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Abstract—A low-complexity recursive procedure is presented Pairwise comparison of candidate models is given by the
for model selection and minimum mean squared error (MMSE)  posterior odds
estimation in linear regression. Emphasis is given to the case of a
sparse parameter vector and fewer observations than unknown p(Vk|y) _ p(Ylvk) p(vx) 3)

parameters. A Gaussian mixture is chosen as the prior on p(v;y) p(yhj)p(%')'

the unknown parameter vector. The algorithm returns both a ) . o

set of high posterior probability models and an approximate 1he model posterior probabilities give a full descriptidrttee
MMSE estimate of the parameter vector. Exact ratios of posterio  post-data uncertainty and are useful for inference andsubeci

probabilities serve to reveal potential ambiguity among multiple  tasks. A common choice is to compute a single model that
candidate solutions that are ambiguous due to observation noise . -vimizes the posterior probability—the MAP estimate

or correlation among columns in the regressor matrix. Algorithm H to obtain th S d timat
complexity is O(MNK), with M observations, N coefficients, owever, 10 obtain theé minimum mean squared error estimate

and K nonzero coefficients. For the case that hyperparameters Of =, one must compute a weighted average of conditional
are unknown, an approximate maximum likelihood estimator mean estimates over all models with nonzero probability,

is proposed based on the generalized expectation-maximization

algorithm. Numerical simulations demonstrate estimation perfor- Emmse = Zp(’yﬂy) E{x|y, v} 4)
mance and illustrate the distinctions between MMSE estimation &

and maximum a posteriori probablllty- model selectlf)n. | Bayesian model averaging (e.g., [1], [2] and referencemthl
Index Terms—Sparse reconstruction, compressive sampling, js a name sometimes given to this incorporation of model
compressed sensing, sparse linear regression, Bayesian mode),cetainty and stands in contrast to model selection, hvhic
averaging, Bayesian variable selection, empirical Bayes. . . -
is the report of a single model. Thus, the essential element
|. INTRODUCTION provided by the Bayesian approach is the quantification of

PARSE linear regression is a topic of long-standing irp_osterior model uncertainty. The posterior odds reveakunc

erest in signal processing, statistics, and geophystos. 'Itda'm)t' arr;)ong '”‘l%i't'p'e _candldate sloltyt|ons that arel ammguc:h
linear model is given by ue to observation noise or correlation among columns in the

regressor matrix,A. Bayesian techniques are classical; the
y = Az +w, 1) novelty here is a suite of computational techniques thatemak

with observation vectory, known regressor matrixd, un- Bayesian estimation not only tractable, but low complexiy
known coefficientsz, and additive noisav. In sparse prob- the sparse linear model, with emphasis on the case of fewer
lems, the prior belief is that only a small fraction of codffits OPServations than unknown variables. _
are non-negligible. This manuscript is organized as follows. In Section Il we
We adopt a Bayesian approach, which we now revielfiefly survey existing approaches to sparse linear reigress
in general terms. Lety, denote a candidate model, with In Section Ill, we state a flexible signal model and priors
indexing the countably many models under consideration. fAr sparse signals; the priors explicitly specify our mautg|
prior probabilityp(+;) is assigned to each model, and a prioRSsumptions and admit precise interpretation. In Section |
p(61|vx) is adopted for the parameters of each model. F¥€ describe ourprqposed algorlthm.Atree-se_arch is coe_r!lbm
example, in (1) a mode}; might indicate which entries in With a low-complexity update of model posterior probafet
x € RN are nonzero, resulting ia" candidate models. Forto find a dominant set of likely models. An algorithm for
linear regression, a model is also known as a variable sefectcomputing approximate maximum likelihood estimates of the
or basis selection. Margining out parameters and conditipn yperparameters, based on a generalized expectation maxi-
on the observations yields posterior model probabilities ~ Mization (EM) update, is presented in Section V for use when
Py l)p(1) such hyperparameters are not known for a given application.
p(ly) = S Wl P (2) We numerically investigate in Section VI the algorithm’s
3 PAYI3)PY; performance. In Section VII, we give specific comparison to
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model uncertainty and parameter estimation. For converienand promoting the interpretation as “compressive samgling
we coarsely partition approaches into those that do or do ridte sufficient conditions ondA are the restricted isometry

explicitly adopt prior distributions. property [8] (RIP) or a bound on the mutual coherence [25],
which is the maximum correlation among the columns4in
A. Algorithms for sparse signal reconstruction A constructive procedure fod consistent with RIP remains

topen [26]. But the compressive sampling hypotheses are
met with high probability by draws from classes of random

whose linear span contains (approximately) the obsemtiomatrices' In this sense, compressive s_ampling trades the NP

y. Algorithmic approaches have been proposed for seve%rq {y sparsest solution ta}sk .for an mtract_able experiment

decades and broadly fall into three categories. The algost design, then uses randomization for experiment design. In

return a single model estimate and do not quantify uncetair? Similar way, randomization has been used inaahhoc

in the reported estimate. The algorithms have typicallynbe&anner for over 40 years in array processing for low side-lob

developed without recourse to probabilistic priors. responses [27], [28]. Thus, compressive sampling theorems
One class of algorithms adopts a greedy search heurisff€r an invitation to randomized sampling. o

Examples include CLEAN [3], projection pursuit [4], and the sparse reconstruction and compressive sampling lit-

orthogonal matching pursuit (OMP) [5]. There exist sufiitie e_ratl_J_re, primary focus is placed on the detect_lon of the few

conditions [6], [7] on the sparsenessofand singular values significant entries of the sparge—a task alternatively known

of subsets of columns oA (e.g., the restricted isometry@S model selection, variable selection, subset seledrdrgsis

property [8]) such that a regularized OMP stably recovers selection. In addition, an e_stlmate of_the param_e:ier_s also

with high probability. sought. In all these techniques, a single solution is rewirn
A second class of algorithms recursively solves a sequerf¥éhout a report of posterior model uncertainty.

of iteratively re-weighted linear least-squares (IRLS)lpems

[_9]—[11]; re_c_ent result_s_ [12] for the noiseless case havabes g Bayesian approaches

lished sufficient conditions such that the sequence coesgerg ) ) ] )

to the sparsest solution. Bayesian approaches have been widely reported in a variety
A third class comprises penalized least-squares solutions Of subdisciplines. The relevance vector machine [29]{31]

x and has likewise been used for at least four decades [1fPlicitly adopts a Bayesian framework with independent,

In this class of approaches, parameters are found via #R0-mean, Gaussian with unknown variangeThe unknown

In sparse signal reconstruction, the general aim is to iyen
the smallest subset of columns of the regressor matix,

optimization variances are assigned the inverse Gamma conjugate pdor an
X ) ) an EM iteration computes a MAP estimate ®f Although
T = arginln Az — yl|3 + 7z, () priors are adopted, these approaches do not compute antl repo

posterior probabilities for candidate models; insteadingls
model is reported that approximates the MAP model estimate.
& = argmin ||z|, St ||Az —y|3<e. (6) In the statistics literature, rapidly advancing computiach-
x nology and the advent of Markov chain Monte Carlo (MCMC)
Ridge regression [14] (i.e., Tikhonov regularization) pio methods for posterior computation combined to yield a large
p = 2, while basis pursuit [15] and LASSO [16] uge= 1. body of Bayesian methods for model uncertainty. Linear
Equation (5) has been widely adopted, for example in imaggodels, as the canonical version of nonparametric regnessi
reconstruction [17], [18], radar imaging [19], and elsevehe have been widely studied, with attention focused to the-over
[20], [21]. With proper choice of norm, total variation désio determined case (more observations than potential peesjct
ing is also an algorithm in this class fpr= 1 [22], [23]. Approaches differ in specification of the priors and nundric
A link exists to Bayesian estimation; the large class qfiethods for rapidly computing posterior probabilities for
methods adopting (5) may be interpreted as implicitly segki candidate models. For example, Smith and Kohn [32] adopt
the MAP estimate ofc under the prior a log-uniform prior on the noise variance, an independent
p(a) o eXp{ g |$||§}~ @) Sernoulli pr_iorl for selection_ qf nonzero poefficients, and a
ellner g-prior- on the coefficients conditioned on both the
Solutions depend on choice of hyperparameterand ¢ in  noise variance and the indices of nonzero coefficients. Then
(5) and (6), and the choice can be problematic; typically, & Gibbs sampler is used to simulate a pseudorandom sample
cross-validation procedure is adopted, whereby solutemes of models (i.e., configurations of nonzero coefficients)t tha
computed for a range of hyperparameters. converges in distribution to the posterior model prob&bii
Elegant recent results by several authors [8], [24], [25Ehain the MCMC methods, this sequence is used to search for
demonstrated sufficient conditions @ w, and the sparsity of high probability models and to obtain posterior weighted
the true coefficientsg, such that fop = 1 the convex problem averages for estimation tasks. (See [1], [33] for surveys an
(6) provides the stable solution (8) for certain positive

or, equivalently, for some > 0

1Given the variable selection and noise covariance, then@elj-prior is
zero-mean jointly Gaussian with covariange? (AT As)~!, where A; is
. . med by keeping columns fromA corresponding to the nonzero coefficients.
These proofs have validated the widespread use of (5)-( e prior is chosen for computational convenience and isnisistent for the

providing a deeper understanding, spurring a resurgesrigist, null model [1].

min||:%—:c0\|2 < Ce. (8)
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references, and see [34] for application of MCMC to an undeFhe mixture parameter%,sn}fig1 are treated as i.i.d. random

determined Gabor transform problem.) Elad and Yavneh [3&riables such thaPr{s,, = ¢} = \,. We choos€ g, 08) =
proposed a similar randomization to identify a sequence @f,0), so that the case, = 0 implies z,, = 0, whereas
candidate models. A randomized OMP algorithm is used tbe cases,, > 0 allows z,, # 0. In addition, we choose
create solutions with sparsityz||, = K. At each instance {)\q}qu_Ol o) thath;l1 A¢ < 1, which ensures that (with
of OMP, indices are drawn from among columns4fmost high probability) the coefficient vectar has relatively few
correlated with the residual. The log-probability in thendr nonzero values.

is proportional to the decrease in the residual. A MMSE- Using z = [x,...,zy_1]7 ands = [sg,...,sy_1]7, the
inspired denoising (i.e., estimate dfx) is then generated by priors can be written as

averaging, with uniform weights, the least-squares Somhgti

computed under each model hypothesis. The algorithm is not z|s ~ CN(u(s), R(s)), (11)
derived from a Bayesian formulation; however, the analysj,ere [u(s)]

in the manuscript adopts the Zellngfprior and assumes a[R(S)]” . = 0 . Equation (9) then implies that the unknown

known number of nonzero coefficients. coefficientsz, and the measurementsg, are jointly Gaussian
Finally, Bayesian model averaging was adopted by Larssgien conditioned on the model vectar, In particular,

and Sedn [36] to approximate minimum mean squared error
(MMSE) estimates. In the sparse over-determined case, a {y} s CN([A”(S)] [ (s) AR(S)D (12)

n = Ws, and whereR(s) is diagonal with

greedy deflation search is used to identify high-probapbilit x n(s) | |R(s)A" R(s)
modelg. . . where
In this paper, we adopt a Bayesian model averaging treat-
ment of model uncertainty and we propose fast computational ®(s) 2 AR(s)A" + %1, (13)

techniques to compute posterior model probabilities fa th )

underdetermined, or undersampled data, case. Further, w¥/e now provide examples of how the hyperparametgrs
arrive at a fast computation technique without adopting tHe\a oo » {#q oo » and{o2}Z-} could be chosen.

Zellner g-prior. A method for approximate maximum likeli-  « Zero-mean binary priar Here, Q = 2, 1 = 0, and
hood estimation of hyperparameters based on a generalized- 57 > 0. With this conveniently simple prior, it can be

1
EM update is given, for cases when hyperparameters are not potentially difficult to distinguish an “active” coefficien

known for a specific application. from a non-active one, since the mastpriori probable
active-coefficient values are those near zero.
1. SIGNAL MODEL « Nonzero-mean binary prioHere,Q = 2, u; # 0, and

) ) ) ) ) o2 > 0. Compared to the zero-mean binary prior, active
This section defines our signal model and priors. We choose  qefficients have a known nonzero mean Value

to present a general model, withdrawn from a@Q-ary mixture . Zero-mean ternary priarHere, Q = 3, u1 = —ps
of complex-valued Gaussians with arbitrary means. While 02 = 62 > 0, and \; = \,. Appropriate for the real-
this generality affords application to many practical sign valued case with no prior knowledge of sign, this model
without changing the proposed fast algorithm, it requires a facjjitates the discrimination between active and non-
complexity of notation relative to the simplest specialesasf active coefficients whep, ando? are suitably chosen.
the rT]l_odeI. TheI sec:ut)rr: concludles V\gthI a description of four | Q-ary circular prior: Here, Q >13 and, for allq €
specific examples of the general model. _ jerd=t o _ o

We consider problems where unknown coefficients CV L., Q) we sel, = |u|e’ ™o, 0y = o7 > 0, and

P A¢ = A1. This generalization of the zero-mean ternary

. ST
are observed through the noisy superposigoa C prior is suitable for complex-valued coefficients with

y = Az +w ) priori unknown phase.

MxN . . L
for known A € C* % and for noisew that is white circular |/ \ opeL UNCERTAINTY & ESTIMATING COEFFICIENTS
Gaussian with variance?, i.e., w ~ CN(0,0%I,;), where . ) ) )
the columns ofA are taken to be unit-norm. Our focus is 'N€ observation model (9) is a Gaussian mixture and
on the underdetermined case (i.87,> M) with a suitably presents two principal problems: model selection and pa-
sparse parameter vectar (i.e., ||z|ly < N). Although we rameter estimation. The first task is the selection of one or

|4 _ : N ’
assume complex-valued quantities, our methods are seitafiore highly probable models from E@ possible "models
for real-valued problems with minor modifications. indexed bys. We refer tos as the “model vector.” In the

To model sparsity, we assume thét,, 71;1;01, the compo- Bayesian framework, we _also compute.posterior proba@l,iti
nents ofz, are i.i.d. random variables drawn from@ary P(s|y)- The second task is the estimation of the coefficients,
Gaussian mixture. For each,, a mixture parametes, ¢ - In this section, we propose a low-complexity method to
{0,...,Q — 1} is used to index the component distributionSimultaneously accomplish both of these tasks.
In particular, whers,, = ¢, then the coefficient,, is modeled o . L )

An application of this model arises in electron paramagneigomance

. . . . 9.
as a circular Gaussian with meap) and Var'ancmq- (EPR) imaging, where an exogenous spin deposit is consttutten a

5 paramagnetic material [37]. For the EPR applicatiaifn,models variability
xn’{sn =q} ~ CN(uq, ay)- (10) in the number of spins present in a polymer-encapsulated ri@rdeposit.
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A. Model selection Similarly, the conditional covarianc€ov{x|y}, whose trace
We index the set of all model vectors By2 {0, 1 0- characterizes the MMSE estimation error, can be closely

1}V, The maximuma posteriori(MAP) model-vector estimate approximated as

is given by 3, £ argmax,.gp(s|y). We seek to determine Cov{z|y} ~ Z p(sly) [Cov{z|y, s} + (Zammse

not only the MAP model-vectos, but also the setS, of p=ry

all model vectors with non-negligible posterior probétjli _E . _E HY (99
along with their posterior§p(s|y)}scs.. By analogy to data {zly, S})(ﬂ;}a\mmse_l {zly,s})"] (22)
communications, finding, is like “hard decoding,” whereas Cov{zly, s} = R(s) — R(s)A" ®(s) " AR(s). (23)
finding {p(s[y)}scs, is like “soft decoding.” In fact, the (approximate) estimation error can be writteoren

Using Bayes rule, the model-vector posterior becomes girectly as

p(yls)p(s) ~
p(sly) = . 14 tr (Cov{zly}) ~ ) p(sly)|tr (Cov{zly,s})
B = 5 s Pl () - 2 |
Given S,, the posteriors can be approximated by + ] Zammse — E{x|y, s}m. (24)
p(y|s)p(s) (15) The primary challenge in the computation of MMSE esti-

p(sly) =~ 5 for s € S,.

mates is to obtaip(s|y) and®(s)~! for eachs € S,. In the
] sequel, we propose a fast algorithm to search for theSset
Since, for anys, the values op(s|y) andp(y|s)p(s) are equal of dominant models that, in addition, generates the valdies o

up to a scaling, the search f6t. reduces to the search for theg (|, s} and Cov{z|y, s} for each explored moded.
vectorss € S which yield the dominant values @f{y/|s)p(s).

For convenience, we use the monotonicity of the logarithm to h h ) |
define themodel selection metrie(s, y): C. The Search for Dominant Models
We now turn our attention to the search for the dominant

ses, P(yls)p(s')

v(s,y) = Inp(y|s)p(s) (16) modelsS,, i.e., those that yield significant posterigrés|y).
= Inp(y|s) + Inp(s) (17) Because the denominator of (14) is impractical to compute
(e H 1y, and the denominator of (15) cannot be computed befre
= —(y—Au(s) 2(s)" (v N’?“(s)) is known, we search foS, by looking for s € S for
— which p(y|s)p(s) = p(s,y) is significant according to oua
— Indet(®(s)) — MInn + Z% In A, . (18) priori assumptions. Due to the relationshifs, y) = ¢¥(5:¥),

significant values ofp(s,y) correspond to relatively large

The assumption of circular complex Gaussian noise was usedues ofv (s, y).

for (18); for real-valued Gaussian noise, the first threenter  To understand what constitutes a “relatively large” value

in (18) would simply be halved anih 7 replaced byln27.  of v(s,y), we derive thea priori distribution of the random
For Q = 2, detection ofs € {0, 1}" coincides with variable variablev(s,y) in Appendix A. There we find that

selection. WithQ > 2, there exist(Q — 1)% possible model ) )

vectorss that yield the same selection of a specified subset oE{¥(s,4)} = 2M + N(1 = M) Ao (In [(% + 1)32])" (25)

K nonzero coefficients. for the case thab; = of and \, = A, for all ¢ # 0, where

the expectation is taken over bothandy. Thus, for a given
B. MMSE Coefficient Estimation pair {s’,y}, we can compare(s’, y) to the mearE{v(s,y)}

o _ _ L and standard deviatiofy var{v (s, y)} in order to get a rough
For applications in which the identification of the mosi,gication of whethers’, y} has “significant” probability.

probable model vector is the primary objective, the sparsegecause brute force evaluation of g model vectors is
coefficientse can be regarded as nuisance parameters. In othghactical for typical values ol, we treat the problem as a
applications, however, estimation afis the primary goal.  nop-exhaustive tree search. The modgls [|s|jo = p} form
The MMSE estimate of from y is the nodes on the!” level of the tree, wherg € {0,..., N},
so thats = 0 forms the root. We now describe a very general
Zmmse = B{zly} = Zp(3|y) Etzly, s} (19 form of tree search. Say that, after thé” stage of tree-ysgarch,
s€S the search algorithm knows the s&t™ of models currently
where from (12) we can obtain (via, e.g., [38, p. 155]) under consideration, as well as the metrni¢s, y) for all s €
S At the (m+1)" stage, the tree-search i) chooses the
E{zly, s} = p(s) + R(s)A"®(s)" (y — Ap(s)). (20) subsets{™ c &™) of models that will be extended, ii) stores
all single-coefficient modifications of the vectors #™ as
the “extended” seﬁ}gm), iiiy computes metrics for all models
in S‘)Em), and, based on these metrics, iv) prunes the cumulative
Gammse 2 plsly) E{zly, s}. 1) set{S{™, S<m>_} to form S(m+1), A stopping criterion decides
ses, when to terminate the search; if stopped at th& stage,

Summing over the dominant modefs yields the approximate
MMSE estimate
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the search would return the “significant” models as the send ﬁﬁffe_q have been computed and stored, then, since (28)-

S, = 8™ We assume that the search is initialized at th@9) imply that
root node, so thas(®) = 0 with corresponding metric

cn = |®(sPe)! —ﬂfLL?e’qcfﬁecfﬁf a, (32)
(0 = L 2_Mlno?2—Mlnm+ Nln )y, (26
©0.) = ~Zlvl o @9 - B A, &S

which follows from (18) and the fact tha®(0) = o21,,. No1 . .
. . . cn}n—p Can be computed usin@(N M) operations.

The detal[s of .the. extension p.rocedure,. pruning prpceduie,Having computed  {c,, 5;01’ the parameters

and stopping criterion are algorithm specific (e.g., ddtt; ¢ =0:Q—1 b ted via (30) with lexit

breadth-first, best-first). In the sequel, we will refer tasth {Bn.q n=o:N—1 can be computed via (30) with a complexity

general approach of non-exhaustive tree-search guideteby ¢

fO(MN+QN). If we recursively update(s) = y—Apu(s)
Bayesian metrie/(s, y) asBayesian matching pursuiBMP). with O(M@Q) multiplies using

Our experiments with various types of tree search have led z(s) = y— Ap(sP"®) —appepig gore, (34)
us to recommend the specific search approach detailed in T/—’
Section IV-E. We note that existing MCMC methods [32], = z(s"°)

for the over-determined case/ > N, can be interpreted as

randomized free searches. then {A,, ,(s)}2=72~! can be computed via (31) with a

complexity of O(MN + QN). Actually, if 07 = 07 Vg # 0

(as for all the examples given in Section lll), théh ,, =

D. Fast Bayesian Matching Pursuit Bn1 Yq¢' # 0, which leads to a cAompIexity aD(MN+QM).
Common to all BMP variants (and to MCMC methods}h G%n%f;rthef’liwi defineC = [CO""’CN;;; anc:j_qouula

is the need to evaluate the metri¢s(s’,y)} for all one- ac = &(s) A, then we can compute theconditiona

parameter modifications’ of some previously considered™Mea" and covariance via

model vectors. Here we present a fast means of doing so, E{z|y,s} = u(s) + R(s)C"z(s) (35)

which we callfast Bayesian matching pursui#BMP). Covi{zly, s} = (IN _ R(S)CHA>R<S), (36)
For the case thalts|,, = ¢ and[s'],, = ¢/, wheres and s’

are otherwise identical, we now describe an efficient meth&ging (20), (23), and the fact thét(s) is Hermitian. Because

to computeA,, (s, y) 2 v(s',y) — v(s,y). For brevity, we R(s)C" has only|s|lo nonzero rows andd R(s) has only

use the abbreviations, , £ 11, — 11, and o2, Y 02 — o2 Isllo nonzero columns, (35) and (36) can be computed using

below. Starting with the property ’ only O(M|s|lo) andO(M||s||3) multiplies, respectively.
®(s') = ®(s) + oo ,anal, (27) E. Repeated Greedy Search
the matrix inversion lemma implies In Section IV-C, we proposed a general method to search for
the dominant model§, based on tree searches that start with
®(s') = d(s)7 !~ ﬂnﬁqzcncf (28) the root hypothesis’ = 0 and modifies one model component
¢, 2 ®(s) a, (29) atatime, using the model selection metr{@’, y) to guide the
A o o g -1 search. Then, in Section IV-D, we proposed an efficient metri
b = 0gq(L+ oy ganen) . (30)  gvaluation method that consumeX (M + Q)N) multiplica-
In Appendix B it is shown that (27)-(30) imply tions to explore al{@Q — 1) N single-coefficient modifications
at each tree node visited by the search, and an additional
A, (s, y) complexity of O(M||s||o) andO(M ||s||3) at each node for
B et (y — Ap(8)) + g g/ q|2 which the condi_tional mean and covariance,.respectiveel, a
Sl 202 (B o /02 ) 02 40 computed. In this sectlon', we propose a particular treechea
tar.al™/ 1.4 + AT a9 that, based on our experience, offers a good tradeoff betwee
= { +In(Ag/Ag) (31) performance and complexity.
. H Our repeated greedy searqiRGS) procedure starts at the
2Re {“q”qcn (y N A“(s))} root nodes’ = 0 and performs a greedy inflation search (i.e.,
— |ng gl erl an + (A /2g) o5 4=0. activating one model component at a time) until a total of

P model components have been activated. By “greedy,” we
mean that the model component activated at each stage is the
one leading to the largest metni¢s’, y); de-activation is not
allowed. We recommend choosirg slightly larger than the
expected number of nonzero coefficieRt§|s||o}, €.9., so that
%T(HSHO > P) is sufficiently smalf Note that the procedure

Basically, A, ,(s,y) quantifies the change to(s,y) that
results from changing the!” index in s from ¢ to ¢'.

Notice that the parameterse, }—!, which are essential
for the metric exploration step (31), requit® N M?) opera-
tions to compute if (29)-(30) were used with standard matr
multiplication. As described next, the structured®fs)~! can
be exploited to make this complexitP(NM). 3Recall that||s||o follows the Binomia[N,1— )\¢) distribution. When

Suppose thas is itself a single-index modification of’™®, N(1—Xo) > 5, it is reasonable to use the Gaussian approximation
for which thenP"®-th index ofsP"® was changed fromP™ to g lIsllo ~ A/ (N(1 = X0), NAo(1 — Xo)), in which casePr(|s]lo > P) =

. . . _ 1 P—N(1—Xp)
in order to creats. If the corresponding quantitiggPe}N- 1 3 erfc (4\/m>
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described so far is reminiscent of orthogonal matchinguitirs | v = — 2 [|y[|2 — M In(o?7) + N In Ao;
(OMP) [5] but different in that the Bayesian metri¢s,y) |forn=0:N—-1
\ . . . o oot 1
is used to guide the activation of new coefficients. If atleas . <2 o H oot 1.

. . ﬁn :Ul(l+o'1ancn ) '
one of theP evaluated metrics surpasses some predetermingdsor ¢ — 1. — 1, i
thresholdvnesn, the RGS algorithm stops. If not, a second vioot = 1/r°°t+ln% +ﬁ;§>0‘\c;$°‘H y+ 5
greedy inflation search is started (from the root node) and end ! !
instructed to ignore all previously explored nodes. If atske fonrdd: L Do
one of the P evaluated metrics from this second search ,=j; '
surpasses the threshalgesn, the RGS algorithm stops. If not, | a=[];

a new greedy inflation search is started. The RGS algorithm 5(®0) =0
z=1Y

= —5Qn;

2 ‘l‘q‘2 AL
- ? +In bve

continues in this manner untikyesp is surpassed, or unt'il form—0:N—1,
the number of greedy searches reaches an allowed maximum ¢, = &,
Dmax. Recall that the thresholdyesp can be chosen in accor- Bn = B

dance with the prior om(s, y), as discussed in Section IV-C. foryq =1 ;?30: L
n,q —

The RGS algorithm, using the FBMP recursions froml  enqg e
Section IV-D, is detailed in Table | for the simple case that end
02 = 0% and\, = \; for all ¢ # 0 (which holds true for all forp=1:P, B

a . . - (nx,qx) = (n, q) indexing the largest element vy, q}q:1’Q !
) L 14 n=0:N—1
the examples given in Section ”I)' which leads to an as-of-yet unexplored noytje.

Denoting the number of greedy searches performed by p)

= Vn,,qes

RGS (for a particular realizatioy) by D < Dnax, a total 3dp) = 3dp=1) o5, -
of DPN(Q — 1) models are examined with corresponding n— [n,n*]TT;
metricsyv(s’, y). From the table, it is straightforward to verify 919,975

that the number of multiplications required to compute al fzorjlz:_oa}bvliql

metrics andP D conditional means i€)(DPNM). Comput- Cn — cn — B, cn, i an;

. . . ~ (d, —1: . — 52 2 H —1-

ing the PD conditional covariance$S:'"” 1= requires o qz"ll(:lgfllan en)”

an additionalO(DP3M) multiplies. vmg = V@D 410 By 4 8,
: =

2 2

H Hq [pgl A1 .

c, z+ 172| - +1n—)\0,
1 1

end
; ; end
F. Exact Odd§ and Approximate F_’osterlors R S [U%c{r{] . +u[q}k]:
The Bayesian framework provides a report on the con- i, e » K
fidence of estimates for both the model vectorand the L k=1 =] 57["]k (Bt
coefficientse. In particular, the model selection metri¢s, y) end B "lc[n]ka[nh]‘s[n]j;

=)

yields the exact posterior odds in (3). From (14), we ca i @y s then break:
approximate the posterior probability of modelusing the |end max{y S }p=1:p > resh '
renormalized estimate

exp{v(s,y)} exp{v(s,y)}

wes V(s y)} T Yacs, exp{v(s,y)}]
(37)

TABLE |
REPEATED GREEDY SEARCH VIA FAST BAYESIAN MATCHING PURSUIT

p(sly) = 5

where the approximation in (37) incorporates only the medel ) ) - .
S, C & that account for the dominant valueseaf{v(s, y)}. one might opt for maximum likelihood (ML) estimates

Likewise, the resultingy(x|y): O = argmax p(y|0). (40)
7]
H = b ,8), 38 . :
p(@y) S; P(sly)p(@ly. s) (38) For Q = 2, we now present an approximate ML estimator

. . ) . . based on the expectation maximization (EM) iteration [39],
provides an approximate posterior density that describes 140]_ Sinces € {0, 1}V, we get

uncertainty in resolvinge from the noisy observation. The

posterior density is a Gaussian mixture and reflects thei-mult x|s, py, 08 ~ CN(ms, o? D(s)), (42)
modal ambiguity inherently present in the sparse inference . . )
problem—an ambiguity especially evident when the signaﬁ\!here we explicitly cond|_t|0n on para_metqus andoj and
to-noise ratio (SNR) is low or there exists nonnegligibldS€P(s) to denote the diagonal matrix created framThe
correlation among the columns of. received sighay = Ax + w can then be characterized as

y|s, p1,07,0% ~ CN (18, 01 AD(s) A" +0°11).(42)
V. ESTIMATION OF HYPERPARAMETERS VIA

APPROXIMATE ML Rewriting the conditional pdf using the ratip 2 Z—i and the
. 1 .
When domain knowledge does not precisely specify thgatrix A, whose columns are selected fras according to
hyperparameters, the nonzero entries of, we get

0 = {2 {3, o {62325}, (39) yls, 1,0, a ~ CN (11 As, 03 (A, AL + alyy)). (43)
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Finally, recall that the log prior fos has the form we reason that
N-1 H M —1 H
det |[AsAS +aly| = o det ja " As Ay + Iy | (55)
Inp(s|A) = Y Inp(sn|A) (44) [ ] " [ N ]
=0 o™ det [a ASAs + IKS] (56)

N-1 ~ oMK det [AfAS] (57)

n=0

where in (57) we assume that< 1. With this assumption,

where A 2 )\ = Pr{s, = 0}. We estimate the parameters 9 Indet [A AP 4 ozIM] M — Ks.
0 = [\ p1,a,0?] via the EM algorithm, by treatings as O o a

the so-called “missing data.” In particular, at each M-st@p We can then use the matrix inversion lemma with the small-

(58)

apply a coordinate ascent scheme, i.e., assumption to get
él(fﬂ) = argmax Zp(s|y, 9(i)) (AsAL +aly)™!
Ok seS 1 H
. . = —[Iy — Ag(adg, + AZA)1 AL 59
« lnp(y,s|9k, {95:1+1)}m<k7{97(:3}m>k)~ (46) ({4[ M s(alk, s As) s )] (59)
R - H —1 4H
Below, we use shorthand notatiép for the most recent update ~ [IM —A (A A) 1As L (60)

of a given parameter, anll, = ||s||o. f . , . T
. o . . rom which zeroing the partial derivative yields
In practice, the™¥ term summation in (46) is approximated g P y

by a sum over the small set of dominant modsls For the U+ — 1y oy 1

== p(sly, 0 ") =
maximization in (46), we will use the fact that p(y, s|0) = : Zsesj (o , (M=Ka)
Inp(yls, p, 0%, @) + np(s|A). <Ny — i Asllz,, _a,aza.-1az- (61

Maximization with respect to proceeds according 10 From the definition ofy, (61) gives the required maximization
<l () over o2 with other parameters fixed.
A = arema s|ly,0 ") Inp(s|N). 47 p
g,\ * Zp( ly ) Inp(sid) (“7) Finally, maximization w.rt.c? is again similar to the

sE€S procedure foru;. Using the fact thatin det [a%(AsAf +

Since aIy)] = MIno? + C, where C' does not depend on?,
N-1 i i At i i
) 1—2s, the corresponding partial-derivative technique yields
—Inp(s|\) = Z — (48) , ,
172\ R (1 —-2X\)s, —5(i+1) 1 ~ (4) . 9
;(S N - K, g1 = M Zp(3|y,0 )Hy_UlASH(ASAf_,_@IM)—p
= 51 + o (49) s€S, (62)
zeroing the partial derivative of (47) w.rk yields For computational simplicity, we are motivated to replace
o 1 NO) (50), (53), (61) and (62) with simpler surrogates. Define
+1) . ..
A =1 — N Z p(sly,0 ") Ks. (50) Tammse ASTammse Festricted to the nonzero coefficients, and let
s€S, mean andvar denote sample mean and variance. The proposed
For the M-step update qi;, (46) yields surrogates, requirind (M) operations, are
Y = argmax 3 p(sly, 8" np(yls. pr. 07, a).(51) AGHD = 1 — (| Zammsello/N) (63)
s se8, [ngﬂ) = mean(iammse) (64)
where, from (43), —5(i+1) R
( ) 02 = Var(y — Awammse) (65)
Inp(yls, 1,01, a) = —Indet [U%(ASAE + aIM)] (52) —(i+1)

B o} = var(Zammse)- (66)
_‘712||y_NlASH%ASAf+a1M)71- . . .
We choose to terminate the iterations as soon as all paresnete

change by less than 5% of their values from the previous
iteration, or when a maximum number of updaté,.«, is

ZSES* p(3|y, é(l))sHAH(ASASH + aI]W)_ly reached.

~ (1) :
Secs, P(sly.0 )sHAT(A,AL + o)1 As VI. SIMULATION

53
S o (53) Numerical experiments were conducted to investigate the
The update forv is similar in principle, though an approx-performance of FBMP with approximate maximum likelihood
imation is used to simplify the expressions. Recognizirg thestimation of hyperparameters from the data.
Indet [0} (As AL + aly)] = Indet [A;AL + oIy + C, For the first experiment, we chose a “compressibtethat
whereC' does not depend on, and noticing that mimics the wavelet coefficients of a natural signal; =
%det [ASASH +aly] (—1)* exp(—pk) for k = 0... N — 1 with p € (0,1). With
dot TA AT + ol ) N =512 and M = 128, we drew A from i.i.d. zero-mean
ot [As Ay +aly] (54) Gaussian entries which were subsequently scaled to make eac

Zeroing the partial derivative of the analytic right side(b1)
w.r.t. u1, we find that

A =

2 Indet [A,A] +aly] =
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N=512,M =128, SNR=15dB,D__ =5,E__ =20, T = 2000 N=512,M =128, SNR=15dB,D__ =5,E__ =20, T =2000
max max " max max
-8 . . 10

——FBMP . (w/ EM update)

-10 —+ FBMP__(w/ EM update) | |

map

—v— SparseBayes

~12; ——OMP i . - i

Stomp 10° | \\’\N\Q__ E

——GPSR X —g—

-14p . BCS 1

——VB-BCS
-16F 4

E10

NMSE [dB]

Runtime [s]

—e—FBMP (w/ EM update)

——FBMP (w/o EM update)
107 L\\M\,_A —v—SparseBayes |

B ——OMP
StOMP
——GPSR

) BCS

——VB-BCS

_28.1 0‘.2 013 0.‘4 O})S 0.‘6 0‘,7 0.‘8 0.9 10_8.1 0‘.2 0.‘3 0‘.4 0/‘)5 0.‘6 017 0.‘8 0.9
Fig. 1. Normalized mean squared error verpus Fig. 2. Runtime versugp.
N =512, M =128, SNR = 15 dB, Dmax =5, Emax =20, T =2000
column unit-norm. The noise was also drawn i.i.d. zero-n 60 ‘ ‘ ‘
. . . —o— FBMP, I EM updat
Gaussian using g{dependent) variance that gal&dB SNR _._FBMp:::%SVEM e
The reported results represent an averaggdof independer 50 —=SparseBayes 8

——OMP
StOMP

——GPSR

BCS

realizations. We compared FBMP to six publicly availé
sparse estimation algorithms: OMP [41], StOMP [42], GF
Basic [43], SparseBayes [29], BCS [31], and a variatic
Bayes implementation of BCS [44]. The algorithmic para
ters were chosen in accordance with suggestions provid
the authors and, when applicable, adjusted to yield imut
performance. For SparseBayes, the true inverse noisenza
was provided, and it was not re-estimated during executs
this led to degraded performance. Similarly, OMP and |
were provided the true noise variance. StOMP was t ===
using both the “False Alarm Control” and “False Discow 81 02 03 04 05 06 07 08 09
Control” thresholding strategies; since the latter appades:

reliable for high values op, we present results only for the _ _

former. The¢;-penalty in the GPSR algorithm was chosen dd9: 3 Solution sparsity versys

T= 0.1HAHy||OO, and the MSE kept for comparison purposes

was the smaller of the MSEs of the biased and debiased ) )

estimates. The FBMP hyperparameters were initialized @@W from a Laplace density, and is therefore well matched
A = 0.01, gy = 0, 0 = 0.05, 02 = 2, and the surrogate to the MAP estimator (5) fop = 1, to which GPSR seeks a

EM updates were used to compute approximate ML estimagution.

N
o
T

”XrecovewI I0
w
S
I

n
=]
T
I

101 T

of the hyperparameters from the data. Figure 2 displays average runtimes for the same experi-
In Fig. 1 we plot normalized mean squared error (NMSEent. We note that the runtimes for FBMP are reported with
defined by and without generalized-EM iterations, whereas the ruegim

. . o for the other algorithms damot reflect the repeated execu-
1 ' — (]2 tions required to optimize their adjustable parametersMIFB
NMSE (dB) = 10log, (T Z ” ECIE ”2>’ (67)  (without generalized-EM iterations) is significantly fasthan
=t SparseBayes and VB-BCS but significantly slower than GPSR,
whereT is the number of random trials and superscfipde- OMP, and StOMP. In exchange for speed, FBMP returns not
notes the trial number. From the figure, it can be seen that #iely a MAP model estimata,, but also a list of other high-
proposed FBMP with EM hyperparameter estimation provid@sobability modelsS, along with their posterior probabilities;
NMSE improvements of up t2dB over OMP and GPSR, andthe other six approaches considered return only a single
up to 6-8 dB over the other algorithms. The improvements af@odel estimate. Thus, FBMP is able to give a more complete
due, in part, to model averaging for computationagf,mse  iNterpretation of the data in the face of ambiguity arisirgi
and the incorporation of noise power when computing tteerrelation inA or from measurement noise.
conditional MMSE estimate (20). The good performance of Fig. 3 shows average sparsity of solutions. We observe that,
GPSR can be exhibited to the choice of signal; the sequerioe this “compressible” signal and Gaussian regressorirjatr
x, while mismatched to the Gaussian mixture prior, is a tylpicthe coefficient estimates returned by FBMP are among the
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N=26,M=7,SNR=10dB, A, =0.04, g‘i =1,1,=0,D, =20 Algorithm ‘ MSE [dB] D2MMSE [dB]
10° ‘ FBMP —19.7 —24.1
! LSA —8.8 -9.1
107 | 3 TABLE I

PERFORMANCE FORBERNOULLI/1ID-GAUSSIAN SIGNAL WITH N = 24,
M =8,Q=2,A =0.04, u1 = 0,07 =1, AND SNR= 15 dB,
AVERAGED OVER 204 TRIALS. SEE TEXT FOR DEFINITION OFD2MMSE.

2|

107

p(sly)

(@) Original image (b) FBMP recovery (¢) GPSR recovery

107
Top
Unexplored
Mixture
Vectors

Top
| Explored 0
i Mixture
\ Vectors | 60

80

I
10 - — .
Rank ordered mixture vector indices 10

120

20 40 60 80 100 120 20 40 60 80 100 120 20 40 60 80 100 120

Fig. 4. Rank ordered posterior probabilities, on a logamithscale, of the

modelss visited by the search heuristic (right of dashed vertiost)iand the Fig. 5. Multiscale CS recovery. a) OriginaR8 x 128 image; b) FBMP

top 500 models not visited (left of dashed vertical line). recovery: NMSE= —16.80 dB, 8.85% of coefficients active38 minutes
runtime; ¢) GPSR recovery: NMSE —13.66 dB, 24.02% of coefficients
active, 2.7 minutes runtime.

sparsest.

In a second experiment, to illustrate the behavior of the overies were obtained using GPSR I Th its of
greedy tree-search, we adopt a figure format used by GeoEﬁg 9 as wetl. 1he results o

and McCulloch [45] to report MCMC results. To allow exhaus- IS exper.|ment are §hown in Fig. 5, with NMSES and runtimes
tive evaluation of all candidate models, we 96t= 26 and reported in the caption. The reported runtimes correspond t

M = 7. Signals were constructed using the Gaussian mixthee time taken after the adjustable algorithmic parameéegs,
model of Section Il WithQ = 2, Ay = 0.04, jy = 0, 02 = 1 7 for GPSR) were optimized. Relative to GPSR, the estimate
— 4 - Y- ’ ] 1 —

and with noise power adjusted to yielthdB SNR. For returned by FBMP was more sparse and had lower NMSE,
illustration, FBMP was provided the true hyperparameters abUt t_OOk Ionger to generate. We note tha_t these results are
used without generalized EM. Shown in Fig. VI is a rankeonsistent with those from the other experiments.
ordered list of the posterior probabilitiegs|y). To the right
of the dashed line are the probabilities for the modelss VII. DISCUSSION
selected by the search, while to the left of the dashed liae ar .
the probabilities for models not visited (truncated to stomly % Fast Algorithms: Related Works
the top500, out of 226 —59, models). While the figure displays A Gaussian mixture model similar to that in Section IlI
only one realization, it is typical of our numerical expeige. was likewise adopted by Larsson and &el36], who, for
The figure shows that, i) there exist multiple models withhhigQQ = 2, also constructed the MMSE estimate in the manner
probability, highlighting the inadequacy of reporting dmet of (21) but with anS, that contains exactly one model
MAP model, and, ii) the low-complexity search heuristic izector s for each Hamming weight to N. They proposed
effective in visiting the high probability models. to find theses via greedy deflation, i.e., starting with an all-
In a third experiment, an exhaustive evaluation similahte t active model configuration and recursively deactivating on
previous one was repeatef4 times (see Table Il for details), component at a time. Thus, the = 1 version of the BMP
and each time both FBMP and the Larssoné8ehlgorithm heuristic from Section IV-C recalls the heuristic of [36]jtb
(LSA) [36] were used to compute estimatesmfThe resulting in reverse. Note, however, that thest D = 1 BMP presented
average MSE performance is reported in Table Il, along with Section IV-D has a complexity of onlyD(NMP), in
the average “distance to MMSE” (D2MMSHE)}: — Zmmse||3, comparison toO(N3M?) for the technique in [36]. Given
wherez denotes the estimate returned by the (FBMP or LSAle typically large values ofV encountered in practice, the
algorithm andzmmse denotes the exact MMSE estimate. It cawomplexity of FBMP can be several orders of magnitude lower
be seen that FBMP clearly outperforms LSA both in terms ¢ifian that of [36]. Complexity aside, Table Il suggests that
MSE and D2MMSE. the greedy deflation approach of [36] is much less effective
In a fourth experiment, we carried out a “multiscale-CSat finding the models vectors with high posterior probayilit
recovery of the popular “Mondrian” test image. Under thkeading to estimates that, relative to FBMP, have higher MSE
multiscale-CS framework, random Gaussian ensemble mead are further from the exact MMSE estimate.
surements were acquired from tBdinest-scale Haar wavelet For Q = 2, a Gaussian mixture model has been widely
coefficients of thel 28 x 128 image. In all, 4877 measurements adopted for the Bayesian variable selection problem. (See,
were acquired from th&6384 unknowns, with different scalese.g., [1] for a survey and references.) The published ap-
being undersampled by different factors. For comparisoproaches vary in prior specification, posterior calculatio
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and MCMC method (such as Gibbs sampler or Metropolispecific insight is available. Further, by use of the gelimezel
Hastings). George and McCulloch [45] use a conjugate nornt&M algorithm, we have provided a means for trade-off of
prior on x|s,0? and a Gibbs sampler that requir€é¥ N2) complexity versus prior knowledge, i.e., ML estimates of
operations to compute(s’|y) from p(s|y), where s’ and hyperparameters may be iteratively estimated from the. data
s differ in only one element. Smith and Kohn [32] use thén contrast, the aim in statistical literature is to be agicdsy
point mass null (i.e.uo = o2 = 0) and the simplifying adopting noninformative priors or hyperpriors.

Zellnery prior to achieve a fast update requirir@(K?2)

operations, fork, £ ||s||o. Approximately M N iterations of VIIl. CONCLUSION

the Gibbs sampler are suggested, yielding a total complexit

In this paper, we proposed an algorithm for joint model
of O(MN2K?2). pap prop g )

selection and sparse coefficient estimation, which we eall f
) ] Bayesian matching pursuit (FBMP). We adopted a Bayesian
B. Bayesian Model Averaging approach in which a set of likely model configurations is re-
The Bayesian framework provides a report on the confported, along with exact ratios of model posterior probtied.
dence of estimates for both the modeknd the coefficients These relative probabilities serve to reveal potential igoity
x. In contrast, confidence labels are absent in most of themong multiple candidate solutions that are ambiguous due
compressive sampling literature. Exceptions are found&j},[ to observation noise or correlation among columns in the
[31], which use an (approximate) MAP estimate for vari- regressor matrix. The explicit management of uncertaisty i
able selection and report the Gaussian error covariance ésisential for applications in which the estimated modetorec
the linear problem conditioned o&, being the true model. 3, and estimated coefficients;, are not final products, but
As noted by Tibshirani [16], such a measure of posteri@re instead statistics for use in making inference from the
uncertainty has dubious value, because “a difficulty wits thnoisy observationsy. The proposed search for high proba-
formula is that it gives an estimated varianc&dbr predictors bility models and computation of their posteriors is fast in
with” [s,],, = 0. In fact, in our simulations, we observethat the computational complexity i©®(MNK), with M
that s, is often not equal to the true. Indeed, in order for observations)NV coefficients, and< nonzero coefficients. For
5, to equal trues with high probability, for fixed sparsity a modest increase in complexity, the proposed generalized-
Isllo/N, the SNR grows unbounded wifki [46]. In this light, EM refinement combines with FBMP to provide an empirical
we expect certain advantages for algorithms that consider Bayes method for estimating hyperparameters from the data.
active signal coefficients as implicitly uncertain. Existing approaches using tree searches or MCMC methods
As a caveat, we emphasize that our greedy FBMP seareluire at least(M N2K?) computation.
returns onlyS,, an estimate of the dominant subsgt along In forthcoming work we will report on a large-scale version
with the values of/(s,y) for s € S,.. Thus, while the values of FBMP that reduces the memory required in recursively
v(s,y) returned by FBMP can be used to compute exact ratiosmputing posterior probabilities, and we will give a bound
between the posterior probabilities of the model vectotS,in on the probability that a subset of coefficients is absenhfro
the true posteriors of these configurations (as approxinatte MAP model estimate.
by (37) with S, in place ofS,) will only be accurate when
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EE(])Vposed greedy FBMP search rehably discovétswhen [1] M. Clyde and E. I. George, “Model uncertaintytatist. Sci.vol. 19,
A= < —1/log(A1). no. 1, pp. 81 — 94, 2004.

[2] C. \olinsky, “Bayesian model averaging homepage,”
- http://www.research.att.com/"volinsky/bma.html .
C. Empmcal Bayes [3] J Hogbom, “Apertu_re synthesis with a non-regular distributioh
Empirical Bayes (EB) approaches have been used in related interferometer baselinesAstrophys. J. Suppl. Sevol. 15, pp. 417—

- - 426, 1974.
work to estimate hyperparameters from the data under signg| o J. Huber, “Projection pursuit,The Annals of Statisticsvol. 13,

models similar to the zero-mean binary prior given in Sec- ' pp. 435-475, 1985.

tion Ill. George and Foster [47] adopted maximum marginals] Y- C. Pati, R. Rezai;far, and P. S. K_rishr_\apras?]d., “®I_gmal matchilng

. . . . . 2 pursuit: Recursive function approximation with applicagao wavelet
likelihood as in (40) for eStlme[mg paramete{sl,al}_en decomposition,” inProc. 27th Ann. Asilomar Conf. Signals, Systems,
route to a MAP model selection using the Zellngiprior. and Computers1993. _ .

A forward greedy search for the EB, was considered. [6] D. Needell and J. A. Tropp, “CoSaMP: lterative signal aeery

o . : from incomplete and inaccurate sampledfarmon. Anal, 2008.
For A = I, Johnstone and Silverman [48] used maximum doi:10.1016/].acha. 2008.07.002.

marginal likelihood forA\; and established the asymptotic I'iSk[7] W. Dai and O. Milenkovic, “Subspace pursuit for compresssensing:
of adaptive thresholding rules. Larsson ance84B6] likewise Closing the gap between performance and complexity,” Mar.8200

. . preprint.
estimated hyperparameters from the data;Mbe> V, ad hoc [8] E. Canas, J. Romberg, and T. Tao, “Stable signal recovery from

estimates were computed from the full-model least-squares incomplete and inaccurate measuremer@sinmunications on Pure and
estimate using higher-order moments. Applied Mathematics_vol._ 59, no. 8, pp. 1207—1223, 2006. '
[9] C. L. Lawson, Contributions to the theory of linear least maximum
approximations PhD thesis, UCLA, 1961.
D. Informative Priors [10] H. Lee, D. Sullivan, and T. Huang, “Improvement of diserdtand-
. limited signal extrapolation by iterative subspace modiitcgt in IEEE
In our proposed approach, we have sought to INCOrpo- |ytemational Conference on Acoustics, Speech and SigradeBsing

rate physically meaningful prior knowledge when applicati pp. 1569 — 1572, 1987.



IEEE TRANSACTIONS ON SIGNAL PROCESSING

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[29]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

[34]

(35]
(36]

[37]

I. F. Gorodnitsky and B. D. Rao, “Sparse signal recamgton from
limited data using FOCUSS: a re-weighted minimum norm algorjth
IEEE Trans. Signal Processvol. 45, pp. 600 — 616, Mar. 1997.

R. Chartrand and W. Yin, “lteratively reweighted algbms for com-

pressive sensing,” iNEEE International Conference on Acoustics,

Speech and Signal Processing, ICASSP 2008 Vegas, NV), pp. 3869
— 3872, April 2008.

H. L. Taylor, S. C. Banks, and J. F. McCoy, “Deconvoluatiwith the
£1 norm,” Geophysicsvol. 44, pp. 39-52, 1979.

A. E. Hoerl and R. W. Kennard, “Ridge regression: Biasstimation
for nonorthogonal problems;Technometricsvol. 12, pp. 55-67, 1970.
S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decositpn
by basis pursuit,SIAM Journal on Scientific Computingol. 20, no. 1,
pp. 33-61, 1998.

R. Tibshirani, “Regression shrinkage and selectiam thie lasso,J. R.
Statist. Soc. Bvol. 58, no. 1, pp. 267 — 288, 1996.

C. Bouman and K. Sauer, “A generalized Gaussian image nmfodel
edge-preserving MAP estimationEEE Trans. Image Processcol. 2,
pp. 296-310, Mar. 1993.

A. H. Delaney and Y. Bresler, “A fast and accurate Fouagorithm
for iterative parallel-beam tomographyEEE Trans. Image Process.
vol. 5, pp. 740-753, May 1996.

M. Cetin and W. C. Karl, “Feature-enhanced syntheperéure radar
image formation based on nonquadratic regularizatidBEE Trans.
Image Processwvol. 10, pp. 623-631, Apr. 2001.

S. Levy and P. K. Fullagar, “Reconstruction of a sparpees train
from a portion of its spectrum and application to high-resoh
deconvolution,”Geophysicsvol. 46, no. 9, pp. 1235-1243, 1981.

B. D. Rao and K. Kreutz-Delgado, “An affine scaling methlmdyy for
best basis selection|EEE Trans. Signal Processingol. 47, pp. 187—
200, Jan. 1999.

E. Canes, J. Romberg, and T. Tao, “Robust uncertainty principlgacg
signal reconstruction from highly incomplete frequencyomifation,”
IEEE Trans. Information Theoryol. 52, pp. 489-509, Feb. 2006.

L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear totaliaton based
noise removal algorithmsPhysica O vol. 60, pp. 259 — 268, 1992.
D. L. Donoho, M. Elad, and V. N. Temlyakov, “Stable recovef sparse
overcomplete representations in the presence of nol&EE Trans.
Information Theoryvol. 52, pp. 6-18, Jan. 2006.

J. A. Tropp, “Just relax: Convex programming methods faniifying
sparse signal,JEEE Trans. Info. Theoryol. 51, pp. 1030-1051, Mar.
2006.

T. Tao, “Open question: deterministic UUP matrices,” yJW®O007.
http://terrytao.wordpress.com/2007/07/02/open-qaestieterministic-
uup-matrices/.

Y. T. Lo, “A mathematical theory of antenna arrays with damly
spaced elements|/EEE Trans. Antennas and Propagatjowol. 12
pp. 257-268, 1964.

G. J. Marseille, R. de Beer, M. Fuderer, A. F. MehlkopfidaD. van
Ormondt, “Nonuniform phase-encode distributions for MRarsdime
reduction,”J. Magn. Resonvol. 111, pp. 70-75, 1996.

M. E. Tipping, “Sparse Bayesian learning the
relevance  vector machine,” J. Machine Learning Res.
vol. 1, pp. 211-244, 2001. (software  available
http://www.miketipping.com/index.php?page=rvm ).

D. Wipf and B. Rao, “Sparse Bayesian learning for basieationn,”

and

11

[38] H. V. Poor, An Introduction to Signal Detection and Estimation
Springer, 2 ed., 1994.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likebod
from incomplete data via the EM algorithnd’ R. Statist. Soc.,Bol. 39,

no. 1, pp. 1-38, 1977.

R. Neal and G. Hinton, “A view of the EM algorithm that jifees
incremental, sparse, and other variants,” Lirarning in Graphical
Models(M. 1. Jordan, ed.), pp. 355-368, MIT Press, 1999.

J. Tropp and A. Gilbert, “Signal recovery from random -
ments via orthogonal matching pursuitlEEE Trans. Information
Theory vol. 53, pp. 4655-4666, Dec. 2007. (software available at
http://sparselab.stanford.edu/ ).

D. L. Donoho, Y. Tsaig, |. Drori, and J.-C. Starck, “Spar so-
lution of underdetermined linear equations by stagewisehogrt
onal matching pursuit,” Tech. Rep. 2006-02, Dept. of Statist
Stanford University, Stanford, CA, 2006. (software aualda at
http://sparselab.stanford.edu/

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright, “Gradlie
projection for sparse reconstruction: Application to coegsed sensing
and other inverse problemdEEE Journal of Selected Topics in Signal
Processing vol. 1, no. 4, pp. 586-597, 2007. (software available at
http://www.Ix.it.pt/"mtf/GPSR/ .
C. M. Bishop and M. E. Tipping, “Variational relevanceeot

tor machines,” in Proceedings of the 16th Conf. on Uncertainty
in Artificial Intelligence (C. Boutilier and M. Goldszmidt, eds.),
pp. 46-53, Morgan Kaufmann, 1999. (software available at
http://people.ee.duke.edu/"lihan/cs/ ).

E. I. George and R. E. McCulloch, “Approaches for Bagesvariable
selection,”Statistica Sinicavol. 7, pp. 339 — 373, 1997.

G. Reeves, “Sparse signal sampling using noisy lineajeptions,”
Master’s thesis, EECS Department, University of CaliforiBarkeley,
2008.

E. I. George and D. P. Foster, “Calibration and empir8ayes variable
selection,”Biometrika vol. 87, no. 4, pp. 731 — 747, 2000.

I. M. Johnstone and B. W. Silverman, “Needles and stralapstacks:
Empirical Bayes estimates of possibly sparse sequenges). Stat.
vol. 32, no. 4, pp. 1594 — 1649, 2004.

(39]
[40]

[41]

[42]

(43]

[44]

(45]

[46]

[47]

(48]

APPENDIXA
MEAN AND VARIANCE OF v(s,y)

In this appendix, we derive the mean and variance of
v(s,y). According to our priors, ifs is the model vector
from which y is generated, they = Az + w for x|s ~
CN(u(s),R(s)) andw ~ CN (0,021 ). This implies that
y— Ap(s)|s ~CN(0,®(s)), so that

(y—Ap(s) " ®(s)  (y — Au(s)) ~ X3, (68)

i.e., a chi-squared random variable willi degrees of free-
“om. Say thatA, denotes the matnx constructed from the

aactive columns ofA. Then, |fa =o? forall ¢ # 0 (as in all

the examples given in Secuon IIl) and #£ is orthonormal,

IEEE Trans. Signal Processvol. 52, pp. 2153 — 2164, Aug. 2004. Indet(®(s)) = In ((J% Jr02)HSHOJ2(1\47\|sHo)) (69)
S. Ji and L. Carin, “Bayesian compressive sensing and- pro
jection optimization,” in Proc. 24th Int. Conf. Machine Learn- = HSHOIH( +1)+M1na (70)
ing (ICML), pp. 377 — 384, 2007. (software available at
http://www.ece.duke.edu/"shji/BCS.html ). where ||s]lo ~ Binomial(N,1 — X\g). The orthonormal as-

M. Smith and R. Kohn, “Nonparametric regression using &gn

variable selection,J. Econometricsvol. 75, pp. 317 — 343, 1996.

C. Andrieu, A. Doucet, and C. P. Robert, “Computationd¥ances for
and from Bayesian analysis3tatist. Scj.vol. 19, no. 1, pp. 118 — 127,
2004.

P. J. Wolfe, S. J. Godsill, and W.-J. Ng, “Bayesian Viléaselection

and regularization for time-frequency surface estimatidn,R. Statist.

Soc. B vol. 66, pp. 575-589.

M. Elad and I. Yavneh, “A weighted average of sparse @spntations
is better than the sparsest one alone,” 2008. preprint.

E. Larsson and Y. Seh, “Linear regression with a sparse parameter

vector,” |IEEE Trans. Signal Processvol. 55, pp. 451 — 460, Feb. 2007.
S. Som, L. C. Potter, R. Ahmad, D. S. Vikram, and P. KuppusdEfjR
oximetry in three spatial dimensions using sparse spin digtan,”
Journal of Magnetic Resonanceol. 193, Aug. 2008.

sumption onA; is reasonable because the columnsiofvere
assumed unit-norm in Section Ill and, for the class of pnuisle
that guarantee good sparse estimasew, collection of ||s||o
columns from A will be approximately orthogonal. (Recall
the restricted isometry property [8].) Finally, if we assim
that A, = A, for all ¢ # 0 (as in all the examples given in
Section 1ll), then
N—-1

> I, = [sloln A + (N
n=0

—Isllo)InXg  (71)

NlnXo — | s]joIn 32 (72)
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Using the facts that the mean and variance of3a random

variable areM and 2M, respectively, and the mean an

variance off|s||o are N (1—X\g) and N (1—Xg) Ao, respectively,
we obtain (25).

APPENDIXB
DERIVATION OF (31)

In this appendix, we establish (31) using (27)-(30). Using

the fact that®(s)~'a,, = c,, we find

(y— An(s")"®(s) " (y — Ap(s))

(v~ Ap(s) = anpiyq)" (B(s) ™" = Bugeacy)
X (y —Ap(s) - an.uq/,q)

(v — An(s)"®(s)" (y — Ap(s))

— B (y — An(s))|”

—2Re {1y ,a,/ ®(s) " (y — Ap(s)) }

+2Re {4y ga; cnbBngrcy (y — Anls)) }

+ |Mq’,q‘2anH‘I'(S)_1@n - |/‘q’,q‘25n,q’(c£]an)2 (74)
(y— Ap(s)"@(s) 7! (y — Ap(s))

— Bugletl (v — Ap(s)) [’

= 2Re {pg qei (y = Ap(s)) (1 = Bugaren) }

+ |Mq’,q‘ZCnHan (1 - Bn,q’ar?cn)-

(73)

(75)

In the case thaﬁg,yq =0, we haveg, , =0, and so

(y — Ap(s)) " @(s) " (y — Ap(s"))
= (y— Au(s))" ®(s)" (y — Ap(s))
—2Re {pgr jen (v — Ap(s)) } + |pg gl an. (76)

In the case thav, , # 0, we havel — 3, yaflc,
B0y SO that

(y— Ap(s) " ®(s) " (y — Au(s)))

(y — Ap(s)"@(s) "' (y — Apl(s))
—%%@Ddﬂy—Auwﬂf

iy 'l
—2Re{c;/ (y — Au(s)) 7} + cfani"g’”] 77

(y— Au(s)) " ®(s) " (y — Ap(s))
, 2
- ﬂn,q’ g(y - A[L(S)) + 53/’(]
. :
‘/2(147q| [
]
(y— Au(s)) " ®(s) " (y — Ap(s))
— B B g |?

cf (y — Au(s)) + +
02 N} 94 q

(&

q
H

2
1+o0y .0

+ By an] (78)

|Nq’,q ‘2
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(79)

’
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Together, (76) and (79) yield (80).
d
(y— Ap(s)) " ®(s) " (y — An(s)

(y— Ap(s) " ®(s) " (y — Ap(s))
- Bn,q’ Cg (y - AIJ’(S)) + /-‘q’,q/a-g’,q
+ |Hq/7q|2/‘7§',q

(y — Ap(s) " ®(s) " (y — Apl(s))

2 2
0yq 70

(80)

= 2Re {g gen (y — Ap(s) } q =0
+ |1g el an
Equation (27) then implies that
Indet(®(s')) = Indet (®(s) + 0o ,anal)) (81)
=In [(1 + aglvqanH'@(s)*lan) det (@(s))}
= Indet(®(s)) — n(Bn,q' /07 ) (82)
Inp(s’) = Inp(s) +In(Ag/Aq), (83)

which, in conjunction with (18) and (80), yield (31).



