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Robust Rate-Adaptive Wireless Communication
Using ACK/NAK-Feedback

C. Emre Koksal and Philip Schniter

Abstract—To combat the detrimental effects of the variability in
wireless channels, we consider cross-layer rate adaptation based
on limited feedback. In particular, based on limited feedback in
the form of link-layer acknowledgements (ACK) and negative ac-
knowledgements (NAK), wemaximize the physical-layer transmis-
sion rate subject to an upper bound on the expected packet error
rate. We take a robust approach in that we do not assume any
particular prior distribution on the channel state. We first analyze
the fundamental limitations of such systems and derive an upper
bound on the achievable rate for signaling schemes based on un-
coded QAM and random Gaussian ensembles. We show that, for
channel estimation based on binary ACK/NAK feedback, it may be
preferable to use a separate training sequence at high error rates,
rather than to exploit low-error-rate data packets themselves. We
also develop an adaptive recursive estimator, which is provably
asymptotically optimal and asymptotically efficient.

Index Terms—Adaptive modulation, automatic repeat request,
cross-layer strategies, rate adaptation.

I. INTRODUCTION

C HANNEL variation is a principal feature of wireless com-
munication. On one hand, channel variation poses a hin-

drance to reliable communication, in that channel fading can
make the received signal-to-noise ratio (SNR) arbitrarily low at
any given time instant, making reliable communication virtu-
ally impossible. On the other hand, channel variation poses an
opportunity, in that a channel-state-aware transmitter can com-
municate reliably at high rates during channel quality peaks. The
key to taming and exploiting channel variation therefore lies in
the judicious use of transmitter channel state information (CSI).
While accurate receiverCSI is relatively easy to maintain, accu-
rate transmitter CSI is often difficult to maintain due to limited
feedback resources.
We partition limited feedback schemes (see [1] for an

overview) into two classes: those based on channel-state
feedback and those based on error-rate feedback. In lim-
ited channel-state feedback schemes (e.g., [2]–[5]), the
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channel-state estimate computed by the receiver is quantized1

and then fed back to the transmitter. In limited error-rate feed-
back schemes (e.g., [6]–[17]), a quantized error-rate estimate is
fed back to the transmitter, from which it can infer CSI relative
to the previously employed transmission rate. For example,
with Automatic Repeat reQuest (ARQ) [18], a negative ac-
knowledgement (NAK) of packet reception suggests that the
channel quality was below that needed for reliable communi-
cation at the previously employed transmission rate, whereas a
positive acknowledgement (ACK) of packet reception suggests
the opposite.
Although ACK/NAK feedback can be employed for the esti-

mation of transmitter CSI, its primary role is that of maintaining
a desired packet error rate at the link layer through controlled
packet retransmission (see, e.g., [18]). In fact, since the packet
acknowledgement is a standard provision of most practical link
layers, we reason that—for the purpose of channel-state estima-
tion—it comes at essentially no cost to the physical layer, unlike
traditional channel-state feedback schemes, which require the
dedication of reverse-channel bandwidth beyond that required
for packet acknowledgements. In this sense, ACK/NAK-based
transmitter-CSI schemes require even less total feedback band-
width than “one-bit” channel-state feedback schemes (e.g., [19]
and [20]), given that systems employing “one-bit” channel-state
feedback include ACK/NAK as well, for the purpose of ARQ.
With the above motivation, we focus on the exclusive use of

limited error-rate feedback for the maintenance of transmitter
CSI, from which transmission rate and/or power resources are
subsequently adapted. While examples of this strategy can be
found in a number of previous works (e.g., [6]–[17]), there are
limitations in how it has been applied. For example, in [6]–[10],
the adaptation algorithms are designed heuristically, based on
practical experiences gained for a specific application in a spe-
cific operating environment. In [11]–[17], on the other hand,
transmission rates and/or powers are chosen carefully to max-
imize a certain performance metric. To achieve this objective,
a Bayesian approach is taken, i.e., a model is assumed for the
channel variations and an associated optimization problem is
solved based on this model. Typically, the channel is assumed
to vary according to a finite-state Markov model [11], [12],
[14]–[16] or a Gauss–Markov process [17]. The shortcoming of
a model-based approach is that it may not be possible to assign
accurate priors over a wide range of channel operating condi-
tions. Consider, for example, that channel variations span a wide

1In some cases, the receiver uses its channel estimate to calculate discrete
transmitter rate and/or power parameters, and then feeds back those parameters
directly. Since these transmitter parameters can be put in one-to-one correspon-
dence with some quantized channel-state estimate, we consider such schemes
to be equivalent to channel-state feedback schemes.
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range of time scales, from bits to thousands of packets. For in-
stance, relative movement of the transmitter-receiver pair may
cause variations at relatively long time scales, since a very large
number of packets can be transmitted during the time it takes
for the stations to move far enough to cause significant change
in the channel. On the other hand, co-channel interference can
change significantly from one packet transmission to another.
Finally, the multipath nature of the propagation medium can
cause fast and/or slow fading in the channel, depending on the
relative movement of the scatterers.
In this paper, we take a robust Bayesian [21] approach

to rate-adaptation from limited error-rate feedback, where
“robust Bayesian” refers to the fact that we treat the channel
state as a random quantity without assuming any particular
prior distribution on it. In particular, we first derive condi-
tions on the “quality” of CSI needed for a model-independent
ACK/NAK-based rate adaptation system to maximize data rate
while keeping the packet error probability below a specified
threshold. Based on these conditions, we derive fundamental
bounds on the rate achievable under a given error probability
constraint. Finally, we design an ACK/NAK-feedback-based
non-Bayesian channel-state estimator with provable asymptotic
optimality. Our findings are illustrated through both uncoded
QAM and random Gaussian signaling.
We emphasize that the packet-level retransmissions orches-

trated by link-layer ARQ would be performed on top of the
ACK/NAK-based rate-control that we study. In fact, since our
physical-layer optimization criterion (i.e., maximization of
transmission rate subject to a given target packet error proba-
bility) is by nature decoupled from the functioning of higher
layers, we do not explicitly consider ARQ in our analysis. In
other words, from the perspective of our physical layer, the
link-layer ARQ mechanism merely specifies the contents of the
packets that are to be transmitted.
The remainder of the paper is organized as follows. In

Section II, we detail the system model and provide a math-
ematical statement of the problem. In Section III, we derive
conditions for successful rate adaptation with imperfect CSI,
and in Section IV, we evaluate bounds on the achievable
rates with ACK/NAK feedback. In Section V, we develop an
recursive channel estimator based on such feedback, and in
Section VI we conclude.

II. SYSTEM MODEL

A. System Components

Fig. 1 depicts our model of the physical-layer adaptive com-
munication system. At each discrete packet index , the trans-
mitter transmits a packet containing a
fixed number, , of symbols , which are encoded at a
rate of bits/symbol, chosen by the rate controller from the set
of possible rates . We assume that the transmit power is con-
stant and normalize all power levels such that the energy per
symbol is . For this packet, the corresponding
channel outputs are

(1)

Fig. 1. The rate adaptation system.

for complex-valued channel gain and additive white circu-
larly symmetric complex Gaussian noise with two-sided
power spectral density . Some common models for in-
clude Rayleigh-, Rician- and Nakagami-fading (see, e.g., [22]).
However, we will not assume any specific statistical model for
and we will make only weak assumptions on the distribution

of in the sequel.
The quantity can be interpreted as the packet’s

channel SNR. Since each symbol has unit energy, is also the
received SNR for packet . Thus, we will simply refer to as the
SNR. Due to lack of power adaptation, is an exogenous quan-
tity over which the system has no control. We assume that, for
all , takes on values from some prior distribution ,
where is a set of distributions with finite mean and variance.
However, we make no further assumptions on set . We do not
even assume knowledge of this set by the transmitter or the re-
ceiver.
We assume that the receiver has access to perfect CSI

and uses a maximum likelihood decoder to decode the
received packet. Let denote the decoded estimate of
packet based on received packet ,
and the corresponding probability of decoding error be

. Note that depends on
the packet size and the coding/modulation schemes, which
are assumed to be known at the decoder. For now, we assume
only that the coding/modulation schemes are such that
is a convex, continuous, and increasing function of and a
convex, continuous, and decreasing function of . Later, we
detail the behavior of our proposed schemes for the specific
cases of uncoded QAM and random Gaussian signaling.
Based on the received packet and the decoded packet ,

the decoder generates a feedback packet which is commu-
nicated to the transmitter through a reverse channel. Assuming
that the receiver is capable of perfect error detection, we take
to be a binary ACK/NAK (i.e., for ACK and for
NAK), so that

.
(2)

We assume that the reverse channel is error-free but introduces
a delay of a single2 packet interval. Thus, the “informa-
tion” available to the transmitter when choosing rate is

. We find it con-
venient to explicitly include the previous rates in

2It is straightforward to generalize all of our results to a general delay of
packet intervals. While the generalization does not alter the fundamental nature
of our results, it requires a more complex notation, which we avoid for clarity.
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the information vector because the ACK/NAK feedback
characterizes channel quality relative to the transmission

rate . Note that the controller chooses the transmission rate
at time solely based on the information vector , which is
available at the receiver as well. We assume that the receiver is
also aware of the controller’s rate allocation strategy, so that it
can compute the current and previous values of .
Finally, we assume in the sequel that the SNR is constant over

each block of packets, and that it changes independently
from block to block, i.e., that the channel is “block fading.”
In the sequel, we focus (without loss of generality) on the first
block, for which , and omit the -dependence
on the SNR, writing as “ ”. In addition, we use to
denote the posterior SNR distribution, which can be associated
with the prior distribution through the conditional mass
function given in (2). Furthermore, we denote the
set of possible posterior probability distributions using .

B. Ideal Rate Selection

We define the ideal -hypothesized controller as the one that,
at time , based on the hypothesized posterior , jointly
optimizes the transmission rates to maximize the
sum-rate subject to a constraint on expected error
probability. In doing so, we allow any packet to be declared a
probe packet, which is exempt from the expected-error-prob-
ability constraint but contributes nothing to sum rate. Probe
packets are used exclusively to learn about the SNR , in the
hope of more efficient allocation of future data packets. In par-
ticular, the ideal controller chooses rates according to the fol-
lowing constrained optimization problem:

(3)

subject to for all (4)

Here, indicates whether the packet is a data
packet or a probe packet , and is
an application-dependent quality-of-service (QoS) parameter.
Note that the expectation in (4) is taken over the condi-
tional distribution .
With ACK/NAK feedback, recall that

. Thus, the choice of affects not
only the contribution to the sum-rate but also the “quality” of
the conditional SNR distribution at times .
As these future SNR estimates get worse, the controller is
forced to choose more conservative (i.e., lower) rates in order
to satisfy the expected error-rate constraint. (We justify this
statement in the sequel.) Thus, the selection of has both
short-term and long-term consequences, which may be in
conflict. Consequently, the solution to the ideal rate adaptation
problem (3), (4) under ACK/NAK feedback is a constrained
partially observable Markov decision process (POMDP) [23].
For practical horizons , it is computationally impractical to
implement this POMDP, as now described. Firstly, notice that
the state of the channel is continuous. Even if the channel state
was discretized (at the expense of some loss in performance),
the required memory to implement the optimal scheme would
grow exponentially with the horizon . Indeed, this POMDP

Fig. 2. The controller decomposed into two components: a channel estimator
and a rate allocator.

lies in the space of PSPACE-complete problems, i.e., it requires
both complexity and memory that grow exponentially with the
horizon [24].
Next, consider the (genie-aided) case of perfect CSI, i.e.,
for all .When the channel is known, there is no need for probe
packets, and thus the optimal solution chooses .
Furthermore, since the rate choice does not affect the quality of
the SNR estimate, the ideal rate assignment problem decouples,
so that the best choice for becomes

(5)

Indeed, with perfect CSI, constraint (4) is active for all
, since is a convex increasing function

of and the objective function is linear in . Notice that,
in this case, ideal rate selection is greedy and is
invariant3 to time .

C. Practical Rate Selection

In practice, we have neither the exact posterior , nor
the perfect CSI. Thus, we consider a practical (nonideal) ap-
proach, motivated by techniques from the field of adaptive con-
trol [25], which deviates from the ideal approach in two prin-
cipal ways:
1) the probe packet locations are set at the first packets in
each -block;

2) the controller is split into two components: a channel es-
timator, which produces an SNR estimate based
on the probe-packet feedback , and a rate allocator,
which assigns the data packet rate based on . (See
Fig. 2.)

As before, the rate allocator chooses the data-packet rates
in order to maximize sum-rate under an ex-

pected-error-probability constraint. In particular, at each time
, the rate is chosen via

(6)

subject to

for all (7)

where the expectation in (7) is taken over some posterior distri-
bution . Let us denote and the
set of possible posterior distributions with , which, in
turn, is decided by the particular choice of the estimator .
While related, the constraints (4) and (7) have an important

difference: the information contained by in (4) is summa-
rized by the possibly incomplete statistic in (7). Con-

3This invariance holds as long as is -invariant, i.e., the coding/modu-
lation scheme does not change with time.
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sequently, satisfaction of (7) does not necessarily guarantee sat-
isfaction of (4), or vice versa.
Due to the fact that the probing period is limited to the first

packets, does not affect the quality of future
SNR estimates, the rate assignment problem (6), (7) decouples,
and the value of satisfying (6), (7) reduces to

(8)
Moreover, (8) implies that is invariant to time . Note that the
decoupling that occurs here is reminiscent of the decoupling that
occurred with ideal rate selection (3), (4) under perfect channel
state information, i.e., (5).
In the next section, we shall see that the choice of estimator

plays a key role in the overall performance of the practical
rate adaptation scheme. Recall that the estimator determines

, which determines the expected error probability
constraint. Under certain scenarios, we shall see that a solution
to (8) does not exist, i.e., that no rates within satisfy the
expected error probability constraint. Later, in Section V, we
develop a non-Bayesian estimator in and show that, with that
estimator, the set will contain merely the class of
Gaussian distributions, asymptotically as , for any set,
, of prior distributions with finite mean and variance for the

SNR.

III. RATE ADAPTATION WITH IMPERFECT CSI

Before studying the practical rate allocator (8), we first con-
sider a particular “naive” data-rate allocator, in order to draw
intuition on how estimation errors affect system performance.
Given SNR estimate , generated from a particular unbiased
estimator, the naive allocator assigns the data rate

(9)

for all . Due to the lack of expectation in the
error-probability constraint of (9), the naive rates may violate
the desired expected-error-probability constraint in (8). This fol-
lows from the fact that, when the posterior distribution
is nonatomic (i.e., ), Jensen’s inequality4 implies that

(10)

Therefore, to ensure the expected-error-probability constraint
in (8), the practical allocator must “back off” the rate relative
to . To do so, it chooses , where

equality occurs if and only if the estimation error is
zero-valued (with probability one).
When the estimator is perfect (i.e., ), we note that the

naive rate coincides with the ideal rate under perfect CSI (i.e.,
). In this case, acts as

an upper bound on the ideal under ACK/NAK feedback, as
specified by (3), (4). Accordingly, we make the following two
definitions.

4For unbiased , (10) immediately follows from Jensen’s inequality. For bi-
ased , (10) still holds but requires some effort to derive. We skip these details
since our focus is on unbiased .

Definition 1: The rate penalty associated with estimator is
the smallest (in bits/symbol) that satisfies

(11)

Definition 2: The power penalty associated with estimator
is the smallest scale factor that satisfies

(12)

Next, we analyze two different scenarios for the described
rate adaptation system. In the first scenario, the symbols in
the packet are assumed to be uncoded QAM symbols, while
in the second scenario, the symbols are a Gaussian random
coded ensemble. Within the second scenario, we focus on the
high-SNR and low-SNR cases separately. For both scenarios,
we use the analysis presented next, in Section III-A.

A. Gaussian Approximation of the Estimation Error

Under the posterior distribution , let the estimation
error have the distribution .
Let and denote the moment generating func-
tion and the semi-invariant logmoment generating function [26]
of given , respectively. We assume that there exists some

such that for all . It is
well known [26] that , , and

. Then, for any ,

(13)

(14)

for some between 0 and (having the same sign as ), where
(14) follows from Taylor’s theorem. Furthermore, applying
Taylor’s theorem to the third-order expansion, we get

(15)
for some between 0 and .
In many cases, the first two terms of the expansion (15) lead

to insightful expressions to illustrate the impact of the first-
and second-order statistics of “channel variability.” This will
be referred to as the Gaussian approximation, since, when
is Gaussian, the cumulants of higher order than the variance
vanish.
Further, for an unbiased estimator, . In this case,

the Gaussian approximation yields the simple second-order ap-
proximation

(16)

Regardless of the posterior distribution , the approxima-
tion (16) is asymptotically accurate for the non-Bayesian esti-
mator proposed in Section V, which is asymptotically unbiased
and asymptotically normal, as will be proved.

B. Rate Adaptation With Uncoded QAM

Here, we study the scenario in which the symbols
of packet are uncoded and selected from a QAM
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constellation of size . Since the constellation size is constant
over the packet, the rate equals bits/symbol. The
following is a tight5 approximation [2, p. 289] on the symbol
error rate associated with minimum-distance decision making
[27, p. 280]:

(17)

The associated packet error rate is

(18)

since remains constant for all , as and remain
constant over the packet.
Since we can write

(19)
it follows that for all such that

. Similarly, (18) implies that

for the same . This latter bound is an in-
creasing function of , and, for , it approximately equals

, which is much higher than typical error rates. We as-
sume that is large enough and the possible outcomes of
are such that for all with probability
close to 1. We further elaborate on this next, after we derive a
sufficient condition for the error constraint to be met.
To meet the expected-error-probability constraint (8), it is

necessary that

(20)

(21)

Using the unbiasedGaussian approximation (16), condition (21)
can be rewritten as follows, after taking the natural log of both
sides:

(22)

For the existence of a feasible rate , the solution set for In-
equality (22) must be nonempty, for which it is necessary that

(23)

Condition (23) implies that , the effective SNR of estimator

, must be at least to guarantee an expected
error rate of . Using similar steps,6 a sufficient condition

5The bound holds within approximately 1 dB from the true value for a wide
range of SNRs [2, p. 289].
6From (18) and the fact that , we have

for all with probability 1. Consequently, for satisfaction of
(8), it is sufficient that . Replicating (21)–(23), we
obtain the sufficiency condition.

can also be derived, illustrating the

tightness of (23). We will investigate the difficulty of achieving
this condition in the next section.
Given that (23) is satisfied, one can solve (22) to find the

upper bound , where

(24)

Fig. 3(a) plots the upper bound (24) as a function of the esti-
mator’s effective SNR for 13,20,25 dB, a desired

packet error rate of , and a packet size of
symbols. The naive rate allocation

(25)

(derived from (21) with ) is also shown on the same
plot. The required effective SNR , as imposed by (23), is

21.6 here. Fig. 3(a) shows that bits/symbol for
dB. Since 2 bits/symbol is the minimum possible rate

for uncoded QAM, we conclude that it is impossible to meet
the target packet-error rate of when 13 dB, even with
perfect CSI.
By definition, the rate penalty is the smallest that satisfies

. Thus, an upper bound on is
given by

(26)

From Fig. 3(a), we can see that depends on the effec-

tive SNR : it is significant when the effective SNR is near

the minimum value established by (23), but shrinks as gets

large. In addition, grows in proportion to .
By definition, the power penalty is the smallest that sat-

isfies . Thus, a lower bound

on the power penalty can be found by solving

for . The power penalty lower bound

is plotted in Fig. 3(b) as a function of effective SNR for

the same expected packet-error rate, , and packet size,
, as in Fig. 3(a). The power penalty is seen to be as high as

3 dB when the effective SNR is near the minimum value estab-
lished by (23), but shrinks as gets large.

C. Rate Adaptation With Random Gaussian Ensembles

Next, we study the random coding [28], [29] scenario in
which the codewords are selected from a Gaussian ensemble.
Let be the maximum rate in . Then the Gaussian
ensemble consists of possible packets, where each
symbol, , of packet is chosen independently from a
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Fig. 3. For QAM signaling, (a) rates and versus estimator’s effective SNR , and (b) power penalty lower bound versus estimator’s effective

SNR .

distribution.7 (We use unit variance here because
earlier we assumed .) At time , say that
transmission rate is chosen. Then one packet from a
size- subset of the initially generated set of packets
is chosen arbitrarily for transmission.
The receiver is assumed to know the subsets of possible

packets corresponding to each admissible rate . Based
on its observation of the packet, the receiver finds the most
likely packet within the subset of possible packets. Note
that, unlike the uncoded QAM scenario, where each symbol is
decoded separately, here the entire packet is decoded as a unit.
An upper bound for the associated decoding error probability
is (e.g., [28])

(27)

where is the union bound parameter. One can min-
imize (27) over to find the tightest bound, if so de-
sired. To satisfy the expected-error-probability constraint (8), it
suffices that there exists a for which

(28)
1) Low-SNR Regime: When , we can write

(29)

For an unbiased estimator, and

. Thus, using the Gaussian ap-
proximation (16), the constraint (28) is satisfied if there exists
a for which

(30)

7We use real-valued symbols, instead of complex-valued symbols, for sim-
plicity. Consequently, the data rates will be represented in units of bits per
real-symbol. For fair comparison with uncoded QAM, one should simply double
these data rates.

or, equivalently, for which

(31)

Thus, if there exists some for which the right side of
(31) is positive, then any below it is feasible. For this to be
possible, we need

for some , which leads to the following necessary
condition8 for the estimator:

(32)

One can then find an upper bound on satisfying (28) as
follows:

(33)

Likewise, one can deduce from (27) and (29) that the naive rate
is

(34)

The rate upper bound is plotted in Fig. 4(a) as a function of
the estimator’s effective SNR for dB,

a desired packet error rate of , and a packet size
of symbols. The rate from (34) is also shown

8Note that condition (32) is not exactly analogous to condition (23). Condition
(32) is necessary for a nonempty solution set to exist for inequality (31), whereas
(23) is necessary for the existence of a feasible rate that satisfies the expected-
error bound. In order to derive an analogous necessary condition, one can use a
sphere-packing (SP) bound for the Gaussian channel (see, e.g., [30]). With the
SP lower bound, our findings would be qualitatively similar, but the derivation
would be extremely tedious. For this reason, we assume that the upper bound is
a good approximation for the actual error rate.
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Fig. 4. For Gaussian signaling at low SNR, rates and versus (a) estimator’s effective SNR and (b) estimated SNR .

on the same plot. Every point on the rate curves was computed
using the optimal value of , found numerically. We
note that, with these parameters, (32) implies that must

be at least 13.8. Fig. 4(a) also shows that the rate penalty
is significant when

is near the lower bound established by (32), but that the

rate penalty shrinks as increases.

For the same target packet error rate and packet size
, Fig. 4(b) plots versus for estimator effec-

tive SNR . In the same figure, and

the “naive” Shannon limit (i.e., ergodic capacity)
bits/real-symbol are shown. By comparing the naive Shannon
limit with , one can observe that, in the low-SNR regime,
the power penalty of Gaussian signaling scheme can be signif-
icant, especially at small values of . From the same plot, one
can observe that the additional power penalty due to imperfect
SNR estimation, , is quite small: less than 0.5 dB when

and less than 1 dB when .

2) High-SNR Regime: When , we can
write

(35)

Thus, for an unbiased estimator, and

. Similar to the low SNR scenario, we
can use the Gaussian approximation (16) to claim that (28) is
satisfied if there exists a for which

(36)

or, equivalently,

(37)

Hence, if there exists some for which the right side of
(37) is positive, then any below it is feasible. In the high-SNR
regime, we have with high probability, and thus there al-
most always exists some for which a feasible
exists. One can deduce from this observation that, a principal
difference between the high-SNR and low-SNR regimes is that,
in the high-SNR regime, the expected error probability con-
straint is satisfied much more easily, with nearly any SNR esti-
mator. One can then find an upper bound on satisfying
(28) as follows:

(38)

Likewise, one can deduce from (27) and (35) that the naive rate
is

(39)

The rate upper bound is plotted in Fig. 5(a)

as a function of the estimator’s effective SNR for

13,20,25 dB, a desired packet error rate of ,
and a packet size of 500 symbols. The rate
from (39) is also shown on the same plot. Every point on
the rate curves was computed using the optimal value of

, found numerically. We emphasize that the rates
plotted in Fig. 5(a) are expressed in bits per real-symbol, and
thus should be doubled for fair comparison with the QAM rates
presented in Fig. 3(a). For Gaussian signaling, if we compare
the high-SNR results in Fig. 5(a) and (b) to the low-SNR results
in Fig. 4(a) and (b), we can see that the normalized rate penalty

is much smaller in the high-SNR regime. For instance, at

, is no more than 0.5 bits/symbol and is less

than 25% for all three values of . This decrease in rate penalty
is expected, since, in the high-SNR regime, the rate scales
roughly with the log of the SNR.
For the same target packet error rate and packet size

, Fig. 5(b) plots versus for estimator
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Fig. 5. For Gaussian signaling at high SNR, rates and versus (a) estimator’s effective SNR and (b) estimated SNR .

effective SNR . In the same figure,

and the naive Shannon limit are shown. There
we observe that, in the high-SNR regime, the power penalty for
Gaussian signaling is constant with , and no more than 1.5 dB.
The additional power penalty due to imperfect SNR estimation,

, is approximately 1 dB when and ap-

proximately 2.5 dB when .

IV. FUNDAMENTAL LIMITATIONS OF ACK/NAK-BASED
RATE ADAPTATION

In the previous section, we studied the performance of the
rate adaptation system for a generic unbiased estimator. We
analyzed the feasible rates with particular coding/modulation
schemes as a function of the “quality” of the estimation pro-
vided by the estimator, for which the relevant metric was the es-
timator’s effective SNR . Note that we assumed no knowl-

edge of the prior SNR distribution .
In this section, we view the SNR of the current block, ,

as an unknown parameter,9 and pose the estimation of as
a non-Bayesian parameter estimation problem. We first inves-
tigate the fundamental limitations of SNR estimators that are
based on packet-level ACK/NAK feedback, e.g., .
Using that analysis, we show that it is difficult to make good
SNR estimates while simultaneously keeping packet-error-rate
low. This latter property motivates SNR-estimation via probe
packets that come without error-rate constraints (in contrast to
data packets, which are error-rate constrained) as assumed in
Section II. Finally, we discuss optimization of the probing pe-
riod , and we derive an upper bound on the optimal sum rate

.
A. Fundamental Limitations of ACK/NAK-Based
SNR Estimation

Consider the SNR estimator , based on the ACK/
NAKs in

9We assume that is a random variable, taking on an independent value for
each block, but that the distribution of is unknown to the transmitter.

where denotes the rate and denotes the ACK/NAK feed-
back for packet . In the sequel, we abbreviate by .
Recall that and are connected through the packet error
probability , as specified in (2).
Theorem 1: For true SNR and any unbiased estimator

based on ACK/NAKs, the estimation error variance,
, is lower bounded by

(40)

where is continuously differentiable in and

.
Proof: Given and the rates , the feedback

satisfies

(41)

Then

(42)

The Fisher information [31] associated with is:

(43)

and the cumulative Fisher information is . The-
orem 1 follows since the Cramér–Rao lower bound (CRLB)
for unbiased estimators is the reciprocal of the Fisher informa-
tion [31].
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B. Lower Bounds on the Required Probing Period

In Section III, we derived lower bounds (23) and (32) on the
value of (i.e., the estimator’s effective SNR) required to

facilitate the use of data transmission via uncoded QAM sig-
naling and randomly coded Gaussian signaling, respectively. In
this section, we translate those lower bounds (on required )

into lower bounds on required probe-duration , recognizing
that the quality of SNR estimates (and thus ) increases with

. From these bounds, we shall see that the required value of
depends heavily on the probe error rate, and in particular that

the required value of grows very large as the probe error rate
decreases. This motivates the optimization of probe error rate,
which requires the decoupling of probe error rate from data error
rate (since the latter is usually constrained by the application).
In this section, we assume that both the modulation/coding

scheme and the rate is fixed over the probe interval, i.e., that
for . In this case, the CRLB (40)

reduces to

(44)

which is inversely proportional to .
Recall that, to make uncoded QAM signaling feasible, con-

dition (23) must be satisfied, and to make random Gaussian
signaling feasible in the low-SNR regime, condition (32) must
be satisfied. Though (23) and (32) are expressed in terms
of the estimator’s effective SNR, we can rewrite them as

and , respectively, and apply
the CRLB (44) to arrive (see Appendix A) at the following. For
uncoded QAM, we need , where is given at
the bottom of the page, and for random Gaussian signaling in
the low-SNR regime, we need , where

(46)

and where is the union bound parameter corresponding to the
tightest error bound (27), which itself depends on , , and .
Fig. 6(a) and (b) plots as a function of the probe error

rate for uncoded QAM signaling and random Gaussian
signaling, respectively. For the plots, we assume , which
eliminates the dependence of on and in the QAM
case; for the Gaussian case, we show for the values
-3,-7,-10 dB. As in our previous plots, we assumed
and . The key observation to make from these plots
is that the number of probe packets increases quickly as
shrinks. In fact, the plots suggest that is roughly proportional
to . This inverse relationship is somewhat intuitive be-
cause, given a probe packet-error rate of , one must

Fig. 6. Lower bound on required probing duration versus probe packet-
error rate for (a) uncoded QAM and (b) random Gaussian signaling.

wait for packets (on average) to see a single NAK. Re-

call, however, that Fig. 6 shows only a lower bound on the
probe duration required for communication with positive rate;
the optimal value of is expected to be even larger.
The main conclusion to draw from this section is that, to keep

the probing period small, one must allow relatively high probe
error rate . For systems which estimate SNR using only
ACK/NAK feedback from data packets, this implies that if the
data error rate is small, then the number of packets required
to get a decent SNR estimate will be large. Such systems would
only be suitable for channels that are very slowly fading.

C. An Upper Bound on the Optimal Sum-Rate

Recall that, in our practical rate adaptation system, the data
packet rates are chosen based on the SNR estimated

using ACK/NAKs from probe packets with rates . To
complete the system design, we must choose the rates
as well as the probe duration . In doing so, we aim to max-
imize the sum data rate while satisfying
the expected error-probability constraint in (8). Intuitively, we
know that increasing improves the SNR estimate which, in
turn, allows a higher data rate (since less rate “back-off” is
needed to satisfy the error constraint). On the other hand, for a
fixed block length , the number of data packets, , shrinks
as increases. Therefore, the choice of involves a tradeoff
between these two objectives. In this section, we discuss the
choice of and derive an upper bound on the
sum rate that leverages the rate bounds from Section III
and the CRLB from Section IV-A.

(45)
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Fig. 7. Normalized sum-rate bound as a function of SNR for (a) QAM and (b) Gaussian signaling in the low-SNR regime.

In Section II-C, we recognized that the data-rate assignment
problem decouples in such a way that the optimal data rates

become independent of time . Thus, in the sequel,
we focus on choosing a single data rate , whose optimal value
will be denoted by . The system design problem then reduces
to the following sum-rate maximization:

(47)

As argued in Section III, the optimal data rate increases
monotonically with the quality of the SNR estimate, i.e., with
the inverse of the estimator variance . Thus, the optimal

probe parameters are those that minimize
. From the CRLB in Theorem 1, we know that
, where

(48)

(49)

Thus, if was provided by a genie, and if the SNR estimator
was efficient (i.e., CRLB achieving), then (49) suggests to set
the probe rate at

(50)

which is invariant to both time and probe duration . This
yields

(51)

Using the genie-aided probe rate , we can upper bound
the optimal sum rate (47) by

(52)

where we explicitly denote the dependence of the estimate on
both and .
Next, recall that we established, in Section III, upper bounds

on the largest data rate that satisfies an expected error constraint
of the type in (52). In particular, (24) gave an upper bound for
uncoded QAM signaling, and (33) and (38) gave upper bounds
for Gaussian signaling in the low-SNR and high-SNR regimes,
respectively. These data-rate upper bounds, , can be
applied to (52) to bound the optimal sum rate as ,
where

(53)

and where and are dependent on both and .
Since increases monotonically in , we can

upper bound using the lower bound on established in
(51). This yields for

(54)

Fig. 7(a) and (b) plots the normalized sum-rate bound
as a function of the estimated SNR for uncoded QAM and
Gaussian ensembles, respectively, at and . As be-
fore, we use target error rate and packet size . For
the genie-aided probe rate used to calculate ,
we assumed that . The figures also show and the
naive Shannon limit , for comparison. Note that the
difference between the naive rate and the upper bound

increases significantly as decreases. This is due to
the fact that, as decreases, it is too costly to allocate a long
probing interval, implying that the quality of SNR estimates de-
creases, so that more rate back-off is required. Note also that the



1762 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 4, APRIL 2012

Fig. 8. Example trajectories of the recursive SNR estimator when uncoded QAM is used. (a) versus ; (b) versus for ; and (c) versus for
.

difference between the naive rate and the upper bound increases
as the SNR increases. This implies that the lack of perfect CSI
becomes more costly as the SNR increases.

V. AN ASYMPTOTICALLY OPTIMAL SNR ESTIMATOR

The quality of SNR estimates based on ACK/NAKs from
a probe interval is strongly dependent on both the probe rates

and the probe interval . For the sum-rate upper
bound derived in Section IV-C, the probe rate in (50)
was selected in a genie-aided manner, assuming knowledge of
the true SNR . Clearly, is not known in practice.
In this section, we develop a practical SNR estimator that,

during the probing interval , recursively up-
dates the probe rate and (i.e., the time- estimate10 of
) using the latest feedback pair . We show that
the probe rate adaptation is asymptotically optimal, in that
converges to for any initial probe rate . Moreover,
we show that our SNR estimator is asymptotically efficient and
asymptotically normal, i.e., that the corresponding estimation
error converges to a zero-mean Gaussian random
variable whose variance is identical to the CRLB achieved with
the genie-aided probe rate . The normality of the error
helps to justify the Gaussian approximation used to derive the
rate bounds (45) and (46) for the uncoded QAM and Gaussian
cases, respectively.
The SNR Estimator:
1) At time , choose an arbitrary rate and an
arbitrary estimate .

2) At each time , update the estimate as

(55)

and choose the rate as

(56)

where is the Fisher information as defined in (43).
We prove the following for our estimator.

10We emphasize that is the time- estimate of the time-invariant SNR ,
and should not be confused with the time-varying SNR that was briefly used
in Section II before the time-invariance assumption was introduced.

Theorem 2: For both uncoded QAM and Gaussian ensem-
bles, as ,

(57)

Proof: See Appendix B.
Theorem 2 implies that our estimator (55) is asymptotically

efficient and consistent. Moreover, without any prior infor-
mation on , rate allocation (56) guarantees the performance
achieved with the genie-aided probe rate . Next, we
simulate the estimator. Instead of the on the denominator,
we use for various values of .
In Fig. 8, a single realization of the estimator and the corre-

sponding assigned rate are illustrated for different values of ,
over a block of probe packets of size sym-
bols. The value of and the asymptotic rate are also
shown on the associated graphs. The initial points for the esti-
mator are 3 dB, bit/symbol, and the set of possible
rates are in bits/complex-symbol, i.e., the
possible constellation sizes are integer powers of 2. For ,
one can observe that the optimal rate is reached with approxi-
mately 20 probe packets for all values of SNR. Once that point
is reached, the estimation error variance decays fairly slowly
due to the low decay rate . With a higher , it takes
longer to approach the vicinity of , from the initial value ,
but the estimation error variance is lower once in steady state.
This observation is illustrated in Fig. 8(c), where and the
probing block size is 2000 packets. In the realization cor-
responding to 20 dB, the “steady state” is yet to be reached
after 2000 packets. On the other hand, the amplitude of the fluc-
tuations around the final point decay much faster, as one can ob-
serve in the realization corresponding to 10 dB. Different
choices for and the associated tradeoffs involved in stochastic
approximation algorithms are studied in [32].
We illustrate our estimator response for Gaussian ensembles

in Fig. 9. As the set of rates , we picked 100 points, equally
spaced between 0 and 5 bits/real-symbol. The initial SNR
estimate, 0 dB, was much smaller than the initial one in
the QAM simulations, but the initial rate, 0.5 bits/com-
plex-symbol, was identical to the one in the QAM simulations.
Here, we analyze SNR realizations 3, 10, and 20 dB.
With Gaussian ensembles, the convergence speed is slightly
lower than that with QAM. While the convergence is almost
immediate for 3 dB, it takes 30–40 packets for 10 dB and
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Fig. 9. Example trajectories of the recursive SNR estimator when Gaussian signaling is used. (a) versus ; (b) versus for ; (c) versus for
.

130–140 packets for 20 dB. This difference is mainly due
to the difference in the distances between the initial and final
points. On the other hand, due to the large size of the set of
possible rates (unlike QAM, where only a few discrete points
are possible), there exists some that is very close to the
genie-aided probe rate . Consequently, the estimation
error variance decays much faster once comes near the
vicinity of . We also illustrate the estimator with

in Fig. 9(c) and one can notice the slow convergence,
similar to the QAM simulations.

VI. CONCLUSION

In this paper, we studied rate adaptation based on ACK/NAK
feedback. In particular, we studied methods that maximize data
rate subject to a constraint on expected packet-error probability,
assuming that the transmitter has no knowledge of the SNR dis-
tribution. Because optimal rate allocation was identified as a
POMDP, which is impractical to implement, we focused on a
suboptimal framework where a channel estimate is calculated
based on previous feedback and a rate is chosen based on this
channel estimate. To aid the initial rate allocation, we allowed
the use of probe packets at the start of each data block.
First we considered a so-called “naive” rate allocator that maxi-
mizes rate subject to a constraint on instantaneous packet-error
probability, calculated from a given unbiased estimate of the
true SNR . Due to the inevitable error in SNR estimation, we
argued that one must either back-off the naive rate, or corre-
spondingly increase the SNR, to meet the stricter expected error
probability constraint. Based on a Gaussian approximation of
the estimation error , we derived conditions on
the “effective estimator SNR” that are necessary for the

existence of a feasible transmission rate, as well as an upper
bound on the transmission rate when this necessary condition is
satisfied. This latter analysis was carried out for both uncoded
QAM signaling and random Gaussian signaling (the latter in
both the low-SNR and high-SNR regimes). Next, we consid-
ered unbiased SNR estimation via ACK/NAK feedback. First,
we lower bounded the error variance of those estimates (for
general signaling schemes), and based on that bound, we lower
bounded the necessary probing duration and upper bounded
the sum data rate (for both uncoded QAM signaling and random
Gaussian signaling). Finally, we proposed a practical unbiased
ACK/NAK-based SNR estimator and showed that (as the probe

duration increases) our estimator is asymptotically efficient and
asymptotically normal.

APPENDIX A
DERIVATION OF FOR UNCODED QAM AND

GAUSSIAN SIGNALING

In this section, we derive (45) and (46). For brevity, we write
and . Recall that, from (23) and

(44), we have for, uncoded QAM,

(58)

where, from (18),

(59)

(60)

(61)

Thus

(62)

(63)

From (32) and (44), we have for, Gaussian signaling in the
low-SNR regime,

(64)

where, from (27),

(65)
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(66)

Thus

(67)

APPENDIX B
PROOF OF THEOREM 2

We will directly apply Theorem 2.1 [33, p. 223]. The neces-
sary conditions for asymptotic normality and asymptotic effi-
ciency to hold in our system are as follows.
1) The expectation, , of observation must exist and
must be bounded:

exists and is clearly bounded by 1 for all
.

2) The partial derivative must be jointly continuous
(in and ) and bounded.
For both QAM (17) and Gaussian (27) signals,

is continuous and bounded for and
.

3) The variance of observation must be contin-
uous in and .
For both QAM and Gaussian signaling,

is continuous and bounded for
and .

4) Fisher information must be continuous, positive
and for each , it must have a unique maximum in .
For both QAM and Gaussian signaling, the Fisher informa-
tion as given in (43) is continuous and positive for

and . Moreover, it has a unique maximum
for each , since is a strictly

concave and continuous function of .
5) For some , must be bounded for all possible
values of and associated rate .
Since , we know that is bounded for
all and for all values of .
Furthermore, the asymptotic efficiency [33, p. 186, 224] of
the estimator is

The asymptotic optimality, i.e.,

as follows as a conse-
quence of Theorem 2.1 [33, p. 223].
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