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Abstract—In this work, a Bayesian approximate message
passing algorithm is proposed for solving the multiple measure-
ment vector (MMYV) problem in compressive sensing, in which a
collection of sparse signal vectors that share a common support
are recovered from undersampled noisy measurements. The
algorithm, AMP-MMY, is capable of exploiting temporal corre-
lations in the amplitudes of non-zero coefficients, and provides
soft estimates of the signal vectors as well as the underlying
support. Central to the proposed approach is an extension of
recently developed approximate message passing techniques to the
amplitude-correlated MMYV setting. Aided by these techniques,
AMP-MMV offers a computational complexity that is linear in all
problem dimensions. In order to allow for automatic parameter
tuning, an expectation-maximization algorithm that complements
AMP-MMYV is described. Finally, a detailed numerical study
demonstrates the power of the proposed approach and its partic-
ular suitability for application to high-dimensional problems.

Index Terms—Approximate message passing (AMP), belief
propagation, compressed sensing, expectation-maximization al-
gorithms, joint sparsity, Kalman filters, multiple measurement
vector problem, statistical signal processing.

I. INTRODUCTION

S the field of compressive sensing (CS) [1]-[3] matures,
researchers have begun to explore numerous extensions
of'the classical sparse signal recovery problem, in which a signal
with few non-zero coefficients is reconstructed from a handful
of incoherent linear measurements. One such extension, known
as the multiple measurement vector (MMYV) problem, general-
izes the sparse signal recovery, or single measurement vector
(SMV), problem to the case where a group of measurement vec-
tors has been obtained from a group of signal vectors that are
assumed to be jointly sparse, sharing a common support. Such a
problem has many applications, including magnetoencephalog-
raphy [4], [5], direction-of-arrival estimation [6] and parallel
magnetic resonance imaging (pMRI) [7].
Mathematically, given T length-A{ measurement vectors, the
traditional MMV objective is to recover a collection of length-/V

Manuscript received November 28, 2011; revised July 02, 2012; accepted
September 18, 2012. Date of publication October 03, 2012; date of current ver-
sion December 21, 2012. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Raviv Raich. This work
supported in part by the NSF by Grant CCF-1018368, by DARPA/ONR Grant
N66001-10-1-4090, and an allocation of computing time from the Ohio Super-
computer Center. Portions of this work were previously presented at the 2011
Asilomar Conference on Signals, Systems, and Computers.

The authors are with the Department of Electrical and Computer Engineering,
The Ohio State University, Columbus, OH 43210 USA (e-mail: zinielj@ece.
osu.edu; schniter@ece.osu.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2012.2222382

sparse vectors {z("17_ | when M < N. Each measurement
vector, y'*, is obtained as
y(t>:A$(t)+e(t), t=1,....T, (1)
where A is a known measurement matrix and e(*) is corrupting
additive noise. The unique feature of the MMV problem is the
assumption of joint sparsity: the support of each sparse signal
vector £ is identical. Oftentimes, the collection of measure-
ment vectors forms a time-series, thus we adopt a temporal
viewpoint of the MMV problem, without loss of generality.

A straightforward approach to solving the MMV problem is
to break it apart into independent SMV problems and apply
one of the many SMV algorithms. While simple, this approach
ignores valuable temporal structure in the signal that can be
exploited to provide improved recovery performance. Indeed,
under mild conditions, the probability of recovery failure can
be made to decay exponentially as the number of timesteps 7'
grows, when taking into account the joint sparsity [8]. Another
approach (e.g., [9]) to the joint-sparse MMV problem is to re-
state (1) as the block-sparse SMV model

§ = D(A)z +e, )

where § = [y(l)T, e ,y(T)T]T, z = [:c(l)T, e ,z(T)T]T, e =
[e(l)T, . ,e(T)T]T, and D(A) denotes a block diagonal matrix
consisting of 7" replicates of A. In this case, z is block-sparse,
where the nth block (for n = 1,..., N) consists of the coef-
ficients {#n, Znin, ..., Tni(r—1)~ }- Equivalently, one could

express (1) using the matrix model

Y = AX + E, 3)

where Y 2 [y, ... 4@ X £ [g® . 2] and
E 2 [eM ... )] Under the matrix model, joint sparsity in
(1) manifests as row-sparsity in X. Algorithms developed for
the matrix MMV problem are oftentimes intuitive extensions
of SMV algorithms, and therefore share a similar taxonomy.
Among the different techniques that have been proposed are
mixed-norm minimization methods [5], [10]-[12], greedy
pursuit methods [5], [13], [14], and Bayesian methods [6],
[15]-[18]. Existing literature suggests that greedy pursuit
techniques are outperformed by mixed-norm minimization
approaches, which in turn are surpassed by Bayesian methods
(5], [15], [18].

In addition to work on the MMV problem, related work has
been performed on a similar problem sometimes referred to as
the “dynamic CS” problem [19]-[23]. The dynamic CS problem
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also shares the trait of working with multiple measurement vec-
tors, but instead of joint sparsity, considers a situation in which
the support of the signal changes slowly over time.

Given the plethora of available techniques for solving the
MMV problem, it is natural to wonder what, if any, improve-
ments can be made. In this work, we will primarily address two
deficiencies evident in the available MMV literature. The first
deficiency is the inability of many algorithms to account for am-
plitude correlations in the non-zero rows of X .! Incorporating
this temporal correlation structure is crucial, not only because
many real-world signals possess such structure, but because the
performance of MMV algorithms is particularly sensitive to this
structure [8], [14], [15], [18], [24]. The second deficiency is that
of computational complexity: while Bayesian MMV algorithms
appear to offer the strongest recovery performance, it comes at
the cost of increased complexity relative to simpler schemes,
such as those based on greedy pursuit. For high-dimensional
datasets, the complexity of Bayesian techniques may prohibit
their application.

Our goal is to develop an MMV algorithm that offers the
best of both worlds, combining the recovery performance of
Bayesian techniques, even in the presence of substantial am-
plitude correlation and apriori unknown signal statistics, with
the linear complexity scaling of greedy pursuit methods. Aiding
us in meeting our goal is a powerful algorithmic framework
known as approximate message passing (AMP), first proposed
by Donoho et al. for the SMV CS problem [25]. In its early SMV
formulations, AMP was shown to perform rapid and highly ac-
curate probabilistic inference on models with known i.i.d. signal
and noise priors, and i.i.d. random A matrices [25], [26]. More
recently, AMP was extended to the block-sparse SMV problem
under similar conditions [27]. While this block-sparse SMV
AMP does solve a simple version of the MMV problem via
the formulation (2), it does not account for intra-block ampli-
tude correlation (i.e., temporal correlation in the MMV model).
Recently, Kim et al. proposed an AMP-based MMV algorithm
that does exploit temporal amplitude correlation [16]. However,
their approach requires knowledge of the signal and noise sta-
tistics (e.g., sparsity, power, correlation) and uses matrix inver-
sions at each iteration, implying a complexity that grows super-
linearly in the problem dimensions.

In this work, we propose an AMP-based MMV algorithm
(henceforth referred to as AMP-MMYV) that exploits temporal
amplitude correlation and learns the signal and noise statistics
directly from the data, all while maintaining a computational
complexity that grows linearly in the problem dimensions. In
addition, AMP-MMYV can easily accommodate time-varying
measurement matrices A(t), implicit measurement operators
(e.g., FFT-based A), and complex-valued quantities. (These
latter scenarios occur in, e.g., digital communication [28] and
pMRI [29].) The key to our approach lies in combining the
“turbo AMP” framework of [30], where the usual AMP factor
graph is augmented with additional hidden variable nodes and
inference is performed on the augmented factor graph, with an
EM-based approach to hyperparameter learning. Details are
provided in Sections II, IV, and V.

Notable exceptions include [16], [12], and [18], which explicitly model am-
plitude correlations.
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In Section VI, we present a detailed numerical study
of AMP-MMV that includes a comparison against three
state-of-the-art MMV algorithms. In order to establish an
absolute performance benchmark, in Section III we describe
a tight, oracle-aided performance lower bound that is realized
through a support-aware Kalman smoother (SKS). To the best
of our knowledge, our numerical study is the first in the MMV
literature to use the SKS as a benchmark. Our numerical
study demonstrates that AMP-MMYV performs near this oracle
performance bound under a wide range of problem settings,
and that AMP-MMYV is especially suitable for application to
high-dimensional problems. In what represents a less-explored
direction for the MMV problem, we also explore the effects
of measurement matrix time-variation (cf. [6]). Our results
show that measurement matrix time-variation can significantly
improve reconstruction performance and thus we advocate
the use of time-varying measurement operators whenever
possible.

Notation: Boldfaced lower-case letters, e.g., a, denote vec-
tors, while boldfaced upper-case letters, e.g., A, denote ma-
trices. The letter ¢ is strictly used to index a timestep, * =
1,2,...,7, the letter n is strictly used to index the coefficients
of a signal, n = 1,..., NV, and the letter m is strictly used
to index the measurements, m = 1,..., M. The superscript
() indicates a timestep-dependent quantity, while a superscript
without parentheses, e.g., ¥, indicates a quantity whose value
changes according to some algorithmic iteration index. Sub-
scripted variables such as r$f ) are used to denote the nth ele-
ment of the vector (*). The mth row of the matrix A is denoted
by a!,, and the transpose (conjugate transpose) by AT (AH ). An
M -by-M identity matrix is denoted by I ,,, a length-N vector
of ones is given by 1,, and D(a) designates a diagonal matrix
whose diagonal entries are given by the elements of the vector a.
Finally, CA/(a; b, C) refers to the complex normal distribution
that is a function of the vector a, with mean b and covariance
matrix C.

II. SIGNAL MODEL

In this section, we elaborate on the signal model outlined
in Section I, and make precise our modeling assumptions. Our
signal model, as well as our algorithm, will be presented in the
context of complex-valued signals, but can be easily modified
to accommodate real-valued signals.

As noted in Section I, we consider the linear measurement
model (1), in which the signal z*) € C¥ at timestep ¢ is ob-
served as gy € CM through the linear operator A € CM*N
We assume et ~ CA(0, 521 ,,) is circularly symmetric com-
plex white Gaussian noise. We use S = {n | a # 0} to denote
the indices of the time-invariant support of the signal, which is
assumed to be suitably sparse, i.e., |S| < M .2

Our approach to specifying a prior distribution for the signal,
p({z™11L,), is motivated by a desire to separate the support,
&, from the amplitudes of the non-zero, or “active,” coefficients.

2[fthe signal being recovered is not itself sparse, it is assumed that there exists
a known basis, incoherent with the measurement matrix, in which the signal
possesses a sparse representation. Without loss of generality, we will assume
the underlying signal is sparse in the canonical basis.
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To accomplish this, we decompose each coefficient z,’ as the
product of two hidden variables:
) = -0
)
§ (f) 9(*)) s, =1,
p (00, 60) =8 S )
(5 (ILn ) . Sp — Oa

where s,, € {0, 1} is a binary variable that indicates support set
membership, aﬁf ) € C is a variable that provides the amplitude
of coefficient =, and & (-) is the Dirac delta functlon When

n =0, Lg,)—Oandn¢S and when s, = 1, 2 O = 6% and
n € S. To model the sparsity of the signal, we treat each s, as
a Bernoulli random variable with Pr{s, = 1} £ A, < 1.

In order to model the temporal correlation of signal am-
plitudes, we treat the evolution of amplitudes over time as
stationary first-order Gauss-Markov random processes. Specif-
ically, we assume that 0£f ) evolves according to the following
linear dynamical system model:

97(? ={1-a) (05}71) — C) + ozw,(f) + ¢, (5)

where { € C is the mean of the amplitude process, w( )~

CN (0. p) is a circularly symmetric white Gaussian perturbation
process, and « € [0, 1] is a scalar that controls the correlation
of Hff) across time. At one extreme, «« = 0, the random process
is perfectly correlated (Hff ) = g 71)), while at the other ex-
treme, @ = 1, the amplitudes evolve independently over time.
Note that the binary support vector, s, is independent of the am-
plitude random process, { ot )}t 1 Which implies that there are
hidden amplitude “trajectories”, {H,L T, associated with in-
active coefficients. Consequently, Hflt should be thought of as
the conditional amplitude of T%t ), conditioned on s,, = 1.

Under our model, the prior distribution of any signal co-
efficient, ;L',(f'), is a Bernoulli-Gaussian or “spike-and-slab”
distribution:

p(x@) (1- X, )5( (ﬂ) + A CN( . ¢. 0 ) (6)

where 02 £ 52 is the steady-state variance of H,,(f). We note

that when A,, < 1, (6) is an effective sparsity-promoting prior
due to the point mass at = =o0.

III. THE SUPPORT-AWARE KALMAN SMOOTHER

Prior to describing AMP-MMYV in detail, we first motivate
the type of inference we wish to perform. Suppose for a moment
that we are interested in obtaining a minimum mean square
error (MMSE) estimate of {z(#}7_,, and that we have access
to an oracle who can provide us with the support, S. With this
knowledge, we can concentrate solely on estimating {0(” ML,
since, conditioned on &, an MMSE estimate of {0(”}?:1
can provide an MMSE estimate of {z(*'}_,. For the linear
dynamical system of (5), the support-aware Kalman smoother

(SKS) provides the appropriate oracle-aided MMSE estimator
of {0(”}?:1 [31]. The state-space model used by the SKS is:

00 = (1 - )" Y 4+ a1, +aw®, @)
y'") = AD(5)6") + ), ®)
where s is the binary support vector associated with S. If 9(”
is the MMSE estimate returned by the SKS, then an MMSE
estimate of z(*) is given by %) = ’D(s)é(t).

The state-space model (7),(8) provides a useful interpretation
of our signal model. In the context of Kalman smoothing, the
state vector 8% is only partially observable (due to the action
of D(s) in (8)). Since D(s)8) = £, noisy linear measure-
ments of z(*) are used to infer the state 8. However, since
only those 0,@ for whichn € S are observable, and thus identi-
fiable, they are the only ones whose posterior distributions will
be meaningful.

Since the SKS performs optimal MMSE estimation, given
knowledge of the true signal support, it provides a useful lower
bound on the achievable performance of any support-agnostic
Bayesian algorithm that aims to perform MMSE estimation of

{x(t)}tT:1

IV. THE AMP-MMV ALGORITHM

In Section II, we decomposed each signal coefficient, :rgf ) ,as

the product of a binary support variable, s,,, and an amplitude
variable, aﬁf). We now develop an algorithm that infers a mar-
ginal posterior distribution on each variable, enabling both soft
estimation and soft support detection.

The statistical structure of the signal model from Section II
becomes apparent from a factorization of the posterior joint pdf
of all random variables. Recalling from (2) the definitions of %
and %, and defining @ similarly, the posterior joint distribution
factors as follows:

(t)) HP( RIFICN )

p(%.9,5|7) ocH(Hp(y(t)
t 1)))1Hp .

><p(

where 1nd1cates ec%uahty up to a normalizing constant, and

( ) | Or, 0) A convenient graphical representation
of thls decomposmon is given by a factor graph [32], which
is an undirected bipartite graph that connects the pdf “factors”
of (9) with the variables that make up their arguments. The
factor graph for the decomposition of (9) is shown in Fig. 1.
The factor nodes are denoted by filled squares, while the vari-
able nodes are denoted by circles. In the figure, the signal vari-
able nodes at timestep ¢, {z}"_,, are depicted as lying in
a plane, or “frame”, with successive frames stacked one after
another. Since during inference the measurements { yrs,tl)} are
known observations and not random variables, they do not ap-
pear explicitly in the factor graph. The connection between the
frames occurs through the amplitude and support indicator vari-
ables, providing a graphical representation of the temporal cor-
relation in the signal. For visual clarity, these {Hg) }tT:l and s,
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Fig. 1. Factor graph representation of the p(%, 8, s | §) decomposition in (9).

TABLE 1
THE FACTORS, UNDERLYING DISTRIBUTIONS, AND FUNCTIONAL FORMS
ASSOCIATED WITH THE SIGNAL MODEL OF SECTION II

Factor Distribution Functional Form
(f)(mm) p(yﬁfg)lw(”) CN(yf,? al,z® o2)
(Lt) (argf),sn,()(t)) p(mgf)lsnﬂff)) (5( (t) _ 9ne(t))
hn (sn) p(sn) (=) b’)( An)*
P (05") p(0) cN(eﬁP,g,
dP (09, 0877)  po1es ) eN(0; (1 - )oY + ag,a?p)

variable nodes have been removed from the graph for the inter-
mediate index 7, but should in fact be present at every index
n=1,...,N.

The factor nodes in Fig. 1 have all been assigned alphabetic
labels; the correspondence between these labels and the distri-
butions they represent, as well as the functional form of each
distribution, is presented in Table 1.

A natural approach to performing statistical inference on a
signal model that possesses a convenient factor graph repre-
sentation is through a message passing algorithm known as
belief propagation [33]. In belief propagation, the messages
exchanged between connected nodes of the graph represent
probability distributions. In cycle-free graphs, belief propaga-
tion can be viewed as an instance of the sum-product algorithm
[32], allowing one to obtain an exact posterior marginal dis-
tribution for each unobserved variable, given a collection of
observed variables. When the factor graph contains cycles, the
same rules that define the sum-product algorithm can still be
applied, however convergence is no longer guaranteed [32].
Despite this, there exist many problems to which loopy belief
propagation [34] has been successfully applied, including
inference on Markov random fields [35], LDPC decoding [36],
and compressed sensing [25], [30], [37]-[40].

We now proceed with a high-level description of
AMP-MMYV, an algorithm that follows the sum-product
methodology while leveraging recent advances in message
approximation [25]. In what follows, we use v, (- ) to denote
a message that is passed from node a to a connected node b.

A. Message Scheduling

Since the factor graph of Fig. 1 contains many cycles there are
a number of valid ways to schedule, or sequence, the messages
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that are exchanged in the graph. We will describe two message
passing schedules that empirically provide good convergence
behavior and straightforward implementation. We refer to these
two schedules as the parallel message schedule and the serial
message schedule. In both cases, messages are first initialized
to agnostic values, and then iteratively exchanged throughout
the graph according to the chosen schedule until either conver-
gence occurs, or a maximum number of allowable iterations is
reached.

Conceptually, both message schedules can be decomposed
into four distinct phases, differing only in which messages are
initialized and the order in which the phases are sequenced. We
label each phase using the mnemonics (into), (within), (out),
and (across). In phase (into), messages are passed from the s,,
and 053 ) variable nodes into frame . Loosely speaking, these
messages convey current beliefs about the values of s and 0.
In phase (within), messages are exchanged within frame ¢, pro-
ducing an estimate of (*) using the current beliefs about s and
g together with the available measurements y® . In phase
(out), the estimate of z® is used to refine the beliefs about s
and 8 by passing messages out of frame ¢. Finally, in phase
(across), messages are sent from 0 " to either H(H_l) or Y~ 1)
thus conveying information across time about temporal corre-
lation in the signal amplitudes.

The parallel message schedule begins by performing phase
(into) in parallel for each frame ¢ = 1,....T simultaneously.
Then, phase (within) is performed simultaneously for each
frame, followed by phase (out). Next, information about
the amplitudes is exchanged between the different timesteps
by performing phase (across) in the forward direction, i.e.,
messages are passed from 953) to 922 ), and then from 0&2) to
95{9’), proceeding until HSLT ) is reached. Finally, phase (across)
is performed in the backward direction, where messages are
passed consecutively from 9£,,T) down to 0,(7,1). At this point,
a single iteration of AMP-MMV has been completed, and a
new iteration can commence starting with phase (into). In this
way, all of the available measurements, {*}7_,, are used to
influence the recovery of the signal at each timestep.

The serial message schedule is similar to the parallel schedule
except that it operates on frames in a sequential fashion, en-
abling causal processing of MMV signals. Beginning at the ini-
tial timestep, ¢ = 1, the serial schedule first performs phase
(into), followed by phases (within) and (out). Outgoing mes-
sages from the initial frame are then used in phase (across) to
pass messages from 6$L1) to 022). The messages arriving at oL ,
along with updated beliefs about the value of s, are used to ini-
tiate phase (into) at timestep £ = 2. Phases (within) and (out)
are performed for frame 2, followed by another round of phase
(across), with messages being passed forward to 9513) . This pro-
cedure continues until phase (out) is completed at frame 7.
Until now, only causal information has been used in producing
estimates of the signal. If the application permits smoothing,
then message passing continues in a similar fashion, but with
messages now propagating backward in time, i.e., messages are
passed from 85" 1o 07(,,T71), phases (into), (within), and (out)
are performed at frame 7' — 1, and then messages move from
HfLT Vo 05,,1“72). The process continues until messages arrive
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Fig. 2. A summary of the four message passing phases, including message no-
tation and form.

CN@Y; .l

at 651,1) , at which point a single forward/backward pass has been
completed. We complete multiple such passes, resulting in a
smoothed estimate of the signal.

B. Implementing the Message Passes

Space constraints prohibit us from providing a full derivation
of all the messages that are exchanged through the factor graph
of Fig. 1. Most messages can be derived by straightforward ap-
plication of the rules of the sum-product algorithm. Therefore,
in this sub-section we will restrict our attention to a handful of
messages in the (within) and (out) phases whose implemen-
tation requires a departure from the sum-product rules for one
reason or another.

To aid our discussion, in Fig. 2 we summarize each of the
four phases, focusing primarily on a single coefficient index n
at some intermediate frame ¢. Arrows indicate the direction that
messages are moving, and only those nodes and edges partic-
ipating in a particular phase are shown in that phase. For the
(across) phase we show messages being passed forward in time,
and omit a graphic for the corresponding backwards pass. The
figure also introduces the notation that we adopt for the dif-
ferent variables that serve t(()tg)arameterize the messages. Certain

variables, e.g., 7}3) and 7, , are accented with directional ar-
rows. This is to distinguish variables associated with messages
moving in one direction from those associated with messages
moving in another. For Bernoulli message pdfs, we show only
the nonzero probability, e.g., A, = v, s (8, = 1).

Phase (within) entails using the messages transmitted from
s, and HSf ) to fv(f) to compute the messages that pass between
= and the { gff,’,)} nodes. Inspection of Fig. 2 reveals a dense
interconnection between the { Ts,t)} and { g,(f,’,)} nodes. As a
consequence, applying the standard sum-product rules to com-
pute the ugm_w(f,)( - ) messages would result in an algorithm
that required the evaluation of multi-dimensional integrals that
grew exponentially in number in both N and M. Since we are
strongly motivated to apply AMP-MMYV to high-dimensional
problems, this approach is clearly infeasible. Instead, we turn to
a recently developed algorithm known as approximate message
passing (AMP).

AMP was originally proposed by Donoho et al. [25] as a mes-
sage passing algorithm designed to solve the noiseless SMV
CS problem known as Basis Pursuit (min ||z|; s.t. y = Az),
and was subsequently extended [26] to support MMSE esti-
mation under white-Gaussian-noise-corrupted observations and
generic signal priors of the form p(x) = [[p(x,) through an
approximation of the sum-product algorithm. In both cases, the
associated factor graph looks identical to that of the (within)
segment of Fig. 2. Conventional wisdom holds that loopy be-
lief propagation only works well when the factor graph is lo-
cally tree-like. For general, non-sparse A matrices, the (within)
graph will clearly not possess this property, due to the many
short cycles between the x4 and _qy(,tl) nodes. Reasoning dif-
ferently, Donoho et al. showed that the density of connections
could prove beneficial, if properly exploited.

In particular, central limit theorem arguments suggest that
the messages propagated from the g,, nodes to the x,, nodes
under the sum-product algorithm can be well-approximated as
Gaussian when the problem dimensionality is sufficiently high.
Moreover, the computation of these Gaussian-approximated
messages only requires knowledge of the mean and variance
of the sum-product messages from the x, to the g,, nodes.
Finally, when |A,,.,.|? scales as O(1/M) for all (m,n), the
differences between the variances of the messages emitted by
the x,, nodes vanish as M grows large, as do those of the g,
nodes when N grows large, allowing each to be approximated
by a single, common variance. Together, these sum-product
approximations yield an iterative thresholding algorithm with
a particular first-order correction term that ensures both Gaus-
sianity and independence in the residual error vector over
the iterations. The complexity of this iterative thresholding
algorithm is dominated by a single multiplication by A and
AR per iteration, implying a per-iteration computational cost
of O(MN) flops. Furthermore, the state-evolution equation
that governs the transient behavior of AMP shows that the
number of required iterations does not scale with either M or
N, implying that the total complexity is itself O(M N') flops.

AMP’s suitability for the MMV problem stems from sev-
eral considerations. First, AMP’s probabilistic construction,
coupled with its message passing implementation, makes it
well-suited for incorporation as a subroutine within a larger
message passing algorithm. In the MMV problem it is clear
that p(z) # ] p('rg)) due to the joint sparsity and am-
plitude correlation structure, and therefore AMP does not
appear to be directly applicable. Fortunately, by modeling
this structure through the hidden variables s and 6, we can
exploit the conditional independence of the signal coefficients:
p(z|s5,0) = Hp(ig) | $n, 05?). In particular, we replace the
p(,ngf) ) that AMP traditionally expects with » f(,,>ﬂx<,,>(~),
the most recent message moving into the (within')nse ment of
Fig. 2. This message represents a “local prior” on al ) given
the current belief about the hidden variables s,, and HT(f), and
assumes the Bernoulli-Gaussian form

= (t
i ()= (1) (e

L —(t) —(t)
+alen (:L-SP; 0 b ) (10)
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TABLE II
MESSAGE UPDATE EQUATIONS FOR EXECUTING A SINGLE FORWARD PASS
USING THE SERIAL MESSAGE SCHEDULE

% Define soft-thresholding functions:
OPERON
Fua(#50) £ (1t nu(g3 )~ (Lfitns) o1
o)
Gt (#50) £ (1 7me(950) (3 U7 ) b (5 )97 D)
F;LL(¢; C) Fﬂf (¢a C) 7an(¢’ C) (D3)
“(f)
LN A (1= 7r +c
Tnt(@;c) = ( 1_(,‘_) )( )
‘—(t) 2 f(t) * “(t) ot 2
_ [nll"+En " ety —clén’ |
X exp ( [ C(’L/IT,E,L) ) ]) (D4)
% Begin passing messages . . .
fort =1,...,T, Vn:
% Execute the (into) phase . .
—*(t )
() _ AnTlgr 24 ™n
T A Ty, Oy an Ty 7)) Db
\()"(1)#;&1. nollyr £y T
P = W (A2)
- R 0)
€0 =9 - (”’L) + 'Zb) *3)
% In|t|aI|ze AMP-rélated vanables
vm: 2z, =y, vn: =0, and c; =100- 3N "
% Execute the (within) phase using AMP . ..
fori=1,...,1,Vn,m:
by = M Ak ik (A%)
oy = Fm(as,wq) (A3)
Vath = Gntldnescy) . (A6)
01+ =0+w2n1§I‘ (A7)
st =y —al it + St SN F (B ch) (A8)
end
#O = pult % Store current estimate of z(*) (A9)
% Execute the (out) phase . .
— ‘—( )

(t) = (1 + (1 4—(L) )'Ynt(¢nu C{Jrl)) (A10)
&, ¢,)) = taylor_approx(7(0), ¢, c!) (ALD)
% Execute the (across) phase from 8{) to !+ . ..

SO\ D Fn
—(t+1) _ _ Kty
=1 a)(w) (_\(L) + :\(—) + o (A12)
— w01
ROHD = (1 — )2 (W) +a2p (A13)
end
TABLE III

PSEUDOCODE FUNCTION FOR COMPUTING A SINGLE-GAUSSIAN
APPROXIMATION OF (12)

function (E E\) = taylor_approx(w, ¢, c)

% Define useful variables:

a2 2(1- Q) (T1)
as Q(?) (T2)
b2 (- Lo (T3)
o, 2 2e2 (1 = Lye{¢} (T4)
0 2 —222(1 — )jm{g}) (T5)
% Compute outputs.

- (u e b+au+a25i’)c

¥ = e2qa2 *b+aa(52+17%c02)+a2 b (T6)
N L= ae—b

€r =br — 3 °_—b+°a’" (T7)
& =i — 2¢_aib+a (T8)
$ = 51‘ +]§z (T9)
return (g, zz;)

This “local prior” determines the AMP soft-thresholding func-
tions defined in (D1)—(D4) of Table II. The derivation of these
thresholding functions closely follows those outlined in [30],
which considered the special case of a zero-mean Bernoulli-
Gaussian prior.
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Beyond the ease with which AMP is included into the larger
message passing algorithm, a second factor that favors using
AMP is the tremendous computational efficiency it imparts on
high-dimensional problems. Using AMP to perform the most
computationally intensive message passes enables AMP-MMV
to attain a linear complexity scaling in all problem dimensions.
To see why this is the case, note that the (into), (out), and
(across) steps can be executed in O(N) flops/timestep, while
AMP allows the (within) step to be executed in O(M N) flops/
timestep (see (A4)—-(AS8) of Table II). Since these four steps
are executed O(T) times per AMP-MMV iteration for both
the serial and parallel message schedules, it follows that AMP-
MMV’s overall complexity is O(TM N).3

A third appealing feature of AMP is that it is theoretically
well-grounded; a recent analysis [40] shows that, for Gaussian
A in the large-system limit (i.e., M, N — oc with M/N fixed),
the behavior of AMP is governed by a state evolution whose
fixed points, when unique, correspond to MMSE-optimal signal
estimates.

After using AMP to implement phase (within), we must pass
messages out of frame # in order to update our beliefs about
the values of s and 8 in the (out) phase. Applying the sum-
product algorithm rules to compute the message v FORVID ()
results in the expression

exact )
Y rD el ('9’(”0 )

(1>

(1 — ‘;it)> C./V'(O, ()bnty Ct)
CN (HSL 7¢ntvct) ’ (11)

which is an improper distribution due to the constant (w.r.t. 97(,,t))
term CN(0; ¢z, ¢ ). This behavior is a consequence of the con-
ditional signal model (4). In particular, when s,, = 0, Tg) pro-
vides no information about the value of Hff) . Roughly speaking,
the term CA(0; ¢,.1, c¢) corresponds to the distribution of ot
conditioned on the case s,, = 0.

As a means of circumventing the improper message pdf
above, we will regard our original signal model, in which
sn € {0,1}, as the limiting case of a signal model in which
sn, € {g,1} withe — 0. For any fixed, positive ¢, V() p(t) ()
is given by the proper pdf

mod

RN (9,§f ))

= (1 - ( I ))> CN (()SLt)* gbnta i2(375)
&

L0 ( “) CN (80 s cr) (12)
where
2
A ETT
e (13)

3The primary computational burden of executing AMP-MMYV involves per-
forming matrix-vector products with A and AH, allowing it to be easily ap-
plied in problems where the measurement matrix is never stored explicitly, but
rather is implemented implicitly through subroutines. Fast implicit A operators
can provide significant computational savings in high-dimensional problems;
implementing a Fourier transform as a fast Fourier transform (FFT) subrou-
tine, for example, would drop AMP-MMV’s complexity from O(TMN) to
O(TNlog, N).
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Equation (12) is a binary Gaussian mixture density. When ¢ <
1, the first Gaussian component is extremely broad, and conveys
little information about the possible value of 9,(5). The second
component is a more informative Gaussian whose mean, ¢,,¢,
and variance, ¢;, are determined by the product of the mes-
sages {v o _ o (- Y}M_ . The relative mass assigned to each
Gaussian component is a function of the incoming activity prob-

-~ (t
ability w;) (see (10)). Note that the limiting case of {2(-) is a
simple indicator function:

. _J0 o< w <,

lim () = { 1 ifr=1. (19

When implementing AMP-MMYV, we therefore fix ¢ at a
small positive value, e.g., e = 1 x 1077, If desired, (12) could
then be used as the outgoing message, however this would
present a further difficulty. Propagating a Gaussian mixture
along a given edge would result in an exponential growth
in the number of mixture components that would need to be
propagated along subsequent edges. To avoid this outcome,
we collapse our binary Gaussian mixture to a single Gaussian
component, an approach sometimes referred to as Gaussian
sum approximation [41], [42]. Since, for ¢ <« 1, () be-
haves nearly like the indicator function in (14), one of the two
Gaussian components will typically have negligible mass. For
this reason, collapsing the mixture to a single Gaussian appears
justifiable.

To carry out the collapsing, we perform a second-order Taylor
series approximation of — log 1/}‘;‘,3(;6(,,) (fo)) with respect to

—(t
93) ab01(1t)the point ¢,,;.# This provides the mean, & v
. (t
ance, v, , of the single Gaussian that serves as fo;ue;'v( -).
(See Fig. 2.) In Appendix A we summarize the Taylor approxi-
mation procedure, and in Table Il provide tl(lg pseudo(%)de func-
tion, taylor approx, for computing £, and ¢, .

With the exception of the messages discussed above, all the
remaining messages can be derived using the standard sum-
product algorithm rules [32]. For convenience, we summarize
the results in Table II, where we provide a pseudocode imple-
mentation of a single forward pass of AMP-MMYV using the se-
rial message schedule.

and vari-

n oo

V. ESTIMATING THE MODEL PARAMETERS

The signal model of Section II depends on the sparsity pa-
rameters {\,, }2_,, amplitude parameters ¢, c, and p, and noise
variance o2. While some of these parameters may be known
accurately from prior information, it is likely that many will re-
quire tuning. To this end, we develop an expectation-maximiza-
tion (EM) algorithm that couples with the message passing pro-
cedure described in Section IV.A to provide a means of learning
all of the model parameters while simultaneously estimating the
signal Z and its support s.

The EM algorithm [43] is an appealing choice for performing
parameter estimation for two primary reasons. First and fore-
most, the EM algorithm is a well-studied and principled means

4For technical reasons, the Taylor series approximation is performed in R>
instead of C.

of parameter estimation. At every EM iteration, the data likeli-
hood function is guaranteed to increase until convergence to a
local maximum of the likelihood function occurs [43]. For mul-
timodal likelihood functions, local maxima will, in general, not
coincide with the global maximum likelihood (ML) estimator,
however a judicious initialization can help in ensuring the EM
algorithm reaches the global maximum [44]. Second, the expec-
tation step of the EM algorithm relies on quantities that have al-
ready been computed in the process of executing AMP-MMV.
Ordinarily, this step constitutes the major computational burden
of any EM algorithm, thus the fact that we can perform it essen-
tially for free makes our EM procedure highly efficient.

We let T' £ {\ (. a, p, 02} denote the set of all model pa-
rameters, and let I'* denote the set of parameter estimates at the
kth EM iteration. Here we have assumed that the binary support
indicator variables share a common activity probability, A, i.c.,
Pr{s, = 1} = AVn. For all parameters except o2 we use s and
0 as the so-called “missing” data of the EM algorithm, while for
o2 we use .

For the first iteration of AMP-MMYV, the model parameters
are initialized based on either prior signal knowledge, or ac-
cording to some heuristic criteria. Using these parameter values,
AMP-MMYV performs either a single iteration of the parallel
message schedule, or a single forward/backward pass of the se-
rial message schedule, as described in Section IV.A. Upon com-
pleting this first iteration, approximate marginal posterior distri-
butions are available for each of the underlying random vari-
ables, e.g., p(:z:&t) |9), p(sn |¥), and p(HS> | 7). Additionally,
belief propagation can provide pairwise joint posterior distribu-
tions, e.g., p(ﬁg), it | ), for any variable nodes connected
by a common factor node [45]. With these marginal, and pair-
wise joint, posterior distributions, it is possible to perform the
iterative expectation and maximization steps required to maxi-
mize p(g | ') in closed-form. We adopt a Gauss-Seidel scheme,
performing coordinate-wise maximization, e.g.,

AR = argmax E_ 2y [logp (. s.0; A TR {/\k}) | 7, Fk] ,
A ki -

where £ is the iteration index common to both AMP-MMYV and
the EM algorithm.

In Table IV we provide the EM parameter update equations
for our signal model. In practice, we found that the robustness
and convergence behavior of our EM procedure were improved
if we were selective about which parameters we updated on a
given iteration. For example, the parameters « and p are tightly
coupled to one another, since Var{HSf) |€£Lt71)} = o?p. Con-
sequently, if the initial choices of « and p are too small, it is
possible that the EM procedure will overcompensate on the first
iteration by producing revised estimates of both parameters that
are too large. This leads to an oscillatory behavior in the EM
updates that can be effectively combated by avoiding updating
both & and p on the same iteration.

VI. NUMERICAL STUDY

In this section we describe the results of an extensive numer-
ical study that was conducted to explore the performance char-
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TABLE 1V
EM ALGORITHM UPDATE EQUATIONS FOR THE SIGNAL
MODEL PARAMETERS OF SECTION II

% Define key quantities obtained from AMP-MMV at iteration &:
L An TTE =)
E[sn|7] = T = 1
[sn|¥] T =0 4 (1 M)ntzl(l_,,;o) 1 Qn
8 £ var{6 g} = (ﬁ + =y + ~<+>> Q)
OO
A 2 B0 |y = - (Z?t) + T 40 ) @3
o) 2var{z{?|g} % See (AB) of Table Il
i & 2 B[z |7] % See (A5) of Table II
% EM update equations:
A= & S Elsalgl (E1)
k+1 _ N(T 1) - ~(1)
C - ( p + (02)k) ((62)k Zn 1 My
RIS D ak-pk (B — 1 —a™al 1))) (E2)
oM = ol (b — V/BZF8N(T = 1):) (E3)
where
S, TN Re{BI0 00V 9]}
_me{(“(f) ~(f 1))* k} (f 1) _ |M(f 1)2
¢ 2 k DIFIPS DE Z(f) +1aP)? +v(' REN b
—2iﬁe{E[0(t)*0(L 1>|y]}
P = Ry S T 0 £ 0P
+@M)?[¢H|? —2(1 — a*)Re{E[0,0 05~ |51}
—Qak%e{u“)*C }+ 2a" (1 — ak)i}ie{u“ Dx ek }
+(1 =) @Y + 1AV (E4)
o2 BHL = 1 (Ef:l ly® — Ap®|2 + 1'11\}1,(1‘/)) (E5)

acteristics and tradeoffs of AMP-MMV. MATLAB code’ was
written to implement both the parallel and serial message sched-
ules of Section IV.A, along with the EM parameter estimation
procedure of Section V.

For comparison to AMP-MMYV, we tested two other Bayesian
algorithms for the MMV problem, MSBL [15] and T-MSBL®
[18], which have been shown to offer “best in class” perfor-
mance on the MMV problem. We also included a recently
proposed greedy algorithm designed specifically for highly cor-
related signals, subspace-augmented MUSIC7 (SA-MUSIC),
which has been shown to outperform MMV basis pursuit and
several correlation-agnostic greedy methods [14]. Finally,
we implemented the support-aware Kalman smoother (SKS),
which, as noted in Section III, provides a lower bound on the
achievable MSE of any algorithm. To implement the SKS, we
took advantage of the fact that , Z, and @ are jointly Gaussian
when conditioned on the support, s, and thus Fig. 1 becomes
a Gaussian graphical model. Consequently, the sum-product
algorithm yields closed-form expressions (i.e., no approxi-
mations are required) for each of the messages traversing the
graph. Therefore, it is possible to obtain the desired posterior
means (i.e., MMSE estimates of ) despite the fact that the
graph is loopy ([46, Claim 5]).

In all of our experiments, performance was analyzed on syn-
thetically generated datasets, and averaged over 250 indepen-
dent trials. Since MSBL and T-MSBL were derived for real-
valued signals, we used a real-valued equivalent of the signal
model described in Section II, and ran a real-valued version
of AMP-MMV. Our data generation procedure closely mirrors

5Code available at ece.osu.edu/~schniter/turboAMPmmyv.
6Code available at dsp.ucsd.edu/~zhilin/Software.html.

"Code obtained through personal correspondence with authors.
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the one used to characterize T-MSBL in [18]. Unless otherwise
stated, the measurement matrices were i.i.d. Gaussian random
matrices with unit-norm columns, 77 = 4 measurement vectors
were generated, the stationary variance of the amplitude process
was setat 02 = %2 = 1, and the noise variance o2 was set to
yield an SNR of 25 dB.

Three performance metrics were considered throughout our
tests. The first metric, which we refer to as the time-averaged
normalized MSE (TNMSE), is deﬁned as

2 24 — &3
TNMSE(z, z) £ Z TR

where (" is an estimate of z(®. The second metric, intended
to gauge the accuracy of the recovered support, is the normal-
ized support error rate (NSER), which is defined as the number
of indices in which the true and estimated support differ, nor-
malized by the cardinality of the true support S. The third and
final metric is runtime, which is an important metric given the
prevalence of high-dimensional datasets.

The algorithms were configured and executed as follows: to
obtain support estimates for MSBL, T-MSBL, and AMP-MMYV,
we adopted the technique utilized in [18] of identifying the K
amplitude trajectories with the largest /2 norms as the support
set, where K = |S|. Note that this is an optimistic means
of identifying the support, as it assumes that an oracle pro-
vides the true value of K. For this reason, we implemented an
additional non-oracle-aided support estimate for AMP-MMV
that consisted of those indices n for which p(s,, |g) > 3. In
all simulations, AMP-MMYV was given imperfect knowledge
of the signal model parameters, and refined the initial param-
eter choices according to the EM update procedure given in
Table IV. In particular, the noise variance was initialized at
2 = 1 x 102, The remaining parameters were initialized
agnostically using simple heuristics that made use of sample
statistics derived from the available measurements, ¥. Equa-
tion (A9) of Table II was used to produce s , which corre-
sponds to an MMSE estlmate of ¥ under AMP MMV’s es-
timated posteriors ]J(Tn | 7). In the course of running simula-
tions, we monitored the residual energy, Zle ||y<t) — Az 112,
and would automatically switch the schedule, e.g., from par-
allel to serial, and/or change the maximum number of iterations
whenever the residual energy exceeded a noise variance-depen-
dent threshold. The SKS was given perfect parameter and sup-
port knowledge and was run until convergence. Both MSBL and
T-MSBL were tuned in a manner recommended by the codes’
authors. SA-MUSIC was given the true value of K, and upon
generating an estimate of the support, S, a conditional MMSE
signal estimate was produced, e.g., £ = E[z() | S, y®)].

A. Performance Versus Sparsity, M| K

As a first experiment, we studied how performance changes
as a function of the measurements-to-active-coefficients ratio,
M/K . For this experiment, N = 5000, M = 1563, and T = 4.
The activity probability, A, was swept over the range [0.096,
0.22], implying that the ratio of measurements-to-active-coeffi-
cients, M /K, ranged from 1.42 to 3.26.

In Fig. 3, we plot the performance when the temporal cor-
relation of the amplitudes is 1 — « = 0.90. For AMP-MMYV,
two traces appear on the NSER plot, with the () marker
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Fig. 3. A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL,
SA-MUSIC, AMP-MMYV, and the SKS versus 44/R". Correlation coefficient
1 —a = 0.90.

corresponding to the K -largest-trajectory-norm method of
support estimation, and the A marker corresponding to the

support estimate obtained from the posteriors p(s, | 7). We
see that, when M /K > 2, the TNMSE performance of both
AMP-MMYV and T-MSBL is almost identical to that of the
oracle-aided SKS. However, when M/K < 2, every algo-
rithm’s support estimation performance (NSER) degrades, and
the TNMSE consequently grows. Indeed, when M /K < 1.50,
all of the algorithms perform poorly compared to the SKS,
although T-MSBL performs the best of the four. We also note
the superior NSER performance of AMP-MMYV over much of
the range, even when using p(s,, | %) to estimate S (and thus
not requiring apriori knowledge of K'). From the runtime plot
we see the tremendous efficiency of AMP-MMYV. Over the
region in which AMP-MMV is performing well (and thus not
cycling through multiple configurations in vain), we see that
AMP-MMV’s runtime is more than one order-of-magnitude
faster than SA-MUSIC, and two orders-of-magnitude faster
than either T-MSBL or MSBL.

In Fig. 4 we repeat the same experiment, but with increased
amplitude correlation 1 — « = 0.99. In this case we see that
AMP-MMYV and T-MSBL still offer a TNMSE performance
that is comparable to the SKS when M/K > 2.50, whereas
the performance of both MSBL and SA-MUSIC has degraded
across-the-board. When M /K < 2.5, the NSER and TNMSE
performance of AMP-MMYV and T-MSBL decay sharply, and
all the methods considered perform poorly compared to the
SKS. Our finding that performance is adversely affected by
increased temporal correlation is consistent with the theoretical
and empirical findings of [8], [14], [15], [18]. Interestingly,
the performance of the SKS shows a modest improvement
compared to Fig. 3, reflecting the fact that the slower temporal
variations of the amplitudes are easier to track when the support
is known.

B. Performance Versus T’

In a second experiment, we studied how performance is af-
fected by the number of measurement vectors, 7', used in the
reconstruction. For this experiment, we used N = 5000, M =
N/5,and A = 0.10 (M/K = 2). Fig. 5 shows the performance
with a correlation of 1 — a = 0.90. Comparing to Fig. 3, we see
that MSBL’s performance is strongly impacted by the reduced
value of M. AMP-MMV and T-MSBL perform more-or-less
equivalently across the range of T', although AMP-MMYV does
so with an order-of-magnitude reduction in complexity. It is
interesting to observe that, in this problem regime, the SKS
TNMSE bound is insensitive to the number of measurement
vectors acquired.

C. Performance Versus SNR

To understand how AMP-MMYV performs in low SNR envi-
ronments, we conducted a test in which SNR was swept from 5
dB to 25 dB.8 The problem dimensions were fixed at N = 5000,
M = N/5,and T = 4. The sparsity rate, A, was chosen to yield
M/K = 3 measurements-per-active-coefficient, and the corre-
lation was set at 1 — o« = 0.95.

8In lower SNR regimes, learning rules for the noise variance are known to
become less reliable [15], [18]. Still, for high-dimensional problems, a sub-op-
timal learning rule may be preferable to a computationally costly cross-vali-
dation procedure. For this reason, we ran all three Bayesian algorithms with a
learning rule for the noise variance enabled.
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Our findings are presented in Fig. 6. Both T-MSBL and
MSBL operate within 5-10 dB of the SKS in TNMSE across
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Fig. 5. Aplot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL,
SA-MUSIC, AMP-MMYV, and the SKS versus 1'. Correlation coefficient 1 —
o = 0.90.

the range of SNRs, while AMP-MMYV operates ~ 5 dB from
the SKS when the SNR is at or below 10 dB, and approaches
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the SKS in performance as the SNR elevates. We also note that
using AMP-MMV’s posteriors on s,, to estimate the support
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does not appear to perform much worse than the K -largest-tra-
jectory-norm method for high SNRs, and shows a slight
advantage at low SNRs. The increase in runtime exhibited by
AMP-MMYV in this experiment is a consequence of our deci-
sion to configure AMP-MMYV identically for all experiments;
our initialization of the noise variance, 02, was more than an
order-of-magnitude off over the majority of the SNR range,
and thus AMP-MMYV cycled through many different schedules
in an effort to obtain an (unrealistic) residual energy. Runtime
could be drastically improved in this experiment by using a
more appropriate initialization of o2.

D. Performance Versus Undersampling Rate, N /M

As mentioned in Section I, one of the principal aims of CS is
to reduce the number of measurements that must be acquired
while still obtaining a good solution. In the MMV problem,
dramatic reductions in the sampling rate are possible. To illus-
trate this, in Fig. 7 we present the results of an experiment in
which the undersampling factor, N/M, was varied from 5 to
25 unknowns-per-measurement. Specifically, V was fixed at
5000, while M was varied. A was likewise adjusted in order to
keep M/K fixed at 3 measurements-per-active-coefficient. In
Fig. 7, we see that MSBL quickly departs from the SKS perfor-
mance bound, whereas AMP-MMYV, T-MSBL, and SA-MUSIC
are able to remain close to the bound when N/M < 20. At
N/M = 25, both AMP-MMYV and SA-MUSIC have diverged
from the bound, and, while still offering an impressive TNMSE,
they are outperformed by T-MSBL. In conducting this test, we
observed that AMP-MMV’s performance is strongly tied to the
number of smoothing iterations performed. Whereas for other
tests, 5 smoothing iterations were often sufficient, in scenarios
with a high degree of undersampling, (e.g., N/M > 15),
50-100 smoothing iterations were often required to obtain
good signal estimates. This suggests that messages must be
exchanged between neighboring timesteps over many iterations
in order to arrive at consensus in severely underdetermined
problems.

E. Performance Versus Signal Dimension, N

As we have indicated throughout this paper, a key consider-
ation of our method was ensuring that it would be suitable for
high-dimensional problems. Our complexity analysis indicated
that a single iteration of AMP-MMYV could be completed in
O(TN M) flops. This linear scaling of the complexity with re-
spect to problem dimensions gives encouragement that our algo-
rithm should efficiently handle large problems, but if the number
of iterations required to obtain a solution grows too rapidly with
problem size, our technique would be of limited practical utility.
To ensure that this was not the case, we performed an experi-
ment in which the signal dimension, N, was swept logarithmi-
cally over the range [100, 10000]. M was scaled proportionally
such that N/M = 3. The sparsity rate was fixed at A = 0.15 so
that M/K = 2, and the correlation was setat 1 — o = 0.95.

The results of this experiment are provided in Fig. 8. Several
features of these plots are of interest. First, we observe that
the performance of every algorithm improves noticeably as
problem dimensions grow from N = 100 to N = 1000, with
AMP-MMYV and T-MSBL converging in TNMSE performance
to the SKS bound. The second observation that we point out is
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Timestep—-Averaged Normalized MSE (TNMSE) [dB]

Normalized Support Error Rate (NSER)

Runtime [s]

Fig. 7. A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL,
SA-MUSIC, AMP-MMYV, and the SKS versus undersampling rate, N/A . Cor-
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that AMP-MMYV works extremely quickly. Indeed, a problem
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Fig. 8. A plot of the TNMSE (in dB), NSER, and runtime of T-MSBL, MSBL,
SA-MUSIC, AMP-MMYV, and the SKS versus signal dimension, 2V . Correlation
coefficient 1 — «v = 0.93.

just under 30 seconds. Finally, we note that at small problem
dimensions, AMP-MMYV is not as quick as either MSBL or
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SA-MUSIC, however AMP-MMYV scales with increasing
problem dimensions more favorably than the other methods;
at N = 10000 we note that AMP-MMYV runs at least two
orders-of-magnitude faster than the other techniques.

F. Performance With Time-Varying Measurement Matrices

In all of the previous experiments, we considered the stan-
dard MMV problem (1), in which all of the measurement vec-
tors were acquired using a single, common measurement ma-
trix. While this setup is appropriate for many tasks, there are a
number of practical applications in which a joint-sparse signal
is measured through distinct measurement matrices.

To better understand what, if any, gains can be obtained
from diversity in the measurement matrices, we designed
an experiment that explored how performance is affected by
the rate-of-change of the measurement matrix over time. For
simplicity, we considered a first-order Gauss-Markov random
process to describe how a given measurement matrix changed
over time. Specifically, we started with a matrix whose columns
were drawn i.i.d. Gaussian as in previous experiments, which
was then used as the measurement matrix to collect the mea-
surements at timestep { = 1. At subsequent timesteps, the
matrix evolved according to

AD = (1 - PHATY 4 U, (15)
where U was a matrix whose elements were drawn i.i.d.
Gaussian, with a variance chosen such that the column norm of
A® would (in expectation) equal one.

In the test, J was swept over a range, providing a quantitative
measure of the rate-of-change of the measurement matrix over
time. Clearly, 7 = 0 would correspond to the standard MMV
problem, while 5 = 1 would represent a collection of statisti-
cally independent measurement matrices.

In Fig. 9 we show the performance when N = 5000, N/M =
30, M/K = 2, and the correlation is 1 — & = 0.99. For the
standard MMV problem, this configuration is effectively impos-
sible. Indeed, for 3 < 0.03, we see that AMP-MMYV is entirely
failing at recovering the signal. However, once 3 ~ (1.08, we
see that the NSER has dropped dramatically, as has the TNMSE.
Once 5 > 0.10, AMP-MMYV is performing almost to the level
of the noise. As this experiment should hopefully convince the
reader, even modest amounts of diversity in the measurement
process can enable accurate reconstruction in operating envi-
ronments that are otherwise impossible.

VII. CONCLUSION

In this work we introduced AMP-MMYV, a Bayesian mes-
sage passing algorithm for solving the MMV problem (1)
when temporal correlation is present in the amplitudes of the
non-zero signal coefficients. Our algorithm, which leverages
Donoho, Maleki, and Montanari’s AMP framework [25], per-
forms rapid inference on high-dimensional MMV datasets. In
order to establish a reference point for the quality of solutions
obtained by AMP-MMYV, we described and implemented the
oracle-aided support-aware Kalman smoother (SKS). In nu-
merical experiments, we found a range of problems over which
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Fig. 9. A plot of the TNMSE (in dB), NSER, and runtime of AMP-MMYV and
the SKS versus rate-of-change of the measurement matrix, 3. Correlation coef-
ficient 1 — o = 0.99.

AMP-MMV performed nearly as well as the SKS, despite
the fact that AMP-MMV was given crude hyperparameter
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initializations that were refined from the data using an ex-
pectation-maximization algorithm. In comparing against two
alternative Bayesian techniques, and one greedy technique, we
found that AMP-MMYV offers an unrivaled performance-com-
plexity tradeoff, particular in high-dimensional settings. We
also demonstrated that substantial gains can be obtained in the
MMV problem by incorporating diversity into the measurement
process. Such diversity is particularly important in settings
where the temporal correlation between coefficient amplitudes
is substantial.

APPENDIX

In this Appendix we summarize the procedure used to col-
lapse the binary Gaussian mixture of (12) to a single Gaussian.
For simplicity, we drop the n and (¢) sub- and superscripts.

Let 6, = Re{f}, let §; = Tm{#}, and let ¢, and ¢; be
defined similarly. Define

(1>

§(0,,85) £ VP40, + 363),

=(1-Q(7))CN (& + j6;; éqﬁ, Eizc)
+ Q(7) CN(0, + i b, )
f(8,,6:) & —log §(6,..6;).

Our objective is to approximate f (0, 8;) using a two-dimen-
sional second-order Taylor series expansion, f(6,, 6;), about the
point ¢:

F(Brs00) = T ) + (B = ) o4 (81— )
1 o2f 02 f
t3 G ¢)7’)2W (0, — ¢r)(0s — @i )89 08,
o2 f
+(6; — ¢i)2a—‘9§ ,

with all partial derivatives evaluated at ¢. It can be shown that,
for Taylor serles expansions about the point ¢, 5z~ gg = O(e?)
and |c)9- — 24| = O(c?). Since ¢ < 1, it is reasonable to

therefore adopt a further approximation and assume og);é{ei =0

and % = . With this approximation, note that

2
z

oxp(— f(Br.8:)) o< CN'(B, + 855 €. 1),

with
= A 02]?71
P = ZW , (16)
PR TR ) (17)

2\ 90, 09

The pseudocode function, taylor approx, that computes

mod

(16),(17) given the parameters of v7°%(-) is provided in
Table III.
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