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Abstract—A low-complexity recursive procedure is presented
for model selection and minimum mean squared error (MMSE)
estimation in linear regression. Emphasis is given to the case of a
sparse parameter vector and fewer observations than unknown
parameters. A Gaussian mixture is chosen as the prior on
the unknown parameter vector. The algorithm returns both a
set of high posterior probability models and an approximate
MMSE estimate of the parameter vector. Exact ratios of posterior
probabilities serve to reveal potential ambiguity among multiple
candidate solutions that are ambiguous due to observation noise
or correlation among columns in the regressor matrix. Algorithm
complexity is O(MNK), with M observations, N coefficients,
and K nonzero coefficients. For the case that hyperparameters
are unknown, an approximate maximum likelihood estimator
is proposed based on the generalized expectation-maximization
algorithm. Numerical simulations demonstrate estimation perfor-
mance and illustrate the distinctions between MMSE estimation
and maximum a posteriori probability model selection.

Index Terms—Sparse reconstruction, compressive sampling,
compressed sensing, sparse linear regression, Bayesian model
averaging, Bayesian variable selection, empirical Bayes.

I. I NTRODUCTION

SPARSE linear regression is a topic of long-standing in-
terest in signal processing, statistics, and geophysics. The

linear model is given by

y = Ax + w, (1)

with observation vectory, known regressor matrixA, un-
known coefficientsx, and additive noisew. In sparse prob-
lems, the prior belief is that only a small fraction of coefficients
are non-negligible.

We adopt a Bayesian approach, which we now review
in general terms. Letγk denote a candidate model, withk
indexing the countably many models under consideration. A
prior probabilityp(γk) is assigned to each model, and a prior
p(θk|γk) is adopted for the parameters of each model. For
example, in (1) a modelγk might indicate which entries in
x ∈ R

N are nonzero, resulting in2N candidate models. For
linear regression, a model is also known as a variable selection
or basis selection. Margining out parameters and conditioning
on the observations yields posterior model probabilities

p(γk|y) =
p(y|γk)p(γk)∑
j p(y|γj)p(γj)

. (2)

Manuscript submitted September 9, 2008 and revised March 9, 2009.
This investigation was supported by National Science Foundation Grant
0237037, Office of Naval Research grant N00014-07-1-0209, and AFOSR
award FA9550-06-1-0324. A preliminary version of this work was presented
at the Workshop on Information Theory and Applications (ITA), La Jolla, CA,
January 2008.

The authors are with the Department of Electrical and ComputerEngineer-
ing, The Ohio State University, Columbus, OH, 43210-1272.

Pairwise comparison of candidate models is given by the
posterior odds

p(γk|y)

p(γj |y)
=

p(y|γk)

p(y|γj)

p(γk)

p(γj)
. (3)

The model posterior probabilities give a full description of the
post-data uncertainty and are useful for inference and decision
tasks. A common choice is to compute a single model that
maximizes the posterior probability—the MAP estimate,γ̂⋆.
However, to obtain the minimum mean squared error estimate
of x, one must compute a weighted average of conditional
mean estimates over all models with nonzero probability,

x̂mmse =
∑

k

p(γk|y) E{x|y, γk}. (4)

Bayesian model averaging (e.g., [1], [2] and references therein)
is a name sometimes given to this incorporation of model
uncertainty and stands in contrast to model selection, which
is the report of a single model. Thus, the essential element
provided by the Bayesian approach is the quantification of
posterior model uncertainty. The posterior odds reveal uncer-
tainty among multiple candidate solutions that are ambiguous
due to observation noise or correlation among columns in the
regressor matrix,A. Bayesian techniques are classical; the
novelty here is a suite of computational techniques that make
Bayesian estimation not only tractable, but low complexity, for
the sparse linear model, with emphasis on the case of fewer
observations than unknown variables.

This manuscript is organized as follows. In Section II we
briefly survey existing approaches to sparse linear regression.
In Section III, we state a flexible signal model and priors
for sparse signals; the priors explicitly specify our modeling
assumptions and admit precise interpretation. In Section IV,
we describe our proposed algorithm. A tree-search is combined
with a low-complexity update of model posterior probabilities
to find a dominant set of likely models. An algorithm for
computing approximate maximum likelihood estimates of the
hyperparameters, based on a generalized expectation maxi-
mization (EM) update, is presented in Section V for use when
such hyperparameters are not known for a given application.
We numerically investigate in Section VI the algorithm’s
performance. In Section VII, we give specific comparison to
related work. Conclusions are summarized in Section VIII.

II. T ECHNIQUES FORSPARSEL INEAR REGRESSION

We present a brief and necessarily incomplete survey of
existing approaches to sparse linear regression, with an em-
phasis on the themes relevant to our proposed procedure for
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model uncertainty and parameter estimation. For convenience,
we coarsely partition approaches into those that do or do not
explicitly adopt prior distributions.

A. Algorithms for sparse signal reconstruction

In sparse signal reconstruction, the general aim is to identify
the smallest subset of columns of the regressor matrix,A,
whose linear span contains (approximately) the observations,
y. Algorithmic approaches have been proposed for several
decades and broadly fall into three categories. The algorithms
return a single model estimate and do not quantify uncertainty
in the reported estimate. The algorithms have typically been
developed without recourse to probabilistic priors.

One class of algorithms adopts a greedy search heuristic.
Examples include CLEAN [3], projection pursuit [4], and
orthogonal matching pursuit (OMP) [5]. There exist sufficient
conditions [6], [7] on the sparseness ofx and singular values
of subsets of columns ofA (e.g., the restricted isometry
property [8]) such that a regularized OMP stably recoversx

with high probability.
A second class of algorithms recursively solves a sequence

of iteratively re-weighted linear least-squares (IRLS) problems
[9]–[11]; recent results [12] for the noiseless case have estab-
lished sufficient conditions such that the sequence converges
to the sparsest solution.

A third class comprises penalized least-squares solutionsfor
x and has likewise been used for at least four decades [13].
In this class of approaches, parameters are found via the
optimization

x̂ = argmin
x

‖Ax − y‖2
2 + τ‖x‖p

p, (5)

or, equivalently, for someǫ > 0

x̂ = argmin
x

‖x‖p s.t. ‖Ax − y‖2
2 < ǫ. (6)

Ridge regression [14] (i.e., Tikhonov regularization) adopts
p = 2, while basis pursuit [15] and LASSO [16] usep = 1.
Equation (5) has been widely adopted, for example in image
reconstruction [17], [18], radar imaging [19], and elsewhere
[20], [21]. With proper choice of norm, total variation denois-
ing is also an algorithm in this class forp = 1 [22], [23].

A link exists to Bayesian estimation; the large class of
methods adopting (5) may be interpreted as implicitly seeking
the MAP estimate ofx under the prior

p(x) ∝ exp
{
− τ

2‖x‖
p
p

}
. (7)

Solutions depend on choice of hyperparametersτ and ǫ in
(5) and (6), and the choice can be problematic; typically, a
cross-validation procedure is adopted, whereby solutionsare
computed for a range of hyperparameters.

Elegant recent results by several authors [8], [24], [25] have
demonstrated sufficient conditions onA, w, and the sparsity of
the true coefficients,x, such that forp = 1 the convex problem
(6) provides the stable solution (8) for certain positiveC:

min ‖x̂ − x0‖2 < Cǫ. (8)

These proofs have validated the widespread use of (5)-(6),
providing a deeper understanding, spurring a resurgent interest,

and promoting the interpretation as “compressive sampling.”
The sufficient conditions onA are the restricted isometry
property [8] (RIP) or a bound on the mutual coherence [25],
which is the maximum correlation among the columns inA.

A constructive procedure forA consistent with RIP remains
open [26]. But the compressive sampling hypotheses are
met with high probability by draws from classes of random
matrices. In this sense, compressive sampling trades the NP-
hard ℓ0 sparsest solution task for an intractable experiment
design, then uses randomization for experiment design. In
a similar way, randomization has been used in anad hoc
manner for over 40 years in array processing for low side-lobe
responses [27], [28]. Thus, compressive sampling theorems
offer an invitation to randomized sampling.

In the sparse reconstruction and compressive sampling lit-
erature, primary focus is placed on the detection of the few
significant entries of the sparsex—a task alternatively known
as model selection, variable selection, subset selection,or basis
selection. In addition, an estimate of the parametersx is also
sought. In all these techniques, a single solution is returned
without a report of posterior model uncertainty.

B. Bayesian approaches

Bayesian approaches have been widely reported in a variety
of subdisciplines. The relevance vector machine [29]–[31]
explicitly adopts a Bayesian framework withxi independent,
zero-mean, Gaussian with unknown varianceσ2

i . The unknown
variances are assigned the inverse Gamma conjugate prior and
an EM iteration computes a MAP estimate ofx. Although
priors are adopted, these approaches do not compute and report
posterior probabilities for candidate models; instead, a single
model is reported that approximates the MAP model estimate.

In the statistics literature, rapidly advancing computingtech-
nology and the advent of Markov chain Monte Carlo (MCMC)
methods for posterior computation combined to yield a large
body of Bayesian methods for model uncertainty. Linear
models, as the canonical version of nonparametric regression,
have been widely studied, with attention focused to the over-
determined case (more observations than potential predictors).
Approaches differ in specification of the priors and numerical
methods for rapidly computing posterior probabilities for
candidate models. For example, Smith and Kohn [32] adopt
a log-uniform prior on the noise variance, an independent
Bernoulli prior for selection of nonzero coefficients, and a
Zellner g-prior1 on the coefficients conditioned on both the
noise variance and the indices of nonzero coefficients. Then,
a Gibbs sampler is used to simulate a pseudorandom sample
of models (i.e., configurations of nonzero coefficients) that
converges in distribution to the posterior model probabilities.
In the MCMC methods, this sequence is used to search for
high probability models and to obtain posterior weighted
averages for estimation tasks. (See [1], [33] for surveys and

1Given the variable selection and noise covariance, the Zellner g-prior is
zero-mean jointly Gaussian with covariancegσ2(AT

s As)−1, whereAs is
formed by keeping columns fromA corresponding to the nonzero coefficients.
The prior is chosen for computational convenience and is inconsistent for the
null model [1].
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references, and see [34] for application of MCMC to an under-
determined Gabor transform problem.) Elad and Yavneh [35]
proposed a similar randomization to identify a sequence of
candidate models. A randomized OMP algorithm is used to
create solutions with sparsity‖x‖0 = K. At each instance
of OMP, indices are drawn from among columns ofA most
correlated with the residual. The log-probability in the draw
is proportional to the decrease in the residual. A MMSE-
inspired denoising (i.e., estimate ofAx) is then generated by
averaging, with uniform weights, the least-squares solutions
computed under each model hypothesis. The algorithm is not
derived from a Bayesian formulation; however, the analysis
in the manuscript adopts the Zellnerg-prior and assumes a
known number of nonzero coefficients.

Finally, Bayesian model averaging was adopted by Larsson
and Seĺen [36] to approximate minimum mean squared error
(MMSE) estimates. In the sparse over-determined case, a
greedy deflation search is used to identify high-probability
models.

In this paper, we adopt a Bayesian model averaging treat-
ment of model uncertainty and we propose fast computational
techniques to compute posterior model probabilities for the
underdetermined, or undersampled data, case. Further, we
arrive at a fast computation technique without adopting the
Zellner g-prior. A method for approximate maximum likeli-
hood estimation of hyperparameters based on a generalized-
EM update is given, for cases when hyperparameters are not
known for a specific application.

III. S IGNAL MODEL

This section defines our signal model and priors. We choose
to present a general model, withx drawn from aQ-ary mixture
of complex-valued Gaussians with arbitrary means. While
this generality affords application to many practical signals
without changing the proposed fast algorithm, it requires a
complexity of notation relative to the simplest special cases of
the model. The section concludes with a description of four
specific examples of the general model.

We consider problems where unknown coefficientsx ∈ C
N

are observed through the noisy superpositiony ∈ C
M

y = Ax + w, (9)

for known A ∈ C
M×N and for noisew that is white circular

Gaussian with varianceσ2, i.e., w ∼ CN (0, σ2IM ), where
the columns ofA are taken to be unit-norm. Our focus is
on the underdetermined case (i.e.,N ≫ M ) with a suitably
sparse parameter vectorx (i.e., ‖x‖0 ≪ N ). Although we
assume complex-valued quantities, our methods are suitable
for real-valued problems with minor modifications.

To model sparsity, we assume that{xn}
N−1
n=0 , the compo-

nents ofx, are i.i.d. random variables drawn from aQ-ary
Gaussian mixture. For eachxn, a mixture parametersn ∈
{0, . . . , Q − 1} is used to index the component distribution.
In particular, whensn = q, then the coefficientxn is modeled
as a circular Gaussian with meanµq and varianceσ2

q :

xn

∣∣{sn = q} ∼ CN (µq, σ
2
q ). (10)

The mixture parameters{sn}
N−1
i=0 are treated as i.i.d. random

variables such thatPr{sn = q} = λq. We choose(µ0, σ
2
0) =

(0, 0), so that the casesn = 0 implies xn = 0, whereas
the casesn > 0 allows xn 6= 0. In addition, we choose
{λq}

Q−1
q=0 so that

∑Q−1
q=1 λq ≪ 1, which ensures that (with

high probability) the coefficient vectorx has relatively few
nonzero values.

Using x = [x0, . . . , xN−1]
T ands = [s0, . . . , sN−1]

T , the
priors can be written as

x|s ∼ CN (µ(s),R(s)), (11)

where [µ(s)]n = µsn
and whereR(s) is diagonal with

[R(s)]n,n = σ2
sn

. Equation (9) then implies that the unknown
coefficients,x, and the measurements,y, are jointly Gaussian
when conditioned on the model vector,s. In particular,

[
y

x

]∣∣∣∣ s ∼ CN

([
Aµ(s)
µ(s)

]
,

[
Φ(s) AR(s)

R(s)AH R(s)

])
, (12)

where

Φ(s) , AR(s)AH + σ2IM . (13)

We now provide examples of how the hyperparametersQ,
{λq}

Q−1
q=0 , {µq}

Q−1
q=0 , and{σ2

q}
Q−1
q=0 could be chosen.

• Zero-mean binary prior: Here, Q = 2, µ1 = 0, and
σ2

1 > 0. With this conveniently simple prior, it can be
potentially difficult to distinguish an “active” coefficient
from a non-active one, since the mosta priori probable
active-coefficient values are those near zero.

• Nonzero-mean binary prior: Here,Q = 2, µ1 6= 0, and
σ2

1 > 0. Compared to the zero-mean binary prior, active
coefficients have a known nonzero mean value2.

• Zero-mean ternary prior: Here, Q = 3, µ1 = −µ2,
σ2

1 = σ2
2 > 0, and λ1 = λ2. Appropriate for the real-

valued case with no prior knowledge of sign, this model
facilitates the discrimination between active and non-
active coefficients whenµ1 andσ2

1 are suitably chosen.
• Q-ary circular prior: Here, Q > 3 and, for all q ∈

{1, . . . , Q}, we setµq = |µ1|e
j2π

q−1

Q−1 , σ2
q = σ2

1 > 0, and
λq = λ1. This generalization of the zero-mean ternary
prior is suitable for complex-valued coefficients witha
priori unknown phase.

IV. M ODEL UNCERTAINTY & ESTIMATING COEFFICIENTS

The observation model (9) is a Gaussian mixture and
presents two principal problems: model selection and pa-
rameter estimation. The first task is the selection of one or
more highly probable models from theQN possible models
indexed bys. We refer tos as the “model vector.” In the
Bayesian framework, we also compute posterior probabilities,
p(s|y). The second task is the estimation of the coefficients,
x. In this section, we propose a low-complexity method to
simultaneously accomplish both of these tasks.

2An application of this model arises in electron paramagnetic resonance
(EPR) imaging, where an exogenous spin deposit is constructed from a
paramagnetic material [37]. For the EPR application,σ2

1 models variability
in the number of spins present in a polymer-encapsulated microliter deposit.
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A. Model selection

We index the set of all model vectors byS , {0, 1, . . . , Q−
1}N . The maximuma posteriori(MAP) model-vector estimate
is given by ŝ⋆ , argmaxs∈S p(s|y). We seek to determine
not only the MAP model-vector̂s⋆ but also the setS⋆ of
all model vectors with non-negligible posterior probability,
along with their posteriors{p(s|y)}s∈S⋆

. By analogy to data
communications, findinĝs⋆ is like “hard decoding,” whereas
finding {p(s|y)}s∈S⋆

is like “soft decoding.”
Using Bayes rule, the model-vector posterior becomes

p(s|y) =
p(y|s)p(s)∑

s′∈S p(y|s′)p(s′)
. (14)

Given S⋆, the posteriors can be approximated by

p(s|y) ≈
p(y|s)p(s)∑

s′∈S⋆
p(y|s′)p(s′)

for s ∈ S⋆. (15)

Since, for anys, the values ofp(s|y) andp(y|s)p(s) are equal
up to a scaling, the search forS⋆ reduces to the search for the
vectorss ∈ S which yield the dominant values ofp(y|s)p(s).
For convenience, we use the monotonicity of the logarithm to
define themodel selection metricν(s,y):

ν(s,y) , ln p(y|s)p(s) (16)

= ln p(y|s) + ln p(s) (17)

= −
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− ln det(Φ(s)) − M lnπ +
N−1∑

n=0

lnλsn
. (18)

The assumption of circular complex Gaussian noise was used
for (18); for real-valued Gaussian noise, the first three terms
in (18) would simply be halved andlnπ replaced byln 2π.

ForQ = 2, detection ofs ∈ {0, 1}N coincides with variable
selection. WithQ > 2, there exist(Q − 1)K possible model
vectorss that yield the same selection of a specified subset of
K nonzero coefficients.

B. MMSE Coefficient Estimation

For applications in which the identification of the most
probable model vector is the primary objective, the sparse
coefficientsx can be regarded as nuisance parameters. In other
applications, however, estimation ofx is the primary goal.

The MMSE estimate ofx from y is

x̂mmse , E{x|y} =
∑

s∈S

p(s|y) E{x|y, s} (19)

where from (12) we can obtain (via, e.g., [38, p. 155])

E{x|y, s} = µ(s) + R(s)AH
Φ(s)−1

(
y − Aµ(s)

)
. (20)

Summing over the dominant modelsS⋆ yields the approximate
MMSE estimate

x̂ammse ,
∑

s∈S⋆

p(s|y) E{x|y, s}. (21)

Similarly, the conditional covarianceCov{x|y}, whose trace
characterizes the MMSE estimation error, can be closely
approximated as

Cov{x|y} ≈
∑

s∈S⋆

p(s|y)
[
Cov{x|y, s} + (x̂ammse

− E{x|y, s})(x̂ammse − E{x|y, s})H
]

(22)

Cov{x|y, s} = R(s) − R(s)AH
Φ(s)−1AR(s). (23)

In fact, the (approximate) estimation error can be written more
directly as

tr
(
Cov{x|y}

)
≈

∑

s∈S⋆

p(s|y)
[
tr

(
Cov{x|y, s}

)

+
∥∥x̂ammse − E{x|y, s}

∥∥2
]
. (24)

The primary challenge in the computation of MMSE esti-
mates is to obtainp(s|y) andΦ(s)−1 for eachs ∈ S⋆. In the
sequel, we propose a fast algorithm to search for the setS⋆

of dominant models that, in addition, generates the values of
E{x|y, s} andCov{x|y, s} for each explored models.

C. The Search for Dominant Models

We now turn our attention to the search for the dominant
modelsS⋆, i.e., those that yield significant posteriorsp(s|y).
Because the denominator of (14) is impractical to compute
and the denominator of (15) cannot be computed beforeS⋆

is known, we search forS⋆ by looking for s ∈ S for
which p(y|s)p(s) = p(s,y) is significant according to oura
priori assumptions. Due to the relationshipp(s,y) = eν(s,y),
significant values ofp(s,y) correspond to relatively large
values ofν(s,y).

To understand what constitutes a “relatively large” value
of ν(s,y), we derive thea priori distribution of the random
variableν(s,y) in Appendix A. There we find that

E{ν(s,y)} = 2M + N(1 − λ0)λ0

(
ln

[
(

σ2

1

σ2 + 1)λ0

λ1

])2
(25)

for the case thatσ2
q = σ2

1 and λq = λ1 for all q 6= 0, where
the expectation is taken over boths andy. Thus, for a given
pair {s′,y}, we can compareν(s′,y) to the meanE{ν(s,y)}
and standard deviation

√
var{ν(s,y)} in order to get a rough

indication of whether{s′,y} has “significant” probability.
Because brute force evaluation of allQN model vectors is

impractical for typical values ofN , we treat the problem as a
non-exhaustive tree search. The models{s : ‖s‖0 = p} form
the nodes on thepth level of the tree, wherep ∈ {0, . . . , N},
so thats = 0 forms the root. We now describe a very general
form of tree search. Say that, after themth stage of tree-search,
the search algorithm knows the setŜ(m) of models currently
under consideration, as well as the metricsν(s,y) for all s ∈
Ŝ(m). At the (m+1)th stage, the tree-search i) chooses the
subsetŜ(m)

e ⊂ Ŝ(m) of models that will be extended, ii) stores
all single-coefficient modifications of the vectors in̂S(m)

e as
the “extended” set̂S(m)

x , iii) computes metrics for all models
in Ŝ

(m)
x , and, based on these metrics, iv) prunes the cumulative

set{Ŝ(m)
x , Ŝ(m)} to form Ŝ(m+1). A stopping criterion decides

when to terminate the search; if stopped at themth stage,
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the search would return the “significant” models as the set
Ŝ⋆ = Ŝ(m). We assume that the search is initialized at the
root node, so that̂S(0) = 0 with corresponding metric

ν(0,y) = − 1
σ2 ‖y‖2

2 − M lnσ2 − M lnπ + N lnλ0, (26)

which follows from (18) and the fact thatΦ(0) = σ2IM .
The details of the extension procedure, pruning procedure,
and stopping criterion are algorithm specific (e.g., depth-first,
breadth-first, best-first). In the sequel, we will refer to this
general approach of non-exhaustive tree-search guided by the
Bayesian metricν(s,y) asBayesian matching pursuit(BMP).
Our experiments with various types of tree search have led
us to recommend the specific search approach detailed in
Section IV-E. We note that existing MCMC methods [32],
for the over-determined caseM ≥ N , can be interpreted as
randomized tree searches.

D. Fast Bayesian Matching Pursuit

Common to all BMP variants (and to MCMC methods)
is the need to evaluate the metrics{ν(s′,y)} for all one-
parameter modificationss′ of some previously considered
model vectors. Here we present a fast means of doing so,
which we callfast Bayesian matching pursuit(FBMP).

For the case that[s]n = q and [s′]n = q′, wheres and s′

are otherwise identical, we now describe an efficient method
to compute∆n,q′(s,y) , ν(s′,y) − ν(s,y). For brevity, we
use the abbreviationsµq′,q , µq′ − µq and σ2

q′,q , σ2
q′ − σ2

q

below. Starting with the property

Φ(s′) = Φ(s) + σ2
q′,qanaH

n , (27)

the matrix inversion lemma implies

Φ(s′)−1 = Φ(s)−1 − βn,q′cncH
n (28)

cn , Φ(s)−1an (29)

βn,q′ , σ2
q′,q

(
1 + σ2

q′,qa
H
n cn

)−1
. (30)

In Appendix B it is shown that (27)-(30) imply

∆n,q′(s,y)

=






βn,q′

∣∣cH
n

(
y − Aµ(s)

)
+ µq′,q/σ2

q′,q

∣∣2

− |µq′,q|
2/σ2

q′,q + ln(βn,q′/σ2
q′,q)

+ ln(λq′/λq)

σ2
q′,q 6= 0

2Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}

− |µq′,q|
2cH

n an + ln(λq′/λq) σ2
q′,q = 0.

.(31)

Basically, ∆n,q′(s,y) quantifies the change toν(s,y) that
results from changing thenth index in s from q to q′.

Notice that the parameters{cn}
N−1
n=0 , which are essential

for the metric exploration step (31), requireO(NM2) opera-
tions to compute if (29)-(30) were used with standard matrix
multiplication. As described next, the structure ofΦ(s)−1 can
be exploited to make this complexityO(NM).

Suppose thats is itself a single-index modification ofspre,
for which thenpre-th index ofspre was changed fromqpre to q
in order to creates. If the corresponding quantities{cpre

n }N−1
n=0

and βpre
npre,q have been computed and stored, then, since (28)-

(29) imply that

cn =
[
Φ(spre)−1 − βpre

npre,qc
pre
nprec

preH
npre

]
an (32)

= cpre
n − βpre

npre,qc
pre
nprec

preH
npre an, (33)

{cn}
N−1
n=0 can be computed usingO(NM) operations.

Having computed {cn}
N−1
n=0 , the parameters

{βn,q′}q′=0:Q−1
n=0:N−1 can be computed via (30) with a complexity

of O(MN+QN). If we recursively updatez(s) , y−Aµ(s)
with O(MQ) multiplies using

z(s) = y − Aµ(spre)︸ ︷︷ ︸
, z(spre)

−anpreµq,qpre , (34)

then {∆n,q′(s)}q′=0:Q−1
n=0:N−1 can be computed via (31) with a

complexity ofO(MN + QN). Actually, if σ2
q = σ2

1 ∀q 6= 0
(as for all the examples given in Section III), thenβn,q′ =
βn,1 ∀q′ 6= 0, which leads to a complexity ofO(MN +QM).

Going further, if we defineC , [c0, . . . , cN−1] and notice
that C = Φ(s)−1A, then we can compute thes-conditional
mean and covariance via

E{x|y, s} = µ(s) + R(s)CHz(s) (35)

Cov{x|y, s} =
(
IN − R(s)CHA

)
R(s), (36)

using (20), (23), and the fact thatΦ(s) is Hermitian. Because
R(s)CH has only‖s‖0 nonzero rows andAR(s) has only
‖s‖0 nonzero columns, (35) and (36) can be computed using
only O

(
M‖s‖0

)
andO

(
M‖s‖2

0

)
multiplies, respectively.

E. Repeated Greedy Search

In Section IV-C, we proposed a general method to search for
the dominant modelsS⋆ based on tree searches that start with
the root hypothesiss′ = 0 and modifies one model component
at a time, using the model selection metricν(s′,y) to guide the
search. Then, in Section IV-D, we proposed an efficient metric
evaluation method that consumesO((M + Q)N) multiplica-
tions to explore all(Q− 1)N single-coefficient modifications
at each tree node visited by the search, and an additional
complexity ofO(M‖s‖0) andO(M‖s‖2

0) at each nodes for
which the conditional mean and covariance, respectively, are
computed. In this section, we propose a particular tree-search
that, based on our experience, offers a good tradeoff between
performance and complexity.

Our repeated greedy search(RGS) procedure starts at the
root nodes′ = 0 and performs a greedy inflation search (i.e.,
activating one model component at a time) until a total of
P model components have been activated. By “greedy,” we
mean that the model component activated at each stage is the
one leading to the largest metricν(s′,y); de-activation is not
allowed. We recommend choosingP slightly larger than the
expected number of nonzero coefficientsE{‖s‖0}, e.g., so that
Pr(‖s‖0 > P ) is sufficiently small.3 Note that the procedure

3Recall that‖s‖0 follows the Binomial(N, 1− λ0) distribution. When
N(1 − λ0) > 5, it is reasonable to use the Gaussian approximation
‖s‖0 ∼ N

(
N(1 − λ0), Nλ0(1 − λ0)

)
, in which casePr(‖s‖0 > P ) =

1
2

erfc
(

P−N(1−λ0)√
2Nλ0(1−λ0)

)
.
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described so far is reminiscent of orthogonal matching pursuit
(OMP) [5] but different in that the Bayesian metricν(s,y)
is used to guide the activation of new coefficients. If at least
one of theP evaluated metrics surpasses some predetermined
thresholdνthresh, the RGS algorithm stops. If not, a second
greedy inflation search is started (from the root node) and
instructed to ignore all previously explored nodes. If at least
one of the P evaluated metrics from this second search
surpasses the thresholdνthresh, the RGS algorithm stops. If not,
a new greedy inflation search is started. The RGS algorithm
continues in this manner untilνthresh is surpassed, or until
the number of greedy searches reaches an allowed maximum
Dmax. Recall that the thresholdνthresh can be chosen in accor-
dance with the prior onν(s,y), as discussed in Section IV-C.

The RGS algorithm, using the FBMP recursions from
Section IV-D, is detailed in Table I for the simple case that
σ2

q = σ2
1 andλq = λ1 for all q 6= 0 (which holds true for all

the examples given in Section III).
Denoting the number of greedy searches performed by

RGS (for a particular realizationy) by D ≤ Dmax, a total
of DPN(Q − 1) models are examined with corresponding
metricsν(s′,y). From the table, it is straightforward to verify
that the number of multiplications required to compute all
metrics andPD conditional means isO(DPNM). Comput-

ing the PD conditional covariances{Σ̂
(d,p)

}p=1:P
d=1:D requires

an additionalO(DP 3M) multiplies.

F. Exact Odds and Approximate Posteriors

The Bayesian framework provides a report on the con-
fidence of estimates for both the model vectors and the
coefficientsx. In particular, the model selection metricν(s,y)
yields the exact posterior odds in (3). From (14), we can
approximate the posterior probability of models using the
renormalized estimate

p(s|y) =
exp{ν(s,y)}∑

s′∈S exp{ν(s′,y)}
≈

exp{ν(s,y)}∑
s′∈S⋆

exp{ν(s′,y)}
,

(37)

where the approximation in (37) incorporates only the models
S⋆ ⊂ S that account for the dominant values ofexp{ν(s,y)}.
Likewise, the resultinĝp(x|y):

p̂(x|y) =
∑

s∈S⋆

p̂(s|y)p(x|y, s), (38)

provides an approximate posterior density that describes the
uncertainty in resolvingx from the noisy observation. The
posterior density is a Gaussian mixture and reflects the multi-
modal ambiguity inherently present in the sparse inference
problem—an ambiguity especially evident when the signal-
to-noise ratio (SNR) is low or there exists nonnegligible
correlation among the columns ofA.

V. ESTIMATION OF HYPERPARAMETERS VIA

APPROXIMATE ML

When domain knowledge does not precisely specify the
hyperparameters,

θ = {{λq}
Q−1
q=0 , {µq}

Q−1
q=0 , σ2, {σ2

q}
Q−1
q=0 }, (39)

νroot = − 1
σ2

‖y‖2
2 − M ln(σ2π) + N ln λ0;

for n = 0 : N − 1,
croot

n = 1
σ2

an;
βroot

n = σ2
1(1 + σ2

1aH
n croot

n )−1;
for q = 1 : Q − 1,

νroot
n,q = νroot + ln

βroot
n

σ2

1

+ βroot
n

∣∣crootH
n y +

µq

σ2

1

∣∣2 − |µq|
2

σ2

1

+ ln λ1

λ0
;

end
end
for d = 1 : Dmax,

n = [ ];
q = [ ];
ŝ(d,0) = 0;
z = y;
for n = 0 : N − 1,

cn = croot
n ;

βn = βroot
n ;

for q = 1 : Q − 1,
νn,q = νroot

n,q ;
end

end
for p = 1 : P ,

(n⋆, q⋆) = (n, q) indexing the largest element in{νn,q}q=1:Q−1
n=0:N−1

which leads to an as-of-yet unexplored node.
ν(d,p) = νn⋆,q⋆ ;
ŝ(d,p) = ŝ(d,p−1) + q⋆δn⋆ ;
n ← [n, n⋆]T ;
q ← [q, q⋆]T ;
z ← z − an⋆µq⋆ ;
for n = 0 : N − 1,

cn ← cn − βn⋆cn⋆cH
n⋆

an;
βn = σ2

1(1 + σ2
1aH

n cn)−1;
for q = 1 : Q − 1,

νn,q = ν(d,p) + ln βn

σ2

1

+ βn

∣∣cH
n z +

µq

σ2

1

∣∣2 − |µq|
2

σ2

1

+ ln λ1

λ0
;

end
end
x̂(d,p) =

∑p

k=1
δ[n]k

[
σ2
1cH

[n]k
z + µ[q]k

]
;

Σ̂
(d,p)

= σ2
1

∑p

k=1

∑p

j=1
δ[n]k

[
δ[n]k−[n]j

− σ2
1cH

[n]k
a[n]j

]
δT
[n]j

;

end
if max{ν(d,p)}p=1:P > νthresh, then break;

end

TABLE I
REPEATEDGREEDY SEARCH VIA FAST BAYESIAN MATCHING PURSUIT

one might opt for maximum likelihood (ML) estimates

θ̂ml = argmax
θ

p(y|θ). (40)

For Q = 2, we now present an approximate ML estimator
based on the expectation maximization (EM) iteration [39],
[40]. Sinces ∈ {0, 1}N , we get

x|s, µ1, σ
2
1 ∼ CN

(
µ1s, σ2

1 D(s)
)
, (41)

where we explicitly condition on parametersµ1 and σ2
1 and

useD(s) to denote the diagonal matrix created froms. The
received signaly = Ax + w can then be characterized as

y|s, µ1, σ
2
1 , σ2 ∼ CN

(
µ1s, σ2

1AD(s)AH +σ2IM

)
.(42)

Rewriting the conditional pdf using the ratioα , σ2

σ2

1

and the
matrix As whose columns are selected fromA according to
the nonzero entries ofs, we get

y|s, µ1, σ
2
1 , α ∼ CN

(
µ1As, σ2

1(AsA
H
s + αIM )

)
. (43)



IEEE TRANSACTIONS ON SIGNAL PROCESSING 7

Finally, recall that the log prior fors has the form

ln p(s|λ) =

N−1∑

n=0

ln p(sn|λ) (44)

=

N−1∑

n=0

ln
(
λ + (1 − 2λ)sn

)
, (45)

whereλ , λ0 = Pr{sn = 0}. We estimate the parameters
θ , [λ, µ1, α, σ2

1 ] via the EM algorithm, by treatings as
the so-called “missing data.” In particular, at each M-step, we
apply a coordinate ascent scheme, i.e.,

θ̂
(i+1)
k = argmax

θk

∑

s∈S

p
(
s
∣∣y, θ̂

(i))

× ln p
(
y, s

∣∣θk, {θ̂(i+1)
m }m<k, {θ̂(i)

m }m>k

)
. (46)

Below, we use shorthand notationθ̂k for the most recent update
of a given parameter, andKs , ‖s‖0.

In practice, the2N term summation in (46) is approximated
by a sum over the small set of dominant modelsŜ⋆. For the
maximization in (46), we will use the fact thatln p(y, s|θ) =
ln p(y|s, µ1, σ

2
1 , α) + ln p(s|λ).

Maximization with respect toλ proceeds according to

λ̂(i+1) = argmax
λ

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) ln p(s|λ). (47)

Since

∂

∂λ
ln p(s|λ) =

N−1∑

n=0

1 − 2sn

λ + (1 − 2λ)sn

(48)

=
Ks

λ − 1
+

N − Ks

λ
, (49)

zeroing the partial derivative of (47) w.r.t.λ yields

λ̂(i+1) = 1 −
1

N

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) Ks. (50)

For the M-step update ofµ1, (46) yields

µ̂
(i+1)
1 = argmax

µ1

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

) ln p(y|s, µ1, σ
2
1 , α),(51)

where, from (43),

ln p(y|s, µ1, σ
2
1 , α) = − ln det

[
σ2

1(AsA
H
s + αIM )

]
(52)

− σ−2
1 ‖y − µ1As‖2

(AsAH
s

+αIM )−1 .

Zeroing the partial derivative of the analytic right side of(51)
w.r.t. µ1, we find that

µ̂
(i+1)
1 =

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

)sHAH(AsA
H
s + αIM )−1y

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

)sHAH(AsA
H
s + αIM )−1As

.

(53)

The update forα is similar in principle, though an approx-
imation is used to simplify the expressions. Recognizing that
ln det

[
σ̂2

1(AsA
H
s + αIM )

]
= ln det

[
AsA

H
s + αIM

]
+ C,

whereC does not depend onα, and noticing that

∂
∂α

ln det
[
AsA

H
s + αIM

]
=

∂
∂α

det
[
AsA

H
s + αIM

]

det
[
AsA

H
s + αIM

] ,

(54)

we reason that

det
[
AsA

H
s + αIM

]
= αM det

[
α−1AsA

H
s + IM

]
(55)

= αM det
[
α−1AH

s As + IKs

]
(56)

≈ αM−Ks det
[
AH

s As

]
(57)

where in (57) we assume thatα ≪ 1. With this assumption,

∂
∂α

ln det
[
AsA

H
s + αIM

]
=

M − Ks

α
. (58)

We can then use the matrix inversion lemma with the small-α
assumption to get

(AsA
H
s + αIM )−1

=
1

α

[
IM − As(αIKs

+ AH
s As)

−1AH
s )

]
(59)

≈
1

α

[
IM − As(A

H
s As)

−1AH
s

]
, (60)

from which zeroing the partial derivative yields

α̂(i+1) = 1
σ2

1

∑
s∈Ŝ⋆

p(s|y, θ̂
(i)

) 1
(M−Ks)

× ‖y − µ̂1As‖2
IM−As(AH

s
As)−1AH

s

. (61)

From the definition ofα, (61) gives the required maximization
over σ2 with other parameters fixed.

Finally, maximization w.r.t.σ2
1 is again similar to the

procedure forµ1. Using the fact thatln det
[
σ2

1(AsA
H
s +

α̂IM )
]

= M lnσ2
1 + C, where C does not depend onσ2

1 ,
the corresponding partial-derivative technique yields

σ̂2
1

(i+1)
=

1

M

∑

s∈Ŝ⋆

p(s|y, θ̂
(i)

)‖y − µ̂1As‖2
(AsAH

s
+α̂IM )−1 .

(62)

For computational simplicity, we are motivated to replace
(50), (53), (61) and (62) with simpler surrogates. Define
x̃ammse asx̂ammse restricted to the nonzero coefficients, and let
mean andvar denote sample mean and variance. The proposed
surrogates, requiringO(M) operations, are

λ̂(i+1) = 1 − (‖x̃ammse‖0/N) (63)

µ̂
(i+1)
1 = mean(x̃ammse) (64)

σ̂2
(i+1)

= var(y − Ax̂ammse) (65)

σ̂2
1

(i+1)
= var(x̃ammse). (66)

We choose to terminate the iterations as soon as all parameters
change by less than 5% of their values from the previous
iteration, or when a maximum number of updates,Emax, is
reached.

VI. SIMULATION

Numerical experiments were conducted to investigate the
performance of FBMP with approximate maximum likelihood
estimation of hyperparameters from the data.

For the first experiment, we chose a “compressible”x that
mimics the wavelet coefficients of a natural signal:xk =
(−1)k exp(−ρk) for k = 0 . . . N − 1 with ρ ∈ (0, 1). With
N = 512 and M = 128, we drewA from i.i.d. zero-mean
Gaussian entries which were subsequently scaled to make each
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Fig. 1. Normalized mean squared error versusρ.

column unit-norm. The noise was also drawn i.i.d. zero-mean
Gaussian using a (ρ-dependent) variance that gave15 dB SNR.
The reported results represent an average of2000 independent
realizations. We compared FBMP to six publicly available
sparse estimation algorithms: OMP [41], StOMP [42], GPSR-
Basic [43], SparseBayes [29], BCS [31], and a variational-
Bayes implementation of BCS [44]. The algorithmic parame-
ters were chosen in accordance with suggestions provided by
the authors and, when applicable, adjusted to yield improved
performance. For SparseBayes, the true inverse noise variance
was provided, and it was not re-estimated during execution as
this led to degraded performance. Similarly, OMP and BCS
were provided the true noise variance. StOMP was tested
using both the “False Alarm Control” and “False Discovery
Control” thresholding strategies; since the latter appeared less
reliable for high values ofρ, we present results only for the
former. Theℓ1-penalty in the GPSR algorithm was chosen as
τ = 0.1‖AHy‖∞, and the MSE kept for comparison purposes
was the smaller of the MSEs of the biased and debiased
estimates. The FBMP hyperparameters were initialized at
λ1 = 0.01, µ1 = 0, σ2 = 0.05, σ2

1 = 2, and the surrogate
EM updates were used to compute approximate ML estimates
of the hyperparameters from the data.

In Fig. 1 we plot normalized mean squared error (NMSE),
defined by

NMSE (dB) = 10 log10

(
1

T

T∑

i=1

‖x̂(i) − x(i)‖2
2

‖x(i)‖2
2

)
, (67)

whereT is the number of random trials and superscript(i) de-
notes the trial number. From the figure, it can be seen that the
proposed FBMP with EM hyperparameter estimation provides
NMSE improvements of up to2 dB over OMP and GPSR, and
up to6-8 dB over the other algorithms. The improvements are
due, in part, to model averaging for computation ofx̂ammse

and the incorporation of noise power when computing the
conditional MMSE estimate (20). The good performance of
GPSR can be exhibited to the choice of signal; the sequence
x, while mismatched to the Gaussian mixture prior, is a typical
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Fig. 2. Runtime versusρ.
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Fig. 3. Solution sparsity versusρ.

draw from a Laplace density, and is therefore well matched
to the MAP estimator (5) forp = 1, to which GPSR seeks a
solution.

Figure 2 displays average runtimes for the same experi-
ment. We note that the runtimes for FBMP are reported with
and without generalized-EM iterations, whereas the runtimes
for the other algorithms donot reflect the repeated execu-
tions required to optimize their adjustable parameters. FBMP
(without generalized-EM iterations) is significantly faster than
SparseBayes and VB-BCS but significantly slower than GPSR,
OMP, and StOMP. In exchange for speed, FBMP returns not
only a MAP model estimatês⋆, but also a list of other high-
probability modelsŜ⋆ along with their posterior probabilities;
the other six approaches considered return only a single
model estimate. Thus, FBMP is able to give a more complete
interpretation of the data in the face of ambiguity arising from
correlation inA or from measurement noise.

Fig. 3 shows average sparsity of solutions. We observe that,
for this “compressible” signal and Gaussian regressor matrix,
the coefficient estimates returned by FBMP are among the
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Fig. 4. Rank ordered posterior probabilities, on a logarithmic scale, of the
modelss visited by the search heuristic (right of dashed vertical line) and the
top 500 models not visited (left of dashed vertical line).

sparsest.
In a second experiment, to illustrate the behavior of the

greedy tree-search, we adopt a figure format used by George
and McCulloch [45] to report MCMC results. To allow exhaus-
tive evaluation of all candidate models, we setN = 26 and
M = 7. Signals were constructed using the Gaussian mixture
model of Section III withQ = 2, λ1 = 0.04, µ1 = 0, σ2

1 = 1,
and with noise power adjusted to yield10 dB SNR. For
illustration, FBMP was provided the true hyperparameters and
used without generalized EM. Shown in Fig. VI is a rank-
ordered list of the posterior probabilitiesp(s|y). To the right
of the dashed line are the probabilities for the59 modelss

selected by the search, while to the left of the dashed line are
the probabilities for models not visited (truncated to showonly
the top500, out of226−59, models). While the figure displays
only one realization, it is typical of our numerical experience.
The figure shows that, i) there exist multiple models with high
probability, highlighting the inadequacy of reporting on the
MAP model, and, ii) the low-complexity search heuristic is
effective in visiting the high probability models.

In a third experiment, an exhaustive evaluation similar to the
previous one was repeated204 times (see Table II for details),
and each time both FBMP and the Larsson-Selén algorithm
(LSA) [36] were used to compute estimates ofx. The resulting
average MSE performance is reported in Table II, along with
the average “distance to MMSE” (D2MMSE)‖x̂− x̂mmse‖

2
2,

wherex̂ denotes the estimate returned by the (FBMP or LSA)
algorithm and̂xmmse denotes the exact MMSE estimate. It can
be seen that FBMP clearly outperforms LSA both in terms of
MSE and D2MMSE.

In a fourth experiment, we carried out a “multiscale-CS”
recovery of the popular “Mondrian” test image. Under the
multiscale-CS framework, random Gaussian ensemble mea-
surements were acquired from the3 finest-scale Haar wavelet
coefficients of the128×128 image. In all,4877 measurements
were acquired from the16384 unknowns, with different scales
being undersampled by different factors. For comparison,

Algorithm MSE [dB] D2MMSE [dB]
FBMP −19.7 −24.1
LSA −8.8 −9.1

TABLE II
PERFORMANCE FORBERNOULLI/IID -GAUSSIAN SIGNAL WITH N = 24,

M = 8, Q = 2, λ1 = 0.04, µ1 = 0, σ2
1 = 1, AND SNR= 15 dB,

AVERAGED OVER204 TRIALS. SEE TEXT FOR DEFINITION OFD2MMSE.

(a) Original image
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Fig. 5. Multiscale CS recovery. a) Original128 × 128 image; b) FBMP
recovery: NMSE= −16.80 dB, 8.85% of coefficients active,38 minutes
runtime; c) GPSR recovery: NMSE= −13.66 dB, 24.02% of coefficients
active,2.7 minutes runtime.

recoveries were obtained using GPSR as well. The results of
this experiment are shown in Fig. 5, with NMSEs and runtimes
reported in the caption. The reported runtimes correspond to
the time taken after the adjustable algorithmic parameters(e.g.,
τ for GPSR) were optimized. Relative to GPSR, the estimate
returned by FBMP was more sparse and had lower NMSE,
but took longer to generate. We note that these results are
consistent with those from the other experiments.

VII. D ISCUSSION

A. Fast Algorithms: Related Works

A Gaussian mixture model similar to that in Section III
was likewise adopted by Larsson and Selén [36], who, for
Q = 2, also constructed the MMSE estimate in the manner
of (21) but with an S⋆ that contains exactly one model
vector s for each Hamming weight0 to N . They proposed
to find theses via greedy deflation, i.e., starting with an all-
active model configuration and recursively deactivating one
component at a time. Thus, theD = 1 version of the BMP
heuristic from Section IV-C recalls the heuristic of [36], but
in reverse. Note, however, that thefast D = 1 BMP presented
in Section IV-D has a complexity of onlyO(NMP ), in
comparison toO(N3M2) for the technique in [36]. Given
the typically large values ofN encountered in practice, the
complexity of FBMP can be several orders of magnitude lower
than that of [36]. Complexity aside, Table II suggests that
the greedy deflation approach of [36] is much less effective
at finding the models vectors with high posterior probability,
leading to estimates that, relative to FBMP, have higher MSE
and are further from the exact MMSE estimate.

For Q = 2, a Gaussian mixture model has been widely
adopted for the Bayesian variable selection problem. (See,
e.g., [1] for a survey and references.) The published ap-
proaches vary in prior specification, posterior calculation,
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and MCMC method (such as Gibbs sampler or Metropolis-
Hastings). George and McCulloch [45] use a conjugate normal
prior on x|s, σ2 and a Gibbs sampler that requiresO(N2)
operations to computep(s′|y) from p(s|y), where s′ and
s differ in only one element. Smith and Kohn [32] use the
point mass null (i.e.,µ0 = σ2

0 = 0) and the simplifying
Zellner-g prior to achieve a fast update requiringO(K2

s)
operations, forKs , ‖s‖0. ApproximatelyMN iterations of
the Gibbs sampler are suggested, yielding a total complexity
of O(MN2K2

s).

B. Bayesian Model Averaging

The Bayesian framework provides a report on the confi-
dence of estimates for both the models and the coefficients
x. In contrast, confidence labels are absent in most of the
compressive sampling literature. Exceptions are found in [16],
[31], which use an (approximate) MAP estimateŝ⋆ for vari-
able selection and report the Gaussian error covariance for
the linear problem conditioned on̂s⋆ being the true model.
As noted by Tibshirani [16], such a measure of posterior
uncertainty has dubious value, because “a difficulty with this
formula is that it gives an estimated variance of0 for predictors
with” [ŝ⋆]n = 0. In fact, in our simulations, we observe
that ŝ⋆ is often not equal to the trues. Indeed, in order for
ŝ⋆ to equal trues with high probability, for fixed sparsity
‖s‖0/N , the SNR grows unbounded withN [46]. In this light,
we expect certain advantages for algorithms that consider the
active signal coefficients as implicitly uncertain.

As a caveat, we emphasize that our greedy FBMP search
returns onlyŜ⋆, an estimate of the dominant subsetS⋆, along
with the values ofν(s,y) for s ∈ Ŝ⋆. Thus, while the values
ν(s,y) returned by FBMP can be used to compute exact ratios
between the posterior probabilities of the model vectors inŜ⋆,
the true posteriors of these configurations (as approximated
by (37) with Ŝ⋆ in place ofS⋆) will only be accurate when
Ŝ⋆ indeed containsS⋆. In simulation, we observe that the
proposed greedy FBMP search reliably discoversS⋆ when
λ1N
M

≤ −1/ log(λ1).

C. Empirical Bayes

Empirical Bayes (EB) approaches have been used in related
work to estimate hyperparameters from the data under signal
models similar to the zero-mean binary prior given in Sec-
tion III. George and Foster [47] adopted maximum marginal
likelihood as in (40) for estimating parameters{λ1, σ

2
1} en

route to a MAP model selection using the Zellnerg-prior.
A forward greedy search for the EB̂s⋆ was considered.
For A = I, Johnstone and Silverman [48] used maximum
marginal likelihood forλ1 and established the asymptotic risk
of adaptive thresholding rules. Larsson and Selén [36] likewise
estimated hyperparameters from the data; forM ≥ N , ad hoc
estimates were computed from the full-model least-squares
estimate using higher-order moments.

D. Informative Priors

In our proposed approach, we have sought to incorpo-
rate physically meaningful prior knowledge when application-

specific insight is available. Further, by use of the generalized-
EM algorithm, we have provided a means for trade-off of
complexity versus prior knowledge, i.e., ML estimates of
hyperparameters may be iteratively estimated from the data.
In contrast, the aim in statistical literature is to be agnostic by
adopting noninformative priors or hyperpriors.

VIII. C ONCLUSION

In this paper, we proposed an algorithm for joint model
selection and sparse coefficient estimation, which we call fast
Bayesian matching pursuit (FBMP). We adopted a Bayesian
approach in which a set of likely model configurations is re-
ported, along with exact ratios of model posterior probabilities.
These relative probabilities serve to reveal potential ambiguity
among multiple candidate solutions that are ambiguous due
to observation noise or correlation among columns in the
regressor matrix. The explicit management of uncertainty is
essential for applications in which the estimated model vector,
ŝ, and estimated coefficients,̂x, are not final products, but
are instead statistics for use in making inference from the
noisy observations,y. The proposed search for high proba-
bility models and computation of their posteriors is fast in
that the computational complexity isO(MNK), with M
observations,N coefficients, andK nonzero coefficients. For
a modest increase in complexity, the proposed generalized-
EM refinement combines with FBMP to provide an empirical
Bayes method for estimating hyperparameters from the data.
Existing approaches using tree searches or MCMC methods
require at leastO(MN2K2) computation.

In forthcoming work we will report on a large-scale version
of FBMP that reduces the memory required in recursively
computing posterior probabilities, and we will give a bound
on the probability that a subset of coefficients is absent from
the MAP model estimate.
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APPENDIX A
MEAN AND VARIANCE OF ν(s,y)

In this appendix, we derive the mean and variance of
ν(s,y). According to our priors, ifs is the model vector
from which y is generated, theny = Ax + w for x|s ∼
CN (µ(s),R(s)) and w ∼ CN (0, σ2IM ). This implies that
y − Aµ(s)

∣∣ s ∼ CN (0,Φ(s)), so that
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)
∼ χ2

M , (68)

i.e., a chi-squared random variable withM degrees of free-
dom. Say thatAs denotes the matrix constructed from the
active columns ofA. Then, ifσ2

q = σ2
1 for all q 6= 0 (as in all

the examples given in Section III) and ifAs is orthonormal,

ln det(Φ(s)) = ln
(
(σ2

1 + σ2)‖s‖0σ2(M−‖s‖0)
)

(69)

= ‖s‖0 ln(
σ2

1

σ2 + 1) + M lnσ2, (70)

where ‖s‖0 ∼ Binomial(N, 1 − λ0). The orthonormal as-
sumption onAs is reasonable because the columns ofA were
assumed unit-norm in Section III and, for the class of problems
that guarantee good sparse estimates,any collection of ‖s‖0

columns fromA will be approximately orthogonal. (Recall
the restricted isometry property [8].) Finally, if we assume
that λq = λ1 for all q 6= 0 (as in all the examples given in
Section III), then

N−1∑

n=0

lnλsn
= ‖s‖0 lnλ1 + (N − ‖s‖0) ln λ0 (71)

= N lnλ0 − ‖s‖0 ln λ0

λ1

. (72)
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Using the facts that the mean and variance of aχ2
M random

variable areM and 2M , respectively, and the mean and
variance of‖s‖0 areN(1−λ0) andN(1−λ0)λ0, respectively,
we obtain (25).

APPENDIX B
DERIVATION OF (31)

In this appendix, we establish (31) using (27)-(30). Using
the fact thatΦ(s)−1an = cn, we find

(
y − Aµ(s′)

)H
Φ(s′)−1

(
y − Aµ(s′)

)

=
(
y − Aµ(s) − anµq′,q

)H(
Φ(s)−1 − βn,q′cncH

n

)

×
(
y − Aµ(s) − anµq′,q

)
(73)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2Re
{
µ∗

q′,qa
H
n Φ(s)−1

(
y − Aµ(s)

)}

+ 2Re
{
µ∗

q′,qa
H
n cnβn,q′cH

n

(
y − Aµ(s)

)}

+ |µq′,q|
2aH

n Φ(s)−1an − |µq′,q|
2βn,q′(cH

n an)2 (74)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)(
1 − βn,q′aH

n cn

)}

+ |µq′,q|
2cH

n an

(
1 − βn,q′aH

n cn

)
. (75)

In the case thatσ2
q′,q = 0, we haveβn,q′ = 0, and so

(
y − Aµ(s′)

)H
Φ(s′)−1

(
y − Aµ(s′)

)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− 2Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}
+ |µq′,q|

2cH
n an. (76)

In the case thatσ2
q′,q 6= 0, we have 1 − βn,q′aH

n cn =

−βn,q′σ−2
q′,q, so that

(
y − Aµ(s′)

)H
Φ(s′)−1

(
y − Aµ(s′)

)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

[∣∣cH
n

(
y − Aµ(s)

)∣∣2

− 2Re
{
cH

n

(
y − Aµ(s)

)µ∗
q′,q

σ2
q′,q

}
+ cH

n an

|µq′,q|2

σ2
q′,q

]
(77)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣∣cH
n

(
y − Aµ(s)

)
+

µq′,q

σ2
q′,q

∣∣∣
2

+ βn,q′

|µq′,q|
2

σ4
q′,q

[
1 + σ2

q′,qc
H
n an

]
(78)

=
(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣∣cH
n

(
y − Aµ(s)

)
+

µq′,q

σ2
q′,q

∣∣∣
2

+
|µq′,q|

2

σ2
q′,q

. (79)

Together, (76) and (79) yield (80).
(
y − Aµ(s′)

)H
Φ(s′)−1

(
y − Aµ(s′)

)

=






(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− βn,q′

∣∣cH
n

(
y − Aµ(s)

)
+ µq′,q/σ2

q′,q

∣∣2

+ |µq′,q|
2/σ2

q′,q

σ2
q′,q 6= 0

(
y − Aµ(s)

)H
Φ(s)−1

(
y − Aµ(s)

)

− 2Re
{
µ∗

q′,qc
H
n

(
y − Aµ(s)

)}

+ |µq′,q|2cH
n an

σ2
q′,q = 0.

.(80)

Equation (27) then implies that

ln det(Φ(s′)) = ln det
(
Φ(s) + σ2

q′,qanaH
n

)
(81)

= ln
[(

1 + σ2
q′,qa

H
n Φ(s)−1an

)
det

(
Φ(s)

)]

= ln det(Φ(s)) − ln(βn,q′/σ2
q′,q) (82)

ln p(s′) = ln p(s) + ln(λq′/λq), (83)

which, in conjunction with (18) and (80), yield (31).


