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Max-SINR ISI/ICI-Shaping Multicarrier
Communication Over the Doubly Dispersive Channel

Sibasish Das and Philip Schniter

Abstract—For communication over doubly dispersive channels,
we consider the design of multicarrier modulation (MCM) schemes
based on time—frequency shifts of prototype pulses. We consider
the case where the receiver knows the channel state and the trans-
mitter knows the channel statistics (e.g., delay spread and Doppler
spread) but not the channel state. Previous work has examined
MCM pulses designed for suppression of inter-symbol/inter-car-
rier interference (ISI/ICI) subject to orthogonal or biorthogonal
constraints. In doubly dispersive channels, however, complete sup-
pression of ISI/ICI is impossible, and the ISI/ICI pattern gener-
ated by these (bi)orthogonal schemes can be difficult to equalize,
especially when operating at high bandwidth efficiency. We pro-
pose a different approach to MCM pulse design, whereby a limited
expanse of ISI/ICI is tolerated in modulation/demodulation and
treated near-optimally by a downstream equalizer. Specifically, we
propose MCM pulse designs that maximize a signal-to-interfer-
ence-plus-noise ratio (SINR) which suppresses ISI/ICI outside a
target pattern. In addition, we propose two low-complexity turbo
equalizers, based on minimum mean-squared error and maximum
likelihood criteria, respectively, that leverage the structure of the
target ISI/ICI pattern. The resulting system exhibits an excellent
combination of low complexity, low bit-error rate, and high spec-
tral efficiency.

Index Terms—Equalization, doubly dispersive channel, inter-
carrier interference (ICI), inter-symbol interference (ISI), modu-
lation, multicarrier, multipath, pulse-shape, time-varying channel,
turbo-equalization, wireless communications.

I. INTRODUCTION

ULTICARRIER modulation (MCM) is a popular trans-
mission scheme in which the data stream is split into
several substreams and transmitted, in parallel, on different sub-
carriers. We consider MCM over time-varying multipath prop-
agation channels which spread the MCM signal simultaneously
in both the time and frequency domains. This spreading induces
both inter-symbol interference (ISI) and inter-carrier interfer-
ence (ICI) which complicate data demodulation.
Among the most popular MCM schemes for communication
over the doubly dispersive (DD) channel are those based on
time—frequency shifts of prototype pulses, e.g., [1]-[6]. In the
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so-called QAM-MCM schemes, quadrature amplitude modu-
lated (QAM) symbols {sy;} are linearly modulated on pulses
{ar,(t)}, where ay (t) is the kth time shift and [th frequency
shift of prototype pulse ag o(t). The received signal, noisy and
dispersed, is then applied to a bank of “matched filters” {by. ;(¢)}
constructed by time—frequency shifts of prototype pulse by o(t).
In orthogonal schemes, the pulses ag o(t) and bg o () are chosen
so that ka(t) = akJ(t) and <ak71(t),am7n(t)) = Op—mOi—n,
while in biorthogonal schemes they are chosen so that by, ;(t) #
ak,(t) and (ag (), bm.n(t)) = dk—mbi—n. Here, (-, ) denotes
the inner product.

With non-dispersive channels, these (bi)orthogonal (BO)
schemes guarantee zero ISI/ICI. For DD channels, however,
ISI/ICI is impossible to avoid unless the pulses are designed
with knowledge of the channel state. With such quickly
varying channels, it is infeasible for the transmitter to track the
channel’s state, though feasible for it to track the channel’s
statistics (e.g., delay and Doppler spreads). In this case, it is
possible to design MCM pulses which suppress ISI/ICI, e.g.,
by minimizing total ISI/ICI power. But there are two disadvan-
tages with this approach. First, significant ISI/ICI suppression
is possible only when the symbol rate is reduced to 50%—-80%
of the Nyquist rate [6]—a consequence of the Balian-Low
theorem from Gabor theory [7]—and such a low “modulation
efficiency” is generally undesirable. Second, the ISI/ICI that
results from these pulses is usually spread across a multitude of
subcarriers/symbols and, thus, is expensive to equalize.

In search of high modulation efficiency and simple yet
high-performance equalization/decoding, we take a different
approach to DD-channel QAM-MCM system design: rather
that trying to suppress all ISI/ICI, we try to suppress only
the ISI/ICI outside a target pattern. By careful selection of
the target pattern, the dominant ISI/ICI within can be treated
in a near-optimal manner by a simple detection algorithm.
To shape the ISI/ICI response according to the target pattern,
we design pulses which maximize a particular signal-to-in-
terference-plus-noise ratio (SINR), leveraging an assumed
knowledge of channel statistics (but not channel state). In
particular, our SINR is defined so that “interference” measures
out-of-target ISI/ICI power. Because we are interested in DD
(rather than nondispersive) channels, we do not need to enforce
the (bi)orthogonality constraint when designing our max-SINR
pulses. Consequently, we are free to signal at the Nyquist
rate. In summary, we propose a non-(bi)orthogonal (NBO)
QAM-MCM scheme based on ISI/ICI shaping rather than
ISVICI suppression. Though our approach could be extended to
offset-QAM transmission [5] and/or nonrectangular time—fre-
quency lattices [6], we do not do so here for reasons of space.
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Through two novel equalization/decoding algorithms, we
demonstrate that a well-designed ISI/ICI target pattern sup-
ports simple yet high-performance detection. Specifically, we
assume bit-level convolutional coding and interleaving, and
propose two novel soft-input soft-output (SISO) equalizers and
combine them with a standard SISO decoder in a turbo-style
configuration [8]. The first scheme, based on linear minimum
mean-squared error (MMSE) equalization, builds on the work
of Tiichler et al. [9]. The second scheme, based on maximum
likelihood (ML) equalization, builds on the probabilistic data
association (PDA) algorithm [10], [11]. The complexity and
coded bit-error rate (BER) were numerically evaluated to
demonstrate that the proposed QAM-MCM schemes compare
well relative to other known schemes.

We now discuss our work in relation to previously proposed
NBO-QAM-MCM schemes. Matheus and Kammeyer [12],
[13] proposed a scheme based on Gaussian prototype pulses
dilated to suppress ICI and/or ISI. In contrast, our pulses are
not Gaussian-constrained and tolerate ISI/ICI within a target
pattern. Hunziker and Dahlhaus [14] proposed a scheme using
a Gaussian modulation pulse that minimized an out-of-target
ISI/ICI metric, but they focused on time-dispersive, rather
than doubly dispersive, channels. In previous work [15], we
proposed a receiver for uncoded BPSK cyclic prefix (CP)
orthogonal frequency division multiplexing (OFDM) over DD
channels based on ISI-suppressing demodulation pulses and
soft iterative ICI cancellation. In the current work, we consider
Jjoint design of modulation and demodulation pulses, and con-
sequently treat both IST and ICI in pulse design. In addition,
we derive bit-level turbo-equalization algorithms based on the
maximum a posteriori (MAP) criterion and perform a detailed
numerical comparison with other schemes. Ma and Giannakis
[16] proposed a linear modulation scheme with time- and
frequency-domain guard intervals that excite the full diversity
of the DD channel. Diversity maximization, however, comes
at the cost of reduced spectral efficiency and high decoding
complexity, even when suboptimal detection algorithms (e.g.,
[17]) are employed. We compare this maximum-diversity linear
precoding (MDLP) scheme to various QAM-MCM schemes in
the sequel.

The paper is structured as follows. Section II describes the
system model, Section III derives max-SINR pulse designs,
and Section IV details the turbo equalization algorithms.
Section V investigates the complexity and performance of
various QAM-MCM schemes and of MDLP, and Section VI
concludes.

Notation: We use (-)! to denote transpose, (-)* conjugate,
and ()7 conjugate transpose. C(b) denotes the circulant
matrix with first column b, D(b) the diagonal matrix created
from vector b, 1 the vector of length K with each element
equal to one, and Iy the K x K identity matrix. We use
[B]m.n to denote the element in the mth row and nth column
of B, where row/column indices begin with zero. Furthermore,
| - || denotes the Frobenius norm, ® element-wise multi-
plication, E{-} expectation, ¥y ..:= E{bc} — E{b}E{c"}
cross-covariance, and Zb::E{be} — E{b}E{b"} auto-
covariance. Finally, §(-) denotes the Kronecker delta, and Z
the set of integers.
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II. SYSTEM MODEL

This section derives a discrete baseband model for the /V-sub-
carrier coded QAM-MCM scheme assumed throughout the
paper. At each multicarrier (MC) symbol index ¢ € Z, a vector
O &t cg\i,)il} , where

of coded interleaved bits ¢(*) := [c
= [c(i) ) Y T € {0,1}™, is mapped

k= |Ck,00Ch,10 0 c 0 Cle M -1 ) , pped to a
vector of QAM symbols, s := s(()L), sgt), ey sgff)_l} e sV
by the symbol mapping ¢ : {0,1} — S. Here, S is a
Gray-mapped unit-energy QAM constellation of size |S| = 2.
These coded QAM symbols are used to modulate pulsed sub-
carriers as follows:

oo N-1
1 (@) j(2x/N)(n—iNy—
tn = Ap—i - S, ej( 7T/ )(TL N No)k. 1
P P (M

1=—00

In (1), {a,} is the discrete-time modulation pulse, N; is the
MC-symbol interval (i.e., the number of channel uses between
the start of one MC-symbol and the start of the next), and N, €
{0,..., N —1} is the offset between the subcarrier-phase origin
and the pulse origin. Note that this system transmits at an av-
erage rate of N/N; QAM-symbols per channel use. We define
the effective “guard length” N, := N, — N, such that N, = 0
leads to an average rate of one QAM-symbol per channel use,
i.e., Nyquist-rate signaling.

The multipath channel is described by its time-variant im-
pulse response h(n, 1), defined as the time-n response to an im-
pulse applied at time n—{. We assume a causal impulse response
of length Nj,. The signal observed by the receiver is

N]l—l

Tn = Z h(nvl)tn—l + Un )

=0

where v,, denotes circular white Gaussian noise (CWGN) with
variance o2. Employing the wide-sense stationary uncorrelated
scattering (WSSUS) assumption [18], we have E{h(n, [)h*(n—
¢, — m)} = p,o?8(m), where p, denotes the normalized
temporal correlation (i.e., pp = 1) and ‘712 denotes the vari-
ance of the /th lag. Defining r,(f) "=TiN.+n» llr(li) ‘= V;N,+n,and
h® (n,1):=h(iN, + n,1), it follows that

Np—1 oo
) . 1
(i) — } (i) l _
r E 1/ (n, E a n—1" /=
" 1=0 ( / )/z—oo e l N
N-1
x $7 sUm0ei@r/N)—IHIN. =Nk () (3)
k=0

To estimate the MC-symbol s(*), the receiver employs the
pulse sequence {b, } as follows:

4 1 . )
x((il) _ — ZTS;L)bne‘J@’T/N)d("‘N"). 4)

As before, N, delays the carrier origin relative to the pulse
origin. Note that this system reduces to CP-OFDM [19] when
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=Ny, {an=1}375" and {b, =1},
Plugging (3) into (4), we find

N-1
@ = Z Z H(M)(d — k, k)s,(:_[) + w((;) ®)

£ k=0

j\i (else a,, = b, =0).

where
e~ 327 /N)d(n—N,) (6)

Zbu
Nhl

Zzh (n, D)braen, +n—1

27T/N)d(n N, )6

HEO(d, k)

% e—i( i@m/N)k(I=LNs) — (7)
Equation (5) indicates that H(%)(d, k) can be interpreted
as the response, at MC-symbol ¢ and subcarrier £ + d, to a
frequency-domain impulse applied at MC-symbol 7 — ¢ and
subcarrier k. With finite-duration causal pulses {a,, } and {b,}
of length N, and Ny, respectively, only a finite number of
terms in the set {H9(d, k), ¢ € Z} will be nonzero. In this
case, it can be shown that H-*)(d, k) will be nonzero for
¢ € {—Lpe,...,Lps} where Lye = [(Ny —1)/N| and
Lpst = [(Na + N — 2)/N]. ) ,
With () .= :vg’), . ,xs\i’,)_l} ,w(i) = [wéi) wg\q,) 1} s
and [H(i’e)](hk = H(d — k, k), (5) implies the linear time-
varying (LTV) system

Lpst

Z HEO g0 4 4y (8)

t=—Ly.

For any ¢, nonzero {H (?’[)}1}7&0 causes ISI and nonzero off-
diagonal elements in H (0) cause ICL In the sequel, we refer
to {H 9}, as pre-cursor ISI and { H*9} ;< ¢ as post-cursor
ISI.

III. PULSE DESIGN

The pulses {a,,} and {b,} affect the ISI/ICI patterns of the
system (8). When only the channel statistics are known at the
transmitter, it is possible to shape—though not suppress—the
ISI/ICI caused by a DD channel. As described in Section I,
we are interested in shaping the ISI/ICI into a form that allows
simple yet high-performance equalization. Between shaped
responses which contain only ICI, only ISI, or joint ISI/ICI,
we find ICI-only responses to be the most convenient: ICI-only
responses can be optimally mitigated in a block-by-block
manner, whereas [SI-only responses would require per-sub-
carrier sequence-detection and joint-ISI/ICI responses would
require two-dimensional sequence-detection (e.g., [13]). For
this reason, we focus on pulse designs that aim to suppress ISI
completely and yield a convenient ICI support region.

The low-pass nature of typical Doppler spectra motivates us
to shape the ICI so that each subcarrier experiences interfer-
ence from only £ D neighboring subcarriers. In other words, we
are interested in LTV system responses with H (2,0) having the
quasi- banded support region illustrated in Fig. 1 and with zero-
valued { H "}, i.e., no ISL. Henceforth, we refer to this de-
sired ISI/ICI support region as the “target.” Generally speaking,
larger values of D will allow better suppression of out-of-target
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Fig. 1. Desired support region of cursor coefficient matrix H

ISI/ICI, and, hence, better equalization performance, at the ex-
pense of higher equalization complexity. A rough design rule
for D can be obtained as follows. Since the subcarrier spacing
in our system is (7.N)~! Hz, where T, denotes the sampling
(or “chip”) interval of the discrete-time system (1), a Doppler
spread of + fy Hz corresponds to a Doppler spread of + f41. N
subcarriers. For this reason, we set the target-ICI radius at D =
[ faTe.N + ], where both performance and complexity increase
with design parameter «. In Section V, we study the choice
of D experimentally, and find & = 1 to yield a good perfor-
mance/complexity tradeoff.

A. An SINR Criterion

We design pulses according to an SINR := &/&,; criterion,
where signal energy & and noise-plus-interference energy &y
are defined relative to the target ISI/ICI support region. If we de-
fine & 4 to be the energy contributed to received-subcarrier wfli)
by transmitted-subcarrier sy), and if we define &, 4 to be the
energy contributed to received-subcarrier x&i) by additive noise
w((li), pre- and post-cursor ISI {sflj )} ” , and out-of-target ICI

i

yd-D—1 -1
(1) (7) _ N-1
{sk }k=o { sy, }k it then & = >, &4 and

Eni = Zflv:_o Eni,a are defined by summing over subcarriers.
When optimizing a:= [ag, . . .,an, —1]", we impose the trans-
mitter power constraint ||a|| = N..

Assuming uncorrelated unit-variance QAM-symbols in (5),
we have

N—1 .
&= E{|H 0,0} ©
d=0
Using the WSSUS assumption with (7)
Np—1
{|H<Ll (d, k)2 } N2 3" puembab,
n,m=0
N,,—l
w327 /N)d(n—m) Z UIQGZNS+R—last+m—l (10)
=0
implying that
Ny—1N,—1 Np—1
Z > babpnm Y ofan a1
—0 m=0 1=0

Equation (11) can be put in the quadratic forms (12) and (13)

&= NbH (R, ® AJ)b (12)

H(R,® B,)a

13)
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where R, and Ag are Ny x N, matrices deﬁned element-wise
Ny —

as [Ry),,, = pn—m and [A],, =37, ‘71 an_1a’, ,and

where R, and B are N, x N, matrices deﬁned element-wise

as [Ral,, = pq—p and [Bi], == 3200 ofbyaib:
Assumlng uncorrelated QAM symbols and noise, (5) yields

2
Eniyd ZE{‘UJ((;) }

Lpst

+ > ZE{|H<L‘> (d -k, k)|?}

f=—Lpe k=0
d+D ‘
> E{JH"O(d -k, k)*} (14)
k=d—D
where, from (6)
P 1 & (),
E{‘wd }zﬁn;obnme{yn vy }
X e—j(Zﬂ'/N)d(n—m)
]\1,—1
Z by 2. (15)
The  identities N LS L =i 5 (d=k) (n—m) _
N25((n— m)y) and D__De j3Tq(n—m) _

sin(Z(2D + 1)(n — m))/sin(&(n — m)) then imply
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(16)—(18), shown at the bottom of the page, where
b:=[bo,...,bn,—1]". In (17), R, and A are as pre-
viously defined, and Cp, D,, and A; are N, X N,
matrices defined element-wise as [Cy],, , :==6((n —m)y),
[Dy],,.,, = £ sin(£2D + D)(n — m))/sin(Fn — m)),

Lpst N -1 2 *

and [At]m = 2u=—Lye2u1=0 91 UUN+n—10yN {m_1-

In (18), R, efnd B are as previously defined, and C,,
D,, and B; are N, x N, matrices defined element-wise

as [Di], == +sin( % (2D + 1)(q¢ — p))/sin(F(¢ — p)).

Lpst Ny,
[Bt]p,q:: (= Ly l=)0 9 bq+l—[Nsbp+l—Z]\75’ and
[C.], .= 06((g — p))- Note that we used [|a]|* = N, to write

(18). SIHCC SINR &s/Eni is not a function of ||b||, we are free
to impose ||b]|> = N, in the sequel.

B. Max-SINR Pulse Designs

1) Jointly Optimized Pulses: To optimize SINR = &/&y
jointly with respect to a and b under the constraints
la|> = ||b]]> = N,. we alternate the optimizations in (19)
and (20), shown at the bottom of the page, where v, (M, N)
denotes the principle generalized eigenvector of the matrix
pair (M, N). Recall that A5 and A are functions of a and
that B and By are functions of b. This optimization can be
carried out in advance for particular channel statistics (e.g.,
Doppler/delay spreads). Examples of these jointly optimized
max-SINR (JOMS) pulses are given in Fig. 8 for the system
and channel parameters described in Section V.

Ny—1
Ei=0" Y |bal®
n=0
Np—1 N,—1 Lyt Njp—1
+ Z Z bnby, pr—m0 Z Z 0L N, +n— 1OYN, 4m—1
n=0 m=0 /_—Lp,e 1=0
Nb 1Nb 1 Nh 1
sin(% (2D + 1)(n —m)) )
— bnby, Pr—m O} 10, _; (16)
22 Nen(F-m) X
=b" (UZIN,, +R,®Cy® A — R, © D, @As>b (17)
H 207
= 1Bl N TR.©C. 0B~ R, 0D, ©B; |a (18)
. b (R, © AJ)b
— ar max
BN, b7 (2T + Ry © Cy © A, — Ry © Dy © A)b
:’U*(RbQAs,UI+Rb®Cb®At_Rb®Db®As)'\/Ns (19)
(R, ® B.)a
a = ar max
b= 8 al*=N, aH (02 + R, ©C, © B, — R, © D, © B)a
=v,(R, ®Bs, 0’ I +R,®C, ® B, — R, ® D, ® By) - /N, (20)
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Fig. 2. Turbo receiver configuration.

2) Rectangularly Constrained Pulses: The JOMS demod-
ulation pulses generally result in correlated noise samples
{w((li) }, which may pose difficulties for equalization/decoding
algorithms. To ensure white noise samples, we could design
transmitter-optimized max-SINR (TOMS) pulses using (20) in

conjunction with the rectangular receiver pulse (21)

0<n<Np,-1
n_ s

Np <n< N+ Nj, = N.

We could also design receiver-optimized max-SINR (ROMS)
pulses using (19) in conjunction with a rectangular transmitter
pulse. The latter scheme differs from traditional CP-OFDM in
that IST would be near-perfectly suppressed without a guard in-
terval, and, thus, with higher modulation efficiency. TOMS and
ROMS pulse examples appear in Fig. 8 for the parameters out-
lined in Section V. We note that other pulse constraints, e.g.,
max-SINR Gaussian pulses [20], might also be considered.

2

IV. EQUALIZATION

We consider the turbo equalization/decoding [8], [21] archi-
tecture illustrated in Fig. 2. The equalizer uses the observa-
tion (") to update bit-reliability metrics referred to as L-values
(LVs), the extrinsic components of which are de-interleaved and
passed to the SISO decoder. The decoder then updates the LVs,
the extrinsic components of which are interleaved and passed
back to the equalizer. After initializing the LVs at zero, the
equalizer and decoder iterate several times before final bit deci-
sions are made. In Fig. 2, Loq and Lq. denote the equalizer and
decoder LVs, respectively, on which the superscripts ¢, e, and
o denote input, extrinsic, and output versions, respectively. The
equalizer block itself is iterative in that its LVs may be internally
updated several times before being passed to the decoder. Note
that the equalizer leverages the ISI/ICI structure but not the code
structure (e.g., it assumes independent bits), while the decoder
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leverages the code structure but not the ISI/ICI structure (e.g., it
assumes white noise).

A. Local Interference Model

The pulse designs in Section III aim to suppress ISI
completely and suppress ICI outside a D-subcarrier ra-
dius. When pulse-shaping is successful, we reason that
good “local” estimates of s,(;) can be generated using

‘ t .
g\ = [a:é)D ..... x,(C:)_D} in place of z(Y. With this in

mind, we write

) = Hs + el (22)
where H(i) = [{I(i’o)]k—D:HD,k—2D:k+2D, 85:) =
|:S]£)ZD, s,(cj_QD] , and where e,(j) contains the noise

w,(;) = w,(sz, . w,(CZ)FD plus residual ISI/ICI. For brevity,

all indexing in this section will be assumed modulo-N. As
a consequence, the elements of H (9 from the top-right
and bottom-left shaded triangles in Fig. 1 will be included

Ly N-1
n {H (,Z)} . Numerical studies suggest that, for the pulse
k=0

designs of Section III and over the SNR range of interest, 5(1)
is well modeled by zero-mean circular Gaussian noise w1th
covariance X., = Xqp, .

B. Bit Reliability Metric

Our equalizer uses the observation z( and channel
H®O o update the ith MC-symbol’s bit LVs, collected

as { L (k,m)} 017711\1 !, where
() _ g
) 0|z
LO(k,m):=In Q (23)

P(c), = 1|z)

Since all quantities pertain to the :th MC-symbol, we omit su-
perscript indices w.l.o.g. Note that the sign of L(k,m) is the
uncoded MAP bit decision and the magnitude of L(k, m) in-
dicates the reliability of this decision. Using Bayes’ rule and
assuming independent bits (as a consequence of interleaving),
L(k, m) can be rewritten as the sum of a prior LV, Loq(k, m),
and an extrinsic LV, AL(k,m), as in (24), shown at the bottom
of the page. In (24), g,’j;,a denotes the set of all length-k; bit
vectors in which the koth bit has been set to « € {0, 1}. Since
the decoupling of AL(k,m) and Lo4(k, m) is important, we
will be careful to ensure that L4 (k, m) is not used to calculate
AL(k,m).

Since exact computation of AL(k,m) is generally infea-
sible, we propose two suboptimal algorithms, detailed in
Sections IV-C and D, based on approximations of AL(k,m)

> plzle=1) H(k',m/);e(k,m) P(ckrm’ = Ve M+m?)

'yegw}ﬂrm 0 P(Ck m — 0)
L(k,m)=1n : +1n : (24)
> p&le =) [T miysrm) P(Crm: = Yernrsm) P(ckm =1)
1€05 T T
N v old (K,M

~~

AL(k,m)
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that use the local observation xj, in place of . Both make use
of the QAM-symbol means and variances

pe =Y BP(sp = ) (25)
BES

v = > |BPP(sk = B) — |uxl*- (26)
BES

Note that, since Gray-mapping is assumed, the real and imag-
inary components of each QAM-symbol are independent, and,
thus, v g := var(Re s) and vg ; := var(Im s ) can be written

ver =Y (ReB)?P(sp = 8) — (Re g’ 27)
BeS

Vg = Z(Im B)2P(s = 3) — (Im pup )% (28)
Bes

C. lIterative ML Equalizer (IMLE)

This technique derives its name from the fact that AL(k, m)
is the maximum likelihood (ML) decision statistic for bit cj, .
Here, however, AL(k,m) is approximated to reduce computa-
tional complexity. The key idea is to first perform a soft inter-
ference cancellation (SIC) using the QAM-symbol means {1y },
then to apply a Gaussian model to the residual interference-
plus-noise. The resulting A L(k, m) approximation, denoted by
ALnig(k,m), is much easier to compute. Specifically, the
partial observation after SIC is written

Y =Tk — Hipy,

=hy o5k + q (29

where hy, ; denotes the (j + 2D)th column of H), and where

k+2D
G= Y hijlsi—n)+en (30)
j=k—2D
i#k
My, =ik 2D+ k1,0, flhy 15+ pap]’s (31

The residual interference g, is modeled as zero-mean Gaussian,
independent of s, with covariance qu

Yq, = HiD(ve)H|! + %, (32)
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ce ,’Uk+2D]t. (33)
Replacing p(zlc = 4) in (24) with p(y,|sx = ¥(v)), the
extrinsic LV becomes as shown in (34) at the bottom of the
page. For simplicity, the remainder of the development assumes
QPSK; the extension to general QAM is straightforward but
tedious. For QPSK, Appendix A shows (35), also shown at the
bottom of the page, where g := ka E(;klhkp. Note again that
Loja(k,m) is not used when computing A Lyyrg(k, m).

The IMLE algorithm proceeds as follows. Prior to the first
iteration, { Lo1a(k, m) ¥V k,m} are obtained from the output of
a soft decoder, if available, or otherwise set to zero. These LVs
are then used to initialize {yx } 5 and {vy } 2 ;. We begin the
first iteration by working on subcarrier index k£ = 0. The means
I and variances vy are used to calculate y, and X¢q_, which in
turn are used to compute go. From go and {Lo1q(0,m)} M1,
{ALmnrLe(0, m)}%z_ol are calculated and used to compute
{L(0,m)}M=}. Finally, {L(0,m)}} =} are used to update
1o and vp. Moving on to k = 1, the vectors p; and vy are
used to calculate y; and qu, and later g;. This allows the
computation of {ALpre(1,m) %;01, the computation of
{L(1,m)} =, and the update of y; and v1. The k = 2 case is
tackled next, then k& = 3, and so on, until £ = N — 1. Finally,
{L(k,m) ¥ k,m} are copied to {Loa(k,m) Yk, m}. This
concludes the first iteration. The next (e.g., second) iteration
begins again at subcarrier index £ = 0 and proceeds through
k = N — 1. The algorithm terminates after a specified number
of iterations.

Table I summarizes the steps in one IMLE iteration. The
mean, variance, and LV updates are derived in Appendix B. The
computational complexity for IMLE is dominated by the inver-
sion of the (2D + 1) x (2D + 1) matrix ¥, , yielding a per-it-
eration complexity order of O(N D3). Because £, and ¥, _,
share many elements, it is possible to update Eq_kl recursively
(e.g., [22]) for complexity order of O(N D?), though studies
have shown that this is only advantageous for very large D (e.g.,
[23D).

Like [11], IMLE avoids the zero-forcing transformation in the
original PDA scheme [10] and exploits structure in the channel
matrix to reduce equalizer complexity. However, while IMLE
works on the bit level, [11] works on the symbol level; it up-

> pWelsk =) L 2 PChym: = Ymr)

YEGH o
ALIMLE(k7 m) =1In : (34)
22 p(yrlsk = (V) Iz P(Chms = Ymr)
veg ),
> exp |Re (¥(Vgr) +5 X (—1)“’Lold(k7m’)1
YEG N o m'#m
ALIMLE(k7 ’I’I’L) =1In (35)
> exp |Re (¥(Var) +5 X (—1)%’Lold(k7m’)1
g, m’ Fm
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TABLE 1
STEPS IN ONE ITERATION OF IMLE-QPSK

for k=0: N—-1
2.l = (HiDwi)HE +2,)
Y =Tk — Hipy,
gk = Yk g hio
L(k,0) = Loa(k,0) + vV2Re g
L(k,1) = Lou(k, 1) — vV2Im gy
pr = s tanh (252 + 2 tanh (£G:22)
v =1 — | ?
Lo(k,0) = L(k,0), Loa(k,1) = L(k,1)

end

dates soft symbol estimates from which bit values are later in-
ferred using hard decisions. Also, [11] works in the time domain
[i.e., (3)], while our scheme operates in the frequency domain
[i.e., (5)]. While the time domain scheme requires N, X Nj
matrix inverses, the frequency domain scheme requires only
(2D + 1) x (2D 4 1) matrix inverses, which is significantly
cheaper since, typically, (2D + 1) < Nj,.

D. Iterative MMSE Equalizer (IMSE)

Whereas in IMLE we performed SIC before computing ex-
trinsic LVs, here we perform linear MMSE estimation before
computing extrinsic LVs. The linear MMSE estimate of s using
the partial observation zy, is [24]

X -1
8k| yivse = ,U'k‘f‘hﬁo (e, + HiZs, HY) (1. — E{zi})
(36)
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where the bit independence assumption implies that the covari-
ance matrix Xg, is diagonal. However, to make AL(k,m) in-
variant to Loja(k,m), we set pp = 0 and v, = 1 when esti-
mating sy, resulting in the “extrinsic” estimate

1
S = hily (Ze, + HeD(n) HE + hiohfly ) (wr — Humy)

-
fi

(37)

for p,;, and vy, defined in (31) and (33), respectively. Finally, we
assume that the estimation error, §; — s, is complex Gaussian
with uncorrelated real and imaginary components. Equivalently,
§y, is conditionally Gaussian with the means and variances

Sk = E {8klsk = (1)} (38)
o g =B {RC’ (3 — Spq)ls1 = (1)} (39)
onp=E{Im*(8k — Siq)lsk = ¥(7)} . (40)

The quantities 5k, 0; . and of ; can be computed from
W, and vy as shown in (41)—(45) at the bottom of the page
(see Appendix C). Note that the conditional variances are
not actually dependent on <. Replacing p(z|c = =) in (24)
with p(8k|sx = (7)) and invoking our various assumptions,
ALvsg(k,m) becomes (46) and (47), also shown at the
bottom of the page (see Appendix D).

The IMSE algorithm cycles through the k£ and m indices in
the same manner as IMLE. Table II summarizes the steps in
one iteration of IMSE for QPSK. The mean, variance, and LV
updates are derived in Appendix B. As in IMLE, the inverse
matrix can be computed recursively.

Sky =V Fi hio @n
JEN. {fkrf[ HD(wi)HI + 2.,  H.D(vir —vi 1) Hﬂ [ fk} )
Ry fr HiD(vp.r —ve)HY HiDw)HL+X. || fr
o2, = 1 |: fk* :| H|: H,D(vy)H + 26kH H,.D(vy r —tvaI)£IZ:| [ fk* ] @)
kI 4 _fk HZD('Uk,R _'Uk,I>Hk HZ'D('Uk>Hk _|_2€k _fk
Vk,R = [’Uk—ZD,R7 <.y Uk—1,R, 07’Uk+1,R, . 7’Uk+2D7R]t (ad)
Vg, 1 = [’Uk—QD’[7 ey Uk—1,1, 07 Ukt 1,15 - - - 7’Uk+2D,I]t ) (45)
Z p (§k|sk = 1/)(7)) Hm’ m P(ck,m’ = Vm')
#
yegM .
AL ]{I,m = ln : — (46)
vse(k, m) > 0 Grlsk = 0)) Tz Pl = Vo)
vegl |
S op |-l WG 5 L)
YEG N o ko kI m’'#m
S 7)
> exp _Re2(§f5§k’“’) - ImQ(f(ff"’“’) +1 3 (=17 Loa(k,m’)
YEGN | kst kot m/Em
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TABLE II
STEPS IN ONE ITERATION OF IMSE-QPSK

for k=0: N -1,
Fo= (Se, + Hi D(wi)HE + hiohfy) ™ hio
8k = Fi (xx — Hypy)
compute O'I%,R and a,%), from (42)-(43)
L(k,0) = Loa(k, 0) + V205 % Re(3x) F1 .0
L(k,1) = Loa(k, 1) + V20, 3 Im(3) f £ Bk.0
ik = —= tanh (@) + % tanh (#)
vk =3 — (Rep)?, ver = 3 — (Im pz)?
Lou(k,0) = L(k,0), Loa(k,1) = L(k,1)

end

=S

Like [9] and [15], IMSE is an iterative MMSE estimation al-
gorithm. In both [9] and [15], however, the estimation error is
modeled as complex circular Gaussian. Numerical studies con-
ducted by the authors (but not reported here) have shown that
IMSE’s provision for oz’ ; # 0% pisessential when complex al-
phabets are used; the assumption o7 ; = o7  leads tosignificant
performance loss. Also, [9] updates the symbol means and vari-
ances once per block (i.e., after updating { AL(k,m), ¥m}h "),
whereas IMSE updates the symbol means and variances at every
k.Numerical studies have shown that symbol-rate updating leads
to significant performance gains. Finally, [9] uses the full obser-
vation vector «, requiring an N X N matrix inversion, whereas
IMSE use the partial observation xy,, requiring only (2D + 1) x
(2D + 1) matrix inversion. Since D < N, this leads to signifi-
cant computational savings.

V. NUMERICAL RESULTS

Here, we examine the BER performance of several coded
QAM-MCM schemes over a WSSUS Rayleigh-fading channel
[25]. This channel is defined by the statistical proper-
ties E{h(n,l)h*(n — q,1 — m)} = p,o6(m), where
pq = Jo(2nfy4T.q). Here, Jy(-) denotes the zeroth-order
Bessel function of the first kind, fy denotes the single-sided
Doppler spread—defined as the largest frequency shift that the
transmitted signal experiences as a result of channel time-vari-
ation, and 7, denotes the sampling (or “chip”) interval of the
discrete-time system (1). We focus on normalized Doppler
spread fq7. = 0.003, delay spread N, = 16, and uniform
delay-power profile (i.e., o} = N,jl V [). These channel
parameters correspond to, for example, an underwater acoustic
system with bandwidth 4 kHz, delay spread 4 ms, and Doppler
spread 12 Hz, or a mobile RF system with bandwidth 3 MHz,
carrier frequency f. = 20 GHz, delay spread 1}, = 5.4 us, and
mobile speed 160 km/hr in triple-Doppler conditions.! While

IBy “triple-Doppler,” we refer to the case where the mobile is moving away
from (towards) the base station with speed v and a strong reflector is moving
towards (away from) both the base station and the mobile with speed v, so that
the reflected path length changes at a rate of £3v, producing a single-sided
Doppler spread of f4T. = 3vf.c™!, where ¢ denotes the speed of light [26].
Such a “triple Doppler” case can occur, e.g., when the base station is located
close to a highway on which the mobile and scatterer are driving in opposite
directions.
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our delay/Doppler spread parameters would be somewhat
extreme in the mobile RF setting, they would not be unusual in
the shallow-water acoustic communication setting [27].

A. Max-SINR QAM-MCM Performance

For the proposed max-SINR QAM-MCM schemes, in-
formation bits were coded using the 0.97dB-gain rate-1/2
convolutional code from [28, Table 11.c], block interleaved,
Gray-mapped to QPSK symbols, and assigned to one of N = 64
subcarriers in a MC-symbol. The coding and interleaving? were
performed on blocks of N; = 40 MC-symbols.3 We employed
the MC-symbol interval N, = N (yielding an efficiency of
n = 1 QPSK-symbols/s/Hz and, consequently, a rate of 1
information-bits/s/Hz). An ICI radius of D = [fyT.N + «]
was assumed, where (as described below) a = 1 was found
to give a good balance between performance and complexity.
For fyT. = 0.003, this rule yields D = 2. The pulse lengths
were chosen to be large enough so that further length increases
did not lead to visible changes in the max-SINR pulse shapes.
Towards this aim, the rules N, = 1.5Ng and N, = N, + N}, /2
seemed to suffice for a wide range of N, and N,. A SISO
BCIJR decoder [29] was employed with one equalizer iteration
per decoding iteration. Each BER data point represents the
average of 4000 MC-symbols.

Fig. 3 shows BER versus SNR for several turbo-equalized
max-SINR QAM-MCM systems relative to several bounds and
reference traces. The MLE and MSE traces refer to IMLE and
IMSE equalization, respectively, after k turbo iterations. In
Fig. 3, we see that the performance of IMLE is very close to
that of IMSE, and slightly superior at high SNR; we conjecture
that IMLE is slightly more robust to the Gaussian-interference
approximation. The PLIC trace in Fig. 3 bounds IMLE/IMSE
performance through perfect local interference cancellation.
Specifically, PLIC calculates LVs assuming that the ICI com-
ponent of sg) in (22) is perfectly known, and treating the
ISI/ICI components of e,(;) as noise. The proximity of PLIC to
ML8 and MS8 (i.e., < 1 dB) shows that the turbo equalization
algorithms are performing near-optimal ICI cancellation after
eight iterations. The PGIC trace shows the performance of
perfect global interference cancellation, i.e., perfect knowl-
edge of all ISI/ICI when calculating LVs. The relatively small
gap between PLIC and PGIC (i.e., < 1 dB) shows that the
max-SINR pulses are performing near-optimal out-of-target
ISI/ICI suppression. Fig. 3 shows that TOMS outperforms
JOMS, which outperforms ROMS. We conjecture that the
turbo-equalization algorithms benefit from the uncorrelated
noise samples provided by TOMS. Between JOMS and ROMS,

2The interleaver reads a sequence of N; M N coded-bits column-wise into an
N, X M N array. The rows of the array are then shuffled such that the kth row
forms the ([(k/N,)] 4 (N:/Np)(k) n, )th row of the shuffled array, where
N, is a suitably chosen divisor of V;. Finally, bits are read row-wise from the
shuffled array. For our experiments, we chose V; = 40 and IV, = 10. Note
that, in this case, the first three coded-bits are distributed to MC-symbols with
indices 0, 4, and 8, respectively, within the 40-MC-symbol block. With a coher-
ence time of (fyT.N)~! = 5 MC-symbols, this interleaving scheme ensures
that any /V,, = 10 adjacent coded-bits will experience reasonably uncorrelated
fading.

3We assume that 40-MC-symbol decoding delays are tolerable. Smaller V;
would reduce the decoding delay but increase the probability that an entire code-
block experiences a deep fade.
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Fig. 3. Coded BER performance of QAM-MCM with (a) TOMS, (b) JOMS,
and (c) ROMS pulses under various equalization/decoding strategies.

faTe

Fig. 4. Coded BER performance of TOMS-QAM-MCM versus fy7. at
SNR = 10 dB using 8-iteration IMLE and various choices of ICI radius D.

which both induce noise correlation, JOMS better suppresses
ISI/ICL. For reference, LIN shows the performance of (non-
iterative) linear MMSE equalization followed by decoding.
Note that the MAP-based iterative equalizers significantly
outperform the linear MMSE scheme.

Fig. 4 shows BER versus f47. (at SNR = 10 dB) for TOMS-
QAM-MCM with 8-iteration IMLE using various choices of ICI
radius D. Though it can be seen that performance improves uni-
formly with D, the choice D = 2 performs nearly as well as
D = 3 over the fyT. range considered. Since complexity is
proportional to D3 (or D?, depending on IMLE’s matrix inver-
sion algorithm), we favor the complexity/performance tradeoff
offered by D = 2. Notice that, with adequate D (here, D > 1),
performance improves with f47. as a consequence of Doppler
diversity. With inadequate D (here, D = 0), losses due to
out-of-target ISI/ICI dominate gains from Doppler diversity, and
performance decreases with fy717.
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Fig.5. Coded BER performance of QAM-MCM under 8-iteration IMLE using
perfect CSI and pilot-aided (P = 2) Wiener channel estimates for (a) TOMS,
(b) JOMS, and (c) ROMS pulses.

Fig. 5 repeats the 8-iteration IMLE experiments of Fig. 3 with
imperfect channel estimates. For this, we used the reduced-rank
pilot-aided Wiener estimation scheme from [30]. In particular, a
pilot MC-symbol was inserted every P data MC-symbols, and
pairs of consecutive pilot MC-symbols were used to estimate
the channel coefficients of the P — 1 data MC-symbols in be-
tween. By channel coefficients, we mean the (2D + 1)N sig-
nificant coefficients of H®?), (See [30] for more details.) In
Fig. 5, we see that, when P = 2, the use of imperfect channel
estimates induces an SNR loss of approximately 2-3 dB. While
the resulting modulation efficiency of n = 0.5 complex- sym-
bols/s/Hz may not not seem very high, it equals that of the typ-
ical BO-QAM-MCM scheme (e.g., [2], [3], [6]) before pilots
are added.

B. Performance Relative to Other QAM-MCM Schemes

To compare our max-SINR schemes to BO-QAM-MCM, we
simulated coded versions of standard CP-OFDM [19], as well
as Strohmer/Beaver’s orthogonal [6, eq. (18)], and biorthogonal
[6, eq. (61)], QAM-MCM, and equalized with IMLE using ICI
radius D = 2 and eight turbo iterations. For Strohmer/Beaver
(bi)orthogonal QAM-MCM, we numerically optimized the
pulses to minimize the total [SI-plus-ICI power, assuming a rect-
angular time—frequency lattice (as before). For fair comparison
with the proposed max-SINR QAM-MCM schemes, we used
modulation efficiency = 0.744 QPSK-symbols/s/Hz (as rec-
ommended by [6], Fig. 1,) in conjunction with the 1.25dB-gain
rate-2/3 convolutional code from [28, Table 11.d], yielding a
rate of 0.992 information-bits/s/Hz. For CP-OFDM, we assumed
the ISI-suppressing guard interval Ny = N; — 1, yielding
modulation efficiency = 0.81 QPSK-symbols/s/Hz, and the
same 1.25 dB-gain rate-2/3 convolutional code from [28, Table
11.d], yielding 1.08 information-bits/s/Hz. Fig. 6 shows that the
Strohmer/Beaver orthogonal and biorthogonal schemes, denoted
by S-OFDM and S-BDFM, respectively, suffer from SNR losses
of about 1 dB from the best max-SINR schemes (i.e., TOMS and
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Fig. 6. Coded BER performance of MDLP-BDFE (lowest complexity and best
performing designs) and of 8-iteration IMLE on various QAM-MCM schemes:
Strohmer’s OFDM, Strohmer’s BDFM, ROMS, TOMS, JOMS, and ISI/ICI-
suppressing Gaussian pulses.

JOMS), even though the code used with the Strohmer/Beaver
schemes had a higher coding gain. We conjecture that this per-
formance loss results from BO-QAM-MCM’s higher levels
of out-of-target ISI/ICI. Recall that BO-QAM-MCM attempts
to suppress all ISI/ICI, a goal that is perhaps too difficult to
achieve, while our max-SINR QAM-MCM attempts to suppress
only out-of-target ISI/ICI, an achievable goal. Fig. 6 shows that
CP-OFDM suffers an SNR loss of about 2.5 dB from the best
max-SINR scheme, which can be attributed to CP-OFDM’s
relatively high levels of out-of-target ICI.

To compare against traditional ISI/ICI suppressing as op-
posed to ISI/ICI shaping NBO-QAM-MCM schemes (e.g.,
[12], [31]), we investigated the use of Gaussian pulses which
minimize total ICI-plus-ISI power. The remaining modu-
lation, coding, equalization, and decoding parameters were
chosen as before, including the use of IMLE with ICI radius
D = [f4dT.N + 1] = 2. From Fig. 6, we see that the BER
performance of this ISI/ICI-suppressing scheme lags behind
that of the ISI/ICI-shaping schemes, especially at high SNR, as
a result of nonnegligible out-of-target ISI/ICL.

The perf‘ormance of a particular QAM-MCM scheme can be
inferred in part from its ISV/ICI profile, i.e., E {|H"9(d, k)|*}
ford € {0,...,N—1}and? € {—Lyy, ..., Lps }. [Recall from
(10) that there is no dependence on 7 and k.] Since the coefficients
{H9(d,-)}P_ ) are used in symbol detection, it is generally
good for them to be large; since all other coefficients generate
out-of-target ISI and ICI, it is generally good for them to be
small. Fig. 7 shows E{|H 9 (d,-)|?} for several pulse designs
at SNR = 8 dB. In particular, Fig. 7(a) shows pre-cursor ISI,
Fig. 7(c) shows post-cursor ISI, and Fig. 7(b) shows out-of-target
ICI to the right of the dashed line and in-target ICI to the left. From
Fig. 7, we see that JOMS does an excellent job of maintaining
in-target energy while suppressing out-of-target energy, even at
the high modulation efficiency of » = 1 complex-symbol/s/Hz.
Both TOMS and ROMS (which have identical ISI/ICI pro-
files), also maintain high in-target energy and reasonably low
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Fig. 7. ISVICI profiles for various QAM-MCM schemes at SNR = 8 dB. In
particular, E{|H -9 (d, -)|?} is shown versus d for (a) ¢ = —1, (b) ¢ = 0, and
¢ =1.
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Fig. 8. Pulse shapes for various QAM-MCM schemes at SNR = 8 dB.
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out-of-target energy at 7 = 1. S-OFDM also does a good job
of ISI/ICI suppression at = 0.744, though ISI suppression
suffers atn = 1. CP-OFDM with guard N, = N; — 1 (and,
hence, n = 0.81) perfectly suppresses ISI, but does a poor job
of suppressing out-of-target ICI. Gaussian pulses which attempt
to suppress all ISI/ICI have difficulty in doing so whenn = 1,
motivating the ISI/ICI-shaping techniques considered here.

The modulation and demodulation pulses of the various
QAM-MCM schemes are plotted in Fig. 8 for the setup de-
scribed above at SNR = 8 dB. There, it can be seen that the
JOMS pulse looks much narrower than the ISI/ICI-suppressing
Gaussian pulse and a bit more “triangular,” while the TOMS,
ROMS, and S-OFDM 7 = 1 pulses look very non-Gaussian. It
can also be seen that the TOMS pulses are duals of the ROMS
pulses.
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C. Performance and Complexity Relative to MDLP

Next we compare against the maximum diversity linear pre-
coding (MDLP) scheme of Ma and Giannakis [16]. MDLP
assumes that, over a block duration of RN, the channel is well
modeled by a basis expansion of order Q = [2f4T. RN|.Itthen
partitions the RN -length block into R MC-symbols of IV subcar-
riers each, incorporating length-(N;, — 1) time-domain guards
and length-Q frequency-domain guards, for an overall modula-
tion efficiency of n = (N — Q)(R — Ny, + 1)/(RN) complex-
symbols/s/Hz. For the channel parameters f47. = 0.003 and
Nj, = 16, and for any choice of [R, N], it can be shown that
MDLP efficiency is limited to ,x = 0.49 complex-symbols/
s/Hz. Though several combinations of [R, N] are capable of
yielding 7 & 7max, all of them yield RN > 100, for which
optimal decoding becomes impractical.# For this reason, we
focused on suboptimal MDLP reception via block decision feed-
back equalization (BDFE) [17]. Though we tested MDLP-BDFE
exhaustively for all [R, N] which gave modulation efficiencies
between 0.48 and 7),,x, Wwe focus here on the best-performance
and least-complexity designs: [R, N] = [52,16] and [R, N] =
[55, 3], respectively.> With QPSK, both designs yielded spectral
efficiencies of about 0.98 information-bits/s/Hz, which allows
a fair comparison to the coded QAM-MCM schemes.

Fig. 6 shows that MDLP-BDFE does not perform as well as
the coded QAM-MCM schemes over the SNR range of interest.
To understand why, recall that high diversity does not guar-
antee good BER performance at moderate to low SNRs, and that
BDFE detection may not fully exploit the available diversity.
In addition, MDLP’s low modulation efficiency does not leave
room for finite-field coding, which could have boosted low-SNR
performance through coding gain.

We now compare the complexity of MDLP with BDFE
[17] to that of QAM-MCM with IMLE/IMSE. Complexity
will be quantified in complex floating point operations
(cflops) per channel use (pcu). Using fast Fourier trans-
forms (FFTs), the cost of demodulation for both MDLP and
QAM-MCM is identical and approximately 1 + (3/2)log, N
cflops pcu. IMLE consumes approximately 39D3 + 88D? +
56D + 22 cflops pcu, while IMSE consumes approximately
102D3+280D2% +222D +66 cflops pcu [34]. For QAM-MCM,
we can ignore the complexity of convolutional decoding, since
it is small relative to that of iterative equalization. Though we
also derived expressions for MDLP-BDFE complexity in terms
of [R, N, L., Q., Ly, Qp] (see [34]), they are somewhat lengthy
and, as a consequence, not presented here.

Fig. 9 shows the ratio of MDLP-BDFE complexity to QAM-
MCM-IMLE complexity over a range of delay and Doppler
spreads.® There, the solid lines are complexity-ratio contours,

4Consider that sphere decoding [32] significantly reduces ML decoding com-
plexity only at high SNR [33], which, recalling Fig. 6, is not within our target
operating range.

SThe complete parameter settings, in the notation of [17], were
[Q.L..Q., Ly, Qy,dL,db, dQ] = [5,35,15,15,7,9,3,2] and
[Q,Le,Qc, Ly, Qu,dL,db,dQ] = [1,35,14,15,4,9, 3, 4], respectively.

5In generating Fig. 9, we assumed a QAM-MCM system with N = 4N,
N, =N,D = f,der N + 1], and eight iterations. Likewise, we assumed a
MDLP-BDEFE system with [L., Q., Ly, Q] = [2(N, —1),2Q, N, — 1,Q],
Q = [2f4T-RN7 (to ensure reasonable performance), and [R, N] set to min-
imize complexity subject to > 0.45 complex-symbols/s/Hz. Note: there did
not exist any [R, N] yielding n > 0.45 for spreading factor ¢ > 0.1.
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Fig.9. Solid lines are contours of the MDLP-BDFE versus QAM-MCM-IMLE
complexity ratio, where contour label p indicates that MDLP-BDFE is 107
times as complex as QAM-MCM-IMLE. Dotted lines are iso-spreading-factor
contours. There were no admissible MDLP-BDFE designs for spreading factors
¢ >0.1.

where contour height “p” indicates that BDFE is 107 times
as complex as IMLE. Thus, the region above the “0”-labeled
contour corresponds to delay/Doppler spreads where IMLE
is cheaper than BDFE. From Fig. 9, it is clear that IMLE is
cheaper” for all but very small delay spreads—and several
orders-of-magnitude cheaper at large delay spreads, which is
noteworthy considering that QAM-MCM-IMLE significantly
outperforms MDLP-BDFE. In Fig. 9, we found it convenient
to superimpose iso-spreading-factor contours as dotted lines,
where the spreading factor ( := 2 f4T.. N,—the product of delay
and Doppler spreads—quantifies the overall channel severity.

VI. CONCLUSION

In this paper, we presented a new approach to coded
QAM-MCM for doubly dispersive channels. Non-(bi)orthog-
onal pulses were designed to shape the ISI/ICI into a pattern
that enables simple yet high-performance equalization, for
which two turbo equalizers were presented. Numerical results
demonstrated that the proposed max-SINR QAM-MCM system
yields coded BER performance that surpasses (bi)orthogonal
and non-(bi)orthogonal QAM-MCM systems based on total
ISI/ICI suppression (rather than ISI/ICI shaping) as well as
MDLP systems which use BDFE reception. For example,
when employing turbo-equalization to extract the information
contained in the dominant ISI/ICI, and for the “typical” channel
parameters fq1. = 0.003 and N, = 16, we found that the
proposed max-SINR pulses yield an SNR-gain of ~ 1 dB over
Strohmer/Beaver’s optimal ISI/ICI-suppressing pulses [6] and
~ 2.5 dB over standard CP-OFDM pulses. Comparing the
proposed QAM-MCM scheme to MDLP-BDFE at 1 bit/s/Hz
over the same channel, we found that the proposed scheme
yielded simultaneous improvements in BER performance
and implementation complexity (e.g., >6 dB SNR-gain and

7As an example, QAM-MCM-IMLE is about 1/20th the complexity of
MDLP-BDFE when fqT. = 0.003 and N;,, = 16, i.e., the channel parameters
assumed throughout most of this section.
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factor-of-20 complexity reduction, respectively). As possible
future work, one might consider extending the proposed
scheme to MCM systems using offset-QAM [5] or nonrectan-
gular time—frequency lattices [6].

APPENDIX A
DERIVATION OF (35)

First, we expand p(y;,|sr = (7)) using (29)

(¥ — V()hi0)”

DO =

P(yelse = ¥(7) = Cexp [—
x Sg (- wwhk,o)} 48)

1 _
=Cexp [— §kaZq:yk

1 _
—5|¢<v>|2h£0>:qjhk,o}

-exp [Re (¥(7)gk)] - (49)

Since the first exponential in (49) is invariant to <y (recalling the
PSK assumption), its contributions to the numerator and denom-

inator of (34) cancel. From (P(ckm = 0)/P(ck.m = 1))
elerakm) we find

eLold(k’m/)
P(crm =0) = eLaa(kym’) 41 O
eLol(I(kam/)/z
_ (51)
Loa (kym’
2 cosh (%)
o 2 ) o
P Ckm' = 1) = . (52)
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2 cosh (%)
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P(Ckﬂn’ = ’Ym’) = (53)

2 cosh (_Lold (z’i'»m’) )
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Since cosh(Loa(k,m’)/2) is invariant to ,,, its contributions
to the numerator and denominator of (34) cancel. The remaining
terms yield (35).

APPENDIX B
UPDATE OF MEAN, VARIANCE, AND LV

The quantities pr and v; can be wupdated using
{Loa(k,m) %;01 as follows. First, we rewrite (25) as
M-1
¥e{0,1}M m=0
using the bit independence assumption introduced in
Section IV-B. For QPSK (i.e., M = 2) we have
B9 = = (-1 +5(-1)"] (54)
V2

so that

"(0=0 ’Y1=0
.1 1
+ 23 () Plera=m) Y Plero=n0) (55)
\/571:0 Yo=0
_ L Lold(k‘,o) J_ Lold(k7 1)
= ﬁtanh<72 >+\/§tanh<—2 > (56)

To calculate vy, we note, from (26) in the QPSK case, that
|3l =1V 3 €S, sothat vy = 1—|u|?. Similarly, it can be seen
that Uk,R = 1/2 - (Re /Lk)2 and Vg, = 1/2— (Im uk)Q. Notice
that, with uncorrelated real and imaginary symbol components,
Vg = Vk,R + Vk,I-

The LV update reduces to the calculation of A Liyrg(k, m)
and A Lyvisg(k, m) for the IMLE and IMSE algorithms, respec-
tively. For QPSK (i.e., M = 2), the IMLE quantities are as
shown in (57) and (58) at the bottom of the page, where (58)
was derived in a manner similar to (57) [35]. To derive the IMSE

1

> exp [Re (4([0,11])gr) + 5(=1)" Lowa(k, 1)]

ALIMLE(]G, 0) =1In n=0

1
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quantities, we start with (59), shown at the top of the page. We
Use 5 [vo, 1] = Y([v0, 71]) F .o to form

Rez(§k = 5%,00,71]) :Re2(Ak) —V2Re (ék)ffhk,o
(i hio)?
(

+
NN | =

(31) + V2Re (52) fF hro
filhio)?.
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+

N | =

Since Im? (3, — 54 (0.,]) = Im*(8k — 3y, [1,4]), We pull the
exp[\/ﬁ/(2a,%’R)Re (81) F 0] terms out from the ~y;-sum-
mations, cancel common terms, and find

V2Re (51) fH hio
02 )
kR

ALnse(k,0) =

A similar derivation yields [35]

V2Im (5) F2 by,
ALse(k, 1) = ( ;)fk kO

Ok, 1

APPENDIX C
DERIVATION OF (42) AND (43)

Say Zj, := =z, — Hppy, so that §;, = kaa‘:k. The real part of
$k can be expressed as

H
R 1 f Tk
R )=—=|"k P
e (&) Q{fk} LZ}
Then it follows that

1" z B f.
] o ([

i e mllA
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(60)

where, assuming CWGN and symbols with uncorrelated real
and imaginary components

EEHSL' :HkD('vk)Hf + 2&.
2z, = E{(@ — E{Zx|sk = ¥(1)})

X (2 — E{Zplsi = (0D |51 = v(7)}
:Hk'D(’lIk,R — ’l)k’])flw;C

for vy, from (33), vi,r from (44), and vy ; from (45). Putting
the above equations together gives (42). Using

H
. 11 f Ty,
I == k. _
o () 2[—f,€} [EZ}
and similar methods, we arrive at (43).

APPENDIX D
DERIVATION OF (47)

Using the conditionally Gaussian assumption described in
Section IV-D

p(8klsk = ¥(v)) =C
o Rez(§k - §k)
cexp | — _
P 201%,1% 20,%71

Im2(§k — §k)

(61)

which accounts for the first two terms in the exponentials in
(47). Next, recall that P (¢ = Ym’) can be written as in (53).
Substituting (53) into (46), the cosh(Loq(k, m’)/2) contribu-
tions from numerator and denominator cancel (since they are
invariant to +y,,’), and what remains accounts for the third term
in the exponentials of (47).
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