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Full-Duplex Bidirectional MIMO: Achievable Rates
Under Limited Dynamic Range
Brian P. Day, Adam R. Margetts, Daniel W. Bliss, and Philip Schniter

Abstract—In this paper, we consider the problem of full-duplex
bidirectional communication between a pair of modems, each with
multiple transmit and receive antennas. The principal difficulty
in implementing such a system is that, due to the close proximity
of each modem’s transmit antennas to its receive antennas, each
modem’s outgoing signal can exceed the dynamic range of its
input circuitry, making it difficult—if not impossible—to recover
the desired incoming signal. To address these challenges, we
consider systems that use pilot-aided channel estimates to perform
transmit beamforming, receive beamforming, and interference
cancellation. Modeling transmitter/receiver dynamic-range lim-
itations explicitly, we derive tight upper and lower bounds on
the achievable sum-rate, and propose a transmission scheme
based on maximization of the lower bound, which requires us
to (numerically) solve a nonconvex optimization problem. In
addition, we derive an analytic approximation to the achievable
sum-rate, and show, numerically, that it is quite accurate. We then
study the behavior of the sum-rate as a function of signal-to-noise
ratio, interference-to-noise ratio, transmitter/receiver dynamic
range, number of antennas, and training length, using optimized
half-duplex signaling as a baseline.

Index Terms—Channel estimation, channel models, full-duplex,
information theory, limited dynamic range, MIMO, wireless com-
munication.

I. INTRODUCTION

F ULL-DUPLEX bidirectional communication between
two multiple-input multiple-output (MIMO) wireless

modems has the potential to nearly double the system spectral
efficiency [1]. By full-duplex, we mean that the two modems
perform simultaneous transmission and reception (STAR) at the
same carrier frequency. The fundamental difficulty with STAR
is that, due to the close proximity of a given modem’s transmit
antennas to its receive antennas, the modem’s outgoing signal
can overwhelm its receiver circuitry, making it impossible to
recover the incoming signal. To avoid this problem, existing
practical systems tend to communicate in half-duplex mode
(e.g., time-division duplex or frequency-division duplex). In
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this paper, we propose a realistic system model, including
channel estimation errors and effects of limited dynamic range,
and derive achievable-rate bounds for a proposed MIMO STAR
protocol. It is shown that its spectral efficiency is uniformly
better than optimized half-duplex and nearly double when
operating within dynamic range constraints. Other advantages
to full-duplex communication have been suggested in [2]
from a medium-access-layer point of view. A related—but
different—application of STAR is that of full-duplex relaying,
where a relay node simultaneously receives from a source node
and transmits to a destination node (see, e.g., [3] and [4]).
To facilitate STAR, existing techniques (e.g., [1]–[3] and

[5]–[9]) propose to use various combinations of i) digital-do-
main suppression, ii) analog-domain suppression, and iii) prop-
agation-domain suppression. Digital-domain suppression
attempts to mitigate self-interference after analog-to-digital
conversion (ADC) and will not be effective if the analog
circuitry and/or ADCs are already overwhelmed by self-in-
terference. Analog-domain suppression attempts to mitigate
self-interference between the receiver’s antenna(s) and ADC(s);
this method was used early on (e.g., [10]) and continues to be
the focus of many recent works (e.g., [2], [5], [9], [11], and
[12]). Propagation-domain suppression attempts to mitigate
self-interference in the wireless propagation environment,
before it has a chance to overwhelm the analog and digital cir-
cuitry. This may be accomplished by passive isolation (e.g., via
antenna separation and/or shielding), directional or polarized
antennas (e.g., [7], [11], and [13]), careful antenna placement
(e.g., [2]), and/or transmit beamforming (e.g., [1], [6], [8],
and [14]).
In this work, we assume that each of the two modems uses

antennas for transmission and different an-
tennas for reception (i.e., MIMO1 modems), and we assume
a per-modem transmit power constraint. We then consider the
problem of jointly optimizing the MIMO transmission and re-
ception strategies in order to maximize the sum of the rates
of reliable communication between the two modems (i.e., the
sum-rate). Our work thus involves propagation-domain and dig-
ital-domain suppression; analog-domain suppression, while im-
plicit in our system model, it is not explicitly discussed.
From our perspective, the primary challenges of MIMO-

STAR are, in practice, due to the following:
1) high channel dynamic range (DR);
2) limited transmitter and receiver DR;
3) imperfect channel state information (CSI).
Channel DR refers to the ratio of the (nominal) interfer-
ence-channel gain to the (nominal) desired-channel gain,

1We focus on the MIMO case, where and , although our
approach is general enough to handle the SIMO, MISO, and SISO cases, where

and/or .
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Fig. 1. Full-duplex bidirectional MIMO (left), and the 2 2 MIMO interfer-
ence channel (right). Solid lines denote desired propagation and dashed lines
denote interference.

which may be as high as 100 dB [3] due to the relative
separation between intra- and inter-modem antenna pairs. Lim-
ited transmitter and receiver-DR is a natural consequence of
non-ideal amplifiers, oscillators, ADCs, and digital-to-analog
converters (DACs). Imperfect CSI can result for several rea-
sons, including channel time-variation, additive noise, and DR
limitations.
Moreover, we claim that it is the combination of high

channel-DR, limited transmitter/receiver-DR, and imperfect
CSI that is particularly challenging. For example, if a modem
had infinite transmitter/receiver-DR and perfect CSI, then it
could perfectly cancel its own self-interference, even under
arbitrarily high channel-DR. In practice, though, because
receiver-DR is limited and channel-DR is very high, self-inter-
ference can easily overwhelm the receiver circuitry, burying the
desired signal component in the noise. To avoid this situation,
self-interference must be prevented through, e.g., transmitter
null-steering. But, with finite transmitter-DR and imperfect
CSI, it is impossible to perfectly steer nulls. For all of these
reasons, the MIMO-STAR problem is challenging.
Due to the practical importance of transmitter/receiver-DR

and imperfect CSI, we model each artifact explicitly in this
work. In particular, we model limited transmitter-DR by in-
jecting, for each transmit antenna, an additive white Gaussian
“transmitter noise” with variance times the energy of the
intended transmit signal. Similarly, we model limited re-
ceiver-DR by injecting, for each receive antenna, an additive
white Gaussian “receiver distortion” with variance times
the energy impinging on that receive antenna. Finally, we
model CSI imperfections by assuming the use of pilot-aided
least-squares (LS) channel estimation. To facilitate our sum-rate
analysis, we assume that the channel is block-fading with a
very long fading interval.
We now comment on the relationship between our problem

and the two-user MIMO interference channel (ICh) problem
(see, e.g., [15]). The MIMO-ICh problem concerns optimal si-
multaneous communication between twoMIMO transmitter/re-
ceiver pairs, as illustrated by the right panel of Fig. 1. For the
MIMO-ICh, the primary challenge is mitigation of other-user
interference, and the typical goal is characterizing the maximum
achievable rate pair under transmitter power constraints. At high
signal-to-noise ratios, it suffices to use the (degrees-of-freedom
optimal) interference alignment approach [16], wherein the user
transmissions are linearly precoded so that the mutual interfer-
ence is confined to a low-dimensional subspace. On the sur-
face, our full-duplex bidirectional MIMO problem looks sim-
ilar to the MIMO-ICh problem, except that the transmitter for
one communicating pair is located in the same modem as the
receiver for the other pair (see Fig. 1, left panel). The latter fact
has profound impacts, however, because it implies that, in our

problem, the “other-user” codewords are perfectly known.2 In
fact, in our problem, “other-user” (i.e., self-) interference does
not manifest directly, but indirectly through channel-estimation
error and limited receiver-DR, both of which can become sig-
nificant under very high channel-DR (e.g., 100 dB). In com-
parison, the MIMO-ICh has only rarely been studied under im-
perfect receiver CSI—see, e.g., the interference-alignment work
[17]—and (to our knowledge) has never been studied under lim-
ited transmitter/receiver-DR.
The contributions of this paper are as follows. For the full-

duplex bidirectional MIMO communication problem:
1) an explicit model for transmitter/receiver-DR limitations
is proposed;

2) pilot-aided least-squaresMIMO-channel estimation, under
DR limitations, is analyzed;

3) the residual self-interference, resulting from DR limita-
tions and channel-estimation error, is analyzed;

4) lower and upper bounds on the achievable sum-rate are
derived as a function of the transmit covariance matrices,
and a gradient-projection scheme to numerically compute
the lower-bound-maximizing covariance matrices, subject
to a power constraint, is proposed;

5) an analytic approximation of the maximum achievable
sum-rate is proposed that enables one to straightforwardly
predict when full-duplex operation can significantly out-
perform half-duplex operation;

6) explicit transmission and reception schemes are proposed
based on sum-rate maximization principles;

7) the achievable sum-rate is numerically investigated as
a function of signal-to-noise ratio, interference-to-noise
ratio, transmitter/receiver dynamic range, number of an-
tennas, and number of pilots.

Notation: We use to denote transpose, conjugate,
and conjugate transpose. For matrices , we
use to denote trace, to denote determinant,
to denote elementwise (i.e., Hadamard) product,
to denote the sum over all elements, to de-
note vectorization, to denote the diagonal matrix with
the same diagonal elements as , to denote the diag-
onalmatrix whose diagonal is constructed from the vector , and

to denote the element in the row and column of
. We denote expectation by , covariance by , sta-
tistical independence by , the circular complex Gaussian pdf
with mean vector and covariance matrix by ,
and the Kronecker delta by . Finally, denotes the identity
matrix, the complex field, and the integers.

II. SYSTEM MODEL

Our bidirectional communication problem involves two
modems (“A” and “B”), and thus two communicating trans-
mitter-receiver pairs (as indexed by the variables ).
We assume, without loss of generality, that modem A houses
transmitter and receiver , whereas modem B houses
transmitter and receiver . In the sequel, we use

to denote the channel-use index, to denote
the noisy signal radiated by the antenna array of transmitter
, and to denote the undistorted signal collected

2Clearly, the MIMO-ICh problem becomes trivial when the other-user code-
words are perfectly known.
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by the antenna array of receiver , where is the number of
transmit antennas and is the number of receive antennas.

A. Propagation Channel

We assume that the signal radiated by transmitter and
collected by receiver propagates through an additive white
Gaussian noise (AWGN) corrupted Raleigh-fading MIMO
channel . By “Rayleigh fading,” we mean
that . The time- radiated signals

are then related to each received signals via

(1)

(2)

In (1)–(2), denotes AWGN,
denotes the signal-to-noise ratio (SNR), and denotes the
interference-to-noise ratio (INR), all at receiver . The size of
will depend on, e.g., antenna separation and analog-domain

suppression.

B. Transmission Protocol

We assume that the signaling epoch is partitioned into a
training period and a subsequent data communication pe-
riod . The training period is further partitioned into two
equal-length portions (i.e., and ) to avoid self-in-
terference when learning the channel matrices. The data period
is also partitioned into two equal-length portions (i.e.,
and ) over which the transmission parameters can be in-
dependently optimized. As we shall see in the sequel, such flex-
ibility is critical when the INR is large relative to the SNR .
Moreover, this partitioning of the data interval allows us to con-
sider both half- and full-duplex transmission schemes as special
cases of a more general transmission protocol. Within each of
these four subperiods, we assume that the transmitted signals
are zero-mean and wide-sense stationary. Finally, we note that
our chosen transmission protocol is but one of many possible
protocols,3 and that the sum-rates derived in the sequel charac-
terize only our chosen protocol.

C. Limited Transmitter Dynamic Range

We model the effect of limited transmitter dynamic range
(DR) by injecting, per transmit antenna, an independent zero-
mean Gaussian “transmitter noise” whose variance is times
the energy of the intended transmit signal at that antenna. In
particular, say that denotes the transmitter’s in-
tended time- transmit signal, and say over
the relevant time period (e.g., ). We then write the
time- noisy radiated signal as

(3)

where denotes the transmitter noise. Typically,
. As shown by measurements of various hardware setups

(e.g., [18] and [19]), the independent Gaussian noise model
in (3) closely approximates the combined effects of additive
power-amp noise, non-linearities in the DAC and power-amp,

3One might also consider partitioning the training and/or data intervals into
two non-equal-length subperiods and then optimizing the relative lengths.

Fig. 2. A model of bidirectional MIMO communication under limited trans-
mitter/receiver-DR. The dashed lines denote statistical dependence. In labeled
quantities, the time index has been suppressed for brevity.

and oscillator phase noise. Moreover, the dependence of the
transmitter-noise variance on intended signal power in (3) fol-
lows directly from the definition of limited dynamic range.

D. Limited Receiver Dynamic Range

We model the effect of limited receiver-DR by injecting, per
receive antenna, an independent zero-mean Gaussian “receiver
distortion” whose variance is times the energy collected by
that antenna. In particular, say that denotes the
receiver’s undistorted time- received vector, and say

over the relevant time period (e.g., ).
We then write the distorted post-ADC received signal as

(4)

where is additive distortion. Typically, .
From a theoretical perspective, automatic gain control (AGC)
followed by dithered uniform quantization [20] yields quantiza-
tion errors whose statistics closely match the model (4). More
importantly, studies (e.g., [21]) have shown that the independent
Gaussian distortion model (4) accurately captures the combined
effects of additive AGC noise, non-linearities in the ADC and
gain-control, and oscillator phase noise in practical hardware.
Fig. 2 summarizes our model. The dashed lines indicate that

the distortion levels are proportional to mean energy level and
not instantaneous value.

III. ANALYSIS OF ACHIEVABLE SUM-RATE

In this work, we consider systems that use the transmis-
sion protocol of Section II-B, pilot-aided channel estimation
(as described in Section III-A), and partial self-interference
cancellation (as described in Section III-B). For such systems,
we derive upper and lower bounds on achievable sum-rate (in
Section III-C), and we propose a novel signal design based on
optimization of the sum-rate lower bound subject to a power
constraint (in Section III-D). To better understand the behavior
of the optimized sum-rate, we derive a simple approximation
(in Section III-E) that is later shown to be surprisingly accurate.

A. Pilot-Aided Channel Estimation

In this section, we describe the pilot-aided channel estimation
procedure that is used to learn the channel matrices . In
our protocol, the training interval consists of two subperiods,

and , each of duration channel uses (for
some ). For all , we assume that transmitter

transmits a known pilot signal and remains silent,
while, for all , transmits and remains
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silent. As we shall see, it suffices to choose the pilot sequence
arbitrarily so long

as it satisfies , where the scaling is chosen to
satisfy a per-period power constraint of the form ,
consistent with the data power constraints that will be described
in the sequel.
Our limited transmitter/receiver-DR model implies that the

(distorted) space-time pilot signal observed by receiver is

(5)

where, for notational convenience, we define

if
if

(6)

In (5), and are matrices of transmitter
noise, receiver distortion, and AWGN, respectively. At the con-
clusion of training, we assume that the receiver estimates the
channels via least-squares (LS), yielding

(7)

and communicates them to the other modem.4 In the sequel, it
will be useful to decompose the channel estimate into the true
channel plus some estimation error. In Appendix A, it is shown
that such a decomposition takes the form of

(8)

where the entries of are i.i.d , and where

(9)

characterizes the spatial covariance of the estimation error.
Under and , the latter reduces to

(10)

B. Partial Self-Interference Cancellation

As described earlier, the interference in our problem is a form
of self-interference wherein the receiver knows the
interfering codewords from transmitter . If this receiver
knew perfectly the interfering channel , and if there was no
transmitter noise nor receiver distortion , then the self-in-
terference could be completely canceled. In general, however,
this is not the case, and so the self-interference can only be par-
tially canceled. Details are provided below.
Recall that the data communication period is partitioned

into two subperiods, and , and that—within
each—the transmitted signals are wide-sense stationary. The
(instantaneous, distorted) signal at receiver and any time

then takes the form

(11)

4For our achievable-rate analysis, we assume a very long channel coherence
interval, making negligible the relative overhead required for CSI exchange.

(12)

Defining the aggregate noise term

(13)

we can write ,
where the self-interference term is known and
thus can be canceled. The interference-canceled signal

can then be written as

(14)

Equation (14) shows that, in effect, the information signal
propagates through a known channel corrupted by an
aggregate (possibly non-Gaussian) noise .
Denoting the -conditional covariance of

during by ,
we show in Appendix B that

(15)

where obeys

(16)

and where the approximations in (15)–(16) follow from
and . A similar analysis applies to .We note, for later
use, that the channel estimation error terms can be made
arbitrarily small through appropriate choice of .

C. Bounds on Achievable Sum-Rate

(14) succinctly characterizes the equivalent channel model,
under limited transmitter/receiver-DR, pilot-aided LS MIMO-
channel estimation, and partial self-interference cancellation,
for transmitter/receiver pair during data communication
period . (A similar model can be stated for pair .)
Due to the channel estimation error components in (13), the ag-
gregate noise is generally non-Gaussian, which compli-
cates the analysis of the channel (14). It is known, however, that
among all distributions on with fixed covariance , the
Gaussian one is worst from a mutual-information perspective
[22]. Thus, we can lower-bound the sum mutual information

, written as a function of the transmit covariance matrices
, as , where [23]

(17)
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Furthermore, standard communication theoretic arguments
imply that it is possible to achieve a sum-rate equal to in
(17) by using independent Gaussian codebooks at each trans-
mitter and maximum-likelihood detection at each receiver [23],
as detailed in Section IV. Taking “ ” in (17) to be base-2, the
units of sum-rate are bits-per-channel-use (bpcu).
A straightforward upper bound on achievable sum-rate

then follows by ignoring the channel estimation error, in which
case becomes Gaussian and the covariance matrix
takes the form of (15) with . The resulting upper bound

then has exactly the form of (17), but with computed
using . Moreover, the lower bound converges to
the upper bound as the training length . As demon-
strated in Fig. 5, the true mutual information is tightly
sandwiched between the lower and upper bounds for practical
training lengths .

D. Transmit Covariance Optimization

We would now like to find the transmit covariance matrices
that maximize the sum-rate

lower bound in (17) subject to the per-user power con-
straint (18b). This yields the optimization problem

(18a)

(18b)

(18c)

where the inequality (18c) constrains each to be positive
semi-definite. We solve5 this non-convex optimization problem
via Gradient Projection (GP), taking inspiration from [24]. Our
choice to partition the data period into two subperiods
(recall Section II-B) implies that half-duplex transmission is
among the possible solutions to (18), thus implying that the op-
timizer of (18) can never be outperformed by half-duplex.When
the data period is not subpartitioned, this desirable property does
not hold, and performance suffers (as shown in Section V).
The GP algorithm [25] is defined as follows. For the generic

problem of maximizing a function over , the GP
algorithm starts with an initialization and iterates the fol-
lowing steps for

(19)

(20)

where denotes projection onto the set and de-
notes the gradient of . The parameters and
act as stepsizes. In the sequel, we assume .
In applying GP to the optimization problem (18), we first take

gradient steps for and , and then project onto the
constraint set defined by (18b)–(18c). Next, we take gradient
steps for and , and then project onto the constraint
set. In summary, denoting the gradient by ,
our GP algorithm iterates, for , the following steps to
convergence:

(21)

5In general, (18) is a non-convex optimization problem, and so finding the
global maximum can be difficult. Although GP is not guaranteed to find the
global maximum, our experience with different initializations suggests that, in
our problem, GP is indeed finding the global maximum.

(22)

(23)

(24)

(25)

and then repeats the same for . An outer loop then
repeats this pair of inner loops until the maximum change in

(over ) is below a small positive threshold .
We now provide additional details on the GP steps. As for the

gradient, Appendix C shows that, for ,

(26)

where . A similar expression can
be derived for .
To compute the projection , we first notice

that, due to the Hermitian property of , we can construct an
eigenvalue decomposition with unitary

and real-valued .
The projection of onto the constraints
(18b)–(18c) then equals ,
where elementwise, and where is chosen
such that . In essence,

performs water-filling.
To adjust the stepsize , we use the Armijo stepsize rule

[25], i.e., where is the smallest nonnegative
integer that satisfies

(27)

for some constants typically chosen so that
and . Above, we used the shorthand

.

E. Sum-Rate Approximation

The complicated nature of the optimization problem (18) mo-
tivates us to approximate its solution, i.e., the transmit-covari-
ance optimized sum-rate , where repre-
sents the constraint set implied by (18b)–(18c). Here, we focus
on the case of , where channel estimation error is driven
to zero so that , and we assume
and for tractability.
Our approximation is built around the simplifying

case that each is diagonal, although not necessarily
square, with identical diagonal en-

tries equal to . (The latter value is chosen so that
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Fig. 3. Contour plot of the optimized-sum-rate approximation versus SNR
and INR , for , , and 40 dB. The dark curve

shows the boundary between full- and half-du-
plex regimes, and the vertical dashed line shows the boundary
between SNR-limited and distortion-limited regimes.

, consistent with the assumptions of
Section II-A.) In this case, the mutual information expression
(17) becomes (for )

(28)

When , the -dependent term in (28) can be ignored,
after which it is straightforward to show that, under the con-
straints (18b)–(18c), the optimal covariances are the “full du-
plex” , for which (28) gives

(29)

When , the -dependent term in (28) dominates unless
. In this case, the optimal covariances are the “half

duplex” ones , for which (28) gives

(30)

Finally, for any given pair , we approximate the opti-
mized sum-rate as follows: .
From (29)–(30), it is straightforward to show that the boundary
between full- and half-duplex occurs at

(31)

for .
We now make some additional observations about (29)–(30).

First, suppose that , in which case is appropriate.
From (29), we see that will not significantly benefit from
further increase in SNR when ,

i.e., when . Since , this -saturation

occurs when . Next, suppose that , in which
case is appropriate. Here, (30) shows that will not
significantly benefit from SNRs above . Thus,
in both the and cases, we can interpret

as the transition between SNR-limited and distortion-
limited regimes. (See Fig. 3.)
Fig. 3 shows a contour plot of the proposed optimized-sum-

rate approximation as a function of INR and SNR . We shall
see in Section V that our approximation of the covariance-opti-
mized sum-rate is surprisingly close, on average, to that found
by solving (18) using gradient projection.

IV. TRANSMISSION AND RECEPTION SCHEMES

We now propose explicit transmission and reception schemes
designed to maximize sum-rate. To start, we first recall the
post-interference-cancellation model given by (14), where the
aggregate noise has covariance and the
signal has covariance . Using a Cholesky
decomposition of the aggregate-noise covariance matrix

, and an eigen-decomposition of the transmit
covariance matrix , we can write the
system model (14), for , as

(32)
where the source and noise
processes are both white (i.e., , and

). Denoting , we have
assumed (without loss of generality) that is
positive definite, and thus .
Model (32) can be recognized as the classical “multiuser

uplink with single transmit antennas at each user terminal
and multiple receive antennas at the base station,” as dis-
cussed in [23, p. 428-430]. In particular, (32) corresponds to

independently coded user terminals and a base station
with receive antennas. In this case, the sum-rate maxi-
mizing transmission/reception scheme employs independent
Gaussian codebooks at each user terminal (or, in our case,
for each element of during each subperiod ), and min-
imum-mean-squared error successive interference cancellation
(MMSE-SIC) at the base-station (or, in our case, at the re-
ceiver during each subperiod ). Moreover, for each given
pair , the sum-rate across codebooks must not exceed

bpcu. The maximum
allowable rate for each particular codebook depends on the
interference level experienced during MMSE-SIC, which is
dependent on the SIC cancellation order [23].
In summary: at the transmitter of each communicating pair ,

the information bit-stream is partitioned into sub-
streams, each of which is coded using an independent Gaussian
codebook of unit variance and appropriate rate. Then, during
each subperiod , the coder output is linearly precoded

to obtain the time- transmit signal
over . At the receiver of each communicating pair
, over times for each subperiod , the received
signal first undergoes partial self-interference cancellation
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Fig. 4. Illustration of the proposed bidirectional MIMO transmission and
reception schemes, based on the interference cancellation model (14) and its
whitened version in (32). The time index and subpartition index have
been suppressed for brevity.

to obtain (recall (14)), and then noise whitening to obtain
. MMSE-SIC is then performed on to

decode each of the substreams within , as described
in [23, p. 361]. The overall scheme is illustrated in Fig. 4.

V. NUMERICAL RESULTS

In this section, we numerically investigate the behavior of the
sum-rates achievable in full-duplex bidirectional MIMO com-
munication under the proposed limited transmitter/receiver-DR
and channel-estimation-error models. In particular, we study the
average behavior of the GP-optimized sum-rate lower-bound

as a function of SNR , INR , dynamic range
and , number of antennas and , and training

length . In doing so, our goal is to provide the system designer
with an understanding of how sum-rate varies with each of these
parameters. We also show the gains of full-duplex signaling
over optimized half-duplex (OHD) signaling, of partial self-in-
terference cancellation, and of the partitioning of the data period

into two distinct subperiods, and . Finally,
we show a close agreement between the GP-optimized sum-rate

and the approximation proposed in Section III-E.
For the numerical results below, the propagation channel

model from Section II-A and the limited transmitter/re-
ceiver-DR models from Section II-C and Section II-D were
employed, pilot-aided channel estimation was implemented as
in Section III-A, and the power constraint (18b) was applied,
implying the channel-estimation-error covariance (9) and the
aggregate-noise covariance (15). Throughout, we used training
duration (as justified below), Armijo parameters

and , and GP stopping threshold .
For brevity, we focused only on the case and

. All results were averaged over 1000 realizations,
unless specified otherwise.
Below, we denote the full scheme proposed in Section III

by “TCO-2-IC,” which indicates the use of interference can-
cellation (IC) and transmit covariance optimization (TCO) per-
formed individually over the 2 data subperiods (i.e., and

). To test the impact of IC and of two data subperiods, we
also implemented the proposed scheme but without IC, which
we refer to as “TCO-2,” as well as the proposed scheme with
only one data subperiod (i.e., ), which we refer
to as “TCO-1-IC.” To optimize half-duplex, we used GP tomax-
imize under the power constraint (18b) and the additional
half-duplex constraint .
In Fig. 5, we investigate the role of channel-estimation

training length on the achievable sum-rate lower bound
of TCO-2-IC. There we see that the sum-rate increases

rapidly in for small , but quickly saturates for larger values
of . This behavior can be understood from (15)–(16), which
suggests that channel estimation error will have a negligible

Fig. 5. Achievable sum-rate lower bound for TCO-2-IC versus training
interval . Here, , , 40 dB, 15 dB. Also shown
is the corresponding upper bound for each case.

Fig. 6. Achievable sum-rate lower bound for TCO-2-IC, TCO-2,
TCO-1-IC, and OHD versus INR . Here, , , 15 dB, and

. OHD is plotted for 60 dB, but was observed to give
nearly identical results for all three values of .

effect on the noise covariance when . Fig. 5
also shows the corresponding achievable sum-rate upper bound

. These traces confirm that the nominal training length
ensures that .

In Fig. 6, we examine sum-rate performance versus INR
for the TCO-2-IC, TCO-1-IC, TCO-2, and OHD schemes, using
several different dynamic range parameters . For OHD,
we see that sum-rate is invariant to INR , as expected. For
the proposed TCO-2-IC, we observe “full duplex” performance
for low-to-mid values of and a transition to OHD perfor-
mance at high values of , just as predicted by the approxima-
tion in Section III-E. In fact, the sum-rates in Fig. 6 are nearly
identical to the approximate values in Fig. 3. To see the im-
portance of two distinct data-communication periods, we study
the TCO-1-IC trace, where we observe TCO-2-IC-like perfor-
mance at low-to-mid values of , but performance that drops
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Fig. 7. Achievable sum-rate lower bound for TCO-2-IC and OHD versus
SNR . Here, , , 40 dB, and .

below OHD at high . Essentially, TCO-1-IC forces full-du-
plex signaling at high INR , where half-duplex signaling is op-
timal, while TCO-2-IC facilitates the possibility of half-duplex
signaling through the use of two distinct data-communication
subperiods, similar to the interference-channel scheme [26]. Fi-
nally, from the TCO-2 trace, we conclude that partial interfer-
ence cancellation is essential for all but extreme values of INR .
In Fig. 7, we examine sum-rate of the proposed TCO-IC-2

and OHD versus SNR , using the dynamic range parameters
40 dB and various fixed values of INR . All the

behaviors in Fig. 7 are almost exactly as predicted by the sum-
rate approximation described in Section III-E and illustrated
in Fig. 3. In particular, we see OHD’s sum-rate increase with
SNR up to the distortion-limited regime, i.e.,
36 dB. For TCO-IC-2, we see sum-rate increase with when

(i.e., the SNR-limited regime), saturate when
(i.e., distortion-limited high-INR regime), increase again

around (i.e., the transition to the low-INR regime), and
then saturate when (i.e., the distortion-limited low-INR
regime). In fact, the sum-rates in Fig. 7 are nearly identical to
the approximations in Fig. 3.
In Fig. 8, we plot the GP-optimized sum-rate contours of the

proposed TCO-IC-2 versus both SNR and INR , for compar-
ison to the approximation in Fig. 3. Remarkably, the two plots
look almost identical, confirming the accuracy of the approxi-
mation over a wide range of INRs and SNRs .
Finally, in Fig. 9, we explore the sum-rate of TCO-2-IC

and OHD versus the number of antennas, and , for fixed
values of SNR 15 dB, INR 60 dB, and transmitter/re-
ceiver-DR 60 dB. We recall, from Fig. 6, that
these parameters correspond to the interesting region between
half-duplex and full-duplex. In Fig. 9, we see that sum-rate
increases with both and , as expected. More interesting
is the sum-rate behavior when the total number of antennas is
fixed, e.g., at , as illustrated by the triangles in
Fig. 9. The fact that the configuration out-
performs is predicted by the approximations
(29)–(30): given fixed (here, ), one should strive
to maximize .

Fig. 8. Contour plot of the achievable sum-rate lower bound for
TCO-2-IC versus SNR and INR , for , , and

40 dB, averaged over 200 realizations. The dark curve (i.e.,
full/half-duplex boundary) and dashed line (i.e., SNR/distortion-limited
boundary) are identical to the ones in Fig. 3.

Fig. 9. Achievable sum-rate lower bound for TCO-2-IC and OHD versus
number of antennas with various . Here, 15 dB, 60 dB,

60 dB, and .

VI. CONCLUSION

We considered the problem of full-duplex bidirectional com-
munication between a pair of MIMO modems in the presence
of noise, limited transmitter/receiver-dynamic range, imperfect
CSI, and very high levels of self-interference. Using explicit
Gaussian models for dynamic-range limitation and pilot-aided
channel estimation error, we derived upper and lower bounds
on the achievable sum-rate that tighten as the number of pi-
lots increases. Furthermore, we proposed a transmission scheme
based on maximizing the sum-rate lower bound, which involves
the numerical solution of a nonconvex optimization problem, to
which we applied gradient projection. In addition, we derived
an analytic approximation to the achievable sum-rate that agrees
closely with the results of the numerical optimization and allows
one to straightforwardly predict when full-duplex operation can



3710 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 7, JULY 2012

significantly outperform half-duplex operation. Finally, we nu-
merically studied the behavior of achievable sum-rate as a func-
tion of signal-to-noise ratio, interference-to-noise ratio, trans-
mitter/receiver dynamic range, number of antennas, and number
of pilots.
In future work, we plan to investigate the effect of practical

coding/decoding schemes, and to extend our approach to time-
varying channels and to systems with more than two modems.

APPENDIX A
CHANNEL ESTIMATION DETAILS

In this appendix, we derive certain details of Section III-A.
While doing so, we suppress the and subscripts for brevity.
Under limited transmitter-DR, the undistorted received space-
time signal is

(33)

where the spatial correlation6 of the non-distorted pilot signal
equals and hence the spatial correlation of the transmitter
distortion equals . Conditioned on , the spatial correla-
tion of is then

(34)

and hence the -conditional spatial correlation of the receiver
distortion equals

(35)

Given (5), the distorted received signal can be written as

(36)

where

(37)

is aggregate complex Gaussian noise that is temporally white
with -conditional spatial correlation

(38)

Due to the fact that , the channel estimate (7)
takes the form

(39)

where is Gaussian channel estimation error. We now
analyze the -conditional correlations among the elements of
the channel estimation error matrix. We begin by noticing

(40)

(41)

6The spatial correlation of is defined as
.

To find , we recall that

(42)

(43)

(44)

implying that

(45)

(46)

which implies that

(47)

(48)

where the latter expression follows from the fact that
, as implied by .

Equation (48) implies that the channel estimation error is
temporally white with -conditional spatial correlation

(49)

(50)

Our final claim is that the channel estimation error

is statistically equivalent to , with con-
structed from i.i.d entries. This can be seen from the
following:

(51)

(52)

(53)

where we used the fact that .
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APPENDIX B
INTERFERENCE CANCELLATION DETAILS

In this appendix, we characterize the channel-estimate-con-
ditioned covariance of the aggregate interference , whose ex-
pression was given in (13). The and subscripts and subperiod
index are suppressed when possible, for brevity.
Recalling that , we first establish that

(54)

which will be useful in the sequel. To show (54), we examine
the element of the covariance matrix:

(55)

(56)

(57)

(58)

(59)

Rewriting the previous equality in matrix form, we get (54). As
a corollary, we note that

(60)

which will also be useful in the sequel.
Next we characterize the -conditional co-

variance of the receiver distortion . Recalling that
where , we

have where
. Then, given that with from

(12), and using the fact that ,
we get

(61)

(62)

Then,

(63)

(64)

where, for the approximation, we assumed . Thus,

(65)

Finally we are ready to characterize , the -con-
ditional covariance of . From (13),

(66)

(67)

(68)

(69)

where, for the approximation, we assumed and ,
and we leveraged (65).

APPENDIX C
GRADIENT DETAILS

In this appendix, we derive an expression for the gradient
for by first de-

riving an expression for the derivative and then using the

fact that .
To do this, we first consider the related problem of computing

the derivative , where

(70)

and where (70) can be written elementwise as

(71)
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(76)

(77)

(78)

Notice that, for defined as a zero-valued matrix except for
a unity element at row and column , we have

(72)

Then, using (72), we get

(73)

(74)

(75)

where, for the last step, we used the fact that
.

Applying (75) to (17), we can obtain an expression for .
To do so, we think of in (70) as representing the terms in
that have zero derivative with respect to . Using the short-

hand notation , and recalling the
expression for in (15), the result for and
is shown in (76)–(78) at the top of the page.

Finally, using and leveraging the fact

that and are Hermitian matrices, we get the expres-

sion for in (26). A similar expression can be derived for
.
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