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Joint Scheduling and Resource Allocation in OFDMA
Downlink Systems Via ACK/NAK Feedback

Rohit Aggarwal, C. Emre Koksal, and Philip Schniter

Abstract—In this paper, we consider the problem of joint sched-
uling and resource allocation in the orthogonal-frequency-division
multiple-access (OFDMA) downlink, with the goal of maximizing
an expected long-term goodput-based utility subject to an instan-
taneous sum-power constraint, and where the feedback to the
base station consists only of acknowledgements/negative acknowl-
edgements (ACK/NAKs) from recently scheduled users. We first
establish that the optimal solution is a partially observableMarkov
decision process (POMDP), which is impractical to implement.
In response, we propose a greedy approach to joint scheduling
and resource allocation that maintains a posterior channel distri-
bution for every user, and has only polynomial complexity. For
frequency-selective channels with Markov time-variation, we then
outline a recursive method to update the channel posteriors, based
on the ACK/NAK feedback, that is made computationally efficient
through the use of particle filtering. To gauge the performance
of our greedy approach relative to that of the optimal POMDP,
we derive a POMDP performance upper-bound. Numerical ex-
periments show that, for slowly fading channels, the performance
of our greedy scheme is relatively close to the upper bound, and
much better than fixed-power random user scheduling (FP-RUS),
despite its relatively low complexity.

Index Terms—ACK/NAK feedback, OFDMAdownlink, particle
filters, scheduling and resource allocation.

I. INTRODUCTION

I N the downlink of awireless orthogonal-frequency-division
multiple-access (OFDMA) system, the base station (BS)

must deliver data to a set of users whose channels may vary in
both time and frequency. Since bandwidth and power resources
are limited, data delivery must be carried out efficiently, e.g.,
by pairing users with strong subchannels and by distributing
power across users in the most effective manner. Often, the
BS must also adhere to per-user quality-of-service (QoS) con-
straints. Overall, the BS faces the challenging problem of jointly
scheduling users across subchannels, optimizing their modu-
lation-and-coding schemes, and allocating a limited power re-
source to maximize some function of per-user throughputs.
The OFDMA scheduling-and-resource-allocation problem

has been addressed in a number of studies that assume the
availability of perfect channel state information (CSI) at the
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BS (e.g., [1]–[7]). In practice, however, it is difficult for the
BS to maintain perfect CSI (for all users and all subchannels),
since CSI is most easily obtained at the user terminals, and the
bandwidth available for feedback of CSI to the BS is scarce.
Hence, practical resource allocation schemes use some form of
limited feedback [8], such as quantized channel gains.
In this work, we consider the exclusive use of ACK/NAK

feedback, as provided by the automatic repeat request (ARQ)
[9] mechanism present in most wireless downlinks. We assume
standard ARQ,1 where every scheduled user provides the BS
with either an acknowledgment (ACK), if the most recent data
packet has been correctly decoded, or a negative acknowledg-
ment (NAK), if not. Although ACK/NAKs do not provide direct
information about the state of the channel, they do provide rel-
ative information about channel quality that can be used for the
purpose of transmitter adaptation (e.g., [10] and [11]). For ex-
ample, if an NAK was received for a particular packet, then it
is likely that the subchannel’s signal-to-noise ratio (SNR) was
below that required to support the transmission rate used for that
packet. We consider the exclusive use of ACK/NAK feedback
provided by the link layer, because this allows us to completely
avoid any additional feedback, such as feedback about quan-
tized channel gains.
There are interesting implications to the use of (quantized)

error-rate feedback (like ACK/NAK) for transmitter adap-
tation, as opposed to quantized channel-state feedback. With
error-rate feedback, the transmission parameters applied at a
given time-slot affect not only the throughput for that slot, but
also the corresponding feedback, which will impact the quality
of future transmitter-CSI, and thus future throughput. For ex-
ample, if the transmission parameters are chosen to maximize
only the instantaneous throughput, e.g., by scheduling those
users that the BS believes are currently best, then little will
be learned about the changing states of other user channels,
implying that future scheduling decisions will be compromised.
On the other hand, if the BS schedules not-recently-scheduled
users solely for the purpose of probing their channels, then
instantaneous throughput will be compromised. Thus, when
using error-rate feedback, the BS must navigate the classic
tradeoff between exploitation and exploration [12].
In this work, we propose a scheme whereby the BS uses

ACK/NAK feedback to maintain a posterior channel distri-
bution for every user and, from these distributions, performs
simultaneous user subchannel-scheduling, power-allocation,
and rate-selection. In doing so, the BS aims to maximize an
expected, long-term, generic utility criterion that is a function

1The approach we develop in this paper could be easily extended to other
forms of link-layer feedback, e.g., Type-I and Type-II Hybrid ARQ. For sim-
plicity and ease of exposition, however, we consider only standard ARQ.
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of the per-user/channel/rate goodputs. Our use of a generic
utility-based criterion allows us to handle, e.g., sum-capacity
maximization, throughput maximization under practical mod-
ulation-and-coding schemes, and throughput-based pricing
(e.g., [13]–[15]), as discussed in the sequel. To this end, we
exploit our recent work [16], which offers an efficient near-op-
timal scheme for utility-based OFDMA resource allocation
under distributional CSI. Our use of ACK/NAK-feedback,
however, makes our problem considerably more complicated
than the one considered in [16]. For example, as we show
in the sequel, the optimal solution to our expected long-term
utility-maximization problem is a partially observable Markov
decision process (POMDP) that would involve the solution
of many mixed-integer optimization problems during each
time-slot. Due to the impracticality of the POMDP solution,
we instead consider (suboptimal) greedy utility-maximization
schemes. As justification for this approach, we first establish
that the optimal utility maximization strategy would itself
be greedy if the BS had perfect CSI for all user-subchannel
combinations. Moreover, we establish that the performance
of this perfect-CSI (greedy) scheme upper-bounds the op-
timal ACK/NAK-feedback-based (POMDP) scheme. We then
propose a novel, greedy utility-maximization scheme whose
performance is shown (via the upper bound) to be close to
optimal. Finally, due to the computational demands of tracking
the posterior channel distribution for every user, we propose a
low-complexity implementation based on particle filtering.
We now describe the relation of our work to the existing lit-

erature [17]–[19]. In [17], a learning-automata-based user/rate
scheduling algorithm was proposed to maximize system
throughput based on ACK/NAK feedback while satisfying
per-user throughput constraints. While [17] considered a
single channel, we consider joint user/rate scheduling and
power allocation in a multi-channel OFDMA setting. In [18],
a state-space-based approach was taken to jointly schedule
users/rates and allocate powers in downlink OFDMA systems
under slow-fading channels in the presence of ACK/NAK
feedback and imperfect subchannel-gain estimates at the BS. In
particular, assuming a discrete channel model, goodput maxi-
mization was considered under a target maximum packet-error
probability constraint and a sum-power constraint across all
time-slots. Its solution led to a POMDP which was solved using
a dynamic-program. While the approach in [18] is applicable to
only goodput maximization under discrete-state channels, ours
is applicable to generic utility maximization problems under
continuous-state channels. Furthermore, our approach is based
on particle filtering and lends itself to practical implementation.
In [19], the user/rate scheduling and power allocation problem
in OFDMA systems with quasi-static channels and ACK/NAK
feedback was formulated as a Markov Decision Process and
an efficient algorithm was proposed to maximize achievable
sum-rate while maintaining a target packet-error-rate and a
sum-power constraint over a finite time-horizon. Apart from
assuming a discrete-state quasi-static channel model, the
scope of this work was limited by two other assumptions:
i) in each time-slot, the BS scheduled only one user across all
subchannels for data transmission, and ii) all users decoded
the broadcasted data-packet and sent ACK/NAK feedback to

the BS. In contrast, we consider the scenario where multi-user
diversity is efficiently exploited by scheduling different users
across different subchannels, and only the scheduled users
report ACK/NAK feedback. Furthermore, we consider general
utility maximization under continuous-state time-varying chan-
nels, and propose a polynomial-complexity joint scheduling
and resource allocation scheme with provable performance
guarantees.
The rest of the paper is organized as follows. In Section II,

we outline the system model and, in Section III, we investigate
the optimal scheduling and resource allocation scheme. Due
to the implementation complexity of the optimal scheme, we
propose a suboptimal greedy scheme in Section IV that main-
tains posterior channel distributions inferred from the received
ACK/NAK feedback. In Section V, we show how these poste-
riors can be recursively updated via particle filtering. Numerical
results are presented in Section VI, and conclusions are stated
in Section VII.

II. SYSTEM MODEL

We consider a packetized downlink OFDMA system with
a pool of users. During each time slot, the BS (i.e., “con-
troller”) transmits packets of data, composed of codewords
from a generic signaling scheme, through OFDMA sub-
channels (with ). Each packet propagates through a
fading channel on the way to its intended mobile user, where
the fading channel is assumed to be time-invariant over the
packet duration, but is allowed to vary across packets in a
Markovian manner. Henceforth, we will use “time” when
referring to the packet index. At each time-instant, the BS must
decide—for each subchannel—which user to schedule, which
modulation-and-coding scheme (MCS) to use, and how much
power to allocate.
We assume choices of MCS, where the MCS index

corresponds to a transmission rate of bits per
packet and a packet error rate of the form
under transmit power and squared subchannel gain (SSG)
, where and are constants [20]. Let repre-
sent the combination of user and MCS over subchannel .
In the sequel, we use , and to denote—re-
spectively—the power allocated to, the SSG experienced by,
and the error rate of the combination at time . Addi-
tionally, we denote the scheduling decision by ,
where indicates that user/rate was sched-
uled on subchannel at time , whereas indicates
otherwise. Since we assume that only one user/rate can
be scheduled on a given subchannel at a given time , we
have the “subchannel resource” constraint for
all . We also assume a “sum-power constraint” of the form

for all .
Our goal in scheduling and resource allocation is to

maximize an expected long-term utility criterion that is
a function of the per-user/rate/subchannel goodputs, i.e.,

. Here, denotes the
goodput contributed by user with MCS on sub-
channel at time , which can be expanded as

. Meanwhile, is a generic
utility function that we assume (for technical reasons) is
twice differentiable, strictly-increasing, and concave, with
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. We use to transform goodput
into other metrics that are more meaningful from the per-
spective of quality-of-service (QoS), fairness [21], or pricing
(e.g., [13]–[15]). For example, to maximize sum-goodput,
one would simply use . To enforce fair-
ness across users, one could instead maximize weighted
sum-goodput via , where are
appropriately chosen user-dependent weights. To maxi-
mize sum capacity, i.e., ,
one would choose and

for . To in-
corporate user-fairness into capacity maximization, one could
instead choose , where
again are appropriately chosen user-dependent weights
[20].
For each time , the BS performs scheduling and resource

allocation based on posterior distributions on the SSGs
inferred from previously received ACK/NAK feedback. In
the sequel, we write the ACK/NAK feedback about the
packet transmitted to user across subchannel at time
by , where 1 indicates an ACK, 0 indicates
a NAK, and covers the case that user was not scheduled
on subchannel at time . Thus, in the case of an infinite past
horizon and a feedback delay of packets, the BS would
have access to the feedbacks for time-
scheduling.

III. OPTIMAL SCHEDULING AND RESOURCE ALLOCATION

In this section, we describe the optimal solution to the
problem of scheduling and resource allocation over the finite
time-horizon . For this purpose, some additional
notation will be useful. To denote the collection of all time-
scheduling variables , we use .
To denote the collection of all time- powers , we
use . To denote the collection of all time-
ACK/NAK feedbacks we use , and
to denote the collection of all time- user- feedbacks we use

.
For time- scheduling and resource allocation,

the controller has access to the previous feedback
, scheduling decisions

, and power allocations
. It then uses this knowledge to determine

the schedule and power allocation maximizing the
expected utility of the current and remaining packets:

(1)

where the domain of is
, the domain of is ,

and .
The expectation in (1) is jointly over the squared subchannel
gains (SSGs) . Using the ab-
breviations

and , the
optimal expected utility over the remaining packets
can be written (for ) as

(2)

For a unit-delay2 system (i.e., ), the following Bellman
equation [22] specifies the corresponding finite-horizon dy-
namic program:

(3)

where the second expectation is over the feedbacks . The so-
lution obtained by solving (1) is typically referred to as a par-
tially observable Markov decision process (POMDP) [12].
The definition of implies that the controller has an uncount-

ably infinite number of possible actions. Although this could
be circumvented (at the expense of performance) by restricting
the powers to come from a finite set, the problem would
remain very complex due to the continuous-state nature of the
SSGs . While these SSGs could then be quantized (causing
additional performance loss), the problem would still remain
computationally intensive, since POMDPs (even with finite
states and actions) are PSPACE-complete, i.e., they require
both complexity and memory that grow exponentially with the
horizon [23]. To see why, notice from (3) that the solution of
the problem at every time depends on the optimal solution at
times up to . Because both terms on the right side of (3) are
dependent on , however, the solution of the problem at
time also depends on the solution of the problem at time ,
which in turn depends on the solution of the problem at time

, and so on. In conclusion, the optimal controller is not
practical to implement, even under power/SSG quantization.
Consequently, we will turn our attention to (sub-optimal)

greedy strategies, i.e., those that do not consider the effect of
current actions on future utilities. To better understand their
performance relative to that of the optimal POMDP, we derive
an upper bound on POMDP performance.

A. The “Causal Global Genie” Upper Bound

Our POMDP-performance upper-bound, which we will
refer to as the “causal global genie” (CGG), is based on the

2For the case, the Bellman equation is more complicated, and so we
omit it for brevity.
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presumption of perfect error-rate feedback of all previous
user/subchannel combinations, i.e., .
For comparison, the ACK/NAK feedback available to the
POMDP is a form of degraded error-rate feedback on previ-
ously scheduled user/subchannel combinations. Since, given
knowledge of and for any rate index , the
SSG can be obtained by simply inverting the error-rate
expression , our genie-aided bound
is based, equivalently, on perfect feedback of all previous SSGs

. In the sequel, we use
to denote the collection of all time- SSGs , and
we define .
We characterize the CGG as “global” since it uses feedback

from all user/subchannel combinations, not just the previously
scheduled ones. Although a tighter bound might result if the
(perfect) error-rate feedback was restricted to only previously
scheduled user/subchannel pairs, the bounding solution would
remain a POMDP with an uncountable number of state-action
pairs, making it impractical to evaluate. Evaluating the perfor-
mance of the CGG, however, is straightforward since—under
CGG feedback—optimal scheduling and resource maximiza-
tion can be performed greedily. To see why, notice that, for any
scheduling time , the CGG scheme allocates resources ac-
cording to the following mixed-integer optimization problem:

(4)

Since the choice of
does not depend on the choice of , the previous
optimization problem simplifies to

(5)

In the following lemma, we formally establish that the utility
achieved by the CGG upper-bounds that achieved by the op-
timal POMDP controller with ACK/NAK feedback.
Lemma 1: Given arbitrary past allocations , and

the corresponding ACK/NAKs , the expected total utility
for optimal resource allocation under the latter feedback is no
higher than the expected total utility under CGG feedback, i.e.,

(6)

The proof of the above lemma follows the same steps as the
proof of [11, Lemma 1], which is omitted here to save space. In
the next section, we detail the greedy scheduling and resource
allocation problem and propose a near-optimal solution.

IV. GREEDY SCHEDULING AND RESOURCE ALLOCATION

The greedy scheduling and resource allocation (GSRA)
problem is defined as follows:

(7)

Note that, in contrast to the -horizon objective (1), the greedy
objective (7) does not consider the effect of on future
utility. As stated earlier, we allow to be any real-
valued function that is twice differentiable, strictly-increasing,
and concave, with . Therefore,
and , using to denote the derivative.
Since it involves both discrete and continuous op-

timization variables, the GSRA problem (7) is a mixed-integer
optimization problem. Such problems are generally NP-hard,
meaning that polynomial-complexity solutions do not exist.
Thus, in Section IV-B, we propose a near-optimal algorithm
for (7) with polynomial complexity. To better explain that
scheme, we first describe, in Section IV-A, a “brute force”
optimal solution whose complexity grows exponentially in ,
the number of subchannels.

A. Brute-Force Algorithm

The brute-force approach considers all possibilities of
, each with the corresponding optimal power allocation. Sup-
posing that , the optimal power allocation can be found
by solving the convex optimization problem

(8)

To proceed, we identify the Lagrangian associated with (8) as

(9)

which yields the corresponding dual problem

(10)
where and denote the optimal Lagrange multiplier
and power allocation, respectively.
A detailed solution to (10) is given in [16], and so we describe

only the main points here. First, for a given value of the La-
grange multiplier , it has been shown that the optimal powers
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TABLE I
BRUTE-FORCE STEPS FOR A GIVEN

equal (11), shown at the bottom of the page, where
is defined as the (unique) solution to

(12)

Then, for a given , the optimal value of (i.e., ) obeys
, where

(13)

(14)

and satisfies .
Based on (11)–(14), Table I details the brute-force steps for a

given . In the end, for a specified tolerance , these steps find
and such that and . Using an approxi-

mation of that lies in , the corresponding utility is guar-
anteed to be no less than from the optimal (for the given
). Therefore, by adjusting , one can achieve a performance
arbitrarily close to the optimum. Since
values of must be considered, the total complexity of the
brute-force approach—in terms of the number of times (12)
must be solved—can be shown to be

(15)

which grows exponentially with .

B. Proposed Algorithm

We propose to attack the mixed-integer GSRA problem (7)
using the well known Lagrangian relaxation approach [22]. In
doing so, we relax the domain of the scheduling variables
from the set to the interval , allowing the application
of low-complexity dual optimization techniques. Although the
solution to the relaxed problem does not necessarily coincide
with that of the original greedy problem (7), we establish in the
sequel that the corresponding performance loss is very small,
and in some cases zero.
The relaxed version of the greedy problem (7) is

(16)

where . Al-
though (16) is a non-convex optimization problem due to non-
convex constraints, it can be converted into a convex optimiza-
tion problem by using the new set of variables , where

. In this case, we have

(17)

where denotes the collection of all time- variables
denotes element-wise non-negativity, and

is defined as (18) shown at the bottom of the page.
The modified problem (17) is a convex optimization problem
and can be solved using a dual optimization approach with zero
duality gap. In particular, the dual problem can be written as

(19)

(11)

(18)
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where

(20)

where is the optimal for a given , where
denotes the optimal for a given , and where denotes
the optimal .
A detailed solution to this problem was given in [16], and so

we describe only the main points here. For given values of
and , we have , where [see
(21) shown at the bottom of the page], and where is
defined as the (unique) solution to

(22)

To give equations that govern for a given , we first
define

(23)

(24)

If is a null or a singleton set, then the optimal schedule
on subchannel is given by

(25)

However, if has cardinality greater than
one, then multiple combinations can be
scheduled simultaneously while achieving the op-
timal value of the Lagrangian. In particular, if

,
then [see (26) shown at the bottom of the page], where the
vector lies any-

where in the unit- simplex, i.e., it lives within the

region and satisfies .
Finally, the optimal Lagrange multiplier (i.e., ) is such that

and

(27)

where and were given in (13) and (14), respectively.
For several fixed values of , the proposed algorithm min-

imizes the relaxed Lagrangian (20) over (or, equiva-
lently, over ) to obtain candidate solutions for the orig-
inal greedy problem (7). If, for a given for
all (i.e., the candidate employs at most one user/MCS per
subchannel), then the candidate solution is admissible for the
non-relaxed problem, and thus retained by the proposed algo-
rithm. If, on the other hand, for some (i.e., the
candidate employs more than one user/MCS on some subchan-
nels), then the proposed algorithm transforms the candidate into
an admissible solution as follows:

(28)

The following lemma then states an important property of these
fixed- admissible solutions.
Lemma 2: For any given value of , let the power allocation

be given by (21), let the user-MCS allocation
be given by (28), and let the total power allocation be defined
as . Then,
is monotonically decreasing in .
Lemma 2 (see [16] for a proof) implies that the optimal

value of the Lagrange multiplier (i.e., ) is the one that
achieves the power constraint . To find this
, the proposed algorithm performs a bisection search over

that refines the search interval until
, where is a user-defined tolerance. Then, between

the two schedules , it chooses the one
that maximizes utility, reminiscent of the brute-force algorithm.
Table II summarizes the proposed algorithm.
The complexity of the proposed algorithm—in terms of

number of times (22) is solved—is

(29)

which is significantly less than the brute-force complexity in
(15). Although the proposed algorithm is sub-optimal, the dif-

(21)

(26)
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TABLE II
PROPOSED GREEDY ALGORITHM

ference between the optimal GSRA utility and that at-
tained by the proposed algorithm , as , can
be bounded as follows [16]:

(30)

(31)

In Section VI, we evaluate (30) by simulation, and show that the
performance loss is negligible.

V. UPDATING THE POSTERIOR DISTRIBUTIONS
FROM ACK/NAK FEEDBACK

In this section, we propose a recursive procedure to com-
pute the posterior pdfs required by the proposed
greedy algorithm in Table II when the channel is first-order3

Markov.
Let the time- user- channel be described by the discrete-

time channel impulse response ,
where denotes transpose. The corresponding frequency-
domain subchannel gains are
then given by

(32)

where the OFDMA modulation matrix contains the
first columns of the -DFT matrix. Assuming additive white
Gaussian noise with unit variance, the SSG of subchannel for
user is given by , and so we can write

(33)

3The extension to higher-order Markov channels is straightforward.

with , where is the Dirac
delta and is the th column of the identity matrix. Using the
channel’s Markov property and Bayes rule, we find that

(34)

(35)

where denotes the set-difference operator. Using the fact that
,

along with the fact that is a deterministic function
of (and therefore of ), we then have from (35)
that

(36)

Using the Markov property again, we get

(37)

Recall that , the feedback received about user on
channel at time , takes values from the set , where 0
denotes a NAK, 1 denotes an ACK, and denotes no feedback.
Here, is set to if user was not scheduled on subchannel
at time . Assuming that, conditioned on , the feedbacks

generated by user are independent across subchannels, we
have

(38)

(39)

where can be determined from via (32).
Together, (33)–(39) suggest a method of recursively updating
the channel distributions, using the new feedback obtained at
each time , which is given in Table III.
We now propose the use of particle filtering [24] to circum-

vent the evaluation of multidimensional integrals in the recur-
sion of Table III. Particle filtering is a well-known technique
that approximates the pdf of a random variable using a suitably
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TABLE III
RECURSIVE UPDATE OF CHANNEL POSTERIORS

chosen probability mass function (pmf). In the sequel, for sim-
plicity of illustrations, we assume a Gauss–Markov model of
the form

(40)

where is unit-variance circular Gaussian and
is a known constant that determines the fading rate. Here,
is assumed to be i.i.d. for all . At each time-step , for

, we use particles in the approximations

and

(41)

where denotes the th

(vector) particle, for , and is the
probability mass assigned to the particle based on the ob-
servations received up to time . The steps to recursively com-
pute these particles and their corresponding weights are detailed
in Table IV.
Using the approximation in (41), we note that the expectation

of any function of subchannel-gain, , can be found using

(42)

where is an arbitrary function. Recalling that the SSG
is a deterministic function of the subchannel-gain, , any func-
tion of is also a function of .

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the performance
of the proposed greedy scheduling and resource allocation
from Section IV with the posterior update from Section V.
For this, we consider an OFDMA system with independent
first-order Gauss–Markov channels (40). We assumed, if not
otherwise stated, available users, OFDMA
subchannels, channel fading parameter and im-
pulse response length . We used the modulation matrix

[recall (32)], where contains the
first columns of the unitary -DFT matrix and

ensures that the variance of is unity for all
. Thus, the mean of the SSG was also unity for all
. Since the subchannel-averaged total transmit power

equals
, it is readily seen that the average per-subchannel

TABLE IV
PARTICLE FILTERING STEPS

signal-to-noise ratio is SNR
. For the plots, we aver-

aged 500 realizations, each with 100 time-slots. Of these 100
time-slots, the first 50 were ignored to avoid transient effects.
For illustrative purposes, we assumed uncoded -QAM

signaling with MCS index . In this case, we
have bits per symbol, one symbol per “codeword,”
and one codeword per packet. In the packet error-rate model

, we assumed and
because the symbol error-rate of a -QAM system is well
approximated by in the high-
regime [25] and is when . Throughout, we used the
identity utility (i.e., for all ) so that the
objective was maximization of sum goodput, and we assumed
a feedback delay of .
The performance of the proposed greedy algorithm was

compared to three reference schemes: fixed-power random
user scheduling (FP-RUS), the “causal global genie” (CGG),
and the “non-causal global genie” (NCGG). The FP-RUS
scheme schedules users uniformly at random, allocates power
uniformly across subchannels, and selects the MCS to maxi-
mize expected goodput. The FP-RUS, which makes no use of
feedback, should perform no better than any feedback-based
scheme. The CGG (recall Section III-A) performs optimal
scheduling and resource allocation under perfect knowledge
of all SSGs at the previous time-instant (since ), i.e.,
given at time . From Lemma 1, we know that the
CGG upper-bounds the POMDP. The NCGG is similar to the
CGG, but assumes perfect knowledge of all SSGs at all times,
i.e., given at time . Thus, it provides an upper
bound on the CGG that is invariant to fading rate . The NCGG
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Fig. 1. Typical instantaneous sum-goodput versus time . Here,
SNR 10 dB, , and .

Fig. 2. Average sum-goodput versus the number of particles used to update the
channel posteriors. Here, SNR 10 dB, and .

has a greedy implementation, like the CGG, but without the
conditional expectation in (5).
Fig. 1 shows a typical realization of instantaneous

sum-goodput versus time , when . There, one
can see a large gap between the FP-RUS and the CGG, and
a much smaller gap between the CGG and the NCGG. The
proposed scheme starts without CSI, and initially performs no
better than the FP-RUS. From ACK/NAK feedbacks, however,
it quickly learns the CSI well enough to perform scheduling
and resource allocation at a level that yields sum-goodput much
closer to the CGG than to the FP-RUS.
Fig. 2 plots average sum-goodput versus the number of parti-

cles used to update the posterior distributions in the proposed
greedy scheme (recall Section V). There we see that the per-
formance of the proposed scheme increases with , but shows
little improvement for . Thus, particles were
used to construct the other plots. Remarkably, with only
particles, the proposed algorithm captures a significant portion
of the maximum possible goodput gain over the FP-RUS.

Fig. 3. Average sum-goodput versus fading rate . Here,
SNR 10 dB, and .

Fig. 3 plots average sum-goodput versus the fading rate .
There we see that, at low fading rates (i.e., small ), the pro-
posed greedy scheme achieves an average sum-goodput that is
much higher than the FP-RUS and, in fact, not far from the
CGG upper bound. For instance, at , the sum-goodput
attained by the proposed scheme is 92% of the upper bound
and 170% of that attained by the FP-RUS. As the fading rate
increases, we see that the sum-goodput attained by the pro-

posed scheme decreases, and eventually converges to that of
the FP-RUS. This behavior is due to the fact that, as in-
creases, it becomes more difficult to predict the SSGs using de-
layed ACK/NAK feedback, thereby compromising the sched-
uling-and-resource-allocation decisions that are made based on
the predicted SSGs. In fact, one can even observe a gap between
the CGG and NCGG for large because, even with delayed per-
fect-SSG feedback, the current SSGs are difficult to predict.
Fig. 3 reveals a gap between the proposed scheme and

the CGG bound that persists as . This non-vanishing
gap can be attributed—at least in part—to greedy scheduling
under ACK/NAK feedback. Intuitively, we have the following
explanation. Because the inferred SSG-distributions of not-re-
cently-scheduled users quickly revert to their a priori form,
the proposed greedy algorithm will continue to schedule users
as long as their SSGs remain better than the a priori value.
There may exist, however, not-recently-scheduled users with
far better SSGs who remain invisible to the proposed scheme,
only because they have not recently been scheduled.
Figs. 4 and 5 plot average sum-goodput versus the number

of subchannels (i.e., total bandwidth) . In Fig. 4, the total BS
power is scaled with such that the per-subchannel SNR
remains fixed at 10 dB, whereas, in Fig. 5, the total BS power

remains invariant to the bandwidth , and is set such that
per-subchannel SNR 10 dB for . In both cases, the
average sum-goodput increases with bandwidth , as expected,
since the availability of more subchannels increases not only
scheduling flexibility, but also the possibility of stronger sub-
channels, which can be exploited by the BS. In Fig. 4, where
the per-subchannel SNR is fixed, the sum-goodput increases lin-
early with bandwidth , as expected. In all cases, the proposed
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Fig. 4. Average sum-goodput versus number of subchannels . Here,
SNR 10 dB, , and .

Fig. 5. Average sum-goodput versus number of subchannels . Here,
does not scale with and it is chosen such that SNR 10 dB for

, and .

greedy scheme achieves more than 155% of the sum-goodput
achieved by the FP-RUS.
Fig. 6 plots average sum-goodput versus the number of

available users . It shows that, as increases, the average
sum-goodputs achieved by the NCGG, CGG, and the pro-
posed greedy schemes increase, whereas that achieved by
the FP-RUS remains constant. This behavior results because,
with the former schemes, the availability of more users can be
exploited to schedule users with stronger subchannels, whereas
with the FP-RUS scheme, this advantage is lost due to the
complete lack of information about the users’ instantaneous
channel conditions. Fig. 6 also suggests that, as increases,
the sum-goodput of the proposed greedy scheme saturates.
This can be attributed to the fact that the proposed greedy
algorithm can only track the channels of recently scheduled
users, and thus cannot benefit directly from the growing pool
of not-recently-scheduled users.
In Fig. 7, the top subplot shows average sum-goodput versus

SNR, while the bottom subplot shows the average value of the
bound (30) on the optimality gap of our proposed approach to

Fig. 6. Average sum-goodput versus number of users. In this plot,
SNR 10 dB, , and .

Fig. 7. The top plot shows the average sum-goodput as a function of SNR.
The bottom plot shows the average bound on the optimality gap between the
proposed and optimal greedy solutions (given in (30)), i.e., the average value
of . In this plot,

, and .

the GSRA problem, also versus SNR. The top plot shows that,
as the SNR increases, the proposed greedy scheme continues to
perform much closer to the NCGG/CGG bounds than it does to
the FP-RUS scheme. The bottom plot establishes that the sum-
goodput loss due to the sub-optimality in the algorithm used to
attack the GSRA problem is negligible, e.g., at most 0.0025%
over all SNR.

VII. CONCLUSION

In this paper, we considered the problem of joint sched-
uling and resource allocation in the OFDMA downlink under
ACK/NAK feedback, with the goal of maximizing an expected
long-term goodput-based utility subject to an instantaneous
sum-power constraint. First, we established that the optimal so-
lution to the problem is a partially observable Markov decision
process (POMDP), which is impractical to implement. Conse-
quently, we proposed a greedy approach to joint scheduling and
resource allocation based on the posterior distributions of the
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squared subchannel gain (SSG) for every user/subchannel pair,
which has polynomial complexity. Next, for Markov channels,
we outlined a recursive method to update the posterior SSG
distributions from the ACK/NAK feedbacks received at each
time-slot, and proposed an efficient implementation based
on particle filtering. To gauge the performance of our greedy
scheme relative to that of the optimal POMDP (which is impos-
sible to implement), we derived a performance upper-bound on
POMDP, known as the causal global genie (CGG). Numerical
experiments suggest that our greedy scheme achieves a signifi-
cant fraction of the maximum possible performance gain over
fixed-power random user scheduling (FP-RUS), despite its
low-complexity implementation. For example, a representative
simulation using OFDMA subchannels, avail-
able users, SNR 10 dB, and particles, shows that
the sum-goodput of the proposed scheme is 92% of the upper
bound and 170% of that attained by the FP-RUS (see Fig. 3).
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