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Compressive Imaging Using Approximate Message
Passing and a Markov-Tree Prior

Subhojit Som and Philip Schniter

Abstract—We propose a novel algorithm for compressive
imaging that exploits both the sparsity and persistence across
scales found in the 2D wavelet transform coefficients of natural
images. Like other recent works, we model wavelet structure
using a hidden Markov tree (HMT) but, unlike other works, ours
is based on loopy belief propagation (LBP). For LBP, we adopt a
recently proposed “turbo” message passing schedule that alter-
nates between exploitation of HMT structure and exploitation of
compressive-measurement structure. For the latter, we leverage
Donoho, Maleki, and Montanari’s recently proposed approximate
message passing (AMP) algorithm. Experiments with a large
image database suggest that, relative to existing schemes, our
turbo LBP approach yields state-of-the-art reconstruction perfor-
mance with substantial reduction in complexity.

Index Terms—Belief propagation, compressed sensing, hidden
Markov tree, image reconstruction, structured sparsity.

I. INTRODUCTION

I N compressive imaging [1], we aim to estimate an image
from noisy linear observations

(1)

assuming that the image has a representation in some
wavelet basis (i.e., ) containing only a few large
coefficients (i.e., ). In (1), is a known mea-
surement matrix and is additive white Gaussian
noise. Though makes the problem ill-posed, it has been
shown that can be recovered from when is adequately
small and is incoherent with [1]. The wavelet coefficients
of natural images are known to have an additional structure
known as persistence across scales (PAS) [2], which we now
describe. For 2D images, the wavelet coefficients are naturally
organized into quad-trees, where each coefficient at level acts
as a parent for four child coefficients at level . The PAS
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property says that, if a parent is very small, then all of its chil-
dren are likely to be very small; similarly, if a parent is large,
then it is likely that some (but not necessarily all) of its children
will also be large.
Several authors have exploited the PAS property for compres-

sive imaging [3]–[6]. The so-called “model-based” approach [3]
is a deterministic incarnation of PAS that leverages a restricted
union-of-subspaces and manifests as a modified CoSaMP1 [8]
algorithm. Most approaches are Bayesian in nature, exploiting
the fact that PAS is readily modeled by a hidden Markov tree
(HMT) [9]. The first work in this direction appears to be [4],
where an iteratively re-weighted algorithm, generating an
estimate of , was alternated with a Viterbi algorithm, gen-
erating an estimate of the HMT states. More recently, HMT-
based compressive imaging has been attacked using modern
Bayesian tools [10]. For example, [5] usedMarkov-chainMonte
Carlo (MCMC), which is known to yield correct posteriors after
convergence. For practical image sizes, however, convergence
takes an impractically long time, and so MCMC must be ter-
minated early, at which point its performance may suffer. Vari-
ational Bayes (VB) can sometimes offer a better performance/
complexity tradeoff, motivating the approach in [6]. Our experi-
ments indicate that, while [6] indeed offers a good performance/
complexity tradeoff, it is possible to do significantly better.
In this paper, we propose a novel approach to HMT-based

compressive imaging based on loopy belief propagation [11].
For this, we model the coefficients in as conditionally
Gaussian with variances that depend on the values of HMT
states, and we propagate beliefs (about both coefficients and
states) on the corresponding factor graph. A recently proposed
“turbo” messaging schedule [12] suggests to iterate between
exploitation of HMT structure and exploitation of observa-
tion structure from (1). For the former, we use the standard
sum-product algorithm [13], [14], and for the latter, we use
the recently proposed approximate message passing (AMP)
approach [15]. The remarkable properties of AMP are 1) a
rigorous analysis (as with fixed, under i.i.d.
Gaussian ) [16] establishing that its solutions are governed
by a state-evolution whose fixed points—when unique—yield
the true posterior means, and 2) very low implementational
complexity (e.g., AMP requires one forward and one inverse
fast-wavelet-transform per iteration, and very few iterations).
We consider two types of conditional-Gaussian coefficient

models: a Bernoulli–Gaussian (BG) model and a two-state
Gaussian-mixture (GM) model. The BG model assumes that

1We note that CoSaMP is very closely related to the subspace pursuit algo-
rithm previously proposed by Dai and Milenkovic [7]. However, in order to
compare directly with the model-based CoSaMP extensions from [3], we focus
on CoSaMP rather than Subspace Pursuit in this work.
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Fig. 1. Left: The cameraman image. Center: The corresponding transform co-
efficients, demonstrating PAS. Right: An illustration of quad-tree structure.

the coefficients are either generated from a large-variance
Gaussian distribution or are exactly zero (i.e., the coefficients
are exactly sparse), whereas the GM model assumes that the
coefficients are generated from either a large-variance or a
small-variance Gaussian distribution. Both models have been
previously applied for imaging, e.g., the BG model was used in
[5] and [6], whereas the GM model was used in [4] and [9].
Although our models for the coefficients and the corre-

sponding HMT states involve statistical parameters like vari-
ance and transition probability, we learn those parameters di-
rectly from the data. To do so, we take a hierarchical Bayesian
approach—similar to [5] and [6]—where these statistical pa-
rameters are treated as random variables with suitable hyper-
priors. Experiments on a large image database show that our
turbo-AMP approach yields state-of-the-art reconstruction per-
formance with substantial reduction in complexity.
The remainder of the paper is organized as follows. Section II

describes the signal model, Section III describes the proposed
algorithm, Section IV gives numerical results and comparisons
with other algorithms, and Section V concludes.
Notation: Above and in the sequel, we use lowercase bold-

face quantities to denote vectors, uppercase boldface quantities
to denote matrices, to denote the identity matrix, to
denote transpose, and . We use
to denote the probability density2 function (pdf) of random
variable given the event , where often the subscript
“ ” is omitted when there is no danger of confusion. We use

to denote the -dimensional Gaussian pdf with
argument , mean , and covariance matrix , and we write

to indicate that random vector has this pdf.
We use to denote expectation, to denote the prob-
ability of event , and to denote the Dirac delta. Finally,
we use to denote equality up to a multiplicative constant.

II. SIGNAL MODEL

Throughout, we assume that represents a 2Dwavelet trans-
form [2], so that the transform coefficients
can be partitioned into so-called “wavelet” coefficients (at in-
dices ) and “approximation” coefficients (at indices

). The wavelet coefficients can be further partitioned into
several quad-trees, each with levels (see Fig. 1). We de-
note the indices of all coefficients at level of
these wavelet trees by , where refers to the root. In the
interest of brevity, and with a slight abuse of notation, we refer
to the approximation coefficients as level “ ” of the wavelet
tree (i.e., ).

2or the probability mass function (pmf), as will be clear from the context.

Fig. 2. Factor graph representation of the signal model. The variables and
are wavelet states at the roots of two different Markov trees. The variable is
an approximation state and hence is not part of any Markov tree. The remaining
are wavelet states at levels . For visual simplicity, a binary-tree is

shown instead of a quad-tree, and the nodes representing the statistical parame-
ters , as well as those representing their hyperpriors,
are not shown. The nodes represent the conditional pdfs , the
nodes represent the conditional pmfs , and the nodes represent the
prior pmfs .

As discussed earlier, two coefficient models are considered
in this paper: BG and two-state GM. For ease of exposition, we
focus on the BG model until Section III-E, at which point the
GM case is detailed. In the BGmodel, each transform coefficient
is modeled using the (conditionally independent) prior pdf

(2)

where is a hidden binary state. The approxima-
tion states are assigned the a priori activity rate

, which is discussed further
below. Meanwhile, the root wavelet states are as-
signed . Within each quad-tree,
the states have a Markov structure. In particular, the activity of
a state at level is determined by its parent’s activity (at
level ) and the transition probabilities , where
denotes the probability that the child’s state equals 0, given that
his parent’s state also equals 0, and denotes the probability
that the child’s state equals 1, given that his parent’s state also
equals 1. The corresponding factor graph is shown in Fig. 2.
We take a hierarchical Bayesian approach, modeling the

statistical parameters as
random variables and assigning them appropriate hyperpriors.
Rather than working directly with variances, we find it more
convenient to work with precisions (i.e., inverse-variances),
such as . We then assume that all coefficients at the
same level have the same precision, so that for all

. To these precisions, we assign conjugate priors [17],
which in this case take the form

Gamma (3)

Gamma (4)

where for ,

and where are hyperparameters. (Recall that
the mean and variance of are given by and
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, respectively [17].) For the activity rates and transition pa-
rameters, we assume

Beta (5)

Beta (6)

Beta (7)

Beta (8)

where Beta , and where

are hyperparameters. (Recall that
the mean and variance of Beta are given by and

, respectively [17].) Our hyperparameter choices
are detailed in Section IV.

III. IMAGE RECONSTRUCTION

To infer the wavelet coefficients , we would ideally like to
compute the posterior pdf

(9)

(10)

where denotes equality up to a multiplicative constant.
For the BG coefficient model, is specified by
(2). Due to the white Gaussian noise model (1), we have

, where denotes the th row of
the matrix .

A. Loopy Belief Propagation

While exact computation of is computationally pro-
hibitive, the marginal posteriors can be efficiently
approximated using loopy belief propagation (LBP) [11] on the
factor graph of Fig. 2, which uses round nodes to denote vari-
ables and square nodes to denote the factors in (10). In doing so,
we also obtain the marginal posteriors . For now, we
treat statistical parameters , as if they
were fixed and known, and we detail the procedure by which
they are learned in Section III-D.
In LBP, messages are exchanged between the nodes of the

factor graph until they converge. Messages take the form of pdfs
(or pmfs), and the message flowing to/from a variable node can
be interpreted as a local belief about that variable. According to
the sum-product algorithm [13], [14] the message emitted by a
variable node along a given edge is (an appropriate scaling of)
the product of the incoming messages on all other edges. Mean-
while, the message emitted by a function node along a given
edge is (an appropriate scaling of) the integral (or sum) of the
product of the node’s constraint function and the incoming mes-
sages on all other edges, where the integration (or summation)
is performed over all variables other than the one directly con-
nected to the edge along which the message travels. When the
factor graph has no loops, exact marginal posteriors result from
two (i.e., forward and backward) passes of the sum-product al-
gorithm [13], [14]. When the factor graph has loops, however,

Fig. 3. The turbo approach yields a decoupled factor graph. (a) The factor graph
of SSR. Node represents the prior used by SSR during the
th turbo iteration. (b) The factor graph of SSD. Node represents the prior

used by SSD during the th turbo iteration.

exact inference is known to be NP hard [18], and so LBP is not
guaranteed to produce correct posteriors. Still, LBP has shown
state-of-the-art performance in many applications, such as in-
ference on Markov random fields [19], turbo decoding [20],
LDPC decoding [21], multiuser detection [22], and compres-
sive sensing [15], [16], [23], [24].

B. Message Scheduling: The Turbo Approach

With loopy belief propagation, there exists some freedom in
how messages are scheduled. In this work, we adopt the “turbo”
approach recently proposed in [12]. For this, we split the factor
graph in Fig. 2 along the dashed line and obtain the two decou-
pled subgraphs in Fig. 3. We then alternate between belief prop-
agation on each of these two subgraphs, treating the likelihoods
on generated from belief propagation on one subgraph as
priors for subsequent belief propagation on the other subgraph.
We now give a more precise description of this turbo scheme,
referring to one full round of alternation as a “turbo iteration.”
In the sequel, we use to denote the message passed
from node to node during the th turbo iteration.
The procedure starts at by setting the “prior” pmfs

in accordance with the apriori activity rates
described in Section II. LBP is then iterated (to convergence)

on the left subgraph in Fig. 3, finally yielding the messages
. We note that the message can be in-

terpreted as the current estimate of the likelihood3 on , i.e.,
as a function of . These likelihoods are then treated

as priors for belief propagation on the right subgraph, as facili-
tated by the assignment for each . Due
to the tree structure of HMT, there are no loops in right subgraph
(i.e., inside the “ ” super-node in Fig. 3), and thus it suffices to
perform only one forward–backward pass of the sum-product
algorithm [13], [14]. The resulting leftward messages
are subsequently treated as priors for belief propagation on the
left subgraph at the next turbo iteration, as facilitated by the as-
signment . The process then continues for
turbo iterations , until the likelihoods converge or

3In turbo decoding parlance, the likelihood would be referred to
as the “extrinsic” information about produced by the left “decoder”, since it
does not directly involve the corresponding prior . Similarly, the mes-
sage would be referred to as the extrinsic information about
produced by the right decoder.
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a maximum number of turbo iterations has elapsed. Formally,
the turbo schedule is summarized by

(11)

(12)

In the sequel, we refer to inference of using compres-
sive-measurement structure (i.e., inference on the left subgraph
of Fig. 3) as soft support-recovery (SSR) and inference of
using HMT structure (i.e., inference on the right subgraph of
Fig. 3) as soft support-decoding (SSD). SSR details are de-
scribed in the next subsection.

C. Soft Support-Recovery via AMP

We now discuss our implementation of SSR during a single
turbo iteration . Because the operations are invariant to , we
suppress the -notation. As described above, SSR performs sev-
eral iterations of loopy belief propagation per turbo iteration
using the fixed priors . This implies that,
over SSR’s LBP iterations, the message is fixed at

(13)

The dashed box in Fig. 3 shows the region of the factor graph on
which messages are updated during SSR’s LBP iterations. This
subgraph can be recognized as the one that Donoho, Maleki,
and Montanari used to derive their so-called approximate mes-
sage passing (AMP) algorithm [15]. While [15] assumed an
i.i.d. Laplacian prior for , the approach for generic i.i.d. priors
was outlined in [24]. Below, we extend the approach of [24] to
independent non-identical priors (as analyzed in [25]), and we
detail the Bernoulli–Gaussian case. In the sequel, we use a su-
perscript- to index SSR’s LBP iterations.
According to the sum-product algorithm, the fact that

is non-Gaussian implies that is also
non-Gaussian, which complicates the exact calculation of the
subsequent messages as defined by the sum-product
algorithm. However, for large , the combined effect of

at the nodes can be approximated as
Gaussian using central-limit theorem (CLT) arguments, after
which it becomes sufficient to parameterize each message

by only its mean and variance:

(14)

(15)

Combining

(16)

with , the CLT then implies that

(17)

(18)

(19)

The updates and can then be calculated from

(20)

where, using (16), the product term in (20) is

(21)

Assuming that the values satisfy

(22)

which occurs, e.g., when is large and are generated
i.i.d. with variance , we have ,
and thus (20) is well approximated by

(23)

(24)

In this case, the mean and variance of become

(25)

(26)

(27)

where

According to the sum-product algorithm, , the pos-
terior on after SSR’s th-LBP iteration, obeys

(28)

whose mean and variance determine the th-iteration MMSE
estimate of and its variance, respectively. Noting that the
difference between (28) and (20) is only the inclusion of the
th product term, these MMSE quantities become

(29)

(30)

(31)
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(32)

Similarly, the posterior on after the th iteration obeys

(33)

where

(34)

Since , it can be
seen that the corresponding log-likelihood ratio (LLR) is

(35)

Clearly, the LLR and the likelihood function
express the same information, but in different ways.
The procedure described thus far updates variables

per LBP iteration, which is impractical since can be very
large. In [24], Donoho, Maleki, and Montanari proposed, for
the i.i.d. case, further approximations that yield a “first-order”
AMP algorithm that allows the update of only variables
per LBP iteration, essentially by approximating the differences
among the outgoing means/variances of the nodes (i.e.,

and ) as well as the differences among the outgoing
means/variances of the nodes (i.e., and ). The resulting
algorithm was then rigorously analyzed by Bayati and Monta-
nari in [16]. We now summarize a straightforward extension of
the i.i.d. AMP algorithm from [24] to the case of an independent
but non-identical Bernoulli–Gaussian prior (13):

(36)

(37)

(38)

(39)

(40)

where , and are defined as

(41)

(42)

(43)

(44)

For the first turbo iteration (i.e., ), we initialize AMP
using , and for all . For
subsequent turbo iterations (i.e., ), we initialize AMP by
setting equal to the final values of
generated by AMP at the previous turbo iteration. We terminate

the AMP iterations as soon as either or a
maximum of 10 AMP iterations have elapsed. Similarly, we ter-
minate the turbo iterations as soon as either

or a maximum of 10 turbo iterations have elapsed. The
final value of is output as the signal esti-
mate .

D. Learning the Statistical Parameters

We now describe how the precisions are learned. First,
we recall that describes the a priori precision on the ac-
tive coefficients at the th level, i.e., on , where the
corresponding index set is of
size . Furthermore, we recall that the prior on
was chosen as in (4). Thus, if we had access to the true values

, then (2) implies that

(45)

which implies4 that the posterior on would take the form
of where and

. In practice, we do not have access to the true
values nor to the set , and thus we propose to build
surrogates from the SSR outputs. In particular, to update after
the th turbo iteration, we employ

(46)

(47)

and , where and denote the final LLR on

and the final MMSE estimate of , respectively, at the th
turbo iteration. These choices imply the hyperparameters

(48)

(49)

Finally, to perform SSR at turbo iteration , we set the vari-
ances equal to the inverse of the expected precisions,
i.e., . The noise variance is learned
similarly from the SSR-estimated residual.
Next, we describe how the transition probabilities are

learned. First, we recall that describes the probability that a
child at level is active (i.e., ) given that his parent
(at level ) is active. Furthermore, we recall that the prior on

was chosen as in (7). Thus, if we knew that there were
active coefficients at level , of which had active children,
then5 the posterior on would take the form of Beta ,
where and . In practice, we
do not have access to the true values of and , and thus we
build surrogates from the SSR outputs. In particular, to update

after the th turbo iteration, we approximate by the
event , and based on this approximation set (as

4This posterior results because the chosen prior is conjugate [17] for the like-
lihood in (45).
5This posterior results because the chosen prior is conjugate to the Bernoulli

likelihood [17].
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in (47)) and . The corresponding hyperparameters are then
updated as

(50)

(51)

Finally, to perform SSR at turbo iteration , we set
the transition probabilities equal to the expected value

. The parameters , and are
learned similarly.

E. The Two-State Gaussian-Mixture Model

Until now, we have focused on the BG signal model (2). In
this section, we describe the modifications needed to handle the
GM model

(52)

where denotes the variance of “large” coefficients and
denotes the variance of “small” ones. For either the BG or GM
prior, AMP is performed using the steps (36)–(40). For the BG
case, the functions , and are
given in (41)–(44), whereas for the GM case, they take the form

(53)

(54)

(55)

(56)

where

(57)

(58)

(59)

(60)

Likewise, for the BG case, the extrinsic LLR is given by (35),
whereas for the GM case, it becomes

(61)

IV. NUMERICAL RESULTS

A. Setup

The proposed turbo6 approach to compressive imaging was
compared to several other tree-sparse reconstruction algo-
rithms: ModelCS [3], HMT IRWL1 [4], MCMC [5], VB
[6]; and to several simple-sparse reconstruction algorithms:
CoSaMP [8], SPGL1 [26], and BG AMP. All numerical ex-
periments were performed on 128 128 (i.e., )
grayscale images. Unless otherwise mentioned, -level
2D Haar wavelet decomposition was used, yielding
approximation coefficients and individual
Markov trees. In all cases, the measurement matrix had
i.i.d. Gaussian entries. Unless otherwise specified,
noiseless measurements were used. We used normalized mean
squared error (NMSE) as the performance
metric.
We now describe how the hyperparameters were chosen

for the proposed Turbo schemes. Below, we use to denote
the total number of wavelet coefficients at level , and
to denote the total number of approximation coefficients.
For both Turbo-BG and Turbo-GM, the Beta hyperparame-
ters were chosen so that and

with
, and . These informative

hyperparameters are similar to the “universal” recommenda-
tions in [27] and, in fact, identical to the ones suggested in
the MCMC work [5]. For Turbo-BG, the hyperparameters for
the signal precisions were set to and

. This choice is motivated
by the fact that wavelet coefficient magnitudes are known
to decay exponentially with scale (e.g., [27]). Meanwhile,
the hyperparameters for the noise precision were set to

. Although the measurements were noiseless,
we allow Turbo-BG a nonzero noise variance in order to make
up for the fact that the wavelet coefficients are not exactly
sparse, as assumed by the BG signal model. (We note that the
same was done in the BG-based work [5], [6].) For Turbo-GM,
the hyperparameters for the signal precisions

were set at the values of for the BG case,
while the hyperparameters for were set
as and . Meanwhile, the noise variance
was assumed to be exactly zero, because the GM signal

prior is capable of modeling non-sparse wavelet coefficients.
For MCMC [5], the hyperparameters were set in accordance

with the values described in [5]; the values of are
same as the ones used for the proposed Turbo-BG scheme, while

. For VB, the same hyperpa-
rameters as MCMC were used except for and

, which were the default values of hyperparame-
ters used in the publicly available code.7 We experimented with
the values for both MCMC and VB and found that the default
values indeed seem to work best. For example, if one swaps the

6An implementation of our algorithm can be downloaded from http://www.
ece.osu.edu/~schniter/turboAMPimaging
7http://people.ee.duke.edu/~lcarin/BCS.html
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Fig. 4. Reconstruction from observations of a 128 128 (i.e., ) section of the cameraman image using i.i.d. Gaussian .

TABLE I
NMSE AND RUNTIME AVERAGED OVER 591 IMAGES

hyperparameters between VB and MCMC, then the av-
erage performance of VB and MCMC degrade by 1.69 dB and
1.55 dB, respectively, relative to the values reported in Table I.
For both the CoSaMP and ModelCS algorithms, the prin-

cipal tuning parameter is the assumed number of non-zero co-
efficients. For both ModelCS (which is based on CoSaMP) and
CoSaMP itself, we used the Rice University codes,8 which in-
clude a genie-aided mechanism to compute the number of ac-
tive coefficients from the original image. However, since we
observed that the algorithms perform somewhat poorly under
that tuningmechanism, we instead ran (for each image) multiple
reconstructions with the number of active coefficients varying
from 200 to 2000 in steps of 100, and reported the result with
the best NMSE. The number of active coefficients chosen in this
manner was usually much smaller than that chosen by the Rice
procedure.
To implement BG-AMP, we used the AMP scheme described

in Section III-C with the hyperparameter learning scheme de-
scribed in Section III-D; HMT structure was not exploited. For
this, we assumed that the priors on variance and activity
were identical over the coefficient index , and assigned

Gamma and Beta hyperpriors of and
, respectively.

8http://dsp.rice.edu/software/model-based-compressive-sensing-toolbox

Fig. 5. A sample image from each of the 20 types in the Microsoft database.
Image statistics were found to vary significantly from one type to another.

For HMT IRWL1, we ran code provided by the authors with
default settings. For SPGL1,9 the residual variance was set to 0,
and all parameters were set at their defaults.

B. Results

Fig. 4 shows a 128 128 section of the “cameraman” image
along with the images recovered by the various algorithms.
Qualitatively, we see that CoSaMP, which leverages only simple
sparsity, and ModelCS, which models persistence-across-scales
(PAS) through a deterministic tree structure, both perform rel-
atively poorly. HMT IRWL1 also performs relatively poorly,
due to (we believe) the ad-hoc manner in which the HMT
structure was exploited via iteratively re-weighted . The
BG-AMP and SPGL1 algorithms, neither of which attempt to
exploit PAS, perform better. The HMT-based schemes (VB,
MCMC, Turbo-GM, and Turbo-GM) all perform significantly
better, with the Turbo schemes performing the best.
For a quantitative comparison, we measured average perfor-

mance over a suite of images in a Microsoft Research Object
Class Recognition database10 that contains 20 types of images
(see Fig. 5) with roughly 30 images of each type. In particular,
we computed the average NMSE and average runtime on a
2.5-GHz PC, for each image type. These results are reported
in Figs. 6 and 7, and the global averages (over all 591 images)
are reported in Table I. From the table, we observe that the

9http://www.cs.ubc.ca/labs/scl/spgl1/index.html
10We used 128 128 images extracted from the “Pixel-wise labelled image

database v2” at http://research.microsoft.com/en-us/projects/objectclassrecog-
nition. What we refer to as an “image type” is a “row” in this database.
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Fig. 6. Average NMSE for each image type.

Fig. 7. Average runtime for each image type.

proposed Turbo algorithms outperform all the other tested al-
gorithms in terms of reconstruction NMSE, but are beaten only
by CoSaMP in speed.11 Between the two Turbo algorithms,
we observe that Turbo-GM slightly outperforms Turbo-BG in
terms of reconstruction NMSE, while taking the same runtime.
In terms of NMSE performance, the closest competitor to
the Turbo schemes is MCMC,12 whose NMSE is 0.39 dB
worse than Turbo-BG and 0.65 dB worse than Turbo-GM.
The good NMSE performance of MCMC comes at the cost
of complexity, though: MCMC is 15 times slower than the
Turbo schemes. The second closest NMSE-competitor is VB,

11The CoSaMP runtimes must be interpreted with caution, because the re-
ported runtimes correspond to a single reconstruction, whereas in practice mul-
tiple reconstructions may be needed to determined the best value of the tuning
parameter.
12TheMCMC results reported here are for the default settings: 100MCMC it-

erations and 200 burn-in iterations. Using 500MCMC iterations and 200 burn-in
iterations, we obtained an average NMSE of dB (i.e., 0.12 dB better)
at an average runtime of 1958 s (i.e., slower).

Fig. 8. Average NMSE for images of type 1.

showing performance 1.5 dB worse than Turbo-BG and 1.7 dB
worse than Turbo-GM. Even with this sacrifice in performance,
VB is still twice as slow as the Turbo schemes. Among the
algorithms that do not exploit PAS, we see that SPGL1 offers
the best NMSE performance, but is by far the slowest (e.g.,
20 times slower than CoSaMP). Meanwhile, CoSaMP is the
fastest, but shows the worst NMSE performance (e.g., 1.16 dB
worse than SPGL1). BG-AMP strikes an excellent balance
between the two: its NMSE is only 0.22 dB away from SPGL1,
whereas it takes only 2.7 times as long as CoSaMP. However,
by combining the AMP algorithm with HMT structure via the
turbo approach, it is possible to significantly improve NMSE
while simultaneously decreasing the runtime. The reason for
the complexity decrease is twofold. First, the HMT structure
helps the AMP and parameter-learning iterations to converge
faster. Second, the HMT steps are computationally negligible
relative to the AMP steps: when, e.g., , the AMP
portion of the turbo iteration takes approximately 6 s while the
HMT portion takes 0.02 s.
We also studied NMSE and compute time as a function of

the number of measurements, . For this study, we examined
images of Type 1 at 2500, 5000, 7500, 10 000, 12 500. In
Fig. 8, we see that Turbo-GM offers the uniformly best NMSE
performance across . However, as decreases, there is little
difference between the NMSEs of Turbo-GM, Turbo-BG, and
MCMC. As increases, though, we see that the NMSEs of
MCMC and VB converge, but that they are significantly out-
performed by Turbo-GM, Turbo-BG, and—somewhat surpris-
ingly—SPGL1. In fact, at 12 500, SPGL1 outperforms
Turbo-BG, but not Turbo-GM. However, the excellent perfor-
mance of SPGL1 at these comes at the cost of very high
complexity, as evident in Fig. 9.
We have used -level wavelet decomposition so far. We

have also studied the reconstruction performance as a function
of wavelet decomposition depth for images of Type 1. Fig. 10
shows the reconstruction error from observations
for the Bayesian algorithms. We observe minimal improvement
in performance of the algorithms beyond .
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Fig. 9. Average runtime for images of type 1.

Fig. 10. Average NMSE for images of type 1.

V. CONCLUSION

We proposed a new approach to HMT-based compressive
imaging based on loopy belief propagation, leveraging a turbo
message passing schedule and the AMP algorithm of Donoho,
Maleki, and Montanari. We then tested our algorithm on a
suite of 591 natural images and found that it outperformed the
state-of-the-art approach (i.e., variational Bayes) while halving
its runtime.
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