a median runtime of only 5.9 seconds. The right
subplot in Fig. 10 shows a typical PR-GAMP recovery.
For the second set of experiments, we “blurred” the masked-

Fourier outputs to further randomize , which allowed us to
achieve similar recovery performance using half the intensity
measurements, i.e., . In particular, we used a
linear transformation of the form

(22)

where and were as before11 and were banded12 ma-
trices of size with 10 nonzero i.i.d circular-Gaussian en-
tries per column. The use of blurring to enhance phase retrieval
was discussed in [51]. As with (21), the in (22) has a fast
implementation. Running PR-GAMP as before on 100 problem
realizations at , we observed
for all 100 realizations and a median runtime of only 7.3 sec-
onds.
To our knowledge, no existing algorithms are able to perform

compressive phase retrieval on images of this size and sparsity
with such high speed and accuracy. To put our results in perspec-
tive, we recall the image recovery experiment in [28], which
shows an example of GESPAR taking 80 seconds to recover
a -sparse image whose support was effectively con-
strained to from 2D Fourier inten-
sity measurements. In contrast, Fig. 10 shows PR-GAMP taking
1.8 seconds to recover a -sparse image whose sup-
port was constrained to from
masked 2D Fourier intensity measurements.

11Here, since we used only two masks, we ensured invertibility by con-
structing the diagonal of using exactly unit-valued entries positioned
uniformly at random and constructing the diagonal of as its complement,
so that .
12Since each was a wide matrix, its nonzero band was wrapped from

bottom to top when necessary.
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V. CONCLUSIONS

In this paper, we proposed a novel approach to compres-
sive phase retrieval based on the generalized approximate mes-
sage passing (GAMP) algorithm. Numerical results showed that
the proposed PR-GAMP algorithm has excellent phase transi-
tion behavior, noise robustness, and runtime. In particular, for
successful recovery of synthetic -sparse signals PR-GAMP
requires approximately 4 times the number of measurements
as phase-oracle GAMP and achieves that is only 3 dB
worse than phase-oracle GAMP. For recovery of a real-valued
65532-pixel image from 32768 pre-masked and post-blurred
Fourier intensities, PR-GAMP returned for
all 100 realizations and a median runtime of only 7.3 seconds.
An extensive numerical comparison to the recently proposed
CPRL, sparse-Fienup, and GESPAR algorithms suggests that
PR-GAMP has superior phase transitions and orders-of-magni-
tude faster runtimes at large .

APPENDIX A
OUTPUT THRESHOLDING RULES

In this appendix, we derive the expressions (10) and (12) that
are used to compute the functions and defined in
lines (D2) and (D3) of Table I.
To facilitate the derivations in this appendix,13 we first rewrite

in a form different from (8). In particular, recalling
that—under our AWGN assumption—the noisy transform out-
puts are conditionally distributed as

, we first transform from rectangular to
polar coordinates to obtain

(23)

where is the Jacobian of the transformation, and then integrate
out the unobserved phase to obtain

(24)

We begin by deriving the scaling factor

(25)

(26)

where we used the Gaussian-pdf multiplication rule14 in (26).
Noting the similarity between (26) and (24), the equivalence
between (24) and (8) implies that

(27)

13The subscript “ ” is omitted throughout this appendix for brevity.

14

In the sequel, we make the practical assumption that ,
allowing us to drop the indicator “ ” and invert .
Next, we derive the conditional mean

(28)

Plugging (24) into (28) and applying the Gaussian-pdf multipli-
cation rule,

(29)

(30)

(31)

(32)

(33)

Expanding the term, the integral in (33) becomes

(34)

(35)

(36)

where denotes the phase of , and where the integral in (35)
was resolved using the expression in [52, 9.6.19]. Plugging (36)
into (33) gives

(37)

which agrees with (10).
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Finally, we derive the conditional covariance

(38)

Focusing on the first term in (38), if we plug in (24) and apply
the Gaussian-pdf multiplication rule, we get

(39)

(40)

(41)

(42)

(43)

(44)

where (43) used (36) and (44) used (27). By plugging (44) back
into (38), we obtain the expression given in (12).

APPENDIX B
POST-INTENSITY NOISE MODELS

In this appendix, we consider the and functions
(defined in lines (D2) and (D3) of Table I) for the post-intensity
noise model (14) under generic and .
Following the procedure in Appendix A, we begin by exam-

ining the scaling factor

(45)

(46)

where for (45) we used the rectangular-to-polar transformation
with and , and for (46) we used the

Rician result (8).
Next we examine the conditional mean defined in (28). Plug-

ging (15) into (28) and transforming from rectangular to polar
coordinates, we get

(47)

(48)

where (48) used the result from (36).
Finally we examine the conditional covariance (38), and in

particular the first term in (38), which now becomes

(49)

(50)

where (50) used a computation similar to (46). Further simpli-
fication of the above expressions requires specification of
and .

APPENDIX C
EM UPDATE FOR NOISE VARIANCE

In this appendix, we derive the EM update (17) of the noise
variance. Our approach is based on the use of GAMP’s pos-
terior approximation in place of the true posterior dis-
tribution in (16). At GAMP iteration ,

for

(51)

(52)

which also appears in line (D4) of Table I.
Under the posterior approximation and large i.i.d , the

negative log likelihood is well approximated by
the variational Bethe free energy15[53], [54]

(53)

In (53), the first term measures the KL divergence of the prior
from the approximated posterior

. The second term then measures the KL divergence of the

15Note that the Bethe free energy expressions in this paper are stated for the
complex-valued case.
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pdf from , the GAMP-approximated
posterior pdf on . Here, the scaling factor , for

(54)

ensures that is a valid pdf over ,
and the approximate posterior takes the form

for

(55)

(56)

which also appears in line (D1) of Table I. Above, are
“fixed point” values that are consistent with in the
sense that

(57)

(58)

Whereas in (57) can be computed directly from
, finding the that solves (58) may require

numerical search, e.g., via Newton’s method [49].
Plugging (55) into the second term of (53) reveals

(59)

(60)

(61)

(62)

using the shorthand notation . Then plug-
ging (62) into (53) and canceling terms reveals

(63)

where the dependence of , , and is made explicit.
Note that and are completely determined by
via (57)-(58), and thus invariant to , and is by
definition invariant to . When is Gaussian, the value of

can be computed in closed form [40] after which the
resulting expression (63) simplifies.

For non-Gaussian , we propose the following EM
update procedure. For simplicity, we will assume that one EM
update is performed per GAMP iteration, allowing us to write
the EM iterations “ ” as GAMP iterations “ ”. Recalling
(16), we first run GAMP with to produce ,
the approximate posterior in (51), the corresponding

from (57)-(58), and finally the approximation
of in (63). However, to facilitate
the minimization over , we use

(64)

in place of (63), noting that the substitution of by
preserves the fixed point(s) of the EM procedure.

Finally, we assign the value of that minimizes (64) to
. The overall procedure is summarized by (17).

For the in (8) used for PR-GAMP, it can be shown
that is invariant to . Thus,

for the given in (27).
We numerically compute the maximizing value.
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