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Abstract—When recovering a sparse signal from noisy compres-
sive linear measurements, the distribution of the signal’s non-zero
coefficients can have a profound effect on recovery mean-squared
error (MSE). If this distribution was a priori known, then one
could use computationally efficient approximate message passing
(AMP) techniques for nearly minimum MSE (MMSE) recovery.
In practice, however, the distribution is unknown, motivating
the use of robust algorithms like LASSO—which is nearly
minimax optimal—at the cost of significantly larger MSE for
non-least-favorable distributions. As an alternative, we propose
an empirical-Bayesian technique that simultaneously learns the
signal distribution while MMSE-recovering the signal—according
to the learned distribution—using AMP. In particular, we model
the non-zero distribution as a Gaussian mixture and learn its
parameters through expectation maximization, using AMP to
implement the expectation step. Numerical experiments on a wide
range of signal classes confirm the state-of-the-art performance
of our approach, in both reconstruction error and runtime, in the
high-dimensional regime, for most (but not all) sensing operators.

Index Terms—Compressed sensing, belief propagation, expecta-
tion maximization algorithms, Gaussian mixture model.

I. INTRODUCTION

W E consider estimating a -sparse (or compressible)
signal from linear measurements

, where is known and is additive white
Gaussian noise (AWGN). For this problem, accurate (relative
to the noise variance) signal recovery is known to be possible
with polynomial-complexity algorithms when is sufficiently
sparse and when satisfies certain restricted isometry proper-
ties [4], or when is large with i.i.d. zero-mean sub-Gaussian
entries [5] as discussed below.
LASSO [6] (or, equivalently, Basis Pursuit Denoising [7]), is

a well-known approach to the sparse-signal recovery problem
that solves the convex problem

(1)

Manuscript received July 12, 2012; revised January 29, 2013 and June 14,
2013; accepted June 19, 2013. Date of publication July 10, 2013; date of cur-
rent version August 28, 2013. The associate editor coordinating the review of
this manuscript and approving it for publication was Prof. Namrata Vaswani.
This work was supported in part by NSF-I/UCRC Grant IIP-0968910, by NSF
Grant CCF-1018368, and by DARPA/ONR Grant N66001-10-1-4090. Portions
of this work were presented at the Duke Workshop on Sensing and Analysis
of High-Dimensional Data, July 2011 [1]; the Asilomar Conference on Signals,
Systems, and Computers, November 2011 [2]; and the Conference on Informa-
tion Science and Systems, March 2012 [3].
The authors are with the Department of Electrical and Computer Engineering,

TheOhio State University, Columbus, OH 43210USA (e-mail: vila.2@osu.edu;
schniter@ece.osu.edu).
Digital Object Identifier 10.1109/TSP.2013.2272287

with a tuning parameter that trades between the spar-
sity and measurement-fidelity of the solution. When is
constructed from i.i.d. zero-mean sub-Gaussian entries, the
performance of LASSO can be sharply characterized in the
large system limit (i.e., as with fixed undersam-
pling ratio and sparsity ratio ) using the so-called
phase transition curve (PTC) [5], [8]. When the observations
are noiseless, the PTC bisects the -versus- plane
into the region where LASSO reconstructs the signal perfectly
(with high probability) and the region where it does not.
(See Figs. 3–5.) When the observations are noisy, the same
PTC bisects the plane into the regions where LASSO’s noise
sensitivity (i.e., the ratio of estimation-error power to measure-
ment-noise power under the worst-case signal distribution) is
either finite or infinite [9]. An important fact about LASSO’s
noiseless PTC is that it is invariant to the distribution of the
nonzero signal coefficients. In other words, if the vector is
drawn i.i.d. from the pdf

(2)

where is the Dirac delta, is the active-coefficient
pdf (with zero probability mass at ), and ,
then the LASSO PTC is invariant to . While this implies
that LASSO is robust to “difficult” instances of , it also
implies that LASSO cannot benefit from the case that is
an “easy” distribution. For example, when the signal is known
apriori to be nonnegative, polynomial-complexity algorithms
exist with PTCs that are better than LASSO’s [10].
At the other end of the spectrum is minimum mean-squared

error (MMSE)-optimal signal recovery under known marginal
pdfs of the form (2) and known noise variance. The PTC of
MMSE recovery has been recently characterized [11] and
shown to be well above that of LASSO. In particular, for any

, the PTC on the -versus- plane reduces to
the line in both the noiseless and noisy cases. More-
over, efficient algorithms for approximate MMSE-recovery
have been proposed, such as the Bayesian version of Donoho,
Maleki, and Montanari’s approximate message passing (AMP)
algorithm from [12], which performs loopy belief-propagation
on the underlying factor graph using central-limit-theorem
approximations that become exact in the large-system limit
under i.i.d. zero-mean sub-Gaussian . In fact, in this regime,
AMP obeys [13] a state-evolution whose fixed points, when
unique, are optimal. To handle arbitrary noise distributions and
a wider class of matrices , Rangan proposed a generalized
AMP (GAMP) [14] that forms the starting point of this work.
(See Table I.) For more details and background on GAMP, we
refer the reader to [14].

1053-587X © 2013 IEEE
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TABLE I
THE GAMP ALGORITHM FROM [14] WITH A STOPPING CONDITION IN (R10)

THAT USES THE NORMALIZED TOLERANCE PARAMETER

In practice, one ideally wants a recovery algorithm that does
not need to know and the noise variance a priori, yet of-
fers performance on par withMMSE recovery, which (by defini-
tion) requires knowing these prior statistics. Towards this goal,
we propose a recovery scheme that aims to learn the prior signal
distribution , as well as the variance of the AWGN, while
simultaneously recovering the signal vector from the noisy
compressed measurements . To do so, we model the active
component in (2) using a generic -term Gaussian mix-
ture (GM) and then learn the GM parameters and noise variance
using the expectation-maximization (EM) algorithm [15]. As
we will see, all of the quantities needed for the EM updates are
already computed by the GAMP algorithm, making the overall
process very computationally efficient. Moreover, GAMP pro-
vides approximatelyMMSE estimates of that suffice for signal
recovery, as well as posterior activity probabilities that suffice
for support recovery.
Since, in our approach, the prior pdf parameters are treated

as deterministic unknowns, our proposed EM-GM-AMP algo-
rithm can be classified as an “empirical-Bayesian” approach
[16]. Compared with previously proposed empirical-Bayesian
approaches to compressive sensing (e.g., [17]–[19]), ours has a
more flexible signal model, and thus is able to better match a
wide range of signal pdfs , as we demonstrate through a
detailed numerical study. In addition, the complexity scaling of
our algorithm is superior to that in [17]–[19], implying lower
complexity in the high dimensional regime, as we confirm nu-
merically. Supplemental experiments demonstrate that our ex-
cellent results hold for a wide range of sensing operators ,
with some exceptions. Although this paper does not contain
any convergence guarantees or a rigorous analysis/justification
of the proposed EM-GM-AMP, Kamilov et al. showed (after
the submission of this work) in [20] that a generalization of

EM-GM-AMP yields asymptotically (i.e., in the large system
limit) consistent parameter estimates when is i.i.d. zero-mean
Gaussian, when the parameterized signal and noise distributions
match the true signal and noise distributions, and when those
distributions satisfy certain identifiability conditions. We refer
interested readers to [20] for more details.
Notation: For matrices, we use boldface capital letters like
, and we use and to denote the trace and Frobe-
nius norm, respectively. Moreover, we use , and
to denote transpose, conjugate, and conjugate transpose, respec-
tively. For vectors, we use boldface small letters like , and we
use to denote the norm, with rep-
resenting the th element of . For a Gaussian random vector
with mean and covariance matrix , we denote the pdf by

, and for its circular complex Gaussian counterpart,
we use . Finally, we use , and to
denote the expectation operation, the Dirac delta, the real field,
and the complex field, respectively.

II. GAUSSIAN-MIXTURE GAMP

We first introduce Gaussian-mixture (GM) GAMP, a key
component of our overall approach, where the coefficients in

are assumed to be i.i.d. with marginal pdf

(3)

where is the Dirac delta, is the sparsity rate, and, for the
th GM component, , and are the weight, mean, and
variance, respectively. In the sequel, we use
and similar definitions for and . By definition, .
The noise is assumed to be i.i.d. Gaussian,
with mean zero and variance , i.e.,

(4)

and independent of . Although above and in the sequel we
assume real-valued quantities, all expressions in the sequel can
be converted to the circular-complex case by replacing with

and removing the ’s from (25), (44), and (58). We note
that, from the perspective of GM-GAMP, the prior parameters

and the number of mixture components, ,
are treated as fixed and known.
GAMP models the relationship between the th observed

output and the corresponding noiseless output ,
where denotes the th row of , using the conditional pdf

. It then approximates the true marginal poste-
rior by

(5)

using quantities and that change with iteration (see
Table I), although here we suppress the notation for brevity.
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Under the AWGN assumption1 (4) we have
, and thus the pdf (5) has moments [14]

(6)

(7)

GAMP then approximates the truemarginal posterior
by

(8)

where again and vary with the GAMP iteration .
Plugging the sparse GM prior (3) into (8) and simplifying,

one can obtain2 the GM-GAMP approximated posterior

(9)

(10)

with normalization factor

(11)

(12)

and -dependent quantities

(13)

(14)

(15)

(16)

(17)

1Because GAMP can handle an arbitrary , the extension of
EM-GM-AMP to additive non-Gaussian noise, and even non-additive mea-
surement channels (such as with quantized outputs [21] or logistic regression
[14]), is straightforward. Moreover, the parameters of the pdf could
be learned using a method similar to that which we propose for learning the
AWGN variance , as will be evident from the derivation in Section III.A.
Finally, one could even model as a Gaussian mixture and learn the
corresponding parameters.
2Both (10) and (12) can be derived from (9) via the Gaussian-pdf multipli-

cation rule:
.

The posterior mean and variance of are given in steps
(R9)–(R10) of Table I, and (10) makes it clear that is
GM-GAMP’s approximation of the posterior support proba-
bility .
In principle, one could specify GAMP for an arbitrary signal

prior . However, if the integrals in (R9)–(R10) are not
computable in closed form (e.g., when is Student’s-t),
then they would need to be computed numerically, thereby dras-
tically increasing the computational complexity of GAMP. In
contrast, for GM signal models, we see above that all steps can
be computed in closed form. Thus, a practical approach to the
use of GAMP with an intractable signal prior is to ap-
proximate using an -term GM, after which all GAMP
steps can be easily implemented. The same approach could also
be used to ease the implementation of intractable output priors

.

III. EM LEARNING OF THE PRIOR PARAMETERS

We now propose an expectation-maximization (EM) algo-
rithm [15] to learn the prior parameters . The
EM algorithm is an iterative technique that increases a lower
bound on the likelihood at each iteration, thus guaran-
teeing that the likelihood converges to a local maximum or at
least a saddle point [22]. In our case, the EM algorithm mani-
fests as follows. Writing, for arbitrary pdf ,

(18)

(19)

(20)

where denotes expectation over
denotes the entropy of pdf , and denotes the
Kullback-Leibler (KL) divergence between and . The
non-negativity of the KL divergence implies that
is a lower bound on , and thus the EM algorithm
iterates over two steps: E) choosing to maximize the lower
bound for fixed , and M) choosing to maximize
the lower bound for fixed . For the E step, since

, the maximizing
pdf would clearly be , i.e., the true
posterior under prior parameters . Then, for the M step, since

, the maximizing
would clearly be .
In our case, because the true posterior is very difficult to

calculate, we instead construct our lower-bound
using the GAMP approximated posteriors, i.e., we set

for defined in (8), re-
sulting in

(21)

where “ ” indicates the use of the GAMP’s posterior approx-
imation. Moreover, since the joint optimization in (21) is dif-
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ficult to perform, we update one component at a time (while
holding the others fixed), which is the well known “incremental”
variant on EM from [23]. In the sequel, we use “ ” to denote
the vector with the element removed (and similar for the
other parameters).

A. EM Update of the Gaussian Noise Variance

We first derive the EM update for the noise variance given
a previous parameter estimate . For this, we write

for a -invariant
constant , so that

(22)

(23)

since . The maximizing value of in (23) is neces-
sarily a value of that zeroes the derivative of the sum, i.e., that
satisfies3

(24)

Because , we can obtain

(25)

which, when plugged into (24), yields the unique solution

(26)

(27)

where the use of and follows from (R3)–(R4) in Table I.

B. EM Updates of the Signal Parameters: BG Case

Suppose that the signal distribution is modeled using
an -term GM, i.e., a Bernoulli-Gaussian (BG) pdf. In this
case, the marginal signal prior in (3) reduces to

(28)

Note that, in the BG case, the mixture weight is, by definition,
unity and does not need to be learned.
We now derive the EM update for given previous param-

eters . Because we can write
for a -invariant constant ,

(29)

3The continuity of both the integrand and its partial derivative with respect
to allow the use of Leibniz’s integral rule to exchange differentiation and
integration.

The maximizing value of in (29) is necessarily a value of
that zeroes the derivative of the sum, i.e., that satisfies4

(30)

For the BG in (28), it is readily seen that

(31)

(32)

Plugging (32) and (9) into (30), it becomes evident that the
neighborhood around the point should be treated differ-
ently than the remainder of . Thus, we define the closed ball

and its complement , and note that,
in the limit , the following is equivalent to (30):

(33)

where the values taken by the integrals are evident from (10).
Finally, the EM update for is the unique value satisfying (33)
as , which is readily shown to be

(34)

Conveniently, the posterior support probabilities are
easily calculated from the GM-GAMP outputs via (15).
Similar to (29), the EM update for can be written as

(35)

The maximizing value of in (35) is again a necessarily a value
of that zeroes the derivative, i.e., that satisfies

(36)

For the BG given in (28),

(37)

(38)

4To justify the exchange of differentiation and integration via Leibniz’s inte-
gral rule here, one could employ the Dirac approximation
for fixed arbitrarily small , after which the integrand and its derivative
w.r.t become continuous. The same comment applies in to all exchanges of
differentiation and integration in the sequel.
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Splitting the domain of integration in (36) into and as
before, and then plugging in (38), we find that the following is
equivalent to (36) in the limit of :

(39)

The unique value of satisfying (39) as is then

(40)

(41)

where defined in (16) are easily computed from the
GM-GAMP outputs. The equality in (41) can be verified by
plugging the GAMP posterior expression (10) into (40).
Similar to (29), the EM update for can be written as

(42)

The maximizing value of in (42) is again necessarily a value
of that zeroes the derivative, i.e., that satisfies

(43)

For the given in (28), it is readily seen that

(44)

Splitting the domain of integration in (43) into and as
before, and then plugging in (44), we find that the following is
equivalent to (43) in the limit of :

(45)

The unique value of satisfying (45) as is then

(46)

Finally, we expand
which gives

(47)

where from (17) are easily computed from the
GAMP outputs. The equality in (47) can be readily verified by
plugging (10) into (46).

C. EM Updates of the Signal Parameters: GM Case
We now generalize the EM updates derived in Section III.B

to the GM prior given in (3) for . As we shall see, it is
not possible to write the exact EM updates in closed-form when

, and so some approximations will be made.
We begin by deriving the EM update for given the previous

parameters . The first two steps are iden-
tical to the steps (29) and (30) presented for the BG case, and
for brevity we do not repeat them here. In the third step, use of
the GM prior (3) yields

(48)

which coincides with the BG expression (32). The remaining
steps also coincide with those in the BG case, and so the final
EM update for , in the case of a GM,5 is given by (34).
We next derive the EM updates for the GM parameters

and . For each , we incrementally update ,
then , and then the entire vector , while holding all other
parameters fixed. The EM updates are thus

(49)

(50)

(51)

Following (36), the maximizing value of in (49) is again
necessarily a value of that zeros the derivative, i.e.,

(52)

Plugging in the derivative [see (53), shown at the bottom of the
page] and the version of from (9), integrating
(52) separately over and as in (33), and taking , we
find that the portion vanishes, giving the necessary condition

(54)

5The arguments in this section reveal that, under signal priors of the form
, where can be arbitrary, the EM

update for is that given in (34).

(53)
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Since this integral cannot be evaluated in closed form, we apply
the approximation in both the
numerator and denominator, and subsequently exploit the fact
that
from (9) to cancel terms, and so obtain the (approximated) nec-
essary condition

(55)

We then simplify (55) using the Gaussian-pdf multiplication
rule, and set equal to the value of that satisfies (55),
which can be found to be

(56)

Note from (10) that can be interpreted as the probability
that originated from the th mixture component.
For sparse signals , we find that learning theGMmeans

using the above EM procedure yields excellent recovery MSE.
However, for “heavy-tailed” signals (i.e., whose pdfs have tails
that are not exponentially bounded, such as Student’s-t), our ex-
perience indicates that the EM-learned values of tend to
gravitate towards the outliers in , resulting in an over-
fitting of and thus poor reconstruction MSE. For such
heavy-tailed signals, we find that better reconstruction perfor-
mance is obtained by fixing themeans at zero (i.e., ).
Thus, in the remainder of the paper, we consider two modes of
operation: a “sparse” mode where is learned via the above EM
procedure, and a “heavy-tailed” mode that fixes .
Following (52), the maximizing value of in (50) is neces-

sarily a value of that zeroes the derivative, i.e.,

(57)

As for the derivative in the previous expression, we find (58),
shown at the bottom of the page, integrating (57) separately over
and , as in (33), and taking , we find that the

portion vanishes, giving

(59)

Similar to (54), this integral is difficult to evaluate, and so we
again apply the approximation

in the numerator and denominator, after which several terms
cancel, yielding the necessary condition

(60)

To find the value of satisfying (60), we expand
and apply the Gaussian-pdf multi-

plication rule, which gives

(61)

Finally, the value of the positive maximizing (51) under
the pmf constraint can be found by solving the
unconstrained optimization problem , where is
a Lagrange multiplier and

(62)

We start by setting , which yields

(63)

(64)

Like in (54) and (59), the above integral is difficult to evaluate,
and so we approximate , which reduces the previous
equation to

(65)

(58)



4664 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 61, NO. 19, OCTOBER 1, 2013

Multiplying both sides by for , summing over
, employing the fact , and simplifying, we obtain
the equivalent condition

(66)

(67)

Plugging (67) into (65) and multiplying both sides by , the
derivative-zeroing value of is seen to be

(68)

where, if we use on the right of (68), then we obtain

(69)

Although, for the case of GM priors, approximations were
used in the derivation of the EM updates (56), (61), and (69),
it is interesting to note that, in the case of mixture com-
ponents, these approximate EM-GM updates coincide with the
exact EM-BG updates derived in Section III.B. In particular, the
approximate-EM update of the GM parameter in (56) coin-
cides with the exact-EM update of the BG parameter in (41),
the approximate-EM update of the GM parameter in (61) co-
incides with the exact-EM update of the BG parameter in (47),
and the approximate-EM update of the GM parameter in (69)
reduces to the fixed value 1. Thus, one can safely use the GM
updates above in the BG setting without any loss of optimality.

D. EM Initialization

Since the EM algorithmmay converge to a local maximum or
at least a saddle point of the likelihood function, proper initial-
ization of the unknown parameters is essential. Here, we pro-
pose initialization strategies for both the “sparse” and “heavy-
tailed” modes of operation, for a given value of . Regarding
the value of , we prescribe a method to learn it in Section III.F.
However, the fixed choices for “sparse” mode and
for “heavy tailed” mode usually perform well, as shown in

Section IV.
For the “sparse” mode, we set the initial sparsity rate equal

to the theoretical noiseless LASSO PTC, i.e., ,
where [10]

(70)

describes the maximum value of supported by LASSO for a
given , and where and denote the cdf and pdf of
the distribution, respectively. Using the energies
and and an assumed value of , we initialize the noise
and signal variances, respectively, as

(71)

TABLE II
THE EM-GM-AMP ALGORITHM (FIXED- CASE)

where, in the absence of (user provided) knowledge about the
true , we suggest , because in
our experience this value works well over a wide range of true

. Then, we uniformly space the initial GM means over
, and subsequently fit the mixture weights and

variances to the uniform pdf supported on (which
can be done offline using the standard approach to EM-fitting
of GM parameters, e.g., ([24], p. 435)). Finally, we multiply
by and by to ensure that the resulting signal
variance equals .
For the “heavy-tailed”mode, we initialize and as above

and set, for

(72)

E. EM-GM-AMP Summary and Demonstration
The fixed- EM-GM-AMP6 algorithm developed in the

previous sections is summarized in Table II. For EM-BG-AMP
(as previously described in [2]), one would simply run
EM-GM-AMP with .
To demonstrate EM-GM-AMP’s ability to learn the un-

derlying signal distribution, Fig. 1 shows examples of the
GM-modeled signal distributions learned by EM-GM-AMP
in both “sparse” and “heavy-tailed” modes. To create the
figure, we first constructed the true signal vector
using independent draws of the true distribution

shown in each of the subplots. Then, we constructed
measurements by drawing with
i.i.d. elements and with i.i.d.
elements, with and chosen to achieve
dB. Finally, we ran EM-GM-AMP according to Table II, and
plotted the GM approximation from (3) using the
learned pdf parameters . Fig. 1 confirms
that EM-GM-AMP is successful in learning a reasonable
approximation of the unknown true pdf from the noisy

6Matlab code at http://www.ece.osu.edu/~schniter/EMturboGAMP.
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Fig. 1. True and EM-GM-AMP-learned versions of the signal distribution
. The top subplot shows “sparse” mode

EM-GM-AMP run using GM-order on a sparse signal whose non-zero
components were generated according to a triangular mixture, whereas the
bottom subplot shows “heavy-tailed” EM-GM-AMP run using on a
Student’s-t signal with rate parameter (defined in (82)). The density
of the continuous component is marked on the left axis, while the
mass of the discrete component is marked on the right axis.

compressed observations , in both sparse and heavy-tailed
modes.

F. Selection of GM Model Order

We now propose a method to learn the number of GM com-
ponents, , based on standard maximum likelihood (ML)-based
model-order-selection methodology [25], i.e.,

(73)

where is the ML estimate of under the hypothesis and
is a penalty term. For , there are several possibilities,

but we focus on the Bayesian information criterion (BIC) [25]:

(74)

where denotes the number7 of real-valued parameters af-
fected by , and is the sample size (see below).
Because is difficult to evaluate, we work with the

lower bound (where for now , and are arbitrary)

(75)

(76)

(77)

(78)

7In our case, the parameters affected by are the GM means, variances, and
weights, so that, for real-valued signals, we use in “sparse” mode
and in heavy-tailed mode, and for complex-valued signals, we
use in “sparse” mode and in heavy-tailed mode.

(79)
where (76) applies Jensen’s inequality, “const” denotes a con-
stant term w.r.t. , and (78) holds because

.
Equation (79) can then be obtained integrating (78) separately
over and and taking , as done several times in
Section III.B. Using this lower bound in place of in
(73), we obtain the BIC-inspired model order estimate (where
now is specifically the ML estimate of )

(80)

We in fact propose to perform (80) iteratively, with
denoting the iteration index. Notice that (80) can be

interpreted as a “penalized” EM update for ; if we neglect the
penalty term , then (75)–(79) becomes a standard deriva-
tion for the EM-update of (recall, e.g., the EM derivation in
Section III). The penalty term is essential, though, because the
unpenalized log-likelihood lower bound is non-de-
creasing8 in .
We now discuss several practical aspects of our procedure.

First, we are forced to approximate the integral in (79). To
start, we use GM-GAMP’s approximation of the posterior

from (9), and the EM approximations of the
ML-estimates and outlined in Section III.C. In this case,
the integral in (79) takes the form

(81)

which is still difficult due to the log term. Hence, we evaluate
(81) using the point-mass approximation

. Second, for the BIC penalty (74), we use the
sample size , which is the effective number of
terms in the sum in (79). Third, when maximizing over
in (80), we start with and increment in steps of one
until the penalizedmetric decreases. Fourth, for the initial model
order , we recommend using in “sparse” mode and

in “heavy-tailed” mode, i.e., the fixed- defaults from
Section III.D. Finally, (80) is iterated until either
or a predetermined maximum number of allowed model-order
iterations has been reached.
As a demonstration of the proposed model-order selection

procedure, we estimated a realization of with co-
efficients drawn i.i.d. from the triangular mixture pdf shown in
Fig. 1 (top, red) with , from the noisy mea-
surements , where was i.i.d. , and
was AWGN such that dB. For illustrative pur-

poses, we set the initial model order at . Iteration
yielded the metric shown at the top of
Fig. 2, which was maximized by . The metric re-
sulting from iteration is shown in the middle of Fig. 2,
which was maximized by . At iteration , we

8Note that can be written as a constant plus a scaled value
of the negative KL divergence between and the GMM

, where the KL divergence is clearly non-increasing in .
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Fig. 2. An example of the model-order metric in (80) over several iterations
using initial model-order , together with the

of the resulting estimates.

obtained the metric at the bottom of Fig. 2, which is also maxi-
mized by . Since , the algorithm terminates
with final model order estimate . Fig. 2 also indicates the
per-iteration MSE, which is best at the final model order.

IV. NUMERICAL RESULTS

In this section we report the results of a detailed numerical
study that investigate the performance of EM-GM-AMP under
both noiseless and noisy settings. For all experiments, we set
the GM-GAMP tolerance to and the maximum
GAMP-iterations to (recall Table I), and we set the
EM tolerance to and the maximum EM-iterations
to (recall Table II). For fixed- EM-GM-AMP, we
set in “sparse” and in “heavy-tailed” modes.

A. Noiseless Phase Transitions
We first describe the results of experiments that computed

noiseless empirical phase transition curves (PTCs) under three
sparse-signal distributions. To evaluate each empirical PTC, we
fixed and constructed a 30 30 grid where
were chosen to yield a uniform sampling of oversampling ra-
tios and sparsity ratios . At
each grid point, we generated independent realiza-
tions of a -sparse signal from a specified distribution and
an measurement matrix with i.i.d. en-
tries. From the noiseless measurements , we recovered
the signal using several algorithms. A recovery from real-
ization was defined a success if the

, and the average success rate was de-
fined as , where for a success and

otherwise. The empirical PTC was then plotted, using
Matlab’s contour command, as the contour over the
sparsity-undersampling grid.
Figs. 3–5 show the empirical PTCs for five recovery algo-

rithms: the proposed EM-GM-AMP algorithm (in “sparse”
mode) for both fixed and learned through model-order

Fig. 3. Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli-Gaussian signals.

Fig. 4. Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli signals.

selection (MOS), the proposed EM-BG-AMP algorithm,
a genie-tuned9 GM-AMP that uses the true parameters

, and the Donoho/Maleki/Montanari (DMM)
LASSO-style AMP from [10]. For comparison, Figs. 3–5 also
display the theoretical LASSO PTC (70). The signals were
generated as Bernoulli-Gaussian (BG) in Fig. 3 (using mean

and variance for the Gaussian component), as
Bernoulli in Fig. 4 (i.e., all non-zero coefficients set equal to
1), and as Bernoulli-Rademacher (BR) in Fig. 5.
For all three signal types, Figs. 3–5 show that the empirical

PTC of EM-GM-AMP significantly improves on the empirical
PTC of DMM-AMP as well as the theoretical PTC of LASSO.
(The latter two are known to converge in the large system limit
[10].) For BG signals, Fig. 3 shows that EM-GM-AMP-MOS,

9For genie-tuned GM-AMP, for numerical reasons, we set the noise variance
at and, with Bernoulli and BR signals, the mixture variances at

.
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Fig. 5. Empirical PTCs and LASSO theoretical PTC for noiseless recovery of
Bernoulli-Rademacher signals.

EM-GM-AMP, and EM-BG-AMP all yield PTCs that are
nearly identical to that of genie-GM-AMP, suggesting that our
EM-learning procedures are working well. For Bernoulli sig-
nals, Fig. 4 shows EM-GM-AMP-MOS performing very close
to genie-GM-AMP, and both EM-GM-AMP and EM-BG-AMP
performing slightly worse but far better than DMM-AMP.
Finally, for BR signals, Fig. 5 shows EM-GM-AMP per-
forming significantly better than EM-BG-AMP, since the
former is able to accurately model the BR distribution (with

mixture components) whereas the latter (with a single
mixture component) is not, and on par with genie-GM-AMP,
whereas EM-GM-AMP-MOS performs noticeably better than
genie-GM-AMP. The latter is due to EM-GM-AMP-MOS
doing per-realization parameter tuning, while genie-GM-AMP
employs the best set of fixed parameters over all realizations.
To better understand the performance of EM-GM-AMP

when , we fixed and constructed a 12 9
grid of values spaced uniformly in the log domain. At
each grid point, we generated independent realiza-
tions of a -sparse BG signal and an i.i.d. matrix
. We then recovered from the noiseless measurements
using EM-GM-AMP-MOS, EM-GM-AMP, EM-BG-AMP,
genie-GM-AMP, and the Lasso-solver10 FISTA11 [26].
Fig. 6 shows that the PTCs of EM-GM-AMP-MOS and
EM-GM-AMP are nearly identical, slightly better than those of
EM-BG-AMP and genie-GM-AMP (especially at very small
), and much better than FISTA’s.
Next, we studied the effect of the measurement matrix

construction on the performance of EM-GM-AMP in “sparse”
mode with fixed . For this, we plotted EM-GM-AMP
empirical PTCs for noiseless recovery of a length-
BG signal under several types of measurement matrix : i.i.d.

, i.i.d. Uniform , i.i.d. centered Cauchy with

10For this experiment, we also tried DMM-AMP but found that it had con-
vergence problems, and we tried SPGL1 but found performance degradations
at small .
11For FISTA, we used the regularization parameter , which

is consistent with the values used for the noiseless experiments in [26].

Fig. 7. Empirical PTCs for EM-GM-AMP noiseless recovery of Bernoulli-
Gaussian signals under various : i.i.d. , i.i.d. Uniform , i.i.d.
Bernoulli with , i.i.d. zero-mean Bernoulli-
Rademacher with , i.i.d. Cauchy, and randomly row-sam-
pled DCT.

Fig. 6. Empirical PTCs for noiseless recovery of Bernoulli-Gaussian signals
of length when .

scale 1, i.i.d. Bernoulli12 (i.e., ) with
, i.i.d. zero-mean BR (i.e.,

) with , and ran-
domly row-sampled Discrete Cosine Transform (DCT). Fig. 7
shows that the EM-GM-AMP PTC with i.i.d. ma-
trices also holds with the other i.i.d. zero-mean sub-Gaussian
examples (i.e., Uniform and BR with ). This is not
surprising given that AMP itself has rigorous guarantees for
i.i.d. zero-mean sub-Gaussian matrices [5]. Fig. 7 shows that
the i.i.d. - PTC is also preserved with randomly row-sampled
DCT matrices, which is not surprising given AMP’s excellent
empirical performance with many types of deterministic
[27] even in the absence of theoretical guarantees. Fig. 7

12For the Bernoulli and BR matrices, we ensured that no two columns of a
given realization were identical.
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Fig. 8. versus undersampling ratio for noisy recovery of
Bernoulli-Gaussian signals.

Fig. 9. versus undersampling ratio for noisy recovery of
Bernoulli signals.

shows, however, that EM-GM-AMP’s PTC can degrade with
non-zero-mean i.i.d. matrices (as in the Bernoulli example) or
with super-Gaussian i.i.d. matrices (as in the BR example with
sparsity rate and the Cauchy example). Surpris-
ingly, the i.i.d.- PTC is preserved by i.i.d.-BR matrices with
sparsity rate , even though is required for a
BR matrix to be sub-Gaussian [28].

B. Noisy Sparse Signal Recovery

Figs. 8–10 show for noisy recovery of BG, Bernoulli,
and BR signals, respectively. To construct these plots, we fixed

dB, and varied . Each data
point represents averaged over realizations,
where in each realization we drew an with i.i.d.
elements, an AWGN noise vector, and a random signal vector.
For comparison, we show the performance of the proposed
EM-GM-AMP (in “sparse” mode) for both MOS and

Fig. 10. versus undersampling ratio for noisy recovery of
Bernoulli-Rademacher signals.

versions, EM-BG-AMP, genie-tuned13 Orthogonal Matching
Pursuit (OMP) [29], genie-tuned13 Subspace Pursuit (SP) [30],
Bayesian Compressive Sensing (BCS) [19], Sparse Bayesian
Learning [18] (via the more robust T-MSBL [31]), de-biased
genie-tuned14 LASSO (via SPGL1 [32]), and Smoothed-
(SL0) [33]. All algorithms were run under the suggested de-
faults, with in T-MSBL.
For BG signals, Fig. 8 shows that EM-GM-AMP-MOS,

EM-GM-AMP, and EM-BG-AMP together exhibit the best
performance among the tested algorithms, reducing the
breakpoint (i.e., the location of the knee in the curve,
which represents a sort of phase transition) from 0.3 down to
0.26, but also improving by dB relative to the next
best algorithm, which was BCS. Relative to the other EM-AMP
variants, MOS resulted in a slight degradation of performance
for between 0.26 and 0.31, but was otherwise identical. For
Bernoulli signals, Fig. 9 shows much more significant gains for
EM-GM-AMP-MOS, EM-GM-AMP and EM-BG-AMP over
the other algorithms: the breakpoint was reduced from 0.4
down to 0.32 (and even 0.3 with MOS), and the was re-
duced by dB relative to the next best algorithm, which was
T-MSBL in this case. Finally, for BR signals, Fig. 10 shows a
distinct advantage for EM-GM-AMP and EM-GM-AMP-MOS
over the other algorithms, including EM-BG-AMP, due to the
formers’ ability to accurately model the BR signal prior. In
particular, for , EM-GM-AMP-MOS reduces the

by 10 dB relative to the best of the other algorithms
(which was either EM-BG-AMP or T-MSBL depending on the
value of ) and reduces the breakpoint from 0.38
down to 0.35.
To investigate each algorithm’s robustness to AWGN, we

plotted the attained in the recovery of BR signals with

13We ran both OMP (using the implementation from http://sparselab.stanford.
edu/OptimalTuning/code.htm) and SP under 10 different sparsity assumptions,
spaced uniformly from 1 to , and reported the lowest among the
results.
14We ran SPGL1 in ‘BPDN’ mode: , for

hypothesized tolerances , and reported the
lowest among the results.
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Fig. 11. versus for noisy recovery of Bernoulli-Rademacher
signals.

, and as a function of in
Fig. 11, where each point represents an average over
problem realizations, where in each realization we drew an
with i.i.d. elements, an AWGN noise vector, and a
random signal vector. All algorithms were under the same con-
ditions as those reported previously, except that T-MSBL used

when dB and when
dB, as recommended in [34]. From Fig. 11, we see

that the essential behavior observed in the fixed- BR plot
Fig. 10 holds over a wide range of s. In particular, Fig. 11
shows that EM-GM-AMP and EM-GM-AMP-MOS yield sig-
nificantly lower than all other algorithms over the full

range, while EM-BG-AMP and T-MSBL yield the second
lowest (also matched by BCS for s between 30
and 40 dB). Note, however, than T-MSBL must be given some
knowledge about the true noise variance in order to performwell
[34], unlike the proposed algorithms.

C. Heavy-Tailed Signal Recovery
In many applications of compressive sensing, the signal to

be recovered is not perfectly sparse, but instead contains a few
large coefficients and many small ones. While the literature
often refers to such signals as “compressible,” there are many
real-world signals that do not satisfy the technical definition of
compressibility (see, e.g., [35]), and so we refer to such signals
more generally as “heavy tailed.”
To investigate algorithm performance for these signals, we

first consider an i.i.d. Student’s-t signal, with prior pdf

(82)

under the (non-compressible) rate , which has been
shown to be an excellent model for wavelet coefficients of
natural images [35]. For such signals, Fig. 12 plots
versus the number of measurements for fixed

dB, and an average of realizations,
where in each realization we drew an with i.i.d.
elements, an AWGN noise vector, and a random signal vector.
Fig. 12 shows both variants of EM-GM-AMP (here run in

Fig. 12. versus undersampling ratio for noisy recovery of Stu-
dent-t signals with rate parameter 1.67.

“heavy-tailed” mode) outperforming all other algorithms under
test.15 We have also verified (in experiments not shown here)
that “heavy-tailed” EM-GM-AMP exhibits similarly good
performance with other values of the Student’s-t rate parameter
, as well as for i.i.d. centered Cauchy signals.
To investigate the performance for positive heavy-tailed sig-

nals, we conducted a similar experiment using i.i.d. log-normal
, generated using the distribution

(83)

with location parameter and scale parameter .
Fig. 13 confirms the excellent performance of EM-GM-AMP-
MOS, EM-GM-AMP, and EM-BG-AMP over all tested under-
sampling ratios . We postulate that, for signals known
apriori to be positive, EM-GM-AMP’s performance could be
further improved through the use of a prior with support
restricted to the the positive reals, via a mixture of positively
truncated Gaussians.
It may be interesting to notice that, with the perfectly sparse

signals examined in Figs. 8–10, SL0 and SPGL1 performed rel-
atively poorly, the relevance-vector-machine (RVM)-based ap-
proaches (i.e., BCS, T-MSBL) performed relatively well, and
the greedy approaches (OMP and SP) performed in-between.
With the heavy-tailed signals in Figs. 12–13, it is more difficult
to see a consistent pattern. For example, with the Student’s-t
signal, the greedy approaches performed the worse, the RVM
approaches were in the middle, and SL0 and SPGL1 performed
very well. But with the log-normal signal, the situation was very
different: the greedy approaches performed very well, SPGL1
performed moderately well, but SL0 and the RVM approaches
performed very poorly.
In conclusion, for all of the many signal types tested above,

the best recovery performance came from EM-GM-AMP and
its MOS variant. We attribute this behavior to EM-GM-AMP’s

15In this experiment, we ran both OMP and SP under 10 different sparsity
hypotheses, spaced uniformly from 1 to , and reported
the lowest among the results.
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Fig. 13. versus undersampling ratio for noisy recovery of log-
normal signals with location parameter 0 and scale parameter 1.

ability to tune itself to the signal (and in fact the realization) at
hand.

D. Runtime and Complexity Scaling With
Next we investigated how complexity scales with signal

length by evaluating the runtime of each algorithm on a
typical personal computer. For this, we fixed

dB and varied the signal length
. Fig. 14 shows the runtimes for noisy recovery of a

Bernoulli-Rademacher signal, while Fig. 15 shows the corre-
sponding s. In these plots, each datapoint represents an
average over realizations. The algorithms that we tested
are the same ones that we described earlier. However, to fairly
evaluate runtime, we configured some a bit differently than
before. In particular, for genie-tuned SPGL1, in order to yield
a better runtime-vs-NMSE tradeoff, we reduced the tolerance
grid (recall footnote 14) to
and turned off debiasing. For OMP and SP, we used the fixed
support size rather than searching for
the size that minimizes over a grid of 10 hypotheses,
as before. Otherwise, all algorithms were run under the sug-
gested defaults, with T-MSBL run under and
EM-GM-AMP run in “sparse” mode.
The complexities of the proposed EM-GM-AMP methods

are dominated by one matrix multiplication by and
per iteration. Thus, when these matrix multiplications are
explicitly implemented and is dense, the total complexity
of EM-GM-AMP should scale as . This scaling is
indeed visible in the runtime curves of Fig. 14. There,
becomes since the ratio was fixed, and the
horizontal axis plots on a logarithmic scale, so that this
complexity scaling manifests, at sufficiently large values of ,
as a line with slope 2. Fig. 14 confirms that genie-tuned SPGL1
also has the same complexity scaling, albeit with longer overall
runtimes. Meanwhile, Fig. 14 shows T-MSBL, BCS, SL0,
OMP, and SP exhibiting a complexity scaling of (under
fixed and ), which results in orders-of-magnitude
larger runtimes for long signals (e.g., ). With short
signals (e.g., ), though, OMP, SP, SL0, and SPGL1

Fig. 14. Runtime versus signal length for noisy recovery of Bernoulli-
Rademacher signals.

Fig. 15. versus signal length for noisy recovery of Bernoulli-
Rademacher signals.

are faster than EM-GM-AMP. Finally, Fig. 15 verifies that, for
most of the algorithms, the s are relatively insensitive
to signal length when the undersampling ratio and
sparsity ratio are both fixed, although the performance
of EM-GM-AMP improves with (which is not surprising in
light of AMP’s large-system-limit optimality properties [13])
and the performance of BCS degrades with .
Both the proposed EM-GM-AMP methods and SPGL1 can

exploit the case where multiplication by and is imple-
mented using a fast algorithm like the fast Fourier transform
(FFT)16, which reduces the complexity to , and
avoids the need to store in memory—a potentially serious
problem when is large. The dashed lines in Figs. 14–15
(labeled “ ”) show the average runtime and of the
proposed algorithms and SPGL1 in case that was a randomly
row-sampled FFT. As expected, the runtimes are dramatically
reduced. While EM-BG-AMP retains its place as the fastest

16For our FFT-based experiments, we used the complex-valued versions of
EM-BG-AMP, EM-GM-AMP, and SPGL1.
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algorithm, SPGL1 now runs faster than EM-GM-AMP
(at the cost of 14 dB higher ). The MOS version of
EM-GM-AMP yields slightly better , but takes
times as long to run as the fixed- version.

E. Example: Compressive Recovery of Audio

As a practical example, we experimented with the recovery
of an audio signal from compressed measurements. The full
length-81920 audio signal was first partitioned into blocks

of length . Noiseless compressed measurements
were then collected using samples

per block. Rather than reconstructing directly from , we
first reconstructed17 the transform coefficients ,
using the (orthogonal) discrete cosine transform (DCT)

, and later reconstructed via . Our
effective sparse-signal model can thus be written as
with . We experimented with two types of measure-
ment matrix : i.i.d. zero-mean Gaussian and random selection
(i.e., containing rows of the identity matrix selected uniformly
at random), noting that the latter allows a fast implementation of
and . Table III shows the resulting time-averaged ,

i.e., , and total runtime
achieved by the previously described algorithms at block
lengths , which correspond to

blocks, respectively. The numbers reported
in the table represent an average over 50 realizations of . For
these experiments, we configured the algorithms as described
in Section IV.C for the heavy-tailed experiment except that, for
genie-SPGL1, rather than using , we used for
the tolerance grid (recall footnote 14) because we found that
this value minimized and, for T-MSBL, we used the
setting as recommended in a personal
correspondence with the author. For certain combinations of
algorithm and blocklength, excessive runtimes prevented us
from carrying out the experiment, and thus no result appears in
the table.
Table III shows that, for this audio experiment, the

EM-GM-AMP methods and SL0 performed best in terms
of . As in the synthetic examples presented earlier,
we attribute EM-GM-AMP’s excellent to its ability
to tune itself to whatever signal is at hand. As for SL0’s
excellent , we reason that it had the good fortune
of being particularly well-tuned to this audio signal, given
that it performed relatively poorly with the signal types used
for Figs. 8–11 and Fig. 13. From the runtimes reported in
Table III, we see that, with i.i.d. Gaussian and the shortest
block length , genie-OMP is by far the fastest,
whereas the EM-GM-AMP methods are the slowest. But, as
the block length grows, the EM-GM-AMP methods achieve
better and better runtimes as a consequence of their excellent
complexity scaling, and eventually EM-BG-AMP and fixed-
EM-GM-AMP become the two fastest algorithms under test
(as shown with i.i.d. Gaussian at ). For this
audio example, the large-block regime may be the more im-
portant, because that is where all algorithms give their smallest

17Although one could exploit additional structure among the mul-
tiple-timestep coefficients for improved recovery (e.g., sparsity
clustering in the time and/or frequency dimensions, as well as amplitude
correlation in those dimensions) as demonstrated in [36], such techniques are
outside the scope of this paper.

TABLE III
AVERAGE (IN DB) AND TOTAL RUNTIME (IN SECONDS) FOR

COMPRESSIVE AUDIO RECOVERY

. Next, looking at the runtimes under random-selection
, we see dramatic speed improvements for the EM-GM-AMP

methods and SPGL1, which were all able to leverage Matlab’s
fast DCT. In fact, the total runtimes of these four algorithms
decrease as is increased from 1024 to 8192. We conclude
by noting that EM-BG-AMP (at with random se-
lection ) achieves the fastest runtime in the entire table while
yielding a that is within 1.3 dB of the best value in the
entire table. Meanwhile, fixed- EM-GM-AMP (at
with random selection ) gives only 0.3 dB away
from the best in the entire table with a runtime of only about
twice the best in the entire table. Finally, the best s
in the entire table are achieved by EM-GM-AMP-MOS (at

), which takes times as long to run as its
fixed- counterpart.

V. CONCLUSION

Those interested in practical compressive sensing face the
daunting task of choosing among literally hundreds of signal
reconstruction algorithms (see, e.g., [37]). In testing these al-
gorithms, they are likely to find that some work very well with
particular signal classes, but not with others. They are also likely
to get frustrated by those algorithms that require the tuning of
many parameters. Finally, they are likely to find that some of the
algorithms that are commonly regarded as “very fast” are actu-
ally very slow in high-dimensional problems. Meanwhile, those
familiar with the theory of compressive sensing know that the
workhorse LASSO is nearly minimax optimal, and that its phase
transition curve is robust to the nonzero-coefficient distribution
of sparse signals. However, they also know that, for most signal
classes, there is a large gap between the MSE performance of
LASSO and that of the MMSE estimator derived under full
knowledge of the signal and noise statistics [11]. Thus, theymay
wonder whether there is a way to close this gap by designing a
signal reconstruction algorithm that both learns and exploits the
signal and noise statistics.
With these considerations in mind, we proposed an empirical

Bayesian approach to compressive signal recovery that merges
two powerful inference frameworks: expectation maximization
(EM) and approximate message passing (AMP). We then
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demonstrated—through a detailed numerical study—that our
approach, when used with a flexible Gaussian-mixture signal
prior, achieves a state-of-the-art combination of reconstruction
error and runtime on a very wide range of signal and ma-
trix types in the high-dimensional regime. However, certain
non-zero-mean and super-Gaussian sensing matrices give our
AMP-based method trouble. Making AMP robust to these
matrices remains a topic of importance for future research.
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