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Joint Scheduling and Resource Allocation 1n the
OFDMA Downlink: Utility Maximization Under
Imperfect Channel-State Information

Rohit Aggarwal, Mohamad Assaad,

Abstract—We consider the problem of simultaneous user-sched-
uling, power-allocation, and rate-selection in an orthogonal fre-
quency division multiple access (OFDMA) downlink, with the goal
of maximizing expected sum-utility under a sum-power constraint.
In doing so, we consider a family of generic goodput-based util-
ities that facilitate, e.g., throughput-based pricing, quality-of-ser-
vice enforcement, and/or the treatment of practical modulation-
and-coding schemes (MCS). Since perfect knowledge of channel
state information (CSI) may be difficult to maintain at the base-sta-
tion, especially when the number of users and/or subchannels is
large, we consider scheduling and resource allocation under imper-
fect CSI, where the channel state is described by a generic proba-
bility distribution. First, we consider the “continuous” case where
multiple users and/or code rates can time-share a single OFDMA
subchannel and time slot. This yields a nonconvex optimization
problem that we convert into a convex optimization problem and
solve exactly using a dual optimization approach. Second, we con-
sider the ‘“discrete’’ case where only a single user and code rate is
allowed per OFDMA subchannel per time slot. For the mixed-in-
teger optimization problem that arises, we discuss the connections
it has with the continuous case and show that it can solved exactly
in some situations. For the other situations, we present a bound
on the optimality gap. For both cases, we provide algorithmic im-
plementations of the obtained solution. Finally, we study, numer-
ically, the performance of the proposed algorithms under various
degrees of CSI uncertainty, utilities, and OFDMA system configu-
rations. In addition, we demonstrate advantages relative to existing
state-of-the-art algorithms.

Index Terms—Bisection algorithm, imperfect channel state
information (CSI), mixed integer optimization, orthogonal fre-
quency division multiple access (OFDMA), resource allocation,
scheduling, utility maximization.

I. INTRODUCTION

N the downlink of a wireless orthogonal frequency division
multiple access (OFDMA) system, the base station (BS) de-
livers data to a pool of users whose channels vary in both time and
frequency. Since bandwidth and power resources are limited, the
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BS would like to allocate them most effectively, e.g., by pairing
users with strong subchannels and distributing power in order to
maximize some function of the delivered datarates [1]. Although,
for resource allocation, one would ideally like to have access to
instantaneous channel state information (CSI), such CSl is diffi-
cult to obtain in practice, and so resource allocation must be ac-
complished under imperfect CSI. Thus, in this paper, we consider
simultaneous user-scheduling, power-allocation, and rate-selec-
tion in an OFDMA downlink, given only a generic distribution
for the subchannel signal-to-noise ratios (SNRs), with the goal of
maximizing expected sum-utility under a sum-power constraint.
In doing so, we consider relatively generic goodput-based util-
ities, facilitating, e.g., throughput-based pricing (e.g., [2]-[4]),
quality-of-service enforcement, and/or the treatment of practical
modulation-and-coding schemes (MCS).

In particular, we consider the scheduling and resource al-
location (SRA) problem under two scenarios. In the first sce-
nario, we allow multiple users (and/or MCSs) to time-share any
given subchannel and time-slot. In practice, this scenario oc-
curs, e.g., in OFDMA systems where several users are multi-
plexed within a time-slot, such as IEEE 802.16/WiMAX [5] and
3GPP LTE [6]. Although the resulting optimization problem
is nonconvex, we show that it can be converted into a convex
problem and solved exactly using a dual optimization approach.
Based on a detailed analysis of the optimal solution, we propose
a novel bisection-based algorithm that is faster than state-of-
the-art golden-section based approaches (e.g., [7]) and that ad-
mits finite-iteration performance guarantees. In the second sce-
nario, we allow at most one combination of user and MCS to be
used on any given subchannel and time-slot. This scenario oc-
curs widely in practice, such as in the Dedicated Traffic Channel
(DTCH) mode of UMTS-LTE [8], and results in a mixed-integer
optimization problem. Based on a detailed analysis of the op-
timal solution to this problem and its relationship to that in the
first scenario, we propose a novel suboptimal algorithm that is
faster than state-of-the-art golden-section and subgradient based
approaches (e.g., [7], [9]), and we derive a novel tight bound on
the optimality gap of our algorithm. Finally, we simulate our
algorithms under various OFDMA system configurations, com-
paring against state-of-the-art approaches and genie-aided per-
formance bounds.

We now discuss related work. The problem of OFDMA down-
link SRA under perfect CSI has been studied in several papers,
notably [10]-[15]. In [10], a utility maximization framework
for discrete allocation was formulated to balance system effi-
ciency and fairness, and efficient subgradient-based algorithms
were proposed. In [11], a subchannel, rate, and power alloca-
tion algorithm was developed to minimize power consumption
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while maintaining a total rate-allocation requirement for every
user. In [14], a weighted-sum capacity maximization problem
with/without subchannel sharing was formulated to allocate
subchannels and powers. In [15], nonconvex optimization prob-
lems regarding weighted sum-rate maximization and weighted
sum-power minimization were solved using a Lagrange dual
decomposition method. Compared to the above works, we ex-
tend the utility maximization framework to imperfect CSI and
continuous allocations, and propose bisection-based algorithms
that are faster for both the discrete and continuous allocation
scenarios. Unlike [10]-[15], our utility framework can be applied
to problems with/without fixed rate-power functions!. In addi-
tion, it can be applied to pricing-based utilities (e.g., responsive
pricing and proportional fairness pricing) [2]. Furthermore, we
study the relationship between the discrete and continuous
allocation scenarios, and provide a tight bound on the duality
gap of our proposed discrete-allocation scheme.

The problem of OFDMA downlink SRA under imperfect CSI
was studied in several papers, notably [7], [9], [16], [17]. In [9],
the authors considered the problem of discrete ergodic weighted
sum-rate maximization for user scheduling and resource alloca-
tion, and studied the impact of channel estimation error due to
pilot-aided MMSE channel estimation. In [7], a deterministic
optimization problem was formulated using an upper bound on
system capacity (via Jensen’s inequality) as the objective. Both
optimal and heuristic algorithms were then proposed to imple-
ment the obtained solution. Compared to these two works, we
propose faster algorithms, applicable to a general utility maxi-
mization framework (of which the objectives in [7], [9] are spe-
cial cases), under a more general class of channel estimators,
and for both discrete and continuous subchannel allocations.
Our algorithms are inspired by a rigorous analysis of the optimal
solutions to the discrete and continuous problems. In [16], the
problem of total transmit power minimization, subject to strict
constraints on conditional expected user capacities, was investi-
gated. In [17], the effect of heterogeneous delay requirements
and outdated CSI on a particular discrete resource allocation
problem was studied. In contrast, we consider a general utility
maximization problem that allows us to attack problems that
may or may not be based on fixed rate-power functions, as well
as those based on pricing models. Relative to these works, we
propose faster algorithms for both continuous and discrete allo-
cation problems with provable bounds on their performances.

The remainder of this paper is organized as follows. In
Section II, we outline the system model and frame our opti-
mization problems. In Section III, we consider the “continuous”
problem, where each subchannel can be shared by multiple users
and rates, and find its exact solution. In Section IV, we consider
the “discrete” problem, where each subchannel can support at
most one combination of user and rate per time slot. In Section V,
we compare the performance of the proposed algorithms to refer-
ence algorithms under various settings. Finally, in Section VI, we
conclude.

II. SYSTEM MODEL

We consider a downlink OFDMA system with N subchan-
nels and K active users (N, K € Z*1) as shown in Fig. 1. The
scheduler-and-resource-allocator at the base-station uses the

By a “fixed rate-power function” we mean that, for a given SNR, the achiev-
able rate is a known function of the power.
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Fig. 1. System model of a downlink OFDMA system with /N subchannels and
Kusers. Here, n is the subchannel index.

imperfect CSI to send data to the users, across OFDMA sub-
channels, in a way that maximizes utility. We assume that, for
each user, there is an infinite backlog of data at the base-station,
so that there is always data available to be transmitted. During
every channel use and across every OFDMA subchannel, the
base-station transmits codeword(s) from a generic signaling
scheme, which propagate to the intended mobile recipient(s)
through their respective fading channels. For a given user k,
the OFDMA subchannels are assumed to be noninterfering,
with gains that are time-invariant over each codeword duration
and statistically independent of those for other users. Thus, the
successful reception of a transmitted codeword depends on the
corresponding subchannel’s SNR ~, power p, and modulation
and coding scheme (MCS), indexed by m € {1,...,M}. We
assume that, for user £, MCS m corresponds to a transmission
rate of 7, ,,, bits per codeword and a codeword error probability
of €rm(PY) = agme P for known constants ay ,, and
br,m (see, e.g., [9]). Here, the subchannel SNR 1+ is treated as
an exogenous parameter, so that py is the effective received
SNR.

To precisely state our scheduling and resource allocation
(SRA) problem, some additional notation is useful. To indicate
how subchannels are partitioned among users and rates in each
time-slot, we will use the proportionality indicator Iy, i m.,
where I, i, = 1 means that subchannel n is fully dedicated
to user k at MCS m, and I, i, = O means that subchannel
n is totally unavailable to user k at MCS m. The subchannel
resource constraint is then expressed as >, . Ingm < 1
for all n. In the sequel, we consider two flavors of the SRA
problem, a “continuous” one where each subchannel can be
shared among multiple users and/or rates per time slot (i.e.,
Iy km € ]0,1]), and a “discrete” one where each subchannel
can be allocated to at most one user/rate combination per time
slot (i.e., I, ,m € {0,1}). We will use p,, k. > 0 as the
power that would be expended on subchannel n if it was fully
allocated to the user/rate combination (k, m). With this defini-
tion, the total expended power becomes Zn k.m L ko Prkeym -
Finally, we will use v, to denote the nth subchannel’s SNR
for user k. Although we assume that the BS does not know
the SNR realizations {, x }, we assume that it does know the
(marginal) distribution of each 7, 1.

When subchannel n is fully dedicated to user k£ with
MCS m and power py i m, the goodput g, xm = (1 —
ak,me""'vmi"wvm%v*')rk,m quantifies the expected number
of bits, per codeword, transmitted without error. In the se-
quel, we focus on maximizing goodput-based utilities of
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the form U, i m(gn km), where U, rm(-) is any generic
real-valued function that is twice differentiable, strictly
increasing, and concave, with U, rm(0) < oco. (These
conditions imply U}, ;. ,.(-) > 0 and U/,  (-) < 0.)In
particular, we aim to maximize the expected sum utility,
E{3 ko InkmUn km(Gn,k,m)}, Where the expectation is
taken over the subchannel-SNRs {¥n,x} hidden within the
goodputs. Incorporating a sum-power constraint of Pe,,, our
SRA problem becomes

N K M
A
SRA= max E E E Inkm
{Pn k,m=0}
n=1k=1m=1

{Tn k,m}

XUn,k,m ((1 _ ak7me_bl\-.mpn,k.m"fn.k) Tk,m) }

s.t. ZIn,k,mgl Vn and

k,m

Z In,k,mpn,k,m S Pcon~ (1)

n,k,m

The above formulation is sufficiently general to address a wide
class of objectives. For example, to maximize sum-goodput, one
would simply use U, 1. (g) = g. For weighted sum-goodput,
one would instead choose U, 1..,,(9) = wig with appropri-
ately chosen weights {wg}. To maximize weighted sum ca-
pacity >, 1 Wi I k,1108(1 + pp k,17n,k), as in [9], one would
choose M = ag1 = bg1 = 61 = 1, and set Uy, 1 1(g9) =
wg log(1 — log(1 — g)) for g € [0,1). Commonly used util-
ities constructed from concave functions of capacity log(1 +
pn,k,1’yn,k), such as max-min fairness and the utilities in [10]
and [7], can also be handled by our formulation. For example,
the utility U, .m(9) = 1 — e=**9 (for some positive {wy})
is appropriate for “elastic” applications such as file transfer [3],
[4]. Our formulation also supports various pricing models [2],
such as flat-pricing, responsive pricing, proportional fairness
pricing, and effective-bandwidth pricing.

Next, in Section III, we study the SRA problem for the con-
tinuous case I, . m € [0, 1], and in Section IV we study it for
the discrete case I, ;. € {0,1}.

III. OPTIMAL SCHEDULING AND RESOURCE ALLOCATION
WITH SUBCHANNEL SHARING

In this section, we address the SRA problem in the case
where I, xm € [0,1] V(n,k, m). Recall that this problem
arises when sharing of any subchannel by multiple users
and/or multiple MCS combinations is allowed. We refer to this
problem as the “continuous scheduling and resource allocation”
(CSRA) problem. Defining I as the N x K x M matrix with
(n, k, m)™ element as I, k.m and the domain of I as

Tesra = Q 1 T € [0, 1]V FM N 4 <10

k.m
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the CSRA problem can be stated as
CSRA = {pnTln?zo} - Z I kym

TeZcsra n,k,m

x E {Un,k,m ((1 - ak"me_bk,mpn,k,m’Yn,k) rk,m)}
s.t. Z In,k,m pn,k,m S Pcon- (2)

n,k,m

This problem has a nonconvex constraint set, making it a non-
convex optimization problem. In order to convert it into a convex
optimization problem, we write the “actual” power allocated to
user k at MCS m on subchannel n as Ty, k,m = Ln k,m Dnk,m-
Then, the problem becomes

CSRA = ‘ Inin>0} § In,k,m Fn,k,m(ln,k,m7$n,k,m)
Tk 2
I€Tcegy Mokm

s.t. Z Tn,km S Pcon-, (3)

n,k,m

where F,, 1 (-, ) is given by (4), shown at the bottom of the
page. The modified problem in (3) is a convex optimization
problem with a convex objective function and linear inequality
constraint. Moreover, Slater’s condition is satisfied at I, i n», =
s and Ty o = 281, 1 n. Yn, k, m. Hence, the solution
of (3) is the same as that of its dual problem (i.e., zero duality
gap) [18]. Let us denote the optimal I and z for (3) by Itega
and z{gga, respectively, and let pegg, be the corresponding p.

Writing the dual formulation, using 4 as the dual variable, the
Lagrangian of (3) is

L(/J,,I,.’E) = Z In,k,m Fn,k,m(In,k,Wu xn,k,m)

n,k,m
+ ( § Tn,k,m
n,k,m

where we use « to denote the N x K X M matrix [z, k m]. The
corresponding unconstrained dual problem, then, becomes

- Pcon) w, (5)

max  min L(p,I,x) =T§3‘12}11AL<M$ (1, 1))

I€Zcora
= max L(p, I"(p), =" (p, I* (11)))
n>0

= L T () (0 T (1)), (6)

where £ > 0 means that ©,, ., > 0Vn, k, m, z*(p, I) denotes
the optimal z for a given p and I, I* (i) € Zcsra denotes the
optimal I for a given y, and p* denotes the optimal .

In the next few subsections, we will optimize the Lagrangian
according to (6) w.r.t. z, I, and p in Sections III-A, -B, and
-C, respectively. We then propose an iterative algorithm to solve
CSRA problem in Section III-D. Finally, we discuss some im-
portant properties of the CSRA solution in Section III-E.

Fn,k,m (In,k,m,7 xn,k,m)

{ B {Un o (1= @™ttt Tk ) 1 )Y Ly 70 @
0

otherwise.
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A. Optimizing Over Total Powers, x, for a Given p and
User-MCS Allocation Matrix T

The Lagrangian in (5) is a convex function of z. Therefore,
any local minimum of the function is a global minimum. Cal-
culating the derivative of L(p,I,x) w.rt. z, km, we get (7),
shown at the bottom of the page. Clearly, if I, x ,» = 0, then

L(-,-,) is anincreasing? function of 2, s, since y > 0. There-
. _ ~ or(ul.T) .

fore, z7 1 o, (p, I) = 0. Butiif Iy j, 1 # 0, then =522 is an

increasing function of x, i m since U] . .. (-) is a decreasing

function of zy, i . Thus, we have

w— ak,mbk,mrk,m
/ =bi,m@n k,mVn,k/In,k,m
B A (S

><,Ymke*bk.mwn.k,m’yn,k/fn.k,m} =0 (8)
for some positive T, k., if and only if 0 < pu <
ak,mbk,m"‘k,ng’k,m((l ak,m)""k,m)E{Wn,k}- Therefore
[see (9) at the bottom of the page], where &, i (1, I) satisfies

n = a/k,mbk,mrk,m
/ bt (D) / T e
% E{ - ((1 — Qg e Ik (L)Y ke / T i, )Tk,m)

X,ynvke_bk,m:i’n.k,'m(N:I)'Yn,k/ln.k.nw} . (10)
From (10), we observe that Z,, k. (16, I) = Puke,m (14)Ln e ms
where pn, i m (1) satisfies

n= ak,mbk,mTk,m
/ —bk,mPn,k,m n,k
% E{ kem ((1 — Ak, me kom Pk, m ()Y k) Tk,m)

X,yn’ke_bk,vni)ﬂ,Ic,'m,()u‘)'\/n,k } ) (11)

Combining the above observations, we can write for any I €
Zcsra and (7‘L, k, m) that

x:,k,m(u’ I) = In,k,m p:,,k,m,(/l')a (12)

2We use the terms “increasing” and “decreasing” interchangeably with “non-
decreasing” and “nonincreasing,” respectively. The terms “strictly increasing”
and “strictly decreasing” are used when appropriate.
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p
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Fig.2. Prototypical plotof p; %.m (f2) as a function of y. The choice of system
parameters are the same as those used in Section V.

where [see (13) at the bottom of the page], and p,, (1) satis-
fies (11). Note that if such a p,, 1 m (1) exists that satisfies (11),
then it is unique. This is because, in (11), U, ; ,.(-) is a con-
tinuous decreasing positive function and e~ tmPr.km (1) ¥k jg
a strictly decreasing continuous function of P, k. (1), which
makes the right-hand side (RHS) of (11) a strictly decreasing
continuous function of ﬁn,k,m( ). Therefore, in the domain of
its existence, P k,m (1) is unique and decreases continuously
with increase in . Consequently, = , . (u,I) is a decreasing
continuous function of p. Fig. 2 shows an example of the varia-
tion of p; ;.. (1) wr.t. p.

B. Optimizing Over User-MCS Allocation Matrix I for a
Given p

Substituting z*(u, I) from (12) into (5), we get the La-
grangian [see (14) at the bottom of the next page], where
I, = {I,, k,m Y(k,m)}. Since the above Lagrangian contains
the sum of L, (u, I,,) over n, minimizing L., (u, I,,) for every
n (over all possible I,,) minimizes the Lagrangian. Recall that
L, (p,I,,) is alinear function of {I,, j .., Y(k, m)} that satisfies
Zk’m I, k.m < 1.Therefore, L,,(, I,,) is minimized by the I,

oL I 2 if In,k,m =0
OUILZ) _ 3 bt E Ul g (1= g bt D) . ™
O ko " otherwise.
o X T m) Vi ke_bk,'m,mn,k','nl’Yn,k/In,k','m,}
* L (u I) — {jn,k,m(l/qI) if 0 S 12 S ak:mbkamrk7mU7/1,k,m ((1 — ak,m)rkym) E{'Yn,k} (9)
i, mART 0 otherwise
P () = {ﬁn,k,m(u) fo<u< ak,mbk,mTk,mUﬁ,k,m ((1- ak,m) Tk,m) E{’Yn,k} (13)
R 0 otherwise
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that gives maximum possible weight to the (£, m) combination
with the most negative value of V}, j (1, pJ; ., (12)). To write
this mathematically, let us define, for each p/and subchannel
n, a set of participating user-MCS combinations that yield the
same most-negative value of Vj, xm (i, 0} 1 (1)) over all
(k,m) as follows: -

Sn(p) £ {(k,m : (k,m)

= argmin Vn,k’,m’ (/1' p:,,k’,m’ (/1’))7 and
(k',m’)

Vnak’,m(/jf?p;kz,k,m(ﬂ)) S 0} . (15)

If S, (p) is a null or a singleton set, then the optimal allocation
on subchannel n is given by

I (i) = { 1 if(k,m) € Sp(p)

. (16)
0 otherwise.

However, if |S,(u)] > 1 (where |S,(n)| denotes the
cardinality of S,(u)), then multiple (k,m) combina-
tions contribute equally towards the minimum value
of L,(p,I), and thus the optimum can be reached by
sharing subchannel n. In particular, let us suppose that
Sn(p) = {(k1(n),mi(n)),....(Ks, ) (n),m)s, () (7))}
Then, the optimal allocation of subchannel n is given by
(17), shown at the bottom of the page, where the vector
(I"7k1(n)7m1(n)7"'7In7k|sn(u)\(n)7m|sn(#)|(n)) is any point in
the unit-(|S,(p)] — 1) simplex, i.e., it belongs to the space
[0,1]!5 (W] and satisfies

|Sn(ﬂ)‘

> Tnkimymi(m) = 1.

=1

(18)

C. Optimizing Over

In order to optimize over i, we can calculate the Lagrangian
optimized for a given value of p as

L (T (). 2" (1, I" (1))
= —lj,Pcon + Z I:;,k,m(y’)

n,k,m
% [—E {Un,k,m ((1 _ akyme_bk'mp'”'k'm(”)%hk)Tk,m>}

17 b ()] (19)
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and then maximize it over all possible values of ;2 > 0 to find
p*. Notice from (16) — (18) that we have ), I, (u*) =1
for at least one n. Otherwise, I* (;*) = 0 which, éléarly, is not
the optimal solution. Therefore, u* > pmin > 0, where

Pomin = MIN Qg bk mTh,m

n,k,m
x E {Urlz,k,m ((1 _ ak’me_bk,mLPcon'Yn.k) Tk,m)
X,yn’ke_bk,nv,Pcon"/nJc} (20)

is obtained by taking Py k.m(p) — Peon for all (n,k,m)
in the right side of (11). Since p} , ,.(1) is a decreasing
continuous function of x4 (seen in Section III-A), we have
>k T e (0, ) > Peon forall I # 0 and g < fimin. We
can also obtain an upper bound p* < fimax, Where

Mmax = max ak,mbk,mrk,m

X Urlz,k,m((l - ak,M)rhm)E{'Yn,k}

is obtained by taking P km(s) — O in the right side of
(11). Thus, for any & > fmax, we have that z* . (u,I) =
0 Vn, k,m,I. Since the primal objective in (3) is’c’ertainly not
maximized when zero power is allocated on all subchannels,
we have p* € [fimin; fimax] C (0,00).

At the optimal y, i.e., pu*, if we have |S,,(1*)| < 1 Vn, then
the optimal CSRA allocation, I¢sga, equals I*(p*) and can be
calculated using (16). Moreover, the optimal power allocation
DPEora allocates

1L}

2y

i3, () £ 0

22
otherwise 22)

pz,k,m,CSRA = {g"’k’m(u )
to every possible (n, k, ) combination. However, if for some
n, we have | S, (p*)| > 1, then ambiguity arises due to multiple
possibilities of I*(p*) obtained via (17). In order to find the op-
timal user-MCS allocation in such cases, we use the fact that the
CSRA problem in (3) is a convex optimization problem whose
exact solution satisfies the sum-power constraint with equality,
ie.

Z x:;,k,m (/1’*, I*(/j‘*»
n,k,m

= Z I;,k,m(p’*)p:,,k,m(ﬂ'*) = Pcon~ (23)

n,k,m

This is because p* > pmn > 0 (shown earlier)
and the complementary slackness condition gives that
(T o T (1 T (07)) = Poon) = 0. Now, recall
that the total power allocated to any subchannel n at

Voo ks (1527, 1 (1))
N

Lot (1. 1) = =#Peon + 323 ko | =B {Unton (1= e 5t 0020 ) i) )| (14)
n k,m
L, (I"vIvz)
o) = {én,ki(n),mi(n) if (k,m) = (ki(n), mi(n)) for some i € {1,...,[S.(p)|} (a7

otherwise
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pt s len " )I n k;(n),m;(n) p;yki(n)qu_(n)(u*) where
{Ln ki), ml(n)}‘ Sn gatisfies (18). This quantity is
dependent on the choice of values for {1, i, (), ml(n)}ls” el

and takes on any value between an upper and lower bound
given by the following equation:

m}n p:,ki(n),mi(n)(u*)
IS (1)1

Z Lo ) m

(24)

Note that the existence of at least one I = I (.
ZZ n,k;(n),m;(n) pn ki (n),mz(n)( ) = Peon

is guaranteed by the optimality of the dual solution (of our
convex CSRA problem over a closed constraint set). Therefore,
we necessarily have ) min; p;,h (n) m7(n)(u*) < P.n, and
>, max; pn i (), mq(n)( p*) > Pen. In addition, all choices
of user-MCS allocatlons I (p*) given by (17) that satisfy the
equality > I* (u*) pi (%) = Peon, are optimal
for the CSRA problem. o

In the case that the optimal solution I*(x*) is nonunique, i.e.,
| Sy (p*)| > 1 for some n, then one instance of I*(p*) can be
found as follows. For each subchannel n, define

*) satisfying
(25)

(Bmax(10, 1), Mimax(m, 1)) 1= argmax py, 1. n) my(n)(K)

Z (26)
(min (10, 107°)y Momin (n, 1)) 2= argminpy, i ) . () (1)

l @7)

and find the value of A € [0, 1] for which

A (Z pn,kmin(n,u*),mmin(n,p*)(/1/*)) + (1 — )\)
X <Zpn,kmx(n,y*),mmax(n,p*)(/1'*)> = Peon  (28)

i.e. [see (29) at the bottom of the page]. Now, defining two spe-
cific allocations I™"(p*) and I™®(u*) as
I m (1)
— 1 (k,m) = (kmin(n7ﬂ*)7mmin(nvﬂ*))
0 otherwise,

max

n,k,m(u*)

(k,m) = (kmax(n, 1), Mmax(n, 1))

1
- {0 otherwise, (30)

respectively, the optimal user-MCS allocation is given by
Iigra = M™(p*) + (1 — )I™(u*). The corresponding
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optimal power allocation is then given by (22). It can be seen
that this solution satisfies the subchannel constraint as well as
the sum power constraint with equality, i.e.

E nkm

n,k,m

pn k m(p’*)

Z wnkm /J I*( *)):PCOH

n,k,m

Two interesting observations can be made from the above
discussion. First, for any choice of concave utility functions
Un k,m( ), there exists an optimal scheduling and resource al-
location strategy that allocates each subchannel to at most 2
user-MCS combinations. Therefore, when allocating N sub-
channels, even if more than 2]V user-MCS options are available,
at most 2N such options will be used. Second, if I™"(p*) =
I™(p*), then the exact CSRA solution allocates power to at
most one (k, m) combination for every subchannel, i.e., no sub-
channel is shared among any two or more user-MCS combina-
tions. This observation will motivate the SRA problem’s solu-
tion without subchannel sharing in Section I'V.

D. Algorithmic Implementation

In practice, it is not possible to search exhaustively over i €
[£4min, f4max]- Thus, we propose an algorithm to reach solutions in
close (and adjustable) proximity to the optimal. The algorithm
first narrows down the location of ;* using a bisection-search
OVET [fimin, max] for the optimum total power allocation, and
then finds a set of resource allocations (I, z) that achieve a total
utility close to the optimal.

To proceed in this direction, with the aim of developing a
framework to do bisection-search over y, let us define the total
optimal allocated power for a given value of u as follows:

Xior Z Ty, Je,m (1, T* (1)),

n,k,m

€1y

where I'* (1) and z* (p, I (1)) [defined in (6)] minimize the La-
grangian [defined in (5)] for a given p. The following lemma
relates the variation of X%, (1) with respect to .
Lemma I: The total optimal power allocation, X5, (1), is a
monotonically decreasing function of p.
Proof: A proof sketch is given in Appendix B. For the full
proof, see [19]. [ |
A sample plot of X (p) and L(p, I"(p), 2" (p, I" (1))
as a function of p is shown in Fig. 3. From the figure, three
observations can be made. First, as p increases, the optimal
total allocated power decreases, as expected from Lemma 1.
Second, as expected, the Lagrangian is maximized for that
value of p at which X7, (1) = Peon. Third, the optimal total
power allocation varies continuously in the region of y where
the optimal allocation, I*(y), remains constant and takes a
jump (negative) when I* (1) changes. This happens for the
following reason. We know, for any (n, k, m), thatp}, , ., (1) is

_Pcon

\ = don Pr ko (1, 10% ) Mmax (1% (1*)
don P, ke (10,117 )y (12, 1) (n*

: (29)
= 2o PR (o) i () (1)
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Fig.3. Prototypical plot of X7y (1) and L(p, I*(p), & (p, I*(p))) as afunc-
tion of pt for N = K = 5, and Pcon = 100. (See Section V for details.) The
red vertical lines in the top plot show that a change in I* (p) occurs at that .

a continuous function of x. Thus, when the optimal allocation
remains constant over a range of p, the total power allocated,

Yok L ()pE 4 (1) also varies continuously with .
However, at the point of discontinuity (say /), multiple optimal
allocations achieve the same optimal value of Lagrangian. In
other words, |S,,(jz)] > 1 for some n. In that case, X5, (f) can
take any value in the interval

Z pZ,kman(n),mmin(n) (i), Z pz,kmx(n),mmx(n) (1)

while achieving the same minimum value of the Lagrangian at
1. Applying Lemma 1, we have

an Frnpe () smae() (1) = Xt (72)

2 Zpn,kminw),mmin(n)(/‘)
> )(t*ot(/1 + Az)

Xtot p— A

for any Ajp,As > 0, causing a jump of
(Z pn kmm(n),mmm(n)( ) Z pn kmax(n),mmax(n)(M)) in the
total optlmal power allocation at fi.

Lemma 1 allows us to do a bisection-search over p since
X, () is adecreasing function of 14 and the optimal is the one
at which X7, (1) = Peon. In particular, if u* € [u, fi] for some

 and fi, then w e [H 2 | th*m(IH—H) > Peon, Otherwise

w* e [u ] Using this concept, we propose an algorithm in
Table I that finds an interval [y, f1], such that u* € [, fi] and
i — i < Kk, where k (> 0) is a tuning-parameter, and allocates
resources based on optimal resource allocations at . and .

The following lemma characterizes the relationship between
the tuning parameter  and the accuracy of the obtained solu-
tion.

Lemma 2: Let p* € [u, 1] be the point where the proposed
CSRA algorithm stops, and the total utility obtained by the pro-
posed algorithm and the exact CSRA solution be UCSRA(N, i)
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and Ufgga, respectively. Then, 0 < Ufegp — UCSRA(E; ) <
(1 = ) Peon.
Proof: For proof, see Appendix C. [ |
Since our algorithm stops when @ — i < K, from Lemma 2,
the gap between the obtained utility and the optimal utility is
bounded by Py, . Moreover, lim,,_, UCSRA(M7 B) = Ulsra-
The proposed algorithm requires at most [log, (#me—Ftnin )]
iterations of y in order to find fi, and g such that o — p < &
and p* € [p, i]. Therefore, measuring the complexity of the
algorithm by the number of times (11) must be solved for a given

(n, k,m, p), the proposed algorithm takes at most
NKM ’710g2 </1'max — Hmin >—‘
K

steps. We use this method of measuring complexity because it
allows us to easily compare all algorithms in the paper. Note
that, for a given x, the number of steps taken by the proposed
bisection algorithm is proportional to log, .

(33)

E. Some Properties of the CSRA Solution

In this subsection, we study a few properties of the CSRA
solution that yield valuable insights into the optimal resource
allocation strategy for any given value of Lagrange multiplier,
p. Letus fix a i € [fimin, max]- Now, if |Sy ()] < 1,Vn, then
the optimal allocation at fi, I*(j1), is given by (16), which re-
veals that I*(f1) € {0, 1}V *EXM Tn this case, the definition of
Tcsra implies that every subchannel is allocated to at most one
user-MCS combination. Note that this is precisely the constraint
we impose in the later part of this paper. Let us now consider the
case where it is possible that |.S,,(z)| > 1 for some n.

Lemma 3: For any i > 0, there exists a 6 > 0 such that for
all p € (fr — 6, s+ 6) \ {/i}, there exists an optimal allocation,
I (1) € Zcsra, that satisfies I (i) € {0, 1}VXEXM More-
over, if py, o € (ji — 6, ji), then there exists I*(p1), I (pu2) €
{0, 1}V XEXM gych that I* (1) = I*(12). The same property
holds if both p1, o € (fi, fi + 6).

Proof: A proof sketch is given in Appendix D. For the full
proof, see [19]. [ |

In conjunction with (12), the above lemma implies that the
discontinuities in Fig. 3 are isolated and that, around every point
on the horizontal axis, there is a small region over which X, (1)
is continuous. Hence, the number of such discontinuities are, at
most, countable.

IV. SCHEDULING AND RESOURCE ALLOCATION (SRA)
WITHOUT SUBCHANNEL SHARING

In this section, we will solve the SRA problem (1) under the
constraint that I, . »,, € {0, 1},1i.e., that each subchannel can be
allocated to at most one combination of user and MCS per time
slot. We will refer to this problem as the “discrete scheduling
and resource allocation” (DSRA) problem. Storing the values
of I, k,m in the N x K x M matrix I, the DSRA subchannel
constraint can be expressed as I € Zpsra, Where

Tosra i= T+ 1€ {0, 1}V KM N 4w <1V

k,m
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TABLE 1
ALGORITHMIC IMPLEMENTATIONS OF THE PROPOSED ALGORITHMS

Proposed CSRA algorithm

Brute force algorithm for a given I

— + iz
1) Set pt = pmin, i = fimax. and p = £25.

2) For each subchannel n =1,..., N:
a) For each (k,m),
i) Use (11) and (13) to calculate py, ;. ,,, (1)
ii) Use (14) to calculate Vi g,m (14, Py g.m (1))-
b) Calculate S, (p) using (15).
3) If [Sn(p)| < 1 Vn, then find I*(p) using (16), else use
(30) and set I™(p) = I™ ().
4) Find &*(u, I" (1)) using (12) and calculate Xy () =
Zn,k,m m;,k,m(:u‘z I*([.L))
5) If Xiot(1) > Poon, set p = pu, otherwise set i = .
6) If i — p > K, go to step 2), else proceed.
7) Now we have p* € [u, ] and i — p < w. If Xig(p) #

% (= Xt (1) — Poon
Xt (1), set A = W else set A = 0.

8) The optimal user-MCS allocation is given by Tospa =
A" () + (1 — A\)I*(p) and the corresponding opti-
mal x is given by @&cspa = Az (i, I*(w)) + (1 —
A)x* (u, I* (). The optimal power allocation, Pegras
then can be found using

2 k.m CSRA

if I 0
L, i, m,CSRA n.k,m,CSRA 7&

otherwise,

(32)

Pr,k,m,CSRA=

where I, km,csra and &, p m,csrRa denote the
(n,k,m)”‘ component of Tcsma and &cspa, respec-
tively. Notice that the obtained solution satisfies the
sum-power constraint with equality.

1) Initialize £ = Umin and i = fmax.
2) Setp =&
3) For each (n, k,m), use (39)-(41) to obtain x7, x ., (1)
4) Find X;o(I, i) using (42).

5) If Xi(I, i) > Peon, set u = u, otherwise set i = p.
6) If o —p <k, go to step 7), otherwise go to step 2).

* - * XZ (I’ >_P00n
7) I XL 1) # Xig(X, ), set A = g= 8 5o,
otherwise set A = 0. -

8) Set fir = i. The best actual power allocation is given
by &r = Az (jz) + (1 — M\)="(p) and the best power
allocation, Py, is given by

p Pt i Lo £ 0
n,k,m,I — v .
0 otherwise,

|I
=

where P km.1 and &, g1 are the (n,k,m)" ele-
ment of p; and &y, respectively. The corresponding
Lagrangian, found using Ly = Lz (ji, p*(u)), gives the
optimal Lagrangian value.

Proposed DSRA algorithm

1) Use the algorithmic implementation of the proposed
CSRA solution to find I*(u) and I™(fi), where the
optimal i for the CSRA problem, i.e., pu* lies in the set
[E,/]], n — k<K, and I*(E),I*(ﬂ) € Ipsga.-

2) For both I = I'"(p) and I = I"(jz) (since they may
differ), calculate p; and L 1 as described for the brute
force algorithm. .

3) Choose Ipsga = argminre yr« (), 1+()} Ly as the
useF-MCS allocation gnd Posra = Pipgq, 3 the as-
sociated power allocation.

Then, using (1), the DSRA problem can be stated as

DSRA := max g Ly kom
{Prn,k,m 20}
IeTpsga  Moksm

< E {Un,k,m ((1 _ akyme_bk.ﬁzpn,k.ﬁz"/n.k) Tk,m)}

s.t. Z In kmPnkm < Poon- (34)

n,k,m

Let us denote the optimal I and p for (34) by Ipgga and pega.
respectively.

The DSRA problem is a mixed-integer programming
problem. Mixed-integer programming problems are generally
NP-hard, meaning that polynomial-time solutions do not exist
[20]. Fortunately, in some cases, such as ours, one can ex-
ploit the problem structure to design polynomial-complexity
algorithms that reach solutions in close vicinity of the exact
solution. We first describe an approach to solve the DSRA
mixed-integer programming problem exactly by exhaustively
searching over all possible user-MCS allocations in order to
arrive at the optimal user, rate, and power allocation. We will

see that this “brute-force” approach has a complexity that
grows exponentially in the number of subchannels. Later, we
will exploit the DSRA problem structure, and its relation to
the CSRA problem, to design an algorithm with near-optimal
performance and polynomial complexity.

A. Brute-Force Algorithm

Consider that, if we attempted to solve our DSRA problem
via brute-force (i.e., by solving the power allocation subproblem
for every possible choice of I € Zpsra), we would solve the
following subproblem for every given I.

Z In,k,m

n,k,m

x E {Un,k’,m ((1 - ak,me_bk'mpn’k'mryn’k) 7nk'.,m)}

s.t. Z InJc,m pn,k,m S Pcon- (35)

n,k,m

max
{Pn k,m >0}

Borrowing our approach to the CSRA problem, we could
transform the variable p, ; n iNtO Ty k., via the relation:
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ZTn,kym = In k,m Pn,k,m. The problem in (35) can, therefore,
be written as

min § In,k,m Fn,k,m(In,k,mvwn,k,m)

{zn,k,m>0}
n,k,m

s.t. Z Tnkym < Peon,  (36)

n,k,m

where F), i m(In.k,m, Zn k,m) is defined in (4). This problem is
a convex optimization problem that satisfies Slater’s condition
[18] when zy, i m = Peon/2NKM for all n, k, m. Therefore,
its solution is equal to the solution of its dual problem (i.e., zero
duality gap) [18]. To formulate the dual problem, we write the
Lagrangian of the primal problem (36) as

Ll(ﬂﬂz) = Z In,k,an,k,m(In,k,m>xn,k,m)

n,k,m

+ § Tn,k.m —

n,k,m

Pcon M? (37)

where 1 is the dual variable and z is the N x K x M matrix con-
taining actual powers allocated to all (n, k,m) combinations.
Note that the Lagrangian in (37) is exactly the same as the La-
grangian for the CSRA problem in (5). Using (37), the dual of
the brute-force problem can be written as

inLy(p,x) = Li(p, z*
maxmin Ly(p, z) = max L(, " (1))

=L (H;E*(IL;)) ) (38)

for optimal solutions y§ and «*(4). Minimizing Ly (i, =) over
{z > 0} by equating the differential of L;(y, ) W.r.t. T, g m
to zero (which is identical to the approach taken in Section III-A
for the CSRA problem), we get that, for any subchannel n

x:z,k,m(/j’) = In,k,m p:;,k,m(/j’)' (39)

Here [see (40) at the bottom of the page], and p,, k,m (1) is the
unique? value satisfying (11), repeated as (41) for convenience.

n = ak,mbk,mTk,m
/ —bk,mPn,k,m (1) Vn,k
X E{ km ((1 — Ak me komPrk,m (1) ,k) Tk,m)

><,-ynyke_bk,m.i)n,k,m,(H)’Yn.k} . (41)

Note that the Lagrangian as well as the power allocation in (37)
and (39) are identical to that obtained for the CSRA problem in
(5) and (12), respectively. Also recall that (19)—(21) hold even
when I" (1) is replaced by arbitrary I. Thus, we have puj €
[Lminy fhmax]> Where fimin and piyin are defined in (20) and (21),
respectively.

3By assumption, U] , (-) is a decreasing positive function and
e PkmPnk,m (W7 k jg g strictly decreasing positive function of p,, e (1),
which makes the right side of (41) a strictly decreasing positive function of

Prse,m (1)
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As discussed in Section III-A, py, k. (1) is a strictly de-
creasing continuous function of x, which makes p} , , (1) a
decreasing continuous function of . Let us now define

X)) 237 i) = D Lkl (i) (42)
n,k,m n,k,m

as the total optimal power allocation for allocation I at 1. There-
fore, X%, (I, ;1) is also a decreasing continuous function of x.
This reduces our problem to finding the minimum value of y €
[Lmin, fimax] for which X5, (I, 1) = Peon. Such a problem struc-
ture (i.e., finding the minimum Lagrange multiplier satisfying a
sum-power constraint) yields a water-filling solution (e.g., [9],
[21]). To obtain such a solution (in our case, j7) one can use the
bisection-search algorithm given in Table I.

While there are many ways to find p, we focus on bi-
section-search for easy comparison to the CSRA algorithm.
Then, to solve the resource allocation problem for a given
I € ZIpsra, the complexity, in terms of the number of times
(41) [or (11)] is solved to yield fir such that |ir — uf| < kK,
i (X ko Ln,e,m) [logo(Bme-Em )] Since the  brute-force
algorithm examines |Zpsra| = (KM + 1)V hypotheses of
I, the corresponding complexity needed to find the exact
DSRA solution is [log, ( £me—Fain )] x Zi\;l n(]:) (KM)" or,
equivalently

{mg2 (@ﬂ X (KM +1)N"INKM.  (43)

Because this “brute-force” algorithm may be impractical to
implement for practical values of K, M, and IV, we focus, in the
sequel, on lower-complexity DSRA approximations. In doing
so, we exploit insights previously gained from our study of the
CSRA problem.

B. Proposed DSRA Algorithm

Equation (30) in Section III-B demonstrated that there exists
an optimal user-MCS allocation for the CSRA problem that ei-
ther lies in the domain of DSRA problem, i.e., I (u*) € Zpsra,
or is a convex combination of two points from the domain of
DSRA problem, i.e., I"(p*) = M™" (p*) + (1 — \I™™(u*),
where Imln(u*) # Imax(u*) and Imln(u*)7lma><(u*) c IDSRA-
(Note that if I € Zcsra and I € {0, 1}VXEXM " then
I € Ipsra.) This observation motivates us to attack the DSRA
problem using the CSRA algorithm. In this section, we provide
the details of such an approach.

The following lemma will be instrumental in understanding
the relationship between the CSRA and DSRA problems and
will serve as the basis for allocating resources in the DSRA
problem setup.

Lemma 4: 1f the solution of the Lagrangian dual of the CSRA
problem (6) for a given i is such that I* () € {0, 1}VXEXM

* — ﬁn7k7m(u)
Pro e (1) {() otherwise

if 0 < g < annbie,mTr,m Uy, g (1= @tym) 7,m) E{yn 1}

(40)
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and the corresponding total power is X5, (1) as in (31), then the
solution to the optimization problem

(P*,1*) = argmax Z b kom

{P>0}
I€Zpsra

x E {Un,k,m ((1 - ak,me_bk'mlpmk'm’yn'k) Tk,m)}

s.t. Z "n,k,mPn,k,m S X:ot(:u’)

n,k,m

n,k,m

satisfies 1* =
{ x5 (I (1))

I'*(p) and, for every (m,k,m), P*

n,k,m
if I (1) # 0
otherwise.

Ii,k,m(“)

Proof: A proof sketch is given in Appendix E. For the full
proof, see [19]. [ |
From the above lemma, we conclude that if a p exists
such that I*(u) € Zpsra and X (1) = Peon, then the
DSRA problem is solved exactly by the CSRA solution
(I* (), z* (1, I*())), i.e., the optimal user-MCS allocation
Ifsra equals I*(p) and the optimal power allocation, pfega,
for any (n, k,m), is

Zngem T (W) e L (1) # 0

Pk, DSRA = { T ) (44)

0 otherwise.
Recall that the optimal total power achieved
for a given value of Lagrange multiplier p, ie.,
Xealw) = X kmTngm(n (1)), is  piece-wise

continuous and that a discontinuity (or “gap”) occurs at p
when multiple allocations achieving the same optimal value of
Lagrangian exist. When the sum-power constraint, Py, lies
in one of those “gaps,” the optimal allocation for the CSRA
problem equals a convex combination of two elements from the
set Zpsra, and the CSRA solution is not admissible for DSRA.
In such cases, we are motivated to choose the approximate
DSRA solution Ipsga € {I™"(11), ™™ (1)} yielding highest
utility. In Table I, we detail an implementation of our proposed
DSRA algorithm that has significantly lower complexity than
brute-force. The numerical simulations in Section V show
that its performance is very close to optimal. Moreover, the
following lemma bounds the asymptotic difference in utility
achieved by the exact DSRA solution and that produced by our
proposed DSRA algorithm.

Lemma 5: Let /* be the optimal 4 for the CSRA problem and
1, [ be such that p* € [p, fi]. Let Ufgga and Upsra(y, i) be the
utilities achieved by the exact DSRA solution and the proposed
DSRA algorithm, respectively. Then

0< USSRA - &13}] UDSRA(E: /7')

< (1" = pimin) (Peon = Xooe (I™ ("), 117)) (45)
0 if [Sp(p*)| <1 Vn

<

o { (ltmax - Nmin) Pon otherwise. (46)

Proof: The proof is given in Appendix F. ]

It is interesting to note that the bound (46) does not scale with
number of users K or subchannels N.

The complexity of the proposed DSRA algorithm is margin-

ally greater than that of the CSRA algorithm, since an addi-

tional comparison of two possible user-MCS allocation choices
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is involved. In units of solving (11) for a given (n, k, m, i), the
DSRA complexity is at most

N(KM +2) [10g2 <Mﬂ .
K

Comparing (43) and (47), we find that the complexity of the
proposed DSRA algorithm is polynomial in N, K, M, which
is considerably less than that of the brute-force algorithm (i.e.,
exponential in V).

C. Discussion

(47)

Before concluding this section, we make some remarks about
our approach to DSRA and its connections to CSRA. First,
we note that the DSRA problem is an integer-programming
problem due to the discrete domain {0, 1} assumed for I, 1 m.
Because integer programming problems are generally NP-hard
(recall our “brute force” DSRA solution), one is strongly
motivated to find a polynomial-complexity method whose
performance is as high as possible. One possible approach is
based on “relaxation,” whereby the discrete domain is relaxed
to an interval domain, the relaxed problem is solved (with
polynomial complexity), and the obtained solution is mapped
back to the discrete domain. In fact, relaxation was previously
employed for OFDMA frequency-scheduling in [9], [11], and
the DSRA approximation that we propose in Section IV.B can
also be interpreted as a form of relaxation.

The optimization literature suggests that relaxation is suc-
cessful in some—but not all—cases, implying that relaxation-
based OFDMA algorithms must be designed with care. For ex-
ample, relaxation has widely used to solve linear integer pro-
grams (LIPs) [22]-[24]. The DSRA, however, is a mixed-integer
nonlinear program (MINLP), and for such problems relaxation
does not always perform well [24], [25]. Now, one could cite
the analysis in ([26], p. 371), which shows that—for a broad
class of integer programming problems—the duality gap goes
to zero as the number of integer variables goes to infinity, to
suggest that the DSRA problem can be well approximated by its
relaxed counterpart, CSRA, as the number of OFDMA subchan-
nels N — oo. However, in practice, the number of subchannels
N is often quite small, preventing the application of this argu-
ment. For example, in LTE systems [6], [27], each subchannel
consists of 12 subchannels, so that only 25 subchannels are used
for 5 MHz bandwidths, and only 6 are used for 1.4 MHz band-
widths.

The above considerations have motivated us to investigate, in
detail, the relationship between the continuous and discrete re-
source allocation scenarios. The results of our investigation in-
clude insights into the dissimilarity between CSRA and DSRA
solutions (e.g., Lemma 3 and Lemma 4), and an efficient poly-
nomial-complexity DSRA approximation that (as we shall see
in Section V) performs near-optimally for all /N and admits the
tight performance bound (46).

V. NUMERICAL EVALUATION

In this section, we analyze the performance of an OFDMA
downlink system that uses the proposed CSRA and DSRA al-
gorithms for scheduling and resource allocation under different
system parameters. Unless otherwise specified, we use the sum-
goodput utility U,, x,m(g9) = g.
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For downlink transmission, the BS employs an un-
coded 2m*t!1-QAM signaling scheme with MCS index
m € {1,...,15}. In this case, we have r;,, = m + 1
bits per symbol and one symbol per codeword. In the
error rate model €., (py) = ahme’b"*mp”, we choose
akm = 1and by, = 1.5/(2mF1 — 1) because the actual
symbol error rate of a 2™T1-QAM system is proportional to
exp(—1.5py/(2m*1 — 1)) in the high-(py) regime [28] and
is &~ 1 when py = 0. We use the standard OFDM model [29]
to describe the (instantaneous) frequency-domain observation
made by the kth user on the nth subchannel:

Ynk = P kT + Un i
forne{l,...,N} and ke{l,...,K}. (48)
In (48), x,, denotes the QAM symbol broadcast by the BS on
the n*® subchannel, hn 1 the gain of the n'® subchannel be-
tween the k*® user and the BS, and Up, a corresponding com-
plex Gaussian noise sample. We assume that {v,  } is unit vari-
ance and white across (n, k), and we recall that the exogenous
subchannel-SNR satisfies v, x = |hy x|?. We furthermore as-
sume that the k*® user’s frequency-domain channel gains hj, =

sponse g, = (91.4s---,90.k)" € CF via by, = Fg,, where
F ¢ CNV*L contains the first L (< N) columns of the N-DFT
matrix, and where {g; 1} are i.i.d. over (/, k) and drawn from
a zero-mean complex Gaussian distribution with variance UZ
chosen so that E{+, 1} = 1. Since the total available power for
all subchannels at the base-station is P, the average available
SNR per subchannel will be denoted by SNR = Ze2E{,, ;. }.

To model imperfect CSI, we assume that there is a
channel-estimation period during which the mobiles take
turns to each broadcast one pilot OFDM symbol, from which
the BS estimates the corresponding subchannel gains. Fur-
thermore, we assume that the channels do not vary between
pilot and data periods. To estimate hjy, we assume that the
BS observes g, = \/mhk + v, € CN. Note that the
average SNR per subchannel under pilot transmission is
SNRpiot = Dpilot E{Vnx }- The channel hy, and the pilot obser-
vations g, are zero-mean jointly Gaussian, and furthermore
hy | 9;, is Gaussian with mean E{h |9} = Ra, iuRg}_:,gk U
and covariance Cov(hy, |9;.) = Rn, n, — Ba, 3, R;:,f;k Ry p,.
where R, ., denotes the cross-correlation of random vec-
tors z; and z» [30 pp. 155]. Since Ry, n, = 0. FF',
th@k = \/WUEFF/, and ng,gk = pp;|otU§FFl + I
(where I denotes the identity matrix), it is straightforward
to show that the elements on the diagonal of Cov(hyg |y;)
are equal. Furthermore, E{hy | §,} can be recognized as the
pilot-aided MMSE estimate of hg. In summary, conditioned
on the pilot observations, h, j is Gaussian with mean h,, j
given by the n'" element of E{h;, |%,}, and with variance
a2 given by the first diagonal element of Cov(hy, | ;). Thus,
conditioned on the pilot observations, -y, ; has a noncentral
chi-squared distribution with two degrees of freedom.

We will refer to the proposed CSRA and DSRA algo-
rithms implemented under imperfect CSI as “CSRA-ICSI”
and “DSRA-ICSL” respectively. Their performances will be
compared to that of “CSRA-PCSI,” i.e., CSRA implemented
under perfect CSI, which serves as a performance upper bound,
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and fixed-power random-user scheduling (FP-RUS), which
serves as a performance lower bound. FP-RUS schedules, on
each subchannel, one user selected uniformly from {1, ..., K},
to which it allocates power P.,,/N and the fixed MCS m that
maximizes expected goodput. Unless specified, the number of
OFDM subchannels is N = 64, the number of users is X = 16,
the impulse response length is L. = 2, the average SNR per
subchannel is SNR = 10 dB, the pilot SNR is SNRjjoc = —10
dB, and the DSRA/CSRA tuning parameter is k = 0.3/ Peon
(recall Table I). In all plots, goodput values were empirically
averaged over 1000 realizations.

Fig. 4 plots the subchannel-averaged goodput achieved by the
above-described scheduling and resource-allocation schemes
for different grades of CSI. In this curve, SNRi is varied so
as to obtain estimates of subchannel SNR with different grades
of accuracy. All other parameters remain unchanged. The plot
shows that, as SNR;,: is increased, the performance of the
proposed schemes (under the availability of imperfect CSI)
increases from that of FP-RUS to that achieved by CSRA-PCSI.
This is expected because, with increasing SNRiiot, the BS uses
more accurate channel-state information for scheduling and
resource allocation, and thus achieves higher goodput. The plot
also shows that, even though the proposed CSRA algorithm
exactly solves the CSRA problem and the proposed DSRA
algorithm approximately solves the DSRA problem, their per-
formances almost coincide. In particular, although the goodput
achieved by CSRA-ICSI scheme exceeded that of DSRA-ICSI
scheme in up-to 49% of the realizations, the maximum differ-
ence in the subchannel-averaged goodput was merely 4 x 1073
bits per channel-use (bpcu). Since the DSRA-ICSI schemes
cannot achieve a sum-goodput higher than that achieved by
the CSRA-ICSI scheme, it can be deduced that the proposed
DSRA algorithm is exhibiting near-optimal performance.

Fig. 5 plots the subchannel-averaged goodput versus the
number of available users, K, ranging between 1 and 32.
It shows that, as K increases, the goodput per subchannel
achieved by the proposed schemes increase under both perfect
and imperfect CSI, whereas that achieved by the FP-RUS
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scheme remains constant. This is because, in the former case,
the availability of more users can be exploited to schedule users
with stronger subchannels, whereas, in the FP-RUS scheme,
users are scheduled without regard to the instantaneous channel
conditions. Similar to the observations in the previous plots,
the performance difference between the proposed CSRA and
DSRA algorithms remains negligible. In particular, although the
goodput achieved by CSRA-ICSI exceeded that of DSRA-ICSI
in up-to 29% of the realizations, the maximum difference in the
subchannel-averaged goodput was merely 7 x 10~* bpcu.

In Fig. 6, the top plot shows the subchannel-averaged goodput
and the bottom plot shows the subchannel and realization-av-
eraged value of the bound (45) on the DSRA-ICSI optimality
gap as a function of SNR. In the top plot, it can be seen that, as
SNR increases, the difference between CSRA-PCSI and CSRA-
ICSI (or, DSRA-ICSI) increases. However, the difference grows
slower than the difference between CSRA-PCSI and FP-RUS.
Interestingly, even for high values of SNR, the performance of
CSRA-ICSI and DSRA-ICSI remain almost identical. In par-
ticular, although the goodput achieved by CSRA-ICSI scheme
exceeded that of DSRA-ICSI scheme in up-to 28% of the re-
alizations, the maximum difference in the subchannel-averaged
goodput was merely 4 x 10~° bpcu. The bottom plot, which il-
lustrates the average value of (14* — fimin ) (Peon — Xs (1™, 1))
over all realizations and subchannels w.r.t. SNR, shows that the
loss in sum-goodput over all subchannels due to the sub-op-
timality of proposed DSRA solution under imperfect CSI is
bounded by 7 x 10~3 bpcu, even when the subchannel-averaged
goodput of DSRA-ICSTI is of the order of tens of bpcu. These re-
sults confirm that the bound (45) is quite tight at high SNR.

Fig. 7 shows the performance of the proposed DSRA al-
gorithm under a sum-utility criterion that is motivated by
a common pricing model for an elastic application such as
file-transfer [3], [4]. In particular, we partitioned the K = 16
users into two classes: & € {1,...,8} = K; is “Class 1” and
k€ {9,...,16} £ K is “Class 2,” and we ran DSRA with
the utility Uy (g) = (1 — e=" 1) 1pex, + (1 — 72 1per,,
where 1¢ denotes the indicator of event £. The utility can be
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SNR. The bottom plot shows the average bound on the optimality gap between

the proposed and exact DSRA solutions [given in (45)], i.e., the average value
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The bottom plot shows the sum-utility versus SNR when wy = 0.85,w, = 1.

Here, N' = 64, K = 16, and SRy = —10 dB.

regarded as the revenue earned by the operator: when w; > wj,
Class-: users pay more (for a given goodput g) than Class-j
users in exchange for priority service. In Fig. 7, we show the
resulting DSRA-maximized utility summed over all users,
as well as that summed over each individual user class. For
comparison, we show the utility (summed over all users) when
DSRA is “naively” used to maximize sum-goodput instead
of sum-utility. The top plot in Fig. 7 shows performance as a
function of wq, for fixed wy = 1 and SNR = 0 dB. There the
behavior is as expected: when w; < we = 1 (i.e., Class-1 users
pay much less) DSRA allocates the overwhelming majority
of the resources to Class-2 users, in an effort to earn more
revenue. Meanwhile, when wy > wy = 1, the overwhelming
majority of resources are allocated to Class-1 users. Moreover,
it is evident that the naive goodput-maximizing scheme does
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Fig. 8. The top plot shows the mean deviation of the estimated dual variable
4 from p*, and the bottom plot shows average sum-utility, as a function of
the number of p-updates. Here, N = 64, X = 16, SNR = 10 dB, and

SNRyjjjo = —10 dB.

not earn the operator as much revenue as the utility-maximizing
scheme (outside of the trivial case that w; = ws). The bottom
plot in Fig. 7 shows the above described sum-utilities as a
function of SNR, for fixed w1 = 0.85 and wo = 1. There it can
be seen that, at low SNR, the two classes achieve proportional
utilities while, at high SNR, the utility of Class-1 users tend to
zero. This behavior can be explained as follows: At low SNR,
the goodputs g are small, in which case 1 — e = w;g, so
that Uy (g) ~ w;glrek,, i-e., weighted-goodput utility. At high
SNR, this approximation does not hold because the goodputs
g are usually large, and this particular pricing-based utility
becomes increasingly unfair.

In Fig. 8, we compare the performances of our proposed
algorithms to the state-of-the-art algorithms in [7], [9]. In
particular, we first compare the golden-section-search based
algorithm from [7] to our CSRA algorithm. For CSRA,
we choose the utility function and the SNR distributions to
maximize the upper bound on capacity computed via the

effective SNR 7 37, log(1 + —feialterl
[7, Eq. (4)]. Second, we compare the subgradient-based
algorithm proposed for discrete allocation in [9] to our
DSRA algorithm. For DSRA, we choose the utility
Unom(9) = 2log(l — log(l — g)) Vn,k,m, so that
we maximize % Zn’k E{log(1 + pn k,1Vnk)}, as in [9]. The
top plot in Fig. 8 shows the mean deviation of the estimated
value of the dual variable p from the optimum (i.e., ©*), and
the bottom plot shows the total utility achieved as a function of
the number of p-updates. For the subgradient-based algorithm
in [9], we set the step-size in the i*" p-update to be 1/4. In the
top plot, it can be seen that the proposed algorithms outperform
the algorithms in [7], [9] and converge toward p* at a much
faster rate. The bottom plot shows that the proposed algorithms
achieve a much higher utility than the algorithms in [7], [9] for
the first few p-updates, illustrating the speed of our approaches.
Note that the golden-section algorithm only provides estimates
of u* at even numbers of p-updates.

) from
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VI. CONCLUSION

In this paper, we considered the problem of joint scheduling
and resource allocation (SRA) in downlink OFDMA systems
under imperfect channel-state information. We considered two
scenarios: 1) when subchannel sharing is allowed, and 2) when
it is not. Both cases were framed as optimization problems
that maximize a utility function subject to a sum-power con-
straint. Although the optimization problem in the first scenario
(the so-called “continuous” or CSRA case) was found to be
nonconvex, we showed that it can be converted to a convex
optimization problem and solved using a dual optimization
approach with zero duality gap. An algorithmic implementation
of the CSRA solution was also provided. The optimization
problem faced in the second scenario (the so-called “discrete”
or DSRA case) was found to be a mixed-integer programming
problem. To attack it, we linked the DSRA problem to the
CSRA problem, and showed that, in some cases, the DSRA
solution coincides with the CSRA solution. For the case that
the solutions do not coincide, we proposed a practical DSRA
algorithm and bounded its performance. Numerical results
were then presented under a variety of settings. The perfor-
mance of the proposed CSRA and DSRA algorithms under
imperfect CSI were compared to those under perfect CSI and
no instantaneous CSI (i.e., fixed-power random scheduling). In
all cases, it was found that the proposed imperfect-CSI-based
algorithms offer a significant advantage over schemes that
do not use instantaneous CSI. Next, our DSRA bound was
numerically evaluated and found to be extremely tight. We then
demonstrated an application of DSRA to maximization of a
pricing-based utility. Finally, our CSRA and DSRA algorithms
were compared to the state-of-the-art golden-section-search
[7] and subgradient [9] based algorithms and shown to yield
significant improvements in convergence rate.

APPENDIX A
SKETCH OF PROOF FOR CONVEXITY OF CSRA PROBLEM

First, we show that I, tmFokm(Dnkm,Tnkm) 1S
convex in Inp.m and Ty, p.,. For this, consider the
case when I, r,, > 0. In this case, the Hessian of
Lk Fokom (In ks ©nkeom) WLte In g and @, pm can
be calculated and found to be positive semi-definite. Next,
consider the case when Iy,  ,, = 0. To prove convexity in this
case, we a§)ply the definition of convexity, i.e., for any two
points (Iélkmlfqlim) and (If,lm,xff;m) in the domain of

CSRA problem and for any A € [0, 1], convexity means
M8 Foean (180 L)

n,k,m’<“n.km

+(1 =018

n,k,m

> |:)\I(1)

n,k,m

Fouom (1(2) 23

n,k,m? n,k,m)
+ (1= NI ] P
2
Nehm) . (49)
When one or both of {7, fll,)cm I,(f,)ﬁm} are zero, it is straight-
forward to show that the above equation holds. Therefore,
Ly ko Fo ko (L keyms Tokm) 18 convex  in I, g, and
Zn,k,m- Consequently, it is a convex function of I and z.
Since the primal objective function of the CSRA problem
> koo Lneom oo (Ln ke ym, Tok,m) 1S @ sum of functions
that are convex in I and z, it is also convex in I and z.

1
AL

+(1 - NI%)

n,k,m?

+(1-
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APPENDIX B
SKETCH OF PROOF OF LEMMA 1

Suppose that p11 < g2, where p1, pia € [fmin, fimax)- With 1
fixed, the minimization problem becomes

L, I (p), &% (1, I (1))

= min L(p, I, x)
{z>0}
I€Zcsra

= {1&1& ankm— con | M
I€Tcspa \0km
+ Z In,k,an,k,m(In,k,m7mn,k,m) (50)

n,k,m

recalling (6). At 1 = py, I*(p2) and * (o, I (p12)) are sub-
optimal values of I'*(u) and =*(u, I* (1)), and at p = po,
I*(p1) and £*(p1, I (1)) are suboptimal values of I* () and
*(p, I" (). Therefore,

L(val*(ul)v"c*(ulv ( )))
< L(pa, I (p2), 2" (p2, I (p2))), and  (S1)
L(pa, I (p2), 2" (2, I" (12)))
< Lpz, I (p1), 2" (p1, I (1)) (52)
Adding (51) and (52), and evaluating the result, we get
(,ufl - H/Q) Z ‘Tn Jk,m lj’17 (,Ll;l))
n,k,m
2 2 I (2) | S 0. (53)

Since p11 < o, we have X (1) > X5 (pe

X, (p) is monotonically decreasing in f.

). Therefore,

APPENDIX C
PROOF OF LEMMA 2

Proof: To compare the utilities obtained by the proposed
CSRA algorithm and the exact CSRA solution, we compare the
Lagrangian values achieved by the two solutions. Recall p* €
[14; /2] C [fmin, thmax]. Therefore,

L, I* ("), 2™ (", I* (1)

= L(p I (), =" (p I (o

L™ I (), =" (u", (")

= L(a, I (), =™ (5, I" (1

The solution of the proposed CSRA algorithm allocates re-

sources such that the sum-power constraint is satisfied while
achieving a Lagrangian value of

oI (), =" (1, I (1))
+(1 = NI, T (),

)>0. (54)

Lesra 2 AL(
z*(pu, I (1))

o (I () = —U* () +

Pn)p, where U* (1) is the total utility achieved due

For any p, notice that L, I* (),
(Xioe(m) =
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to optimal power allocation at that u. Since the resource alloca-
tion obtained by the proposed CSRA algorithm and the exact
CSRA solution satisfy the sum-power constraint with equality,
we have

Ucsra = —L(u™, I (u"), " (", I" (7)), and (55)
Lesra = —Ucsra(pts 1) + (Xioe(/1) — Peon) Ml
+ (Xioe (1) = Peon)(1 = A
= —Ucsra(pt, 1) + (X35 (1) = Peon) (/1 = )X (56)

Equation (56) holds since AX}%, (7)) + (1 —
From (55) and (56), we get

/\)X:ot(ﬁ) = Peon.

0 < Ulspa — UCSRA( ft)
= —L(p" I (p*), " (p*, I" (7))
+ LCSRA ( tot( ) con)(/lf - E))\

From the above equation and (54), we have

0 < Ugspa — Ucsra(p, 1)
S (Pcon - X:ot(ﬂ))(ﬂ - E))‘ S (/1 - E)Pcom (57)
]

APPENDIX D
SKETCH OF PROOF OF LEMMA 3

Let i € [fmin, fimax] be any value of the Lagrangian dual
variable for the CSRA problem. Then, at /i, one of the following
three cases holds.

D [Su(@)] <1 Vn.

2) For some n, |S,(@)] > 1 but no two combinations in
Sn(fr) have the same allocated power.

3) For some n, |S,(j1)| > 1 and at least two combinations in
Sp(f1) have the same allocated power.

We make use of two properties in the proof. First,
Vaem (16 0% ¢ (1)) is @  continuous function of
1. Therefdré, by definition of continuous func-
tions, if Vi g m(f,p}, 1 () > 0, then we can fix a
On k,m (>0) such that V., Je,m (10, Dk m(u)) > (0 whenever

v — 4l < Onkym. Second for all values of i, we know

Vi (lgpnk (1) — Pn km(:u’)' We now apply these

properties to each of the three cases to determine Sn(p)Vn.
When p is sufficiently close to /i, we show that, in cases 1)
and 2), one can fix a § such that |S, ()] < 1 Vn whenever
0 < |p—f1] < 8. When this happens, it can be shown that, for all
1. iz € (ji — 6, i), one has I* (1), I* (jiz) € {0, 1}V XKxM
and Sp(pu1) = Sn(p2) Vn. The same property holds
when p, e € (fi, o + 6). In case 3), we establish that all
combinations with the same allocated power contribute equally
to the total power allocated, as well as the total optimal value
of Lagrangian. Therefore, all but any one combination can be
ignored safely, implying that there exists a fixed § such that
I'"(p) € {0, 1}NXEXM whenever |p — fi| < 6. After ignoring
the redundant combinations, it follows from cases 1) and 2)
that, for all py,pu2 € (& — 6,f1) and p1,p2 € (1, o + 6),
there exists I*(p1), I*(p2) € {0, 1}VXEXM quch that
I (1) = I (po).
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APPENDIX E
SKETCH OF PROOF OF LEMMA 4

From (6) and the stated assumptions, we have I*(u) €
Zpsra C Zcsra and

(I (), 2™ (1, T (1))
= argmln Z In nkm(In,k,m7$n,k,m)
IG?DZRA n.k,m
+{ D Tk — Peon | 1t (58)
n,k,m

where F), j.m(-,-) was defined in (4). Then, applying the
concept of generalized Lagrange multiplier method from
[31, Theorem 1], we conclude that

(I*, X*) = argmin Z

{Xz0}

"n,k,an,k,m("n,k,’m7 Xn,k,m)

1€Zpsra nk,m
Y X £ D @i (T (). (59)
n,k,m n,k,m

Substituting Xy, x.m = ln,k,mPn,k,m back into the above equa-
tion, we obtain the desired result.

APPENDIX F
PROOF OF LEMMA 5

Proof: Let us denote limu_,p UDSRA(H; /1) by UDSRA-
The left inequality in the lemma is straightforward since
Ubsra > UDSRA(&;]) Vi, fi. Now, if [Sn(p*)] < 1 Vn,
then we have Ujsga = Ufsra = Upsra, ensuring that
the solution obtained via the proposed DSRA algorithm
is optimal in the limit p,u — p*. However, when
1S, (u*)| > 1 for some n, Peop, lies in one of the “gaps”
as mentioned in Fig. 3 and Ifszy ¢ Zpsra. In this case,
we have 0 < UBSRA — UDSRA < UéSRA - UDSRA- Let
U*(I) be the optimal utility achieved for user-MCS allo-
cation matrix I € Zpsra. We recall from Section III-C
that, at p*, the allocation I™"(y*) is one of possibly
many values of I minimizing L(p*, I, z*(u*,I)). Thus,
Utsea = —L(u*, ™ (u*),2* (u*, 1™ (11" ))). For brevity in
this proof, let us denote ™" (p*) and I™™(p*) (€ Zpsra)s
defined in (30), by I™ and I™, respectively. Therefore,
Upsra = max{U*(I™"), U*(I™>)}. This gives us

Ulsra — Upsra < Uésppn — U™ (I’“i“)
— _L( * Imin *( min))
+ Lo (1 w*(uimm))
— —L( * Imln * Imln))

+ L (oo ™™ 2 (Wi, I™)) , (60)
where, for (60), we use the equivalence between L(u, I, x) in
(5) and Ly(p, ) in (37). Note that pi}... < p*, since the total
optimally allocated power for I min at u = p* is less than or
equal to P, and the total optimally allocated power for any
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given I is a decreasing function of x. Plugging L(-, -,
(5) into (60), we get

-) from

Ufsra — Upsra < — | =" Peon + Z e

n,k,m

X (=Unesm (05 km (10%)) + 185D5 g (187))

+ |~ Peon + Y ITh 0 (=

n,k,m

Un.k,m (Pn km (NI'“'"))

1 (I™™P e (ein)) | 61)

where Unyk,m(x) = E{Up km((1 — agme
Using the definition of X (I, )
Xioe(I™", p1*) < Peon and
(61) can be rewritten as

—bi mTVn, k )Tk,m)}-
in (42), we have
Xiot(I™, figwin) = Peon- Therefore,

Utsra — Ubsra
< ll/* (Pcon X:ot(Imln7p’*)) - Z I’fr?alz,m
n,k,m

Un,k,m (PZ,k,m(lJ*))] :

Calculating the first two derivatives of U, j ,,(z) with re-
spect to z, we find that it is a strictly increasing concave
function of x. Therefore, if z1 < 1z, one can write that
Unkn(22) = Unom(71) 2 (22 — 21)Uy, ;. (22). Plugging

— ¥ * % % f L .
T = pn,k,m(u ) and o = pn,k,m(uImin) into this inequality,
we get

X [Un e (D3 o (1min)) — (62)

Un om0 o (13min)) = Un oo (D5 1 (187))

> (pn,k,m(ujmi")_pn,k,m(.u' )) %
mzl):.k'.nl(ﬂ;min)

(63)
From (62) and (63), we then get
Uésra — Ubsra
<ut (PCOn - X:ot(Iminv N*))
- Z 12“2 mYn, k m (Pz,k,m(ﬂ;min»
n,k,m
% (Pt (W) = Pl (1) - (64)

Evaluating Un

U,
nakxm( ) = ak,mbk,mrk,m
Z:P:;J‘,_m (I’L;min)

% E { ! hm ((1 _ akyme—bk,'rnpi,k','m,(“;min)’\/'n,k) Tk,m)
(65)

(pn k m(uImln)), we find

X’ynyke_bk'mp"”"’m(Hjmi")vn'k} Z Lbmin-
From (64) and (65), we finally obtain

Ulsra — Upsra < (11" = fimin) (Peon — Xt*;t(lmi",u*))

S (llfmax - ,U'min)Pcon- (66)
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