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Abstract—For turbo reception of coded transmissions over information. Noncoherent equalizers are also referredsto a
unknown doubly selective channels, such as time-varying ISI “semi-blind” in the literature (e.q., [5]).

channels or frequency-varying ICI channels, we propose sevefa  gytimga| soft noncoherent equalization requires evalgadin
soft noncoherent equalizers based on basis expansion (BE) chan- . . .
nel modeling and tree-search, as a departure from traditional noncoherent metric for every possible bit sequence and then

designs based on autoregressive (AR) channel modeling and/orSUmming over subsets of these metrics (as shown in [6] for
trellis processing. By “noncoherent,” we mean an equalizer that Gauss-Markov channels). Since the number of possible bit
operates in the absence of channel state information. We begin by sequences grows exponentially in the sequence lengthtj-prac

deriving the optimal BE-based soft noncoherent equalizer, whas
complexity is shown to be impractical. We then propose a near-
optimal approximation, based on soft tree-search and leveraging
a fast recursive metric update, whose per-symbol complexity
is only quadratic in the number of BE coefficients. Finally,
we propose a different approach to soft noncoherent equaliza-
tion that results from an application of the space-alternating
generalized expectation-maximization (SAGE) algorithm. Using
a tree-search-based practical implementation, the per-symbol
complexity of this latter scheme is, for the multicarrier case, only
linear in the number of BE coefficients. Numerical experiments
demonstrate coded bit error rates near genie-aided bounds, as
well as robustness to Doppler-spread mismatch.

Index Terms—Turbo decoding, noncoherent decoding, equal-
ization, channel estimation, semi-blind methods, basis expansion
models, time-varying frequency-selective channels, doubly selec
tive channels, doubly dispersive channels, expectation maximiza-
tion, SAGE.

I. INTRODUCTION

cal implementation demands a suboptimal approach. Broadly
speaking, suboptimal approaches fall into one of two cate-
gories: iterative channel-estimation and equalizatidDE(),

or joint channel-estimation and equalization (JCEE). ICEE
methods iterate between learning the channel coefficierds a
learning the coded bits, whereas JCEE methods attempt to
simultaneously learn the channel and bits. (See [7] for a
detailed discussion.) In both cases, the channel coeffgcien
may represent time-varying ISI or frequency-varying ICI.
Furthermore, one might choose to parameterize the time- or
frequency-variation using a basis expansion (BE) model [8]
[9] and/or an auto-regressive (AR) model [10].

Several ICEE approaches (e.g., [2], [5], [11]-[13]), have
been proposed as incarnations of the expectation-maximiza
(EM) algorithm [14]. To our knowledge, this idea was first
proposed for frequency-selective channels in [11], andrlat
extended to doubly selective (DS) channels that use an AR
model for coefficient time-variation (e.g., [13]) and a BE

In this paper, we consider the problem of decoding a daf2Pdel for coefficient time-variation (e.g., [2], [S]). Ofdke

sequence transmitted over anknown doubly selectiv®®S)
channel, such as a time-varying inter-symbol interfergigh
channel or a frequency-varying inter-carrier interfe icl)

works, most employ the trellis-based BCJR [15] algorithm fo
soft cohererit equalization. The principal drawback to BCJR
is its complexity, O(|S|V*), which is impractical for large

channel. Such channels occur in, e.g., shallow-water undep@nnel lengthsVy,, even when the alphabet sii is modest.

water acoustic and wideband mobile radio applications.
particular, we are interested in the case of coded trangmiss

A alternative, which we explore in this paper, is tree-sear
based soft coherent equalization, as used in [2].

with possibly long codewords (from, e.g., LDPC codes). A ICEE approaphes have also been pr'oposed that iterate a soft
practical and near-optimal strategy for equalization ifs thcoherent equalizer (e.g., [16]-[21]) with a So@S channel
scenario follows from the turbo principle [3], [4], which€Stimator (e.g., [21]-[24]) without explicitly consideg the
suggests to iterate between “soft noncoherent” e(wm-maﬁoptlmal|ty of their mteraguon. Motivated by th(aT h|gh casft
and soft decoding (see Fig. 1). By “soft noncoherent,” wemeBCJIR, reduced-complexity soft coherent equalization s

that the equalizer’s role is to produce posterior bit prolies
from the received samples, pilots, and prior bit probdbdgit

have been proposed based on linear methods (e.g., [16],
[20], [21]), soft interference cancellation (e.g., [17].8]),

supplied by the soft decoder, in the absence of channel sti@uced-state trellis techniques (e.g., [19]), and—asiquely
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mentioned—soft tree-search (e.g., [25], [26]). Meanwhie,
number of soft DS channel estimation techniques have been
proposed that support deterministic channel models, vi&LM
and RLS adaptation (e.g., [23]); AR time-domain variation,

1By “coherent” equalization, we mean that the equalizer hasss to
channel state estimates.

2By “soft” channel estimation, we mean that the estimator is ablase
soft symbol estimates.



via Kalman techniques (e.g., [22]); and BE time- or freqyenc In accordance with this goal, we propose two novel methods
domain variation (e.g., [21]). While it is also possible teeusof soft noncoherent equalization, both based on the combina
an AR model for frequency-domain variation, this approach fion of soft tree-search with generic BE channel modelingr. O
not as effective—as we shall see later. “sequential noncoherent” (SNC) equalizer can be categdriz
As an alternative to the ICEE approaches described aboss, JCEE, and our “iterative noncoherent” (INC) equalizer

one might consider suboptimal JCEE schemes, as longcas be categorized as EM-based ICEE. Our use of generic
their complexity is far below that of optimal JCEE. ManyBE models facilitates a unified treatment of different crelnn

of the previously proposed suboptimal JCEE schemes dypes (e.g., time-variant ISI channels, frequency-varigi
trellis-based, and can be recognized as extensions of t@nnels, and sparse versions of those channels), and eur us
(coherent) BCJR algorithm where the trellis is expanded @ soft tree-search leverages recent ideas from the flatdad
allow conditional AR-coefficient estimation at each statey(, multiple-input multiple-output (MIMO) literature (e.g[25],
[27]-30]). In the related “fixed-lag” approach (e.g., [9]- [26]), facilitating an efficient tradeoff between perfomea
[31]), the problem is relaxed to one of computing each bénd complexity. Our specific contributions are as follows.
posterior using only a local subset of the observationsinaga 1) We first derive theptimal soft noncoherent equalizer of

using an expanded trellis. Like BCJR, the complexities ef¢h BE-modeled doubly selective channels for a very general
trellis-based methods grow exponentially in the channetie class of block modulation schemes that includes single-
N}, and are thus impractical whel), is large. Moreover, or multi-carrier schemes, cyclic- or zero-prefix, and
as mentioned earlier, AR models are not as effective as BE rectangular or non-rectangular windowing. This optimal
models for frequency-varying ICI. A very different apprbac scheme involves the computation of a noncoherent met-
to JCEE of DS channels was recently proposed in [32], ric for every possible bit sequence. Although the metrics
[33], leveraging the fact that—when the finite-alphabet sginb do not explicitly involve channel estimates, we show

property is ignored—nonlinear Kalman filtering techniques  that the metric can be recursively computed in a way
become admissible. This approach was initially proposed fo that implicitly involves per-sequence MMSE estimates
AR-modeled channels [32] and later extended to BE-modeled of the BE coefficients.

channels [33]. A third JCEE approach, which we will elaberat 2) As an approximation of the optimal soft noncoherent
on in the main body of this paper, is based on soft tree- equalizer, we propose a “sequential noncoherent” (SNC)

search with per-sequence BE-coefficient estimation [1js Th equalizer that performs soft tree-search using the M-
third approach should not be confused whidwrd noncoherent algorithm [35]. Our SNC scheme incurs a per-symbol
equalization via sphere decoding (a form of tree-searchd) an complexity of O(N2ZN?), where N, is the channel’s
BE-coefficient estimation [34], since turbo reception rieeg discrete delay spread, amdp is its discrete Doppler
that the equalizer accept and prodwdt bit estimates. spread (i.e., the BE model order in the single-carrier case

or the ICI spread in the multicarrier case). We note that

PER-SYMBOL COMPLEXITJ?)ELSIIEE\IIERAL SOFT NONCOHERENT SNC's complexity compares favoramwlth the existing
EQUALIZERS, WHERE N}, IS THE CHANNEL' S DISCRETE DELAY SPREAD methods in Table I, given thay, is often the dominant
AND Np ITS DISCRETEDOPPLER SPREAD N IS THE BLOCK SIZE, [S| IS factor in practice.

THE CONSTELLATION SIZE AND Nf IS A LINEAR FILTER LENGTH. 3) Motivated by the pOSSlblllty offurther reducing the
algorithm single carrier multicarrier c_ompl_exity dependence omV;,, we propqse a novel
INC or “(SBE+CT)K” O(NZNy) O(No Ny logy N) “iterative noncoherent” (INC) scheme using the space-
SNC or ‘ncT-BE” (’)(NBN,%) O(NEN?) alternating generalized-EM (SAGE) framework from
BW-BE [5] O(NZIS[n -ZFNQNS) - [36]. For the single-carrier case, our INC scheme per-
FL-II(E:KEI;TBEE[I\Z/IlESS] ((9]5,];’ N)3 o) forms soft channel estimation with per-symbol com-
FL-EKF [32] O(NQN’{; . plexity O(N2N;,) and, for the multicarrier case, with
SKTE [22] O(NEZN? + Nh|S\Nh) - complexity O(Np Ny, log, N), where N is the number
LE-RLS [23] (9(N3 + N;’C’ - of subcarriers. In both cases, soft coherent equalization
APP-SD-KF [13] | O(N3N|S|™™) - uses ar®(Np N, )-complexity soft tree-search based on

the M-algorithm. To our knowledge, complexity that
dependdinearly on NV}, is unprecedented.

Finally, we discuss practical implementation details
and numerically analyze the proposed methods in a
turbo framework, demonstrating coded BER perfor-
mance close to genie-aided bounds and robustness to
BE choice and to Doppler-spread knowledge.

The system model is described in Section Il, the optimal

3In constructing Table I, an elaboration of [32, Table 1], wssumed that SOft noncoherent equalizer and its sequential approxamati
the equalization delay used in [32], [33] is proportionalXg (as suggested
in [32]). For single-carrier schemea]y corresponds to the BE model order “With the exception of [21], all other approaches in Table dlscat least
as well as the AR model order (as suggested in [33]), Ahds the BEM cubically in Nj. In comparing to [21], we note thaV. > NpN;, for
period. For multicarrier schemed/p corresponds to the ICI spread, and underspread channels, so that the complexity of our schenm@mrigscmore
is the number of subcarriers. favorable as the channel becomes more underspread.

As can be seen from the discussion above, many approaches)
have been proposed for soft noncoherent equalization of D
channels. To help put these approaches into perspective, Ta
ble I lists the complexity orders of several recently proposed
algorithms. The goal, as we see it, is to minimize complexity
while maintaining near-optimal performance.



in Section 11, and the SAGE-based equalizer in Section IV.
Implementational details are discussed in Section V, nigaler

results in Section VI, and conclusions in Section VII.

Notation We use(-)*, (-)T and (-)¥ to denote conjugate,

transpose and Hermitian transpose, respectively. We tinée
k" entry of vectorz as|z]x, and the(k,1)*" entry of matrix
A as[A]x,;. The N x N identity matrix is denoted by v,

and the circular complex normal distribution with mean wect

m and covariance matriC' is denoted byCA (m, C). For
vector norms, we usézx| = Vzfz and ||z|a = VzH Az,
where A is positive semi-definite HermitiariR{x} denotes
taking the real part of a complex-valued vectarFinally, ®

(so thatN, = N) and

INhfl 0 INhfl (3)

T =
0 Iy_n,+1 O

Thus HY, with bandwidth Ny = N, contains the
impulse response coefficienfs” }.

In cylic-prefixed multicarrier modulation, G =
D(g)F}, where F{' ¢ CN*N s a periodN unitary
IDFT matrix cyclically extended in the row dimension,
and whereD(g) is a diagonal matrix created from a
time-domain transmission pulsg € CM:. ThenT =
F.D(y ® m), where F,, € CV*Nr is a periodN

denotes the elementwise product of matricBg(x) denotes
the diagonal matrix constructed from tt& cyclic down-shift
of vectora, andD(«) is shorthand forDy ().

unitary DFT matrix cyclically extended in the column
dimension,y € CVr is a time-domain reception pulse,
and [m],, = exp(j%%n). With appropriate design
of g and ~ [39], the frequency-domain channel matrix
HY has bandwidthNy = Np = [2fpT.N] + 6
where fp denotes the single-sided Doppler spread (in
Hz), T, denotes the channel-use interval (in sec), &isl

a (small) non-negative integer that controls out-of-band

Il. SYSTEM MODEL

At the transmitter, we assume that information Hiig§) },
are rateR coded, interleaved, and mapped 28-ary QAM
symbols. Groups ofV, information symbols are then com- o i 0
bined with pilot and guard symbols to form symbol blocks _coeff|C|ent energy. The off-diaganal elements I
of length N > N,. We denote thej™" symbol block by induce [CI.

s =[s5,...,5%_,]7, wheres? € S for symbol alphabet We assume the lasVy —1 symbols ins“’ are zero-valued
S, and the corresponding coded bit vectorasy = [z{’,..., 9guards, saH'’ acts causally on the firs¥ —Ny;+1 symbols.
2 o_1]7, wherezy” € {0,1}. The symbols are then linearly The equalizer employs amV,-term BE model for the
block-modulated by either a single-carrier scheme or aimulvariation of the composite channel over the block. In par-
carrier Scheme, represented ﬁye (CNt XN with N, > N, to ticular, it models thed“’ “cyclic” diagonal of H(j), i.e.,

form the transmitted signat”’ = [t§”,....t%) ;|7 = Gs". h{’ = [[HY]o—a,[H?]11-a,. ., [HV]N-1,n-1-4] , @S
The construction of will be described later. RO B d—0 N 1 4
At the channel output, the samples in tfié received block da = BNa — e YH T S )

i) A [,.(9) (7) T . . . J
r? =[rg’, ...,y _,]" are assumed to take the form whereB € CN*Ns is a matrix of basis vectors ang}’ € CM»
Ny —1 is a vector of BE coefficients. Note that the approximation in
rd) = Z ROHD 4@, (1) (é_l) can be _made arbltr_anly accurate via large enoNghV_\llth
— single-carrier modulation, the BE models channel vamatio

Uy , , the time domain, so tha¥, = Np suffices (with appropriate
whereh,; is the timen response of the channel to an impulsgpgice of B and §). With multicarrier modulation, the BE
applied at timetn —1), whereN,, is the discrete channel delaymodels channel variation in the frequency domain, so that
spread, and wherfyY)} is zero-mean circular white Gaussiarwb — N, suffices, with B being a truncatédDFT matrix

noise (CWGN). [9]. In either case N, Ny = N, Np. Assuming an accurate

The received vector” is then linearly (single- or multi- gE model (4), the received vectgr” from (2) becomes
carrier) demodulated via matrik ¢ CN*M- to yield

() — 1) ) 3
Y9 = THOG s +w'. @) Yy = ATV +w", )
2 HO where” £ [, .. Rt |7 e CNeNe and
In (2), w?» = Tw® and HP® ¢ CN-*Nt is a convo- AV £ [Dy(sV)B,...,Dn,-1(s")B]. (6)
lution matrix constructed from the channel's time-varyin ) . . . o .
impulse response according {H9],,,,; = hY) Tth g The receiver infers the information bit®%’} using the
s o= n,l"

“turbo” principle: “soft” information on the coded bitg, in

rqhe form of log-likelihood ratios (LLRS), is iteratively fiaed

tQFough alternating soft-equalization and soft-decoditeps,

as shown in Fig. 1. The equalizer’s task is to produce extrins
LRs given the observatiog”’ and the prior LLRs provided
y the decoder (or, in the first turbo iteration, from pilots)

N, = N; + N, — 1 andH® is banded with bandwidtiV,.
Note thatH “’ represents the composite effect of modulatio
channel propagation, and demodulation. When the single-
multicarrier scheme is appropriately designdd”’ can be
closely approximated by a “circularly banded” matrix wit
bandwidth Ny, as illustrated in Fig. 2(a) [7]. For example,

« In single-carrier block zero-paddedchemesG = Iy 6\We note that the sam&I ) is obtained in the context of zero-padded

multicarrier modulation [38] through a different choice @ andT" [7].
5We note that the sam& () is obtained in the context of single-carrier ’If the channel impulse response is sparse with known suppiet B
cyclic-prefix modulation [37] through a different choice &f andT" [7]. contains only those columns of the DFT matrix indexed by thepertf40].



TABLE I

The equalizers we propose are “noncoherent” in that they FAST RECURSION FOREVALUATING ju(an)
treat the channel realizatio®”’ as unknown. They treat
channelzstatistics(fts known_,(jt]owever, assuming that ~ From the old quantities:
CN(0,021) ando® ~ CN(07, Ry) for full rank Ry. The (@n-1), On—1, 71 [Sn—t1s s Sn_Np 1)
selection ofd"”’ and Ry is discussed in Section V-A. and the inputs:
. . . Yny Sny byy Ly
_ In Section |, we de_scrlbe the optlmal noncoherent equal- calculate the new quantities:
izer and a practical implementation based on tree-search, 1(@n), Oy S, [Smo- s Sn— Ny 42]s
and in Section IV we describe equalization based on the using the recursion:
Bayesian SAGE algorithm. Because the equalization praeedu an = [snbyl, -+ s snony 41717
is invariant to block indey, we suppress the®” notation in dn = 2%1‘;1” .
the sequel Cn =1+ ap dn)
q ' €n = Yn — aHon—l
st=321 CndndH
[1l. SEQUENTIAL NONCOHERENTEQUALIZATION p(@n) —u(wn 1) = el +In(32) + Nz,
A. Optimum Soft Noncoherent Equalization O =01 + Cuendn,
- . . . . initializing (iff n = 0) with:
The log-likelihood ratio (LLR) of coded bit;, giveny, i.e., pz 1) =061 =85! =0 2R,
Pr[z), = 1|y
L(xy Ehmh—" 2 ke{0,....N,Q—1}, (7
(oxly) & et =gt ke { b (@)
can be written in the form [25] From (15), we see that the noncoherent MAP metife) is
5wt P(Yl2) explTa tr}e sum of a “coherent MAP metric™ = ||y, — Ané’nﬂ2 +
L(zkly) = In : T @) 1z, a “bias term”’—In(7" det ®,), and a term—|6,, —
> wiap—o P(Y|T) expl’ @ 6|12, which penalizes the deviation of the conditional es-
wherel £ [L,(wo)....,La(2n,q)]" such thatL,(z) £ timate 6 from the prior statisticsd,, ~ CN (0, Ry). Thus,
In(Prfz, = ]/Pr[xk = ]) is the a P”Of’ LLR of z;. The the recursive MAP sequence metric evaluation implicithgsis
“extrinsic” LLR L (zx|y) = L(xx|y) — Lo(2x) then becomes per-sequence processing [41].
Zwm:l exp p(x) It should be noted that, when the alphaBeit symmetric,

Le(zkly) = In > op @) La(zr)  (9) sufficient asymmetry in the apriori LLR structufe., ()}
. 2, =0 _ is needed to circumvent the phase-ambiguity that resuita fr
using the noncoherent MAP sequence metric both channel and symbols being unknown. For this purpose,

w(@) 2 nply|z) + 17z, (10) it suffices to insert one pilot symbol per block.

Sinced andw in (5) are both Gaussian distributed, we have ) ) o
_ . ) B. Practical Soft Sequential Noncoherent (SNC) Equatizati

ylz ~ CN(A0, ARy AT + 0" Ly), (11) From (9), computation of exact soft outpuis (xx|y) is

where A depends on the coded bitsthrough the correspond- impractical because it requires evaluating and summifag)
ing symbolss. Thus, with® £ AR, A" + 521, we get for all 2V<@ hypotheses ofc. However, we expect the set
B — 9 N T {exp u(x)} to be dominated by a few “significant” bit vectors
p@) = —lly - Ablg- —In(r" det &) + 1 . (12) x, which we collect into the sef. Thus, we reason that near-

The sequence metrigs(x) can be evaluated using a,- optimal soft outputs will result from restricting the surminas

stage2@-ary tree, where, the partial metrics in(9toxes,ie.,

’u(w”) = lnp(yn‘wn) +l£xn (13) L (!Ek\y) ~ In ZmESﬁ{m:zk:ﬂ’ eXp/J,(w)
are evaluated recursively. In (13},, 2 [zZ,... 211" with 2 zesn{wi, =0} OXP H(T)
z;, 2 [rig, - Tigro]", I, 2 (1T, ...,ZZ]T with 1
[La(triQ)a ooy La (va—i-Q 1)] andyn [Yos-- - yn] NOte
that z, andl correspond to th@th symbol. The recursion is
derived in Appendlx A and summarized in Table I, whéfg Le(zkly) = max p(x) — max u(x)—La(zg). (17)
denotes thex'" row of B. It is straightforward to show that zeSM@a,=1} * @eSn{z:e,=0}
each recursion Consumé«s;zN,%I—s—?)NbNH%-? multiplications. To find the significant bit vectorsS and their metrics
The Table Il quantity,, can be written (see Appendix A): {;(z)},cs, we suggest a suboptimal breadth-first tree-search
6, = 9+R0Af'1>;1(yn ~A,9), (14) such_as the M—_algorithm or the T-algorithm. [3_5]. The M-
algorithm is particularly convenient because it yields aneo
which can be recognized as thg,-conditional MMSE esti- plexity that is invariant to channel realization and SNRWi
mate ofé,, from y,,. Using this fact, Appendix B shows thatsearch breadtd/ and the recursion in Table Il, soft nonco-
o A 2T N herent equalization consumes ol \/2¢ N? N2) operations
pln) = —;Uyn __A"O”H Hlp@n —In(r det &) per symbol (sinceVy Ny = NhNiMand S| g 52?). Further-
— 6. —8ll3 1 (15) more, when the symbol constellatiéhsatisfies a multi-level

— La ({Ek)(le)

If desired, the “max-log” approximatioﬁjmk:x exp u(x) ~
maxg..,—. () could be applied for further simplification:



bit mapping, the complexity can be made nearly independdrdm which Pr[s, = s|y,6[i]] is calculated and used to
of @), as discussed in [26], which is useful whénis large. compute the symbol means and variances
Note thatS N {x : 2, = 1} or SN {x : x; = 0} may

be empty for somé:, which would makeL, (zy|y) infinite. Sno= D5 Prlsn = sy, 6[i]] (25)
For this, a simple solution is to clip.(zx|y) [26]. Note also 5€8
that (arbitrarily placed) pilot symbols are easily incogted vn = Y |s = 5a|* Pr[s, = sy, 0[i]. (26)
by setting their apriori bit LLRd, to very large values. s€S
Step 1 outputs an updated version 6fi], which Step 2 then
IV. NONCOHERENTEQUALIZATION VIA SAGE uses to update the LLRS(z |y, 8[:]). To do this, we propose

. ) . a tree-search based on the coherent MAP sequence metric
We now develop a soft iterative noncoherent (INC) equalizer R

based on the SAGE framework [36], a generalization of the n(x[6[i]) = Inp(y|x,0]i])p(x) (27)
EM framework [14] that allows updating of parameters in = — Ly — A0[i]|* + In(z"V oY) + 1"z, (28)

subsets that each use a different choice of hidden data. In ] o L
our case, an estimate éf is updated one element at a timeVhich, when restricted to “significant” bit patterns € S,
using (z;, s) as the hidden data fal, wherez; is defined as yields the approximated LLRs

ZmESﬂ{w:wkzl} exp M($|0[7])
ZmGSﬂ{m:kaO} exp /L(SB|0[Z])
For this tree-search, we propose to use breadth-first method

such as the M-algorithm, as previously suggested in the MIMO
context [26].

y = Af; + 2. (19) TABLE Il
SAGE-BASED ITERATIVE NONCOHERENT(INC) EQUALIZATION

zZ] £ alel +’LU, (18) L(Ik‘y70[l]) ~ In

. (29)

with a; denoting thel*" column of A. In the sequel@; will
be used to denote the vect®mwith the [*" term omitted, and
Aj; used to denoted with the I'" column omitted, so that

We note that, when estimating, the hidden datdz;, s) is

admISSIble, [36] becausp(y|z, s,0) = p(y\zl,.s, 9[)' Initialize i = 0, 8[0] = @, and set LLRs according to
Our application of SAGE updates the estimate 6gf at pilots and (when available) previous decoder outputs.
iteration: = 1, thend; ati = 2, and so on, until allN, Ny Step 1. Update channel estimate 6[i]:
coefficients have been updated a totakofimes. In particular, Compute soft symbol estimates m and v.
th . . . Compute matrices A and C (yielding &, ¢;, and ¢;; V1).
at the¢*" iteration, we update indek= (i mod N,Ny) as Sete —y — A6]i].
Fori=0,...,NyNg — 1:
0ifi+1] = argmaxE {Inp(21, 5|01, 0;[1])|y, 0[i] } B = (@l +eu+o2pu)? _
0 _ 0.[i+1] = 6,[i] + B [alle — a2 pH (6]i] — 6) — cl6]i]]
+ Inp(y, 05[4]), (20) e e+ (Ofi+1] —0li))ay
while freezing the others (i.ed;[i+1] = 0;[i]). We adopt the z‘d<— i+1
Bayesian form of SAGE in (20), witp(6) £ CN(6;0, Ry). Stg; 3. Update coded bit estimates:
In Appendix C, we show that (20) reduces to Compute MAP metrics p(z|6]i]) for = € S via tree-search.
Compute posterior bit LLRs {L(zx|y, 0[i])}.
0,[i + 1] = 6,[i] + (||l&@]|* + cu + o2 py) ™ Repeat steps 1-2 a total of K times.
« (o‘zfle B UQle(G[i] —9) - cF@[i]% 1) Output the final bit LLRs {L(zx|y, O[K Ny Nx])}

It is worth noting that the algorithm in Table Il actually

WithAe £ Yy — Ae[l], Py £ [R;l];’l, pPu £ [R;l]u, and with
=1 uses a modification of SAGE approach described in [36],

Al.;, ¢, £ [C].;, andey = [C];,; defined from

A= [Do(m)B DNHA(m)B] (22) in that the expectation in (20) is not recomputed at every
BHED (v)B 0 i = 0,1,2,..., but rather wheri is a multiple of N,Ng.
0 . . . .
C = ., (23) In other words, it waits untibll parameters ir§ have been
0 BDy,._1(v)B updated before re-estimating the coded bits. This modificat
greatly reduces the overall computational complexity. eNot
wherem = [50,...,5y-1]" andwv = [vy,...,vy_1]" collect that a direct implementation of the SAGE-based INC equalize
the @li]-conditional symbol means, = E{s,|y,0[i]} and outlined in Table Il require<O(N,Ny) multiplications per
variancesv, £ E{[s, — 5,/° |y, 0[i]}. symbol forStep 1 and O(NZNy) multiplications per symbol
Our SAGE-based soft INC equalization algorithm is sunfor Step 2, for a grand total ofO(K N2Ny) multiplications
marized in Table Ill. Essentially, the algorithm alterrsateper symbol afterk’ SAGE iterations.

betwgen .channel (re)es_timatiosuép 1_) and coherent soft |n the single-carrier cas&y, = Np and Ny = N, implying
eqL_JaI|zat|on$tep 2). The mputtoSteplls the curren? channel an overall complexity of O(K N2N3,), which is linear in
estimated[i] and the associated (coherent) posterior LLRs discrete delay spready,. Here, the quadratic dependence on

Prizy = 1]y, 6[i]]
Pr[z, = 0ly, 0[]’

( 4) 8We have verified numerically that the number of SAGE iteratidiis
required for convergence does not scale with Ny, or Ny .

L(wk|y,0[i]) £ In



discrete Doppler spreadip, is not expected to be problematicof H inconsequential and alloweH to be treated as a lower-
becauseVp is usually very small in practice. triangular Ny-banded matrix, a property that was exploited
In the multicarrier case)N, = N;, and Ny = Np, and so for both noncoherent and coherent tree-search. These gyuard
a direct implementation would requir®(K N2Np), which notwithstanding, one may wonder whether the remairfing
may be impractical wheiv,, is large (e.g., several hundred).Ng symbols in each block should be data symbols, or whether
However, we can now exploit thé&/-DFT structure of B a few should be dedicated as pilots or guards and—if so—how
and the O(Nlog, N) complexity of the N-FFT to design they should be arranged. Towards this aim, we review some
an implementation with an overall per-symbol complexity ofelated literature.
O(K NpNplog, N). To do this, we avoid explicit computation For communication over block-fading DS channels whose

of C and instead notice that intra-block time-variation obeys a complex-exponentidt B
| V-l model, [43] derived the maximum achievable rate and showed
o = [BHDll(fv)B]lzJ2 N Z v, VI (80) that a pilot-aided system which places a cluster NNy,
n=0 pilots at the beginning of the block achieves this maximal

cloli] = [CHO[i]]l = [BHDzl(v)Beh[i]] (31) rate. With a suboptimal receiver such as ours, howeverether
is no guarantee that this pilot pattern remains optimal, iand
for I, = [I/Ny] and Iy = (I mod N;) and 6;,[i] = fact it is easy to show numerically that deviations from this
[Bm]lle:(ll-&-l)Nb—l' Since B D, (v) B, [i] can be com- pattern can yield improvements.
puted using i) anN-FFT, ii) N scalar multiples, and Other criteria have also been considered for pilot pattern
iii) an N-IFFT, each application ofStep 1 requires only design, such as minimizing the MSE attained during MMSE
O(NyNu N log, N) multiplies per symbol-block. The overall estimation of . For DS channels whose time-variation
per-symbol complexity of this FFT-based multicarrier SAGlobeys a complex-exponential BE model, and for estimators

algorithm then become® (K N, Ny log, N), or equivalently which use only pilots within the current block, such “MMSE

lo

O(K Nj,Np log, V) in the multicarrier case. pilot patterns” were derived for single-carrier zero-pedd
schemes in [44], and, more generally, for the class of affine
V. IMPLEMENTATIONAL CONSIDERATIONS transmission schemes in [45]. Among the MMSE pilot pat-
A. Choice of8"”’ and R, terns identified in [45] are single-carrier schemes wiB

“ggonecker—delta” pilot/guard clusters of lengthv, —1 and
multicarrier schemes withV;, “Kronecker-delta” pilot/guard
clusters of lengtl2 Np —1, recalling earlier heuristic designs

is worthwhile discussing the choice 6t and R,. [46]. While these MMSE patterns yield provably good channel

Under a Rayleigh fading assumption, one may be temptsatimates, they are rate-suboptimal in the sense that they d
to choose the non-informative prio’?("’ : 0. In doing so not allow full-rate transmission across the DS channel.[43]
however, the equalization of a symbols in t& block does’, To conclude, the design of rate-maximizing pilot patterns

not benefit from the knowledge of pilots (and, when ava"ablgor_douzgubzgtimalr%ce_ive_rshremair;sl an open prqblerrin._That
previous decoder outputs) imeighboringblocks, whose BE said, [43]-[46] provide insights useful in constructingifistic

coefficients{8“" };..; may be strongly correlated with thosed€Signs, as done in, e.g., [5] [47]. A particular family of

of the current block. A simple way to exploit this knowledgé)""tter.nS inspired' by [43]-{46] is detailed in Section VI and
5 equal to the MMSE estimate @i’ based on ©Xx@mined numerically.

Since both the sequential noncoherent (SNC) equalizer
Section 11I-B and the iterative noncoherent (INC) equaliat
Section IV employ the channel prigt” ~ CA'(8", Ry), it

is to setd
out-of-block quantities. Note that, if only, out-of-block
pilots are to be used, then the MMSE estimator & VI. NUMERICAL RESULTS

can be computed in advance and implemented using Only\Ne now describe numerical experiments that compared

O(NoNwNp) operations, a_nd reduced-rank technlques e proposed equalizers to other approaches and perfoemanc
further reduce the complexity [42]. If we want to mcorp«iaratbounds for both single- and multicarrier cases

out-of-block data-symbol estimates, then the MMSE estimat o S o

. .. 1) Setup: Single- and multicarrier transmission schemes
cannot be computed in advance. However, a procedure S|mllaerre then emploved as described in Section 1. In all ex-
to Step 1 in Table Il could be used to generate a near-MMS ploy 1
estimate of§"”, with per-symbol complexityO(NZN,,) for

periments, the transmitter employed rake = 3 irregular
single-carrier and?(Np N}, log N) for multicarrier cases. lOW. density parity check (LD.PC) cers with average column-
: weight 3, generated by publicly available software [48]. The
We recommend that the covarianBg be constructed based . ; . ;
. . coded bits were block-interleaved by feeding them into an
on worst-case Doppler spread assumptions. In Section VI_a ; :

o ; . 8 X (JQN,/8) array column-wise, then reading them out row-
specific Doppler model is detailed and robustness to the as- ! : .
sumed worst-case Doppler spread is investigated nurﬂgricaglse' The mterlg_aved b_|ts were mapped to QPSK symbols i.e.

=2) and partitioned into data blocks of lengiy, each of

) which was merged witlV,, pilot/guards, as described below, to
B. Pilot and Guard Patterns form a transmission block of length = N,+N,,. So that each

Recall that, in Section Il, the lagf;—1 symbols ins were codeword spanned = 32 data blocks,(JQN, RJIQN;)-

assumed to be zero-valued guards, so #Maacts causally on LDPC codes were employed. Unless otherwise noted, we used
the first N—Ny+1 symbols. This made the ladf;—1 columns block lengthN =64 with N, =8 pilot/guards per block.



The pilot/guard patterns illustrated in Fig. 2(b)-(c) wera maximum ofg turbo iterations, unless otherwise noted. We
employed for single- and multicarrier cases, respectiviely specify themaximummumber of iterations because the receiver
the single-carrier case, each block contaiNg — Ny +1 breaks out of both the LDPC and turbo loops as soon as
non-zero leading pilots an@&vy — 1 zero-valued guards. Inthe LDPC syndrome check indicates error-free decoding. For
the multicarrier case, each block contaiis> 1 pilot/guard SAGE, K =3 iterations were used unless otherwise noted.

clusters, where each cluster contaiNg — 1 leading zero- In the sequel, we refer to the proposed equalizers as

valued guards andv,/K — Np + 1 trailing non-zero pilots.  , ncT-BE: the proposed sequential noncoherent (SNC) ap-
The cluster pattern repeats evely= N/N,, blocks, and the proach, which uses the M-algorithm to perform a tree-
cluster locations are stagget@do that each subcarrier appears  search according to a noncoherent BE-structured metric,
in a cluster exactly once eveffy blocks. o (sBE+cT)X: the proposed SAGE-based iterative nonco-

Jakes method [49] was used to generate realizations of a herent (INC) approach, which iterates soft BE-channel
wide-sense stationary uncorrelated (WSSUS) Rayleigh fad- estimation with soft coherent tree-seardt, times per
ing channel, i.e.E{h, k), , ,} = &nopde with delay- turbo iteration.
power profile (DPP)s? and temporal autocorrelatiofy, = e also investigate the performance of
Jo(2m foTym). Here, foT, denotes the normalized single- ey 1 soft BE-channel estimation followed by coher-
sided Doppler spread ang(-) the 0**-order Bessel function ent tree-search (once per turbo iteration)
of the first kind. To facilitate comparison of equalizers wao SAR+CT: soft AR-channel estimation foIIO\;ved by coher-
complexity grows rapidly inN,, most _experimer_ns used the ent tree-search (once per turbo iteration),
relatively short delay spreadf, = 3 with the uniform DPP sAR+cB: soft AR-channel estimation followed by coher-

2 _ —1 . . L]
o = N, . However, In some experiments tha_t only tested ent BCJR (once per turbo iteration), equivalent to the
the computationally efficient SAGE-based equalizéf, = 64 “SKTE” method proposed in [22]

was used with an exponential DPP where the last tap was L
20dB weaker than the first. as well as two genie-aided performance upper-bounds:

The case ofV), = 3 and fo T, = 0.002 occurs, e.g., whena * PH¥CT: coherent tree-search usipgrfectknowledge of

system with carrier frequency, = 5.8GHz and bandwidth the channelH,

400kHz (i.e., T, = 2.5us) communicates over a channel * PIBE+CT: coherent tree.—search based on a BE-channel

with a maximum delay spread &fus and Doppler spread of estimate constructed usimprfect LLR feedback

fo = Vmaxfe/c = 800 Hz, wherev,,,, = 149km/h. On the As discussed in Section I\¢oherent tree-searc{eT) uses the

other hand, the case 6f, = 64 and fp7. = 0.0005 occurs, M-algorithm to sequentially maximize the metticp(z|y, H)

e.g., when a system with carrier frequenty= 5.8GHz and for externally suppliedd—a direct application of the MIMO

bandwidth3.2MHz (i.e., T, = 0.3125us) communicates over technique [26]. Meanwhilecoherent BCJIR(cB) refers to

a channel with a maximum delay spreac26f.s and Doppler the use of the trellis-based BCJR (or “forward-backward”)

spread offp = vmaxfe/c = 1.6kHz, whereuv,, ., = 298km/h. algorithm [15] to calculate bit posteriors with an extefyal
The BE models used by the equalizers were the followingrovided channel estimat&oft BE-channel estimatiofsBE)

In the single-carrier case, a Karhuneaeve (KL) basis [50] UsesStep 1 of the SAGE iteration in Table III. Finally,

was nominally used to model chanrtéhevariation, i.e., B Soft AR-channel estimatiofsAR) uses the Kalman technique

was constructed column-wise from th& principal eigenvec- from [22], for which we employed a second-order (i.e., three

tors of R, 2E{h4h!} and diagonaR, was constructed from coefficient) AR model.

the N, principal eigenvalues aRy,, whereN, = 3was usedin ~ 2) Effect of Number of Pilot/Guard Symbold/e first

all cases. Robustness to the use of an oversampled compfsamine the effect ofV,,, the number of pilot/guard symbols

exponential (OCE) basis [51] is examined in Section VI-@er N-block. Although we report only a particular single-

In the multicarrier case, a Fourier basis was used to mod@rrier ncT-BE experiment, we observed similar behaviors in

channel frequencyvariation, i.e., B was formed fromn, other settings. Figure 3 shows coded BER verBygN, for

columns of theN-DFT matrix, andR, was constructed to various NV,. As can be seen, the performance increases with

match the WSSUS statistics (as detailed in [52]). Unleg¥%, until N, =8 and then remains constant through = 11.

otherwise specified, the medli’”’ = 0 was assumed for the AS N, increases further, taV, = 14, the BER-vsE; /N,

first turbo iteration. actually degrades, because the penaltyFppN,, overwhelms
For all tree-searches, the M-algorithm was used with sear&§ reduction in channel estimation error.

breadth) = 64, and the LLR magnitudes were clipped2g  The caseN, = 3, corresponding to the use af non-zero

in the noncoherent case aRdn the coherent case. The LDPcRilot and 2 guard symbols, demonstrates the ability of the

decoder by MacKay and Neal [53] was used with a maximuRPncoherentcT-BE equalizer to function reliably with only a

of 60 LDPC iterations, and turbo equalization was used witfingle (non-zero) pilot symbol. Recall that one pilot sufic
to circumvent the inherent phase ambiguity of symmesric

9Here, we use only leading guards because the multicarriennetas 3) Algorithm Comparison—Single-carrier Transmission:
causal. WhenV, = Nj,Np and C = N, this pattern coincides with the For single-carrier transmission, Figs. 4 and 5 compare the
frequency domain Kronecker delta” pattern of [45], [46]. _ proposed soft noncoherent equalizee3-BE and (sBE+cT)X

Note that, by cyclically shifting the elements of both and s, it is h h d I

possible to placeVy — 1 guards at the end of the block while maintaining!® (€ approachesBE+cT, sAR+cT, andsAR+cB, as well as
the “circularly banded” structure off illustrated in Fig. 2(a). to the performance boungsi+cT and plirBE+cT.



Figure 4 examines a Doppler spread 7 = 0.002, chosen channel taps were zeroed. Here, we used a block of
where the proposetcT-BE and (sBE+cT)? perform only N = 256 with N, = 64 pilots arranged so thal = 2
2dB from the perfect-CSI boungH+cT and only 1.7dB  and P = 4. The receiver used IC| spap = 3 with a
from the perfect-LLR-feedback boungirBE+cT. Interest- maximum of16 turbo iterations, and< = 3 SAGE iterations
ingly, both tree-search-based algorithms outperformrtlés-  were used with four repetitions dtep 1 for every Step 2.
based methodksAR+cB by 0.6dB. Figure 5 examines the Figure 7 demonstrates that a large delay-spread channékcan
largeft! Doppler spread offpT, = 0.005. There, ncT-BE effectively equalized (e.g., 25dB gap to the genie bound at
still performs very well, maintaining &dB gap from the 10~2 BER) by the proposed (K N, Np log, N;,) complexity
plirBE+cT bound and outperforming other schemes by aboS8AGE-based equalizer.
2dB. Meanwhile, (sBE+cT)® performs within 1dB of the 6) Robustness to Statistical Mismatcks discussed in
trellis-basedsAR+cB, which is impressive given that the perSection V-A, the proposed noncoherent equalizers rely on
symbol complexity of(sBE+cT)® grows linearly inN;, while certain assumptions about the BE-coefficient covariandexna
that of sAR+cB grows asO (N, |S|V). Ry. We first examine the robustness of these schemes to

A comparison of theAR+cT andsAR+cB traces in Figs. 4— the mismatch in the assumed maximum (normalized) Doppler
5 shows that, for soft coherent equalization, the use of MpreadfpT;. For this, Fig. 8 plots the E,/N, required to
algorithm tree-search in place of optimal BCJR vyields onlgttain 102 BER” as a function of (true)fpT,, comparing
about 1dB SNR loss. A comparison of theBE+cT and equalizers that know the trug T, to those that assume the
sAR+cT traces in Figs. 4-5 suggests that, when used to modigkd value 0.002. Figure 8 demonstrates that the proposed
channeltime-variation, a3-term BE model performs similarly equalization schemes¢T-BE and (sBE+cT)?3, are both robust
to a 3-term AR model (i.e., one may slightly outperform theo mismatch in Doppler-spread, in that the performance of
other depending ot /N,). As we shall see in Section VI-4, the f,T,-fixed scheme closely tracks the performance of the
the story is different when modeling channgkquency f,T,-aware scheme over the full range of (tru@).
variation. A comparison of theBE+cT and(sBE+cT)X traces Next, we examine the robustness of the proposed nonco-
in Figs. 4-5 suggests that the usefof>1 SAGE iterations herent equalizers to the use of an OCE basis (instead of
yields aboutldB SNR gain in most cases. (No additional gainghe optimal KL basis)in conjunction witha mismatch in
were observed foK >3 when fp T, =0.002, and K >6 when the assumed maximum Doppler spreésil;. For this, we
foTs=0.005). used the OCE basifB],; = exp(—j2xn(l — 2-1)) for

4) Algorithm Comparison—Multicarrier Transmissionn | — {0,...,N, — 1} with P = 5 and N}, = 3. Constructing
Fig. 6, the single-carrier experiment of Fig. 4 was repeatgfe figure in the same way as Fig. 8, we obtained Fig. 9, which
for multicarrier transmission with ICI spanyp = 3. While |ooks remarkably similar to Fig. 8. In particular, for theT-
the channel remains identical to that in Fig. 4 (i.8,, =3 BE traces, there is very little difference between Fig. 9 and
and fpT, =0.002), we usedN, = 9 pilots (in £ =1 cluster) Fig. 8. For the(sBE+cT)* traces, we see essentially no loss
per block, initializedd"”’ using pilots fromP =4 neighboring in performance from the use of OCE when the corrgst,
blocks, and tuned SAGE somewhat differently: = 6 and, is applied, and approximatelydB in loss when a mismatched
in Table IIl, Step 1 was repeated four times for easlep 2. f,T, is applied.

Consistent with the single-carrier experiment in Fig. 4 th Robustness aside, the “U shape” of the curves in Figs. 8—
multicarrier experiment in Fig. 6 showsBE+cT)* perform- 9 gives insight into equalizer performance as a function of
ing on par withncT-BE and about0.5dB better than both f,7.,. First note that the required, /N, increases agpTs
sBE+cT and sAR+cB. However, unlike the single-carrier ex-becomes small. We attribute this behavior to lack of Doppler
periment, where th8-term AR model performed on par with diversity. Likewise, the requireds,/N, increases aspT,
the 3-term BE model under common tree-search decoding, thecomes large. We attribute this behavior to the limitation
multicarrier experiment in Fig. 6 showsAR+cT performing of the N,-term BE models for channel time-variation, where
significantly (1.5dB) worse tharmsBE+cT. This suggests that N, < N. Furthermore, wherfp7, is large, we see thatcT-
the AR model is not as well suited to modeling channegig significantly outperformgsBE+cT)?, regardless of whether
frequency-variation as it is to modeling channel timea8on. 7., is fixed or known, and regardless of whether KL or

Looking back over Figs. 4-6, we see tihal-BE performed OCE is assumed for the basis. This behavior is perhaps not

consistently well regardless of Doppler spread and trasssméurprising given the fact thaicT-BE is computationally more
sion scheme, and th&BE+cT)X performed as well aacT- demanding tharfsBE+cT)3.

BE in all but the very-high-Doppler single-carrier experirhen

Given that(sBE+cT)X is computationally cheaper thawrT-

BE, it is not surprising to see some sacrifice in performance.
5) Performance under Large Delay Spreaih Fig. 7, we In this paper, we proposed two soft noncoherent equalizers

examined multicarrier performance under the larger delayat are applicable to single- or multicarrier transmissio

spread of N, = 64 and fp7, = 0.0005. To mimic the over unknown doubly selective channels and suited for use

sparsity of typical wireless channels, all b2 randomly in a turbo-equalizing receiver. In all cases, we exploitadi®
For ncT-BE, plIrBE+CT, andpH+cT we used a maximum o turbo expansion (BE) models for channel (time or frequency) vari-

iterations, while for(SBE+CT)8, SBE+cT, SAR+CT, and SAR+cB we ation. To design our sequential noncoherent (SNC) equalize
used16. we started with an expression for the optimal noncoherent

VIl. CONCLUSION



metric, showed that it can be evaluated sequentially, andNow we concentrate op,. Defining 3,,_; and applying
then proposed an implementation based on M-algorithm treébe matrix inversion lemma (MIL):

search whose per-symbol complexity grows @$NZN?), > 5 A" 4 2R, ! 42
where N}, is the channel’s discrete delay spread awgl its I fill n—1An-1+0 (42)
discrete Doppler spread. Motivated by further reduction in Y, =R *R0An 1‘1’ 1An—1Ry, (43)

complexity, we also proposed an iterative noncoherent JINGe see from (37) that,, ' = J 2(1+ aHgn La,,). Using the
equalizer using the SAGE framework, which iterates betwegixt thaty, = X,,_; + a,a " a second application of the
soft channel estimation and soft coherent equalizatios, tWIL yields g;l — g;il — Cndndf for

latter implemented using an M-algorithm tree-search. For A i
single-carrier transmission, the per-symbol complexityhis dp = X100 (44)
INC equalizer grows a& (K N32N},), whereK is the number ¢n 2 (L+ald,) ™! =pno’ (45)
of SAGE iterations. Here, the quadratic dependenceNgn Together, this gives a fast update for = Cn/o

is deemed tolerable since, in practid€p is very small. In Finally, we tackled,,. Using the MIL again,

the multicarrier case, we presented an FFT-based implemen- L . -

tation of the SAGE technique with per-symbol complexity =0 (Iny1 — AxZ, A, (46)
O(K NpNplogy, N), where N is the number of subcarriers,which applied to (39) yields

which becomes advantageousMgsbecomes large. Numerical ~

_ 1 _AH —1 A H~
experiments show that the SNC and INC equalizers both "ol 11%9(5" An A”>E” A U (“47)
perform reasonably close to genie-aided performance kound =X, A9, (48)
and are robust to lack of knowledge of the true Doppler spread = (2,1 = ¢uds dH) (Af Wno1+anfn). (49)

foTs, as well as to the choice of BE model. Expanding (49) and applymgHE an = (-1 —1, we get

APPENDIXA -1 ~
en = en + dn n nd a, 0n — Gn n -1 n
THE FAST RECURSIVEUPDATE FOR () 8 ! Lo (y ¢ 1. d 1~ ndn(6 )y(SO)
— Un—1 n\Yn — @, Up_1)0p.

First we write (13) as ] ) - -
Notice that, in (41) and (50%, — a% 0,1 =y, —a’l0,

p(xn) = —lly, — Anb|% 1 — In(x"*! det ®,,) + I, 2,,(32)
&, 2 A RyA 4 0°I,,. 1, (33 B Recursion forus ()
In the sequel, we us§, =y, — A0 and @, = 6, — 0. From (34), we can write
In the two sections below, we derive fast recursions for the | ®Pn1 @,
. . A ~H+—1~ A (bn - H (51)
first two terms in (32)yu1(x,,) 2 92 ®, 'y, and ps(x,) 2 ¢, On

1n(7rn+1 det q:,L). Together, these recursions yield Table II. The Schur complement, 2 ¢, — ¢nH(I);11¢n obeys [54]

A. Recursion fonu (x,,) det(®,,) = vy, det(®y—1). (52)
Rewriting ®,, with the aid of A,, = [Aa" 1} wherea!! Identifying ¢,, and ¢,, from (34),
denotes thex'" row of A, we have Y = 0> +a’Rpa, —a’ RyAT &' A, Rya,
—1 P, A, _1Rya, - P, Pn = 0'2/Cn (53)
e, = HR AH Hp + = | H . (34) . ) )
0As-1 ay Ryan, +0? Prn Pn using (43) and (45) for (53). Taking the logarithm of (52),
for the block-inverse quantities
L oeee a(n) = 2@ 1) + (0 /C,). (54)
Pn = q’ + n n'n 35
L P PPl (35) APPENDIXB
P, = —®. 1A, 1 Roanp, (36) DERIVATION OF (15)

p,t £ o”+al (Re — RyAll ,ZilAn_1Re> a,. (37) The derivation is performed for full-block vectors rather

than partial ones (e.gx; rather thane,,), but applies to both.

>

Writing 41 (z,,) using (34) andy,, = [y; 1} we get Applying the MIL to @', the first term of (12) becomes
(@) = Gy Pty + 2081, 00} + paliinl’- (38) yhely = L (9"y -yt AnTATy),  (85)
Using thes,,_;-conditional MMSE estimate o from ¢, _,: WhereX £ A"A 4+ o?R;' = Sy_; (via (42)) and the
~ o o1 - definition of y is from Appendix A. Writing
971—1 = ROA”—lq’n—lyn—lv (39)
~ _ _ _ JTAST ARy = oR{gT A AT gy — g Ax 1Ay
we see thar? p. = -6, i1a,p,. Applying this relation- 1A A ) )
ship to (35)-(37), we can rewrite (38) as and plugging ind = %" Ay = 6y, (via (48)), we find
- - - 1~ - ~ ~H |~
pi(@n) = g @719, + pabh_ anal’8,_, g"e 'y = L (y"y —20{g" A0} + 67 6) (56)
—2pRAOL s anda} Fpalin?  (40) = 59— ABI" + 18Il (57)

= p1(@n_1) + puliin — a0, _1|?. (41) The definitions ofy and @ then yield (15).



APPENDIXC
DERIVATION OF (21)

(6]

We analyze the two terms in (20) separately. Foi7]
the first term, we recognize thal p(z;, s|0;,6;[i])
Inp(z]s, 61, 071i]) +1n p(s|6y, O71i]), wherep(zi|s, 6y, 8;]i]) =
CN(z;a46;,021) and wherep(s|6;, 0;[i]) does not depend [8]
on 6;, to write

E {Inp(z, s/6;, Gi[i])’y, 0]}

El

= c1 — o E{||lzi — au6i|]*|y. 0[i]} (58) (10]
= e+ 02 (2R{6; B{af"21ly. 0[i]}}
— 16,2 B {leal? |y, 61i]} ) (59) [

wherec; andcs do not depend o#;. To proceed, we write

E{af'zily,0li]} = E{a/ E{zs,y,0li} |y, 0li]}, (60)

(12]

[13]
taking the inner expectation w.r; and the outer expectation
w.r.t s. Sincez; andy are jointly Gaussian (gives and#]i]),

E{zl|3’y>0[i]}
E {zs,0[i]} + C.,,C,, (y — E{y|s,0li]}) (61)

(14]

(18]

= oyl [Z] +vy— A@[i], (62)
[16]

where C,, = Cov{yyH|s,0[i]} =o’IN (63)
C.y £ Cov{ziy"|s,0i]} =0’ Iy. (64) [7]

Plugging (62) back into (60) yields

E {aﬁzﬂy’@[ﬂ}
E{[lcul®|y, 0li]}6:1i] + &'y — E{e/ Aly, 0i]}6i]
(laull? + cw)ouli] + &'y — (@ A +¢[)6li],  (65)

wherea;, ¢; and¢; were defined after (21).
Expansion ofln p(6;, 6;[:]), the second term in (20), yields

(18]

(19]

[21]
Inp(0;, 0;[i]) = c5 — pulby — 6,
—2R{(6: — 01)" ;" (6;[i] — 67)}, (66) [22]
where p; was defined after (21)p; is defined agp; with [th
entry omitted, and; is irrelevant to the maximization.

Plugging (65)—(66) into (20), and zeroing the gradient of
the resulting expression with respectéo yields (21). (24]

(23]
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Fig. 1. Turbo receiver with soft noncoherent equalizer.
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