
1

Turbo Equalization/Estimation of Doubly Selective
Channels using Basis Expansion and Tree Search

Sung-Jun Hwang and Philip Schniter∗

Abstract—For turbo reception of coded transmissions over
unknown doubly selective channels, such as time-varying ISI
channels or frequency-varying ICI channels, we propose several
soft noncoherent equalizers based on basis expansion (BE) chan-
nel modeling and tree-search, as a departure from traditional
designs based on autoregressive (AR) channel modeling and/or
trellis processing. By “noncoherent,” we mean an equalizer that
operates in the absence of channel state information. We begin by
deriving the optimal BE-based soft noncoherent equalizer, whose
complexity is shown to be impractical. We then propose a near-
optimal approximation, based on soft tree-search and leveraging
a fast recursive metric update, whose per-symbol complexity
is only quadratic in the number of BE coefficients. Finally,
we propose a different approach to soft noncoherent equaliza-
tion that results from an application of the space-alternating
generalized expectation-maximization (SAGE) algorithm. Using
a tree-search-based practical implementation, the per-symbol
complexity of this latter scheme is, for the multicarrier case, only
linear in the number of BE coefficients. Numerical experiments
demonstrate coded bit error rates near genie-aided bounds, as
well as robustness to Doppler-spread mismatch.

Index Terms—Turbo decoding, noncoherent decoding, equal-
ization, channel estimation, semi-blind methods, basis expansion
models, time-varying frequency-selective channels, doubly selec-
tive channels, doubly dispersive channels, expectation maximiza-
tion, SAGE.

I. I NTRODUCTION

In this paper, we consider the problem of decoding a data
sequence transmitted over anunknown doubly selective(DS)
channel, such as a time-varying inter-symbol interference(ISI)
channel or a frequency-varying inter-carrier interference (ICI)
channel. Such channels occur in, e.g., shallow-water under-
water acoustic and wideband mobile radio applications. In
particular, we are interested in the case of coded transmissions
with possibly long codewords (from, e.g., LDPC codes). A
practical and near-optimal strategy for equalization in this
scenario follows from the turbo principle [3], [4], which
suggests to iterate between “soft noncoherent” equalization
and soft decoding (see Fig. 1). By “soft noncoherent,” we mean
that the equalizer’s role is to produce posterior bit probabilities
from the received samples, pilots, and prior bit probabilities
supplied by the soft decoder, in the absence of channel state
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information. Noncoherent equalizers are also referred to as
“semi-blind” in the literature (e.g., [5]).

Optimal soft noncoherent equalization requires evaluating a
noncoherent metric for every possible bit sequence and then
summing over subsets of these metrics (as shown in [6] for
Gauss-Markov channels). Since the number of possible bit
sequences grows exponentially in the sequence length, practi-
cal implementation demands a suboptimal approach. Broadly
speaking, suboptimal approaches fall into one of two cate-
gories: iterative channel-estimation and equalization (ICEE),
or joint channel-estimation and equalization (JCEE). ICEE
methods iterate between learning the channel coefficients and
learning the coded bits, whereas JCEE methods attempt to
simultaneously learn the channel and bits. (See [7] for a
detailed discussion.) In both cases, the channel coefficients
may represent time-varying ISI or frequency-varying ICI.
Furthermore, one might choose to parameterize the time- or
frequency-variation using a basis expansion (BE) model [8],
[9] and/or an auto-regressive (AR) model [10].

Several ICEE approaches (e.g., [2], [5], [11]–[13]), have
been proposed as incarnations of the expectation-maximization
(EM) algorithm [14]. To our knowledge, this idea was first
proposed for frequency-selective channels in [11], and later
extended to doubly selective (DS) channels that use an AR
model for coefficient time-variation (e.g., [13]) and a BE
model for coefficient time-variation (e.g., [2], [5]). Of these
works, most employ the trellis-based BCJR [15] algorithm for
soft coherent1 equalization. The principal drawback to BCJR
is its complexity,O(|S|Nh), which is impractical for large
channel lengthsNh, even when the alphabet size|S| is modest.
An alternative, which we explore in this paper, is tree-search
based soft coherent equalization, as used in [2].

ICEE approaches have also been proposed that iterate a soft
coherent equalizer (e.g., [16]–[21]) with a soft2 DS channel
estimator (e.g., [21]–[24]) without explicitly considering the
optimality of their interaction. Motivated by the high costof
BCJR, reduced-complexity soft coherent equalization schemes
have been proposed based on linear methods (e.g., [16],
[20], [21]), soft interference cancellation (e.g., [17], [18]),
reduced-state trellis techniques (e.g., [19]), and—as previously
mentioned—soft tree-search (e.g., [25], [26]). Meanwhile,a
number of soft DS channel estimation techniques have been
proposed that support deterministic channel models, via LMS
and RLS adaptation (e.g., [23]); AR time-domain variation,

1By “coherent” equalization, we mean that the equalizer has access to
channel state estimates.

2By “soft” channel estimation, we mean that the estimator is ableto use
soft symbol estimates.
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via Kalman techniques (e.g., [22]); and BE time- or frequency-
domain variation (e.g., [21]). While it is also possible to use
an AR model for frequency-domain variation, this approach is
not as effective—as we shall see later.

As an alternative to the ICEE approaches described above,
one might consider suboptimal JCEE schemes, as long as
their complexity is far below that of optimal JCEE. Many
of the previously proposed suboptimal JCEE schemes are
trellis-based, and can be recognized as extensions of the
(coherent) BCJR algorithm where the trellis is expanded to
allow conditional AR-coefficient estimation at each state (e.g.,
[27]–[30]). In the related “fixed-lag” approach (e.g., [6],[29]–
[31]), the problem is relaxed to one of computing each bit
posterior using only a local subset of the observations, again
using an expanded trellis. Like BCJR, the complexities of these
trellis-based methods grow exponentially in the channel length
Nh, and are thus impractical whenNh is large. Moreover,
as mentioned earlier, AR models are not as effective as BE
models for frequency-varying ICI. A very different approach
to JCEE of DS channels was recently proposed in [32],
[33], leveraging the fact that—when the finite-alphabet symbol
property is ignored—nonlinear Kalman filtering techniques
become admissible. This approach was initially proposed for
AR-modeled channels [32] and later extended to BE-modeled
channels [33]. A third JCEE approach, which we will elaborate
on in the main body of this paper, is based on soft tree-
search with per-sequence BE-coefficient estimation [1]. This
third approach should not be confused withhard noncoherent
equalization via sphere decoding (a form of tree-search) and
BE-coefficient estimation [34], since turbo reception requires
that the equalizer accept and producesoft bit estimates.

TABLE I
PER-SYMBOL COMPLEXITY OF SEVERAL SOFT NONCOHERENT

EQUALIZERS, WHERENh IS THE CHANNEL’ S DISCRETE DELAY SPREAD

AND ND ITS DISCRETEDOPPLER SPREAD, N IS THE BLOCK SIZE, |S| IS

THE CONSTELLATION SIZE, AND Nf IS A LINEAR FILTER LENGTH.

algorithm single carrier multicarrier
INC or “(sBE+cT)K ” O(N2

DNh) O(NDNh log2 N)
SNC or “ncT-BE” O(N2

DN
2
h
) O(N2

DN
2
h
)

BW-BE [5] O(N2
h
|S|Nh +N2

h
N2

D) -
ICE-TE [21] O(N2) O(N2)

FL-EKF-BEM [33] O(N2
DN

3
h
) -

FL-EKF [32] O(N2
DN

3
h
) -

SKTE [22] O(N2
DN

2
h
+Nh|S|

Nh ) -
LE-RLS [23] O(N3

h
+N3

f
) -

APP-SD-KF [13] O(N2
DN

2
h
|S|Nh ) -

As can be seen from the discussion above, many approaches
have been proposed for soft noncoherent equalization of DS
channels. To help put these approaches into perspective, Ta-
ble I3 lists the complexity orders of several recently proposed
algorithms. The goal, as we see it, is to minimize complexity
while maintaining near-optimal performance.

3In constructing Table I, an elaboration of [32, Table II], weassumed that
the equalization delay used in [32], [33] is proportional toNh (as suggested
in [32]). For single-carrier schemes,ND corresponds to the BE model order
as well as the AR model order (as suggested in [33]), andN is the BEM
period. For multicarrier schemes,ND corresponds to the ICI spread, andN
is the number of subcarriers.

In accordance with this goal, we propose two novel methods
of soft noncoherent equalization, both based on the combina-
tion of soft tree-search with generic BE channel modeling. Our
“sequential noncoherent” (SNC) equalizer can be categorized
as JCEE, and our “iterative noncoherent” (INC) equalizer
can be categorized as EM-based ICEE. Our use of generic
BE models facilitates a unified treatment of different channel
types (e.g., time-variant ISI channels, frequency-variant ICI
channels, and sparse versions of those channels), and our use
of soft tree-search leverages recent ideas from the flat-fading
multiple-input multiple-output (MIMO) literature (e.g.,[25],
[26]), facilitating an efficient tradeoff between performance
and complexity. Our specific contributions are as follows.

1) We first derive theoptimalsoft noncoherent equalizer of
BE-modeled doubly selective channels for a very general
class of block modulation schemes that includes single-
or multi-carrier schemes, cyclic- or zero-prefix, and
rectangular or non-rectangular windowing. This optimal
scheme involves the computation of a noncoherent met-
ric for every possible bit sequence. Although the metrics
do not explicitly involve channel estimates, we show
that the metric can be recursively computed in a way
that implicitly involves per-sequence MMSE estimates
of the BE coefficients.

2) As an approximation of the optimal soft noncoherent
equalizer, we propose a “sequential noncoherent” (SNC)
equalizer that performs soft tree-search using the M-
algorithm [35]. Our SNC scheme incurs a per-symbol
complexity of O(N2

DN
2
h), whereNh is the channel’s

discrete delay spread, andND is its discrete Doppler
spread (i.e., the BE model order in the single-carrier case
or the ICI spread in the multicarrier case). We note that
SNC’s complexity compares favorably4 with the existing
methods in Table I, given thatNh is often the dominant
factor in practice.

3) Motivated by the possibility offurther reducing the
complexity dependence onNh, we propose a novel
“iterative noncoherent” (INC) scheme using the space-
alternating generalized-EM (SAGE) framework from
[36]. For the single-carrier case, our INC scheme per-
forms soft channel estimation with per-symbol com-
plexity O(N2

DNh) and, for the multicarrier case, with
complexityO(NDNh log2 N), whereN is the number
of subcarriers. In both cases, soft coherent equalization
uses anO(NDNh)-complexity soft tree-search based on
the M-algorithm. To our knowledge, complexity that
dependslinearly on Nh is unprecedented.

4) Finally, we discuss practical implementation details
and numerically analyze the proposed methods in a
turbo framework, demonstrating coded BER perfor-
mance close to genie-aided bounds and robustness to
BE choice and to Doppler-spread knowledge.

The system model is described in Section II, the optimal
soft noncoherent equalizer and its sequential approximation

4With the exception of [21], all other approaches in Table I scale at least
cubically in Nh. In comparing to [21], we note thatN > NDNh for
underspread channels, so that the complexity of our scheme becomes more
favorable as the channel becomes more underspread.
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in Section III, and the SAGE-based equalizer in Section IV.
Implementational details are discussed in Section V, numerical
results in Section VI, and conclusions in Section VII.

Notation: We use(·)∗, (·)T and (·)H to denote conjugate,
transpose and Hermitian transpose, respectively. We writethe
kth entry of vectorx as [x]k, and the(k, l)th entry of matrix
A as [A]k,l. The N × N identity matrix is denoted byIN ,
and the circular complex normal distribution with mean vector
m and covariance matrixC is denoted byCN (m,C). For
vector norms, we use‖x‖ ,

√
xHx and‖x‖A ,

√
xHAx,

whereA is positive semi-definite Hermitian.ℜ{x} denotes
taking the real part of a complex-valued vectorx. Finally, ⊙
denotes the elementwise product of matrices,Dd(x) denotes
the diagonal matrix constructed from thedth cyclic down-shift
of vectorx, andD(x) is shorthand forD0(x).

II. SYSTEM MODEL

At the transmitter, we assume that information bits{b(j)m },
are rate-R coded, interleaved, and mapped to2Q-ary QAM
symbols. Groups ofNs information symbols are then com-
bined with pilot and guard symbols to form symbol blocks
of length N ≥ Ns. We denote thejth symbol block by
s(j) = [s(j)

0 , . . . , s(j)

N−1]
T , wheres(j)

n ∈ S for symbol alphabet
S, and the corresponding coded bit vector byx(j) = [x(j)

0 , . . . ,
x(j)

NsQ−1]
T , wherex(j)

k ∈ {0, 1}. The symbols are then linearly
block-modulated by either a single-carrier scheme or a multi-
carrier scheme, represented byG ∈ C

Nt×N with Nt ≥ N , to
form the transmitted signalt(j) , [t(j)0 , . . . , t(j)Nt−1]

T = Gs(j).
The construction ofG will be described later.

At the channel output, the samples in thejth received block
r(j) , [r(j)

0 , . . . , r(j)

Nr−1]
T are assumed to take the form

r(j)

n =

Nh−1∑

l=0

h(j)

n,lt
(j)

n−l + ν(j)

n , (1)

whereh(j)

n,l is the time-n response of the channel to an impulse
applied at time-(n−l), whereNh is the discrete channel delay
spread, and where{ν(j)

n } is zero-mean circular white Gaussian
noise (CWGN).

The received vectorr(j) is then linearly (single- or multi-
carrier) demodulated via matrixΓ ∈ C

N×Nr to yield

y(j) = ΓH
(j)G

︸ ︷︷ ︸

, H (j)

s(j) +w(j). (2)

In (2), w(j) = Γν(j) and H(j) ∈ C
Nr×Nt is a convo-

lution matrix constructed from the channel’s time-varying
impulse response according to[H(j)]n,n−l = h(j)

n,l. Thus
Nr = Nt +Nh − 1 andH(j) is banded with bandwidthNh.
Note thatH (j) represents the composite effect of modulation,
channel propagation, and demodulation. When the single- or
multicarrier scheme is appropriately designed,H (j) can be
closely approximated by a “circularly banded” matrix with
bandwidthNH , as illustrated in Fig. 2(a) [7]. For example,

• In single-carrier block zero-padded5 schemes,G = IN

5We note that the sameH(j) is obtained in the context of single-carrier
cyclic-prefix modulation [37] through a different choice ofG andΓ [7].

(so thatNt = N ) and

Γ =

[
INh−1 0 INh−1

0 IN−Nh+1 0

]

. (3)

Thus H (j), with bandwidthNH = Nh, contains the
impulse response coefficients{h(j)

n,l}.
• In cylic-prefixed6 multicarrier modulation, G =

D(g)FH
t , whereFH

t ∈ C
Nt×N is a period-N unitary

IDFT matrix cyclically extended in the row dimension,
and whereD(g) is a diagonal matrix created from a
time-domain transmission pulseg ∈ C

Nt . Then Γ =
F rD(γ ⊙ m), where F r ∈ C

N×Nr is a period-N
unitary DFT matrix cyclically extended in the column
dimension,γ ∈ C

Nr is a time-domain reception pulse,
and [m]n = exp(j 2π

N
ND−1

2 n). With appropriate design
of g and γ [39], the frequency-domain channel matrix
H (j) has bandwidthNH = ND , ⌈2fDTsN⌉ + δ
where fD denotes the single-sided Doppler spread (in
Hz), Ts denotes the channel-use interval (in sec), andδ is
a (small) non-negative integer that controls out-of-band
coefficient energy. The off-diagonal elements ofH (j)

induce ICI.

We assume the lastNH −1 symbols ins(j) are zero-valued
guards, soH (j) acts causally on the firstN−NH+1 symbols.

The equalizer employs anNb-term BE model for the
variation of the composite channel over the block. In par-
ticular, it models thedth “cyclic” diagonal of H (j), i.e.,
h

(j)

d ,
[
[H (j)]0,−d, [H

(j)]1,1−d, . . . , [H
(j)]N−1,N−1−d

]T
, as

h
(j)

d ≈ Bη
(j)

d , d = 0, . . . , NH − 1, (4)

whereB ∈ C
N×Nb is a matrix of basis vectors andη(j)

d ∈ C
Nb

is a vector of BE coefficients. Note that the approximation in
(4) can be made arbitrarily accurate via large enoughNb. With
single-carrier modulation, the BE models channel variation in
the time domain, so thatNb = ND suffices (with appropriate
choice of B and δ). With multicarrier modulation, the BE
models channel variation in the frequency domain, so that
Nb = Nh suffices, withB being a truncated7 DFT matrix
[9]. In either case,NbNH = NhND. Assuming an accurate
BE model (4), the received vectory(j) from (2) becomes

y(j) = A(j)θ(j) +w(j), (5)

whereθ(j)
, [η(j)T

0 , . . . ,η(j)T
NH−1]

T ∈ C
NbNH and

A(j)
,

[
D0(s

(j))B, . . . ,DNH−1(s
(j))B

]
. (6)

The receiver infers the information bits{b(j)m } using the
“turbo” principle: “soft” information on the coded bitsx(j), in
the form of log-likelihood ratios (LLRs), is iteratively refined
through alternating soft-equalization and soft-decodingsteps,
as shown in Fig. 1. The equalizer’s task is to produce extrinsic
LLRs given the observationy(j) and the prior LLRs provided
by the decoder (or, in the first turbo iteration, from pilots).

6We note that the sameH(j) is obtained in the context of zero-padded
multicarrier modulation [38] through a different choice ofG andΓ [7].

7If the channel impulse response is sparse with known support,then B
contains only those columns of the DFT matrix indexed by the support [40].
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The equalizers we propose are “noncoherent” in that they
treat the channel realizationθ(j) as unknown. They treat
channel statistics as known, however, assuming thatw(j) ∼
CN (0, σ2I) andθ(j) ∼ CN (θ̄

(j)
,Rθ) for full rank Rθ. The

selection ofθ̄
(j)

andRθ is discussed in Section V-A.
In Section III, we describe the optimal noncoherent equal-

izer and a practical implementation based on tree-search,
and in Section IV we describe equalization based on the
Bayesian SAGE algorithm. Because the equalization procedure
is invariant to block indexj, we suppress the “(j)” notation in
the sequel.

III. SEQUENTIAL NONCOHERENTEQUALIZATION

A. Optimum Soft Noncoherent Equalization

The log-likelihood ratio (LLR) of coded bitxk giveny, i.e.,

L(xk|y) , ln
Pr[xk = 1|y]
Pr[xk = 0|y] , k ∈ {0, . . . , NsQ− 1}, (7)

can be written in the form [25]

L(xk|y) = ln

∑

x:xk=1 p(y|x) exp lTx
∑

x:xk=0 p(y|x) exp lTx
, (8)

where l , [La(x0), . . . , La(xNsQ)]
T such thatLa(xk) ,

ln(Pr[xk = 1]/Pr[xk = 0]) is the a priori LLR of xk. The
“extrinsic” LLR Le(xk|y) , L(xk|y)−La(xk) then becomes

Le(xk|y) = ln

∑

x:xk=1 expµ(x)
∑

x:xk=0 expµ(x)
− La(xk) (9)

using the noncoherent MAP sequence metric

µ(x) , ln p(y|x) + lTx. (10)

Sinceθ andw in (5) are both Gaussian distributed, we have

y|x ∼ CN (Aθ̄,ARθA
H + σ2IN ), (11)

whereA depends on the coded bitsx through the correspond-
ing symbolss. Thus, withΦ , ARθA

H + σ2IN , we get

µ(x) = −‖y −Aθ̄‖2
Φ−1 − ln(πN detΦ) + lTx. (12)

The sequence metricsµ(x) can be evaluated using anNs-
stage2Q-ary tree, where, the partial metrics

µ(xn) , ln p(yn|xn) + lTnxn (13)

are evaluated recursively. In (13),xn , [xT
0 , . . . , x

T
n ]

T with
xi , [xiQ, . . . , xiQ+Q−1]

T , ln , [lT0 , . . . , l
T
n ]

T with li ,

[La(xiQ), . . . , La(xiQ+Q−1)]
T , andyn , [y0, . . . , yn]

T . Note
that xi and li correspond to theith symbol. The recursion is
derived in Appendix A and summarized in Table II, wherebHn
denotes thenth row of B. It is straightforward to show that
each recursion consumesN2

bN
2
H+3NbNH+7 multiplications.

The Table II quantityθ̂n can be written (see Appendix A):

θ̂n = θ̄ +RθA
H
n Φ

−1
n (yn −Anθ̄), (14)

which can be recognized as thexn-conditional MMSE esti-
mate ofθn from yn. Using this fact, Appendix B shows that

µ(xn) = − 1
σ2 ‖yn −Anθ̂n‖2 + lTnxn − ln(πN detΦn)

− ‖θ̂n − θ̄‖2
R

−1
θ

. (15)

TABLE II
FAST RECURSION FOREVALUATING µ(xn)

From the old quantities:
µ(xn−1), θ̂n−1, Σ−1

n−1
, [sn−1, . . . , sn−NH+1],

and the inputs:
yn, sn, ln, xn,

calculate the new quantities:
µ(xn), θ̂n, Σ−1

n , [sn, . . . , sn−NH+2],
using the recursion:

an = [snb
H
n , · · · , sn−NH+1b

H
n ]H

dn = Σ
−1

n−1
an

ζn = (1 + aH
n dn)−1

en = yn − aH
n θ̂n−1

Σ
−1
n = Σ

−1

n−1
− ζndnd

H
n

µ(xn) = µ(xn−1)−
ζn
σ2 |en|

2 + ln( ζn
πσ2 ) + lTnxn

θ̂n = θ̂n−1 + ζnendn,
initializing (iff n = 0) with:

µ(x
−1) = 0, θ̂

−1 = θ̄, Σ−1

−1
= σ−2Rθ .

From (15), we see that the noncoherent MAP metricµ(x) is
the sum of a “coherent MAP metric”− 1

σ2 ‖yn −Anθ̂n‖2 +
lTnxn, a “bias term”− ln(πN detΦn), and a term−‖θ̂n −
θ̄‖2

R
−1
θ

which penalizes the deviation of the conditional es-

timate θ̂ from the prior statisticsθn ∼ CN (θ̄,Rθ). Thus,
the recursive MAP sequence metric evaluation implicitly uses
per-sequence processing [41].

It should be noted that, when the alphabetS is symmetric,
sufficient asymmetry in the apriori LLR structure{La(xk)}
is needed to circumvent the phase-ambiguity that results from
both channel and symbols being unknown. For this purpose,
it suffices to insert one pilot symbol per block.

B. Practical Soft Sequential Noncoherent (SNC) Equalization

From (9), computation of exact soft outputsLe(xk|y) is
impractical because it requires evaluating and summingµ(x)
for all 2NsQ hypotheses ofx. However, we expect the set
{expµ(x)} to be dominated by a few “significant” bit vectors
x, which we collect into the setS. Thus, we reason that near-
optimal soft outputs will result from restricting the summations
in (9) to x ∈ S, i.e.,

Le(xk|y) ≈ ln

∑

x∈S∩{x:xk=1} expµ(x)
∑

x∈S∩{x:xk=0} expµ(x)
− La(xk).(16)

If desired, the “max-log” approximation
∑

x:xk=x expµ(x) ≈
maxx:xk=x µ(x) could be applied for further simplification:

Le(xk|y) ≈ max
x∈S∩{x:xk=1}

µ(x) − max
x∈S∩{x:xk=0}

µ(x)−La(xk). (17)

To find the significant bit vectorsS and their metrics
{µ(x)}x∈S , we suggest a suboptimal breadth-first tree-search
such as the M-algorithm or the T-algorithm [35]. The M-
algorithm is particularly convenient because it yields a com-
plexity that is invariant to channel realization and SNR. With
search breadthM and the recursion in Table II, soft nonco-
herent equalization consumes onlyO(M2QN2

hN
2
D) operations

per symbol (sinceNbNH = NhND and |S| = 2Q). Further-
more, when the symbol constellationS satisfies a multi-level
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bit mapping, the complexity can be made nearly independent
of Q, as discussed in [26], which is useful whenQ is large.

Note thatS ∩ {x : xk = 1} or S ∩ {x : xk = 0} may
be empty for somek, which would makeLe(xk|y) infinite.
For this, a simple solution is to clipLe(xk|y) [26]. Note also
that (arbitrarily placed) pilot symbols are easily incorporated
by setting their apriori bit LLRsli to very large values.

IV. N ONCOHERENTEQUALIZATION VIA SAGE

We now develop a soft iterative noncoherent (INC) equalizer
based on the SAGE framework [36], a generalization of the
EM framework [14] that allows updating of parameters in
subsets that each use a different choice of hidden data. In
our case, an estimate ofθ is updated one element at a time
using(zl, s) as the hidden data forθl, wherezl is defined as

zl , αlθl +w, (18)

with αl denoting thelth column ofA. In the sequel,θl̃ will
be used to denote the vectorθ with the lth term omitted, and
Al̃ used to denoteA with the lth column omitted, so that

y = Al̃θl̃ + zl. (19)

We note that, when estimatingθl, the hidden data(zl, s) is
“admissible” [36] becausep(y|zl, s,θ) = p(y|zl, s,θl̃).

Our application of SAGE updates the estimate ofθ0 at
iteration i = 1, thenθ1 at i = 2, and so on, until allNbNH

coefficients have been updated a total ofK times. In particular,
at theith iteration, we update indexl = (i mod NbNH) as

θl[i+1] = argmax
θl

E
{
ln p(zl, s|θl,θl̃[i])|y,θ[i]

}

+ ln p(θl,θl̃[i]), (20)

while freezing the others (i.e.,θl̃[i+1] = θl̃[i]). We adopt the
Bayesian form of SAGE in (20), withp(θ) , CN (θ; θ̄,Rθ).
In Appendix C, we show that (20) reduces to

θl[i+ 1] = θl[i] + (‖ᾱl‖2 + cll + σ2ρll)
−1

×
(
ᾱH

l e− σ2ρH
l (θ[i]− θ̄)− cHl θ[i]

)
, (21)

with e , y −Aθ[i], ρl , [R−1
θ ]:,l, ρll , [R−1

θ ]l,l, and with
ᾱl , [Ā]:,l, cl , [C]:,l, andcll , [C]l,l defined from

Ā =
[
D0(m)B · · · DNH−1(m)B

]
(22)

C =

[
BHD0(v)B 0.. .

0 BHDNH−1(v)B

]

, (23)

wherem , [s̄0, . . . , s̄N−1]
T andv , [v0, . . . , vN−1]

T collect
the θ[i]-conditional symbol means̄sn , E{sn|y,θ[i]} and
variancesvn , E{|sn − s̄n|2 |y,θ[i]}.

Our SAGE-based soft INC equalization algorithm is sum-
marized in Table III. Essentially, the algorithm alternates
between channel (re)estimation (Step 1) and coherent soft
equalization (Step 2). The input toStep 1 is the current channel
estimateθ[i] and the associated (coherent) posterior LLRs

L(xk|y,θ[i]) , ln
Pr[xk = 1|y,θ[i]]
Pr[xk = 0|y,θ[i]] , (24)

from which Pr
[
sn = s

∣
∣y,θ[i]

]
is calculated and used to

compute the symbol means and variances

s̄n =
∑

s∈S

s Pr
[
sn = s

∣
∣y,θ[i]

]
(25)

vn =
∑

s∈S

|s− s̄n|2 Pr
[
sn = s

∣
∣y,θ[i]

]
. (26)

Step 1 outputs an updated version ofθ[i], which Step 2 then
uses to update the LLRsL(xk|y,θ[i]). To do this, we propose
a tree-search based on the coherent MAP sequence metric

µ(x|θ[i]) , ln p(y|x,θ[i])p(x) (27)

= − 1
σ2 ‖y −Aθ[i]‖2 + ln(πNσ2N ) + lTx, (28)

which, when restricted to “significant” bit patternsx ∈ S,
yields the approximated LLRs

L(xk|y,θ[i]) ≈ ln

∑

x∈S∩{x:xk=1} expµ(x|θ[i])
∑

x∈S∩{x:xk=0} expµ(x|θ[i])
. (29)

For this tree-search, we propose to use breadth-first methods
such as the M-algorithm, as previously suggested in the MIMO
context [26].

TABLE III
SAGE-BASED ITERATIVE NONCOHERENT(INC) EQUALIZATION

Initialize i = 0, θ[0] = θ̄, and set LLRs according to
pilots and (when available) previous decoder outputs.

Step 1. Update channel estimate θ[i]:
Compute soft symbol estimates m and v.
Compute matrices Ā and C (yielding ᾱl, cl, and cll ∀l).
Set e = y − Āθ[i].
For l = 0, . . . , NbNH − 1:
β = (‖ᾱl‖

2 + cll + σ2ρll)
−1

θl[i+1] = θl[i] + β
[

ᾱH
l
e− σ2ρH

l
(θ[i]− θ̄)− cH

l
θ[i]

]

e← e+ (θl[i+1]− θl[i])ᾱl

θ
l̃
[i+1] = θ

l̃
[i]

i← i+ 1
end.

Step 2. Update coded bit estimates:
Compute MAP metrics µ(x|θ[i]) for x ∈ S via tree-search.
Compute posterior bit LLRs {L(xk|y,θ[i])}.

Repeat steps 1–2 a total of K times.
Output the final bit LLRs {L(xk|y, θ[KNbNH ])}.

It is worth noting that the algorithm in Table III actually
uses a modification of SAGE approach described in [36],
in that the expectation in (20) is not recomputed at every
i = 0, 1, 2, . . . , but rather wheni is a multiple ofNbNH .
In other words, it waits untilall parameters inθ have been
updated before re-estimating the coded bits. This modification
greatly reduces the overall computational complexity. Note
that a direct implementation of the SAGE-based INC equalizer
outlined in Table III requiresO(NbNH) multiplications per
symbol forStep 1 andO(N2

bNH) multiplications per symbol
for Step 2, for a grand total ofO(KN2

bNH) multiplications
per symbol afterK SAGE iterations.8

In the single-carrier case,Nb=ND andNH =Nh, implying
an overall complexity ofO(KN2

DNh), which is linear in
discrete delay spread,Nh. Here, the quadratic dependence on

8We have verified numerically that the number of SAGE iterationsK
required for convergence does not scale withN , Nb, or NH .
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discrete Doppler spread,ND, is not expected to be problematic
becauseND is usually very small in practice.

In the multicarrier case,Nb = Nh and NH = ND, and so
a direct implementation would requireO(KN2

hND), which
may be impractical whenNh is large (e.g., several hundred).
However, we can now exploit theN -DFT structure ofB
and theO(N log2 N) complexity of theN -FFT to design
an implementation with an overall per-symbol complexity of
O(KNhND log2 N). To do this, we avoid explicit computation
of C and instead notice that

cll =
[
BHDl1(v)B

]

l2,l2
=

1

N

N−1∑

n=0

vn ∀l (30)

cHl θ[i] =
[
CHθ[i]

]

l
=

[
BHDl1(v)Bθl1 [i]

]

l2
(31)

for l1 , ⌊l/Nb⌋ and l2 , (l mod Nb) and θl1 [i] ,
[
θ[i]

]

l1Nb:(l1+1)Nb−1
. SinceBHDl1(v)Bθl1 [i] can be com-

puted using i) anN -FFT, ii) N scalar multiples, and
iii) an N -IFFT, each application ofStep 1 requires only
O(NbNHN log2 N) multiplies per symbol-block. The overall
per-symbol complexity of this FFT-based multicarrier SAGE
algorithm then becomesO(KNbNH log2 N), or equivalently
O(KNhND log2 N) in the multicarrier case.

V. I MPLEMENTATIONAL CONSIDERATIONS

A. Choice ofθ̄
(j)

andRθ

Since both the sequential noncoherent (SNC) equalizer of
Section III-B and the iterative noncoherent (INC) equalizer of
Section IV employ the channel priorθ(j) ∼ CN (θ̄

(j)
,Rθ), it

is worthwhile discussing the choice of̄θ
(j)

andRθ.
Under a Rayleigh fading assumption, one may be tempted

to choose the non-informative prior̄θ
(j)

= 0. In doing so,
however, the equalization of a symbols in thejth block does
not benefit from the knowledge of pilots (and, when available,
previous decoder outputs) inneighboringblocks, whose BE
coefficients{θ(j′)}j′ 6=j may be strongly correlated with those
of the current block. A simple way to exploit this knowledge
is to set θ̄

(j)
equal to the MMSE estimate ofθ(j) based on

out-of-block quantities. Note that, if onlyNp out-of-block
pilots are to be used, then the MMSE estimator forθ(j)

can be computed in advance and implemented using only
O(NDNhNp) operations, and reduced-rank techniques can
further reduce the complexity [42]. If we want to incorporate
out-of-block data-symbol estimates, then the MMSE estimator
cannot be computed in advance. However, a procedure similar
to Step 1 in Table III could be used to generate a near-MMSE
estimate ofθ(j), with per-symbol complexityO(N2

DNh) for
single-carrier andO(NDNh logN) for multicarrier cases.

We recommend that the covarianceRθ be constructed based
on worst-case Doppler spread assumptions. In Section VI, a
specific Doppler model is detailed and robustness to the as-
sumed worst-case Doppler spread is investigated numerically.

B. Pilot and Guard Patterns

Recall that, in Section II, the lastNH−1 symbols ins were
assumed to be zero-valued guards, so thatH acts causally on
the firstN−NH+1 symbols. This made the lastNH−1 columns

of H inconsequential and allowedH to be treated as a lower-
triangularNH -banded matrix, a property that was exploited
for both noncoherent and coherent tree-search. These guards
notwithstanding, one may wonder whether the remainingN−
NH symbols in each block should be data symbols, or whether
a few should be dedicated as pilots or guards and—if so—how
they should be arranged. Towards this aim, we review some
related literature.

For communication over block-fading DS channels whose
intra-block time-variation obeys a complex-exponential BE
model, [43] derived the maximum achievable rate and showed
that a pilot-aided system which places a cluster ofNDNh

pilots at the beginning of the block achieves this maximal
rate. With a suboptimal receiver such as ours, however, there
is no guarantee that this pilot pattern remains optimal, andin
fact it is easy to show numerically that deviations from this
pattern can yield improvements.

Other criteria have also been considered for pilot pattern
design, such as minimizing the MSE attained during MMSE
estimation of θ(j). For DS channels whose time-variation
obeys a complex-exponential BE model, and for estimators
which use only pilots within the current block, such “MMSE
pilot patterns” were derived for single-carrier zero-padded
schemes in [44], and, more generally, for the class of affine
transmission schemes in [45]. Among the MMSE pilot pat-
terns identified in [45] are single-carrier schemes withND

“Kronecker-delta” pilot/guard clusters of length2Nh−1 and
multicarrier schemes withNh “Kronecker-delta” pilot/guard
clusters of length2ND−1, recalling earlier heuristic designs
[46]. While these MMSE patterns yield provably good channel
estimates, they are rate-suboptimal in the sense that they do
not allow full-rate transmission across the DS channel [43].

To conclude, the design of rate-maximizing pilot patterns
for our suboptimalreceivers remains an open problem. That
said, [43]–[46] provide insights useful in constructing heuristic
designs, as done in, e.g., [5], [47]. A particular family of
patterns inspired by [43]–[46] is detailed in Section VI and
examined numerically.

VI. N UMERICAL RESULTS

We now describe numerical experiments that compared
the proposed equalizers to other approaches and performance
bounds, for both single- and multicarrier cases.

1) Setup: Single- and multicarrier transmission schemes
were then employed as described in Section II. In all ex-
periments, the transmitter employed rateR = 1

2 irregular
low density parity check (LDPC) codes with average column-
weight 3, generated by publicly available software [48]. The
coded bits were block-interleaved by feeding them into an
8×(JQNs/8) array column-wise, then reading them out row-
wise. The interleaved bits were mapped to QPSK symbols (i.e.,
Q=2) and partitioned into data blocks of lengthNs, each of
which was merged withNp pilot/guards, as described below, to
form a transmission block of lengthN=Ns+Np. So that each
codeword spannedJ = 32 data blocks,(JQNs, RJQNs)-
LDPC codes were employed. Unless otherwise noted, we used
block lengthN=64 with Np=8 pilot/guards per block.
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The pilot/guard patterns illustrated in Fig. 2(b)-(c) were
employed for single- and multicarrier cases, respectively. In
the single-carrier case, each block containsNp −NH + 1
non-zero leading pilots andNH − 1 zero-valued guards. In
the multicarrier case, each block containsK ≥ 1 pilot/guard
clusters, where each cluster containsND −1 leading9 zero-
valued guards andNp/K − ND + 1 trailing non-zero pilots.
The cluster pattern repeats everyP = N/Np blocks, and the
cluster locations are staggered10 so that each subcarrier appears
in a cluster exactly once everyP blocks.

Jakes method [49] was used to generate realizations of a
wide-sense stationary uncorrelated (WSSUS) Rayleigh fad-
ing channel, i.e.,E{hn,lh

∗
n−m,l−ℓ} = ξmσ2

l δℓ with delay-
power profile (DPP)σ2

l and temporal autocorrelationξm =
J0(2πfDTsm). Here, fDTs denotes the normalized single-
sided Doppler spread andJ0(·) the 0th-order Bessel function
of the first kind. To facilitate comparison of equalizers whose
complexity grows rapidly inNh, most experiments used the
relatively short delay spreadNh = 3 with the uniform DPP
σ2
l = N−1

h . However, in some experiments that only tested
the computationally efficient SAGE-based equalizer,Nh = 64
was used with an exponential DPP where the last tap was
20dB weaker than the first.

The case ofNh = 3 andfDTs = 0.002 occurs, e.g., when a
system with carrier frequencyfc = 5.8GHz and bandwidth
400kHz (i.e., Ts = 2.5µs) communicates over a channel
with a maximum delay spread of5µs and Doppler spread of
fD = vmaxfc/c = 800 Hz, wherevmax = 149km/h. On the
other hand, the case ofNh = 64 andfDTc = 0.0005 occurs,
e.g., when a system with carrier frequencyfc = 5.8GHz and
bandwidth3.2MHz (i.e., Ts = 0.3125µs) communicates over
a channel with a maximum delay spread of20µs and Doppler
spread offD = vmaxfc/c = 1.6kHz, wherevmax = 298km/h.

The BE models used by the equalizers were the following.
In the single-carrier case, a Karhunen-Lóeve (KL) basis [50]
was nominally used to model channeltime-variation, i.e.,B
was constructed column-wise from theNb principal eigenvec-
tors ofRh,E{hdh

H
d } and diagonalRθ was constructed from

theNb principal eigenvalues ofRh, whereNb = 3 was used in
all cases. Robustness to the use of an oversampled complex-
exponential (OCE) basis [51] is examined in Section VI-6.
In the multicarrier case, a Fourier basis was used to model
channel frequencyvariation, i.e.,B was formed fromNh

columns of theN -DFT matrix, andRθ was constructed to
match the WSSUS statistics (as detailed in [52]). Unless
otherwise specified, the mean̄θ

(j)
= 0 was assumed for the

first turbo iteration.
For all tree-searches, the M-algorithm was used with search

breadthM = 64, and the LLR magnitudes were clipped to2.3
in the noncoherent case and8 in the coherent case. The LDPC
decoder by MacKay and Neal [53] was used with a maximum
of 60 LDPC iterations, and turbo equalization was used with

9Here, we use only leading guards because the multicarrier channel is
causal. WhenNp = NhND andK = Nh, this pattern coincides with the
“frequency domain Kronecker delta” pattern of [45], [46].

10Note that, by cyclically shifting the elements of bothy and s, it is
possible to placeNH − 1 guards at the end of the block while maintaining
the “circularly banded” structure ofH illustrated in Fig. 2(a).

a maximum of8 turbo iterations, unless otherwise noted. We
specify themaximumnumber of iterations because the receiver
breaks out of both the LDPC and turbo loops as soon as
the LDPC syndrome check indicates error-free decoding. For
SAGE,K=3 iterations were used unless otherwise noted.

In the sequel, we refer to the proposed equalizers as

• ncT-BE: the proposed sequential noncoherent (SNC) ap-
proach, which uses the M-algorithm to perform a tree-
search according to a noncoherent BE-structured metric,

• (sBE+cT)K : the proposed SAGE-based iterative nonco-
herent (INC) approach, which iterates soft BE-channel
estimation with soft coherent tree-search,K times per
turbo iteration.

We also investigate the performance of

• sBE+cT: soft BE-channel estimation followed by coher-
ent tree-search (once per turbo iteration),

• sAR+cT: soft AR-channel estimation followed by coher-
ent tree-search (once per turbo iteration),

• sAR+cB: soft AR-channel estimation followed by coher-
ent BCJR (once per turbo iteration), equivalent to the
“SKTE” method proposed in [22],

as well as two genie-aided performance upper-bounds:

• pH+cT: coherent tree-search usingperfectknowledge of
the channelH,

• pllrBE+cT: coherent tree-search based on a BE-channel
estimate constructed usingperfect LLR feedback.

As discussed in Section IV,coherent tree-search(cT) uses the
M-algorithm to sequentially maximize the metricln p(x|y, Ĥ)
for externally suppliedĤ—a direct application of the MIMO
technique [26]. Meanwhile,coherent BCJR(cB) refers to
the use of the trellis-based BCJR (or “forward-backward”)
algorithm [15] to calculate bit posteriors with an externally
provided channel estimate.Soft BE-channel estimation(sBE)
uses Step 1 of the SAGE iteration in Table III. Finally,
soft AR-channel estimation(sAR) uses the Kalman technique
from [22], for which we employed a second-order (i.e., three
coefficient) AR model.

2) Effect of Number of Pilot/Guard Symbols:We first
examine the effect ofNp, the number of pilot/guard symbols
per N -block. Although we report only a particular single-
carrier ncT-BE experiment, we observed similar behaviors in
other settings. Figure 3 shows coded BER versusEb/No for
variousNp. As can be seen, the performance increases with
Np until Np=8 and then remains constant throughNp=11.
As Np increases further, toNp = 14, the BER-vs-Eb/No

actually degrades, because the penalty onEb/No overwhelms
the reduction in channel estimation error.

The caseNp = 3, corresponding to the use of1 non-zero
pilot and 2 guard symbols, demonstrates the ability of the
noncoherentncT-BE equalizer to function reliably with only a
single (non-zero) pilot symbol. Recall that one pilot suffices
to circumvent the inherent phase ambiguity of symmetricS.

3) Algorithm Comparison—Single-carrier Transmission:
For single-carrier transmission, Figs. 4 and 5 compare the
proposed soft noncoherent equalizersncT-BE and (sBE+cT)K

to the approachessBE+cT, sAR+cT, andsAR+cB, as well as
to the performance boundspH+cT andpllrBE+cT.
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Figure 4 examines a Doppler spread offDTs = 0.002,
where the proposedncT-BE and (sBE+cT)3 perform only
2dB from the perfect-CSI boundpH+cT and only 1.7dB
from the perfect-LLR-feedback boundpllrBE+cT. Interest-
ingly, both tree-search-based algorithms outperform the trellis-
based methodsAR+cB by 0.6dB. Figure 5 examines the
larger11 Doppler spread offDTs = 0.005. There, ncT-BE
still performs very well, maintaining a3dB gap from the
pllrBE+cT bound and outperforming other schemes by about
2dB. Meanwhile, (sBE+cT)6 performs within 1dB of the
trellis-basedsAR+cB, which is impressive given that the per-
symbol complexity of(sBE+cT)6 grows linearly inNh while
that of sAR+cB grows asO(Nh|S|Nh).

A comparison of thesAR+cT andsAR+cB traces in Figs. 4–
5 shows that, for soft coherent equalization, the use of M-
algorithm tree-search in place of optimal BCJR yields only
about 1dB SNR loss. A comparison of thesBE+cT and
sAR+cT traces in Figs. 4–5 suggests that, when used to model
channeltime-variation, a3-term BE model performs similarly
to a 3-term AR model (i.e., one may slightly outperform the
other depending onEb/No). As we shall see in Section VI-4,
the story is different when modeling channelfrequency-
variation. A comparison of thesBE+cT and(sBE+cT)K traces
in Figs. 4–5 suggests that the use ofK > 1 SAGE iterations
yields about1dB SNR gain in most cases. (No additional gains
were observed forK>3 whenfDTs=0.002, andK>6 when
fDTs=0.005).

4) Algorithm Comparison—Multicarrier Transmission:In
Fig. 6, the single-carrier experiment of Fig. 4 was repeated
for multicarrier transmission with ICI spanND = 3. While
the channel remains identical to that in Fig. 4 (i.e.,Nh = 3
andfDTc=0.002), we usedNp = 9 pilots (in K=1 cluster)
per block, initializedθ̄

(j)
using pilots fromP=4 neighboring

blocks, and tuned SAGE somewhat differently:K = 6 and,
in Table III, Step 1 was repeated four times for eachStep 2.

Consistent with the single-carrier experiment in Fig. 4, the
multicarrier experiment in Fig. 6 shows(sBE+cT)K perform-
ing on par with ncT-BE and about0.5dB better than both
sBE+cT and sAR+cB. However, unlike the single-carrier ex-
periment, where the3-term AR model performed on par with
the3-term BE model under common tree-search decoding, the
multicarrier experiment in Fig. 6 showssAR+cT performing
significantly (1.5dB) worse thansBE+cT. This suggests that
the AR model is not as well suited to modeling channel
frequency-variation as it is to modeling channel time-variation.

Looking back over Figs. 4–6, we see thatncT-BE performed
consistently well regardless of Doppler spread and transmis-
sion scheme, and that(sBE+cT)K performed as well asncT-
BE in all but the very-high-Doppler single-carrier experiment.
Given that(sBE+cT)K is computationally cheaper thanncT-
BE, it is not surprising to see some sacrifice in performance.

5) Performance under Large Delay Spread:In Fig. 7, we
examined multicarrier performance under the larger delay
spread ofNh = 64 and fDTc = 0.0005. To mimic the
sparsity of typical wireless channels, all but20 randomly

11For ncT-BE, pllrBE+cT, andpH+cT we used a maximum of8 turbo
iterations, while for(sBE+cT)6, sBE+cT, sAR+cT, and sAR+cB we
used16.

chosen channel taps were zeroed. Here, we used a block of
N = 256 with Np = 64 pilots arranged so thatK = 2
and P = 4. The receiver used ICI spanND = 3 with a
maximum of16 turbo iterations, andK = 3 SAGE iterations
were used with four repetitions ofStep 1 for every Step 2.
Figure 7 demonstrates that a large delay-spread channel canbe
effectively equalized (e.g., a2.5dB gap to the genie bound at
10−3 BER) by the proposedO(KNhND log2 Nh) complexity
SAGE-based equalizer.

6) Robustness to Statistical Mismatch:As discussed in
Section V-A, the proposed noncoherent equalizers rely on
certain assumptions about the BE-coefficient covariance matrix
Rθ. We first examine the robustness of these schemes to
the mismatch in the assumed maximum (normalized) Doppler
spreadfDTs. For this, Fig. 8 plots the “Eb/No required to
attain 10−2 BER” as a function of (true)fDTs, comparing
equalizers that know the truefDTs to those that assume the
fixed value0.002. Figure 8 demonstrates that the proposed
equalization schemes,ncT-BE and (sBE+cT)3, are both robust
to mismatch in Doppler-spread, in that the performance of
the fDTs-fixed scheme closely tracks the performance of the
fDTs-aware scheme over the full range of (true)fDTs.

Next, we examine the robustness of the proposed nonco-
herent equalizers to the use of an OCE basis (instead of
the optimal KL basis)in conjunction with a mismatch in
the assumed maximum Doppler spreadfDTs. For this, we
used the OCE basis[B]n,l = exp(−j 2π

PN
n(l − Nb−1

2 )) for
l = {0, . . . , Nb − 1} with P = 5 andNb = 3. Constructing
the figure in the same way as Fig. 8, we obtained Fig. 9, which
looks remarkably similar to Fig. 8. In particular, for thencT-
BE traces, there is very little difference between Fig. 9 and
Fig. 8. For the(sBE+cT)3 traces, we see essentially no loss
in performance from the use of OCE when the correctfDTs

is applied, and approximately1dB in loss when a mismatched
fDTs is applied.

Robustness aside, the “U shape” of the curves in Figs. 8–
9 gives insight into equalizer performance as a function of
fDTs. First note that the requiredEb/No increases asfDTs

becomes small. We attribute this behavior to lack of Doppler
diversity. Likewise, the requiredEb/No increases asfDTs

becomes large. We attribute this behavior to the limitations
of the Nb-term BE models for channel time-variation, where
Nb ≪ N . Furthermore, whenfDTs is large, we see thatncT-
BE significantly outperforms(sBE+cT)3, regardless of whether
fDTs is fixed or known, and regardless of whether KL or
OCE is assumed for the basis. This behavior is perhaps not
surprising given the fact thatncT-BE is computationally more
demanding than(sBE+cT)3.

VII. C ONCLUSION

In this paper, we proposed two soft noncoherent equalizers
that are applicable to single- or multicarrier transmissions
over unknown doubly selective channels and suited for use
in a turbo-equalizing receiver. In all cases, we exploited basis
expansion (BE) models for channel (time or frequency) vari-
ation. To design our sequential noncoherent (SNC) equalizer,
we started with an expression for the optimal noncoherent
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metric, showed that it can be evaluated sequentially, and
then proposed an implementation based on M-algorithm tree-
search whose per-symbol complexity grows asO(N2

DN
2
h),

whereNh is the channel’s discrete delay spread andND its
discrete Doppler spread. Motivated by further reduction in
complexity, we also proposed an iterative noncoherent (INC)
equalizer using the SAGE framework, which iterates between
soft channel estimation and soft coherent equalization, the
latter implemented using an M-algorithm tree-search. For
single-carrier transmission, the per-symbol complexity of this
INC equalizer grows asO(KN2

DNh), whereK is the number
of SAGE iterations. Here, the quadratic dependence onND

is deemed tolerable since, in practice,ND is very small. In
the multicarrier case, we presented an FFT-based implemen-
tation of the SAGE technique with per-symbol complexity
O(KNDNh log2 N), whereN is the number of subcarriers,
which becomes advantageous asNh becomes large. Numerical
experiments show that the SNC and INC equalizers both
perform reasonably close to genie-aided performance bounds
and are robust to lack of knowledge of the true Doppler spread,
fDTs, as well as to the choice of BE model.

APPENDIX A
THE FAST RECURSIVEUPDATE FORµ(xn)

First we write (13) as

µ(xn) = −‖yn −Anθ̄‖2
Φ

−1
n

− ln(πn+1 detΦn) + lTnxn(32)

Φn , AnRθA
H
n + σ2In+1, (33)

In the sequel, we usẽyn , yn − Anθ̄ and θ̃n , θ̂n − θ̄.
In the two sections below, we derive fast recursions for the
first two terms in (32):µ1(xn) , ỹH

n Φ
−1
n ỹn andµ2(xn) ,

ln
(
πn+1 detΦn

)
. Together, these recursions yield Table II.

A. Recursion forµ1(xn)

Rewriting Φn with the aid ofAn =
[
An−1

aH
n

]

, whereaH
n

denotes thenth row of A, we have

Φ
−1
n =

[
Φn−1 An−1Rθan

aH
n RθA

H
n−1 aH

n Rθan + σ2

]−1

=

[
P n pn

pH
n pn

]

, (34)

for the block-inverse quantities

P n , Φ
−1
n−1 + p−1

n pnp
H
n (35)

pn , −Φ
−1
n−1An−1Rθanpn (36)

p−1
n , σ2 + aH

n

(

Rθ −RθA
H
n−1Φ

−1
n−1An−1Rθ

)

an. (37)

Writing µ1(xn) using (34) and̃yn =
[
ỹn−1

ỹn

]

, we get

µ1(xn) = ỹH
n−1P nỹn−1 + 2ℜ{ỹH

n−1pnỹn}+ pn|ỹn|2. (38)

Using thesn−1-conditional MMSE estimate of̃θ from ỹn−1:

θ̃n−1 = RθA
H
n−1Φ

−1
n−1ỹn−1, (39)

we see thatrHn−1pn = −θ̃n−1anpn. Applying this relation-
ship to (35)-(37), we can rewrite (38) as

µ1(xn) = ỹH
n−1Φ

−1
n−1ỹn−1 + pnθ̃

H

n−1ana
H
n θ̃n−1

− 2pnℜ{θ̃
H

n−1anỹn}+ pn|ỹn|2 (40)

= µ1(xn−1) + pn|ỹn − aH
n θ̃n−1|2. (41)

Now we concentrate onpn. Defining Σn−1 and applying
the matrix inversion lemma (MIL):

Σn−1 , AH
n−1An−1 + σ2R−1

θ (42)

σ2
Σ

−1
n−1 = Rθ −RθA

H
n−1Φ

−1
n−1An−1Rθ, (43)

we see from (37) thatp−1
n = σ2(1 + aH

n Σ
−1
n−1an). Using the

fact thatΣn = Σn−1 + ana
H
n , a second application of the

MIL yields Σ
−1
n = Σ

−1
n−1 − ζndnd

H
n for

dn , Σ
−1
n−1an (44)

ζn , (1 + aH
n dn)

−1 = pnσ
2. (45)

Together, this gives a fast update forpn = ζn/σ
2.

Finally, we tackleθ̃n. Using the MIL again,

Φ
−1
n = σ−2(In+1 −AnΣ

−1
n AH

n ), (46)

which applied to (39) yields

θ̃n = 1
σ2Rθ

(
Σn −AH

n An

)
Σ

−1
n AH

n ỹn (47)

= Σ
−1
n AH

n ỹn (48)

=
(
Σ

−1
n−1 − ζndnd

H
n

)(
AH

n−1ỹn−1 + anỹn
)
. (49)

Expanding (49) and applyingaH
n Σ

−1
n an = ζ−1

n − 1, we get

θ̃n = θ̃n−1 + dnỹn − ζndna
H
n θ̃n−1 − ζndn(ζ

−1
n −1)ỹn

= θ̃n−1 + ζn(ỹn − aH
n θ̃n−1)dn. (50)

Notice that, in (41) and (50),̃yn −aH
n θ̃n−1 = yn −aH

n θ̂n−1.

B. Recursion forµ2(xn)

From (34), we can write

Φn =

[
Φn−1 φn

φH
n φn

]

, (51)

The Schur complementγn , φn − φH
n Φ

−1
n−1φn obeys [54]

det(Φn) = γn det(Φn−1). (52)

Identifying φn andφn from (34),

γn = σ2 + aH
n Rθan − aH

n RθA
H
n−1Φ

−1
n−1An−1Rθan

= σ2/ζn (53)

using (43) and (45) for (53). Taking the logarithm of (52),

µ2(xn) = µ2(xn−1) + ln(πσ2/ζn). (54)

APPENDIX B
DERIVATION OF (15)

The derivation is performed for full-block vectors rather
than partial ones (e.g.,x rather thanxn), but applies to both.
Applying the MIL to Φ

−1, the first term of (12) becomes

ỹH
Φ

−1ỹ = 1
σ2

(
ỹH ỹ − ỹHAΣ

−1AH ỹ
)
, (55)

where Σ , AHA + σ2R−1
θ = ΣN−1 (via (42)) and the

definition of ỹ is from Appendix A. Writing

ỹHAΣ
−1AH ỹ = 2ℜ{ỹHAΣ

−1AH ỹ} − ỹHAΣ
−1AH ỹ

and plugging inθ̃ , Σ
−1Aỹ = θ̃N−1 (via (48)), we find

ỹH
Φ

−1ỹ = 1
σ2

(
ỹH ỹ − 2ℜ{ỹHAθ̃}+ θ̃

H
Σθ̃

)
(56)

= 1
σ2 ‖ỹ −Aθ̃‖2 + ‖θ̃‖2

R
−1
θ

. (57)

The definitions ofỹ and θ̃ then yield (15).
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APPENDIX C
DERIVATION OF (21)

We analyze the two terms in (20) separately. For
the first term, we recognize thatln p(zl, s|θl,θl̃[i]) =
ln p(zl|s, θl,θl̃[i])+ln p(s|θl,θl̃[i]), wherep(zl|s, θl,θl̃[i]) =
CN (zl;αlθl, σ

2I) and wherep(s|θl,θl̃[i]) does not depend
on θl, to write

E
{
ln p(zl, s|θl,θl̃[i])

∣
∣y,θ[i]

}

= c1 − σ−2 E
{
‖zl −αlθl‖2

∣
∣y,θ[i]

}
(58)

= c2 + σ−2
(

2ℜ
{
θ∗l E{αH

l zl|y,θ[i]}
}

− |θl|2 E
{
‖αl‖2

∣
∣y,θ[i]

})

, (59)

wherec1 andc2 do not depend onθl. To proceed, we write

E{αH
l zl|y,θ[i]} = E

{
αH

l E {zl|s,y,θ[i]}
∣
∣y,θ[i]

}
, (60)

taking the inner expectation w.r.tzl and the outer expectation
w.r.t s. Sincezl andy are jointly Gaussian (givens andθ[i]),

E {zl|s,y,θ[i]}
= E {zl|s,θ[i]}+CzlyC

−1
yy (y − E {y|s,θ[i]}) (61)

= αlθl[i] + y −Aθ[i], (62)

where Cyy , Cov{yyH |s,θ[i]} = σ2IN (63)

Czly , Cov{zly
H |s,θ[i]} = σ2IN . (64)

Plugging (62) back into (60) yields

E
{
αH

l zl|y,θ[i]
}

= E
{
‖αl‖2

∣
∣y,θ[i]

}
θl[i] + ᾱH

l y − E{αH
l A|y,θ[i]}θ[i]

= (‖ᾱl‖2 + cll)θl[i] + ᾱH
l y − (ᾱH

l Ā+ cHl )θ[i], (65)

whereᾱl, cl andcll were defined after (21).
Expansion ofln p(θl,θl̃[i]), the second term in (20), yields

ln p(θl,θl̃[i]) = c3 − ρll|θl − θ̄l|2
− 2ℜ{(θl − θ̄l)

∗ρH

l̃
(θl̃[i]− θ̄l̃)}, (66)

whereρll was defined after (21),ρl̃ is defined asρl with lth

entry omitted, andc3 is irrelevant to the maximization.
Plugging (65)–(66) into (20), and zeroing the gradient of

the resulting expression with respect toθl, yields (21).
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Fig. 1. Turbo receiver with soft noncoherent equalizer.
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Fig. 2. ForN = 32, NH = 3, andNp = 8, illustration of a)H(j) support,
b) single-carrier pilot pattern, and c) multicarrier pilot pattern withP = 4
andK = 2.
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Fig. 3. Coded BER versusEb/No for various pilot/guard numbersNp.
Single-carrierncT-BE was used withfDTs=0.002, Nh=3, andN=64.
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Fig. 4. BER vs.Eb/No for various equalization schemes under single-carrier
transmission,fDTs = 0.002, Nh = 3, andN = 64.
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Fig. 5. BER vs.Eb/No for various equalization schemes under single-carrier
transmission,fDTs = 0.005, Nh = 3, andN = 64.
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Fig. 6. BER vs.Eb/No for various equalization schemes under multicarrier
transmission,fDTs = 0.002, Nh = 3, andN = 64.
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Fig. 7. BER vs.Eb/No for various equalization schemes under multicarrier
transmission,fDTs = 0.0005, Nh = 64, andN = 256.
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N = 64, and anNb = 3-term KL-BE model.
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N = 64, and an OCE-BE model.


