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Abstract

Frequency-domain equalization (FDE) offers an attraditernative to time-domain equalization in systems that
communicate over large-delay-spread channels. Traditigr-DE leverages the fact that time-domain convolution
is equivalent to frequency-domain multiplication and thetfthat time/frequency conversion is efficiently handled
by the fast Fourier transform (FFT). In doubly dispersivarmhels, i.e., quickly varying large-delay-spread chasinel
the traditional FDE methods fail when the channel respoases significantly over the FFT analysis window. Here
we present a new FDE that is based on Doppler channel shogtesuft iterative interference cancellation, and block
decision feedback. Numerical simulations show that the@sed technique has advantages over the well-known

FIR-MMSE-DFE in both performance and complexity.

. INTRODUCTION

In systems that communicate over large-delay-spread ehgrihe use of time-domain equalization (TDE) leads
to expensive receivers. For example, North American teiaddigital television is plagued by delay spreads
on the order of hundreds of symbol intervals, requiring tiloenain equalizers with hundreds of coefficients
[1]. Frequency-domain equalization (FDE) offers an attvacalternative. FDE leverages the facts that circular

convolution in the time domain can be accomplished by pasewnultiplication in the frequency domain, and

The authors are with the Department of Electrical and Coeplhgineering at The Ohio State University, Columbus, OH.

Please direct all correspondence to Prof. Philip Schritept. ECE, 2015 Neil Ave., Columbus OH 43210, e-mail: s@mii@osu.edu,
phone 614.247.6488, fax 614.292.7596. Hong Liu can be eshahthe same address/phone/fax and the e-mail liuh@addos

Portions of this work were presented at the 2003 and 200bkvsit Conferences on Signals, Systems, and Computers.

This work was supported by NSF CAREER CCR-0237037.



that transformation to/from the frequency domain can beiefitly accomplished using the fast Fourier transform
(FFT). Roughly speaking, the per-sample processing cotitpleequired for TDE is linear in the channel delay
spread while for FDE it is logarithmic in the delay spreadu3hFDE can lead to significant savings over TDE
for long channels.

FDE is the principle idea behind orthogonal frequency divisnmultiplexing (OFDM) [2], [3] and single-carrier
cyclic-prefix (SCCP) [4], [5] modulation schemes. Both OFRRd SCCP systems transmit blocks of data separated
by guard intervals. The guard prevents inter-block interiee, thereby simplifying receiver processing. The use of
a cyclic-prefix (CP) guard makes the channel’s dispersidrasa@ cyclic (rather than linear) convolution, implying
that deconvolution can be accomplished through a simpledefiTain multiplication. When guard intervals aret
included, FDE can still be accomplished using overlap-sale FFT algorithms (see, e.g., [6], [7]) or residual ISI
cancellation (RISIC) [8].

The previously mentioned FDE techniques assume a del@admhannel whose impulse response varies slowly.
Some applications, however, have channels with more signifitime variation, i.e., significant Doppland delay
spreads. For such doubly dispersive channels, the staiagigrdach to FDE (i.e., pointwise multiplication in the
frequency-domain) fails when the channel varies signitigaover the FFT block duration. Essentially, the channel
variation induces inter-carrier interference (ICI) in finequency domain. In response, several equalization sefem
for doubly dispersed CP-OFDM have been proposed (see,[8]g[13] and the references within). While most
of these schemes are computationally intensive, [12] ragistper-symbol processing complexity logarithmic in
the block length, in keeping with the spirit of FDE. In additj [12] exploits the finite-alphabet property of
frequency-domain symbols, allowing its performance tgpass that of minimum mean-squared error (MMSE)
linear equalization. The CP-OFDM FDE scheme [12] was exdnid SCCP in [14]. Though the SCCP FDE
scheme [14] is complicated by the fact that the finite-alghadsoperty resides in the time domain, it nevertheless
maintains the desired logarithmic per-symbol processomgmexity.

Though capable of FDE on doubly dispersive channels, theritthgns [9]-[12] and [14] require block-based
transmissions with an adequate inter-block guard intefw#iile [13] does not require a guard, its complexity
scaling properties restrict its application to channelbwiild spreading. Thus, one might wonder: Is it possible to
build a FDE algorithm for single-carri@ontinuous-strearmodulation over doubly dispersive channels that exhibits
logarithmic complexity scaling? If so, such an algorithmulbpresent an efficient frequency-domain alternative to

the time-domain equalization approaches that are commas#g in doubly selective single-carrier receivers (e.g.,



for North American terrestrial digital television [15] amshderwater acoustic communication [16]).

In this paper we present an iterative frequency-domain lemgug(IFDE) for a continuous finite-alphabet stream
corrupted by a noisy and doubly dispersive channel. In ptied algorithm first parses the received time-domain
signals into blocks which are first windowed and then tramséd into the frequency domain by an FFT. The
window is designed so that both channel variations and tbhke-d&CP manifest as a sparse frequency-domain
ICI response. A low-complexity serial technique is thenleapto equalize the channel response in the presence
of ICI, and the output is transformed back to the time domgielding soft symbol estimates. Using the finite-
alphabet symbol property, reliability information on teesoft estimates is computed for use in another round of
(frequency-domain) equalization and ICI cancellatione Time- and frequency-domain steps are alternated until
the soft symbols estimates converge.

Through simulation, our IFDE algorithm’s performance ismgared to that of the FIR-MMSE-DFE [17], a
well-known benchmark, as well as to that of the matched fimund (MFB) [18]—the “holy grail” of uncoded
equalization. We find that our IFDE performs 1 dB worse tham MFB, and several dB better than the FIR-
MMSE-DFE, over the SNR range of interest. In addition, welgrgthe number of multiplications required by
our IFDE and compare it to that of the FIR-MMSE-DFE updatemhgis fast algorithm. We find that our IFDE
has complexity advantages over the FIR-MMSE-DFE for chinoka reasonable length.

In our equalizer design, we treat the channel as perfecthwkn In practical terms, this means that a well-
designed channel estimation algorithm is assumed to beatypgrin tandem with the equalizer. While channel
estimation is an interesting and important topic, it is @ldshe scope of this manuscript. In fact, the decoupling of
equalization from channel identification is typical of wdhat studies non-trivial equalizer structures, e.g., [[B3};

[17], [19], [20].

The paper is organized as follows. Section Il gives the syst@del (in time- and frequency- domains), Section Il
and Sec. IV describe our IFDE scheme, and Sec. V presentsasutFDE implementation. Section VI reports
the results of numerical studies, and Sec. VII concludesugéethe following notation throughout. Transpose is
denoted by(-)!, conjugate by(-)*, and conjugate transpose by’. The zero matrix is denoted kg, the identity
matrix by I, and thek!” column of the the identity matrix by,. The element in then® row andn'* column of
matrix B is denoted byB],, ,, where row/column indices begin with zero. The diagonalrinateated from vector
b is denoted byD(b), and the circulant matrix with first columinby C(b). The N x 1 vector created from the”

sub-diagonal ofV x N matrix B is denoted byliag;(B), i.e., [diag;(B)lx = [Bl+, x for k € {0,1,..., N —1}.



Expectation is denoted by{-} and covariance b¥ov{b, c} := E{bc’} — E{b} E{c"}. Finally, the Kronecker
delta is denoted by,,, the moduloA operation by(-) y, element-wise matrix multiplication by, and the set of

integers byZ.

[l. SYSTEM MODEL

Consider a single-carrier modulation system where a strefafinite-alphabet symbol$s,, } is transmitted over
a noisy linear time-varying (LTV) multipath channel. Theacimel is described by its time-variant discrete impulse
responseh, ;, defined as the time-response to an impulse applied at time- [. We assume a causal impulse

response of lengtiv,,. The signal observed by the receiver is

Nh—l
Tn = VUn+ Z hn,lsn—l (1)
1=0
where v,, denotes samples of zero-mean circular white Gaussian 6M¢GN) with variances?. We assume
wide-sense stationary uncorrelated scattering (WSSUS)Hd thatE{hn,lh;_q em} = V40 %6m. Here,y, denotes

the normalized autocorrelation (i.e = 1) ando? the variance of the channel at del&y.
The remainder of this section establishes the block-baspliéncy-domain equivalent of (1). At each frame
index i € Z, the receiver windows amN-shifted version of the time-domain observati¢n,} and applies a

discrete Fourier transform (DFT) with frequency spac}%?g, yielding thei*"-frame frequency domain observation
{wa(@)}g 57

2ai) = —== 3 rinsnbue I PR, ®)
Note that the window length is arbitrary. For convenience,define

sn(i) = SiN4n, n€{0,...,PN —1} (3)

1 nef0,...,PN—1},

Gp =

0 else

noting that{a,,} specifies aP N-length rectangular window and that

Singn = Y Sy, (i — P0) agpnn. (4)

{=—o00



Equation (4) says that, for a particularthe transmitted sequende;y.,,} can be constructed using/N-sample

shifts of the disjoint subsequencgs, (i — P¢)}. N1 for ¢ € Z. Combining (1)-(4), we find

N; -1
z4(i) = wa(i Zb Z hiN+n,i Z Sty (i = Pl)agpyn_se 75" ®)
{=—00
wy(l) = —— bnv; ne_]ﬁnd. 6
d( ) \/W Z N+ ( )
Frequency-domain equalization involves tie-frame virtual subcarriers{t; (i) kP]\g !, where
BRAR
te(l) = — sp(i)e I PN 7
k(7) PN (1) (7)
Equation (7) implies that, (i) = -1 S PNt (i)el 5 for n € {0,..., PN — 1}. Using this in (5) gives
o PN-1
va(i) = wa(i)+ > Y teli — POHy_px(i,0) (8)
(=—00 k=0
Nh 1 )
Hqp(i,0) = Z Z hiN-nbnaep Nt e 7x B, €)

Equation (8) indicates thatl, (i, ¢) can be interpreted as the response, at DFT outputd in frame i, to a
frequency-domain impulse applied at virtual subcarkien framei — £.

In practice we implement a causal length-window {b,,} implying that, for anyi, only a finite number of terms
in the set{H,x(4,¢),¢ € Z} will be non-zero. Specifically, (9) implies that non-zerone result from indices

¢ which satisfy0 < /NP +n —1 < PN — 1 for somen € {0,...,N, — 1} and somel € {0,..., Ny — 1}.

It is straightforward to show thakl, (i, ¢) is non-zero for¢ € {—Lyre, ..., Lpst} Where Lye = —[ 252 ] and

Lpst = L PN—};]X]}L = J :

With the definitionse(i) := [xo (i), . .., zpn—1(0)]}, w(i) := [wo (i), ..., wpn_1(i)]%, t(i) := [to(i),...,tpn—1(3)],
(i) := [s0(i), ..., spn—1(d)]", and[H (i, 0)]q; := Ha— x(i, ), (8) implies the LTV multiple-input multiple-output

(MIMO) system
Lpst
x(i) = w(i)+ > H(iOt(i— LP). (10)

{=—Lpre

For any:, nonzero{H (i, £) }s+o cause inter-frame interference (IFl) and nonzero off-diead elements of H(7,0) }
cause inter-carrier interference (ICl) among the virtuddcarriers. In the sequel, we refer §&¢(:,¢)},~o as pre-

cursor IFl and{H (i, ¢)}¢~o as post-cursor IFI.



It will sometimes be convenient to write the windowed fregeyedomain noise vectow(i) as

w(i) = FJD(b)v(i) (12)
———
=C
I_
J = | Ipy - Ipyn No (12)
OPN—NOXNO

where F' denotes theP N-point unitary DFT matrix,N, = (Np) pn» and the number of p matrices inJ is

N,
| PR -
Il. MAX-SINR WINDOW DESIGN

The choice of window{b,,} affects the IFI/ICI patterns of the MIMO system (10). Motied by the low-pass
nature of typical Doppler spectra, we aim to fifbl,} such that the “cursor” coefficier#((i,0) has the banded
structure illustrated in Fig. 1 and the IFI coefficiedqts((i, ¢) },+o vanish. This approach can be viewed as the
frequency-domain dual of inter-symbol interference (I8¥ponse shortening used to reduce the complexity of
maximum likelihood sequence detection (MLSD) [21]. For uirposes, the goal of time-domain windowing is
to give the channel a sparse structure that leads to low-lexity estimation oft(i), and hence, low-complexity
detection ofs(i). We choose time-domain windowing, rather than a generalixnaperation on the received
signal, due to its low complexity. Since complete cancelfabf out-of-target ICI/IFI is, in general, not possible
with time-domain windowing, we choose to maximize signainierference-plus-noise ratio (SINR) as a means of
suppressing residual IFI/ICI.

We define SINR by&s/&ni, where&s = )", &4 and &y = >, &Enig. FOr eachzy(i), & 4 is defined as the
signal energy contributed by neighboring carrigtg(7) gig_D, and& 4 is defined as the interference-plus-noise
energy contributed by non-neighboring carrids (i) }¢ -0 " U {t (i)} 27}, 1 non-cursor carriersty,(j)};.4i,
and additive noisav(i). Note that indices here are taken modtd¢. The ICI radiusD is typically chosen as
D = [fqTsPN1], wheref4Ts is the maximum Doppler frequency normalized to the symbtel.fdsing the approach

outlined in [22], we find that the SINR-maximizing windoby is given by

b (R, ® D, ® As)b
b, = arg max —
bebj2=pn b (021 + Ry ® Cp ® Ay — R, © Dy ® Ag)b
= v, (R, © Dy ® As, 0’I+ R, ® C, ® Ay — R, ® D, © Ag) - VPN (13)

where Ry, As, C, Dy and A; are N, x N, matrices defined element-wise sz]mm = Yn_m, [AS]m,n =

ot o2an—ak, 1y [Chlmn = Otnemy,» [Dblpn = P sin(Fy (2D + 1)(n — m))/sin(Z(n — m)) and



(At = eLf—Lpre St 0PN 4n—10}p N 1m_s- 1N (13),v.(B, C) denotes the principle generalized eigenvec-
tor [23] of the matrix pair B, C). Through max-SINR windowing and proper selection of othesign parameters,
the IFI and non-neighboring ICI can be made small enough $e ki@e symbol detection procedure on the following

approximate system model.
(1) ~ H(i,0)t(i) + Cr(i). (14)

As an alternative, the design parameters (e.g., frameHeRgf) could be chosen to yield non-negligible post-
cursor IFI, which could then be canceled using block deni$gdback equalization (BDFE). In this case, the win-
dow should be designed to suppresty ICI and pre-cursor IFI, implyingAi],,, ,, := ZSZ_LWG St OF AP NAn—10)p N4 m—1-
Figure 2 plots windows for both BDFE and non-BDFE casegydt € {0.001,0.0075}. In generating Fig. 2, we
assumedV,, = 64, PN = 256, N, = PN + N;, — 1, SNR= 10dB, ando—l2 = Nh‘l, which are typical choices
for the numerical results in Sec. VI. Assuming reliable pastsor IFI cancellation, (14) would still describe the
model used for detection of symbols in the current frame.

While windowing gives a sparse channel response that enabieduced complexity symbol detection procedure,
it can lead to a non-uniform collection of energy from synsbiol the current frame. Specifically, it can be shown

that the energy (i) contributed bys,, (i) is

PN—1 PN—1 1 2
Ean = 30 B D0 Haali,0) - ——e TE s (i)
d=0 k=0 PN
Nu—1
= 3 ol s

1=0
which is clearly dependent on, the symbol position within the frame. This implies thaty fgpical max-SINR

window shapes, we will collect less energy from symbols rtkarframe edges. This phenomenon motivates the

frame-overlapping procedure proposed in Sec. IV.

IV. SymBoL DETECTION

In Sec. IV-A, we propose an iterative method for the detectibthe finite-alphabet symbol vects(i) = F7t(i)
assuming the observation model (14). We are careful to d&eethe banded structure B(:,0) and the existence
of fast algorithms for the transformatiafi. It was previously observed that the max-SINR windowingcdésd
in Sec. lll collects less energy from symbols near the fraohges, which, if unaccounted for, could lead to high
frame-averaged error rates. Hence, Sec. IV-B proposesarscivhereby frame overlap (i.€2, > 1) is exploited,

in conjunction with the algorithm of Sec. IV-A, to circumwethis problem.



A. Intraframe Processing

Here we propose an iterative method for the detection of thiefalphabet symbol vecta(i) from the windowed
frequency-domain observatiae(i) in (14). Note that the focus of this sectionirgraframe processing, whereas
the focus of Sec. IV-B ignterframe processing. Since here we focus exclusively on itfiesymbol and on the
cursor IFI coefficient, we can omit the symbol and lag indiagsbreviating, e.gs(i) by s andH(i,0) by H. We
now give a brief summary of the intraframe detection algponitillustrated in Fig. 3; a more detailed description
will be given in Sections IV-A.1-IV-A.3.

Given current guesses of the log-likelihood ratios (LLR§)ttee symbols{s;} (which, on the first iteration,
are set to zero), the means and variances of the elementsane calculated ag and v, respectively. These
are then transformed into the mean and covarianceé tfsing linear MMSE estimation and incorporating these
mean/variance priors, the elemerts.} are estimated one-at-a-time, leveraging the banded steucf H for
complexity reduction. The resulting estimateare then transformed back into taedomain, from which the LLRs
are updated. To accomplish this last step we assume a comalifi-Gaussian model for the estimatgs. }. The
procedure then repeats, starting with the most recent LitRbie detailed description below, we use the superscript
(") to denote thex!” iteration.

1) Linear Estimation with Priors:The banded structure @ suggests that linear estimation of a particular ele-
mentt; might be accomplished with reasonable accuracy from thecated observatiom;, := [z1_p, ...,z p|t,
with indices taken moduld2N, as opposed to the full observatian (See Fig. 5.) We hope to realize substantial

complexity reduction in doing so. The truncated model bez®m
x, = Hipt+ Crr, (16)

whereH;, contains rows{k — D, ..., k+ D} of H andC}, contains rows{k — D, ..., k+ D} of C. The MMSE

linear estimate of; givenxy is [24]
tr = E{tr} + Cov(ty, @) Cov(my, mx) " (@ — E{as}). 17)
We assumé&i{v} = 0, Cov(v,v) = oI, andCov(s,v) = 0, and we model the elements inas uncorrelated

with meanss™ and variance®™ during then®® iteration. Then, defining™ := F5®, (17) becomes

1 = 8+ g (@) — H,E™) (18)

9" = (HeF D™ FIHY + 0*CCl) "M F D(v™)Fi, (19)



from which estimates 0§ can be obtained as
s — pHE _ FHZ'L im. (20)

2) A Conditionally Gaussian Model.everaging the finite-alphabet structure of the eleméntd and assuming
reasonably large’ N (to invoke the Central Limit Theorem), we assume that thamedgiton error is Gaussian, or,

equivalently, that the estimates are conditionally Garssi

2(n) _ (n)
~(n 1 S — U b
p(Sl( )’3l = b) = (n) (b( l (n)l ( )>7 (21)
o, (b) o (b)
whereg(w) := J-e ", u" (b) := B{s{" s = b}, and [0 (8))? := Cov(s[", 5{"|s; = b).
In Appendix | we show that

uM o) = 5"+ Q- 5") (22)
o O = ¢ De™)g™ — Q)7 ™ + o|lpi™ |17, (23)

whereq™ denotes thé®" column of Q™ and wherep\™ denotes thd'" column of P("":
Qm)zfﬂ<§:ﬂﬁd7%> (24)
pn) — (Z clg Hz,{j> (25)

3) Log-Likelihood Ratio and Update of Prior&rom now on, we restrict ourselves to the BPSK alphabet o tha
b € {~1,+1}; QAM extensions are straightforward but tedious (see, €1§], [20]). Then'"-iteration a priori

and a posterioriLLRs are then defined aE( . logH and Ll(§l(")) := log %ﬂ?:;;' respectively.

Note that, after the first iteration, we expect to have phini@rmation ons; such thatLl(") # 0. The LLR update
A(™M) = 1,(3™) — L™ can be written

AG™) = log p(élE:;ISz = +1)
p(3, " |s1 = —1)
57 = (D)2 = 13" = ™ (+1)
o} (£1)]2
a4 (Re(@PGM =) + 10 Ps”) y
g Dm)g™ — QY 20 + o?(|p{™ |2 20
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where we used the facts th@ﬁ”)(+1) = al(")(—l) and
R e [ E R IR C]
sf?") ~1-Qs + @E,’Z’*F
4 - - gl - g
= 4Re{(é§ - (1-Qis")Qi )
= 4Re{QY (3" — 5} + QY25 (27)

since the use of BPSK implieén) € R. Updates of the symbol mean and variance can be accomphshed

5" = N0 P(si = b3

beB
a(n)
L
- tanh( l(‘;l )> (28)
o = 3" (05" ) 2 P(s = 0]3")
beB
=1-(3 (n+1))2' (29)

To update thea priori LLR, we setL("+1) = Ll( ) giving
LMY = 14 AM). (30)

Hard symbol estimates can be generateds@ := sign(Re(3\™)) = sign(s\™) = sign(L(s;/3™)). An
algorithm summary appears in Table I. Note that a soft degp@igorithm could be easily embedded within

the bottom path of Fig. 3, as proposed in [19] and investiyag20].

B. Interframe Processing

As previously discussed, the use of max-SINR windowing eausss energy to be collected from symbols near
the edges of frame(i) than from those near the center of the frame. As a result,ténative detection algorithm
described in Sec. IV-A is more likely to incorrectly detegirbols near the frame edges. However, by overlapping the
frames (i.e., choosing > 1), we can exploit the fact that every symbol will be near theteeof some frame. Specif-
ically, (3) implies thats,,, maps to the frame- quantltl{ss (LR Ds smy N (LR) = Dsee ey 8y o p—yyn (L] — P+ 1)},

i.e., s, appears inP distinct frames. The frame indey, for which s,, appears closest to frame center is easily
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found to be

. m .

im = | %] —im (31)
PN

i, = i iN — —|. 32

j argjzo{g}}})_l‘<m>N +J 5 (32)

Thus, in exploiting frame overlap, we stipulate that
1) the hard estimate of,, is generated at frame indey,, i.e., §,, = §<m>N+ij(z'm), and
2) the final LLR calculated for symbal,, during framei,, is used to initialize the LLR of that symbol in
subsequent frames within which it appears, i.e., in framiéls index: € {i,, + 1,im +2,..., %]}
In the case that BDFE is employed, these hard estimatesemeatio used for post-cursor IFI cancellation. Figure 4
illustrates this process fapP = 2.
Since every symbal,, is estimatedP times, the overall equalizer complexity increases linearth P. Numerical

simulations suggest that the performance with> 2 is not significantly better tha# = 2, while the performance

with P =1 is relatively poor. Hence, we focus di = 2 for the remainder of the paper.

V. FAST ALGORITHM AND COMPLEXITY ANALYSIS

In Table Il we present a fast version of the detection algarisummarized in Table I. In the fast version, we

2 and

avoid explicit computation o™ and P, instead computing.™ := ¢\" D(v™)q!™, 2" .= |p\"™

é",i for k € {0,1,..., PN —1}. The approximate number of complex multiplicatibper step is given in the right
column of Table II, and per-symbol averages are summarizédble Il (assumingV/ iterations) for both BDFE
and non-BDFE cases. We include the cost of transforming tfoevk time-domain channel coefficients,, ;} to
frequency-domain channel coefficiedt®((i, )}, as well as that of post-cursor IFI cancellation in the BDREESe
Table Il also includes the per-symbol cost of a fast versibthe LTV-channel FIR-MMSE-DFE.

The details of each step are enumerated below in correspoadeith the left column of Table Il. For brevity,
we useD := 2D + 1 in the sequel. We make frequent use of the prop#tt®(a)F? = C(Fa/v/PN). Finally,
we assume thaPN-length FFTs require; PN log, (PN) and PN log, (PN) complex multiplies for real- and

complex-valued inputs, respectively (as per the radix-2l6oTukey algorithm [25]).

"While the number of additions and divisions could also bented, we feel that such an endeavor would complicate thesptaon

without providing significant additional insight.
%See the “Fast FIR-MMSE-DFE Details” document which will bade available as a technical report.
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Detail 1: At each frame index, we must compute the frequency domain coefficiehts, 0), or {H(i,¢)},” Lps‘

when BDFE is used, from the time-domain channel coefficidits;}. If we define the time-domain matrix

H(i,¢) € CN*PN such thatiH (i, £)],,; := hiN+niaepN+n—1, then (9) can be rewritten

Nb 1N;—1
Hdkz i, E Z Z FJ dn nn[ﬁ(ivg)]n,l[F]l,k (33)
n=0 [=0
which implies
H(i,{) = FIDMb)H(i,{)F (34)

for the frequency-domain matri¥ (i, ¢), a rearrangement oft(i,¢) defined such thatH (i, ¢)]q, = Haz(i,£).
Note thatH (i, /) has at mosP N IV, nonzero elements, and that we are only interested in cong)utilyf) rows
of H(i,¢). With this in mind, we see that computation #fD(b)H (i,¢) costs PN N, multiplies. Multiplication
by the left F' in (34) can be accomplished hy;, FFTs for a cost ofV, PN log, PN multiplies, after which only
D rows of F.J D(b)H (i, /) are retained. Finally, multiplication by the rigi#t in (34) can be accomplished using
D FFTs, for a cost oD PN log, PN multiplies. In total, PN N;, + (N, + D)PN log, PN multiplies are needed
for each(s, ¢) pair.

Detail 2: In the BDFE case, the frequency domain observation is cospas

Lpst
z(i) = FID(b iuzeiz—ep), (35)
wherei(z’) := F5(i). The non-BDFE case is similar, but without the IFI cancifatThe first term inz(i) requires
Ny+ PN log, PN multiplications per frame to compute, while the second imLpstﬁPN since’H (i, ¢) contains
only DPN non-zero elements. Sinééz') needs to be computed only whéeéns a multiple of P, it requires an
average of 5PN log, PN multiplications per frame. Using” = 2 and the approximatioV, ~ PN, we get a
total of (DLpst +1)PN + 1.5PN log, PN multiplications per frame.

Detail 3: From (11) and the property D(b) = D(Jb), it follows that CCH = FD(s%Jb © Jb*)F
=C (WUZF (Jbo Jb*)). Thus, thePN coefficients that specif¢C* can be computed in roughBPN +
1PN log, PN multiplies. Notice thaC,C{! is a sub-block ofCC*, and that the Toeplitz nature GC* implies
that C.C1# is identical for everyk.

Detail 4: This step initializes the recursive computation Bf* := VPN (H,.F D(v™)FIH[! + C,CY),
where we note/PN F D(v™)FH = ¢(u(). For computation ofH, C(u™)HE, we first computeH, C(u™),

then post-multiply the result by . But sinceH}! contains onlydD +1 ~ 2D non-zero rows, onIQf) non-zero
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columns of Hy C(u™) need be computed. This requiré§3 multiplications, sinceH, containsD rows, each

with onlyﬁ non-zero elements. Using a similar reasoning, the postiptiaation also require553 multiplications.

i (n) ; : . (n) ®k 0k (n) Qk 95
Detail 5: R, can be inverted directly or recursively sindg, /, = o when R, = . In
0y Ok 61 Oy
the direct method, we first computél,; 0]t to obtalan(‘CJr)1 from R,g"). Cost-wise, this is similar to computing

one column (i.e.,‘L/lN) of the total elements) oR(()"), requiring2l~)2 multiplies. The direct inversion of Hermitian

41 then requires an addition%lf)3 multiplies (using LDL* factorization [23]). The procedure for recursive

-1

computation of(RkH) ! follows directly from the well-known block-matrix inveisi formula [26] =
C D

A Y 1+BP'CcA™") —A'BP! _ o
,WwhereP := D—CA~!'B, and is detailed in Table IV. In summary, the
-pPlcA™! p!

total cost of the direct and recursive inversions are appmbely2l~)2+ %53 and7D? multiplications, respectively.

Detail 6: Since’H,, containsD rows, each with onlf) nonzero elements, the calculationﬂ&V(")ik consumes
only D? multiplies. Multiplication by (R'" )) 1 consumes an additiond)?.

Detail 7: LLR updating requires{y." PN wherey™ = ¢! D(v™)q{™. Note that the explicit cal-
culation of Q™ as defined in (24), would involve PN FFTs of lengthPN, and thus a total complexity of

O(P?N?log, PN). In Appendix 1I-A we show that

2D
1
(n) — - =(n)\ pH (M ()=

Y \/ﬁdl:z_;DFD(Tl_du )F (a;’ ©a; ) (36)

where[y™]; = ¢\, @™ .= FHy™), T} = C(ig), ) is the right circulark-shift matrix, and where
a&") = Fdiag,(G™) (37)

PN-1

G = Z Hi g iy (38)

Note thatii(™ is simply a rearrangement f™). Thek" column of G(" equaISHng,i”) and requiresﬁ2 multiplies

to compute, and sG(™) reqwresPND2 multiplies to compute. Computation ¢, }22 ,,, involves4D +1 ~ 2D
FFTs for a total cost 01‘25PNlog2 PN multiplies. For each(d,l) pair, the computation of (36) requires an
additional2PN + 2PN log, PN multiplies. However, due to conjugate symmetry, only abuait of the ~ 4D?
pairs need be evaluated. Hence, using (36) rather thant dioecputation ofQ (", the calculation of{yli”) fﬁg‘l

requires only aboutD2(PN + PN log, PN)+2DPN log, PN +PND?, or 5D2PN + (4D?+2D) PN log, PN,

multiplies.
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Detail 8: LLR updating also requiregz(”) kpi\g ! wherezk : ||p ||2 In Appendix II-B we show that

(n) _ HE\ pH (M) ~ =(n)*
z FD Tl JF7b) F Oa , (39)
5, > ) F(af) o af)
where[z™], = 2", Bl == SN0 by 280 ., and
&) = F diagy(G™) (40)
PN-1
a" = 3 g, (41)

Note thatF’b can be computed in advano@,(”) requires no computation, ar{cﬁ&")}fl):_[) involves D FFTs,
for a total cost ofDPN log, PN multiplies. For eaclid, ) pair, (39) requires an addition2PN + 2PN log, PN
multiplies, but only about half of the? pairs need be evaluated (due to conjugate symmetry). Heatmjlation
of {z{"}PN=1 requires abou D?(2PN + 2PN log, PN)+ DPN log, PN, or D2PN + (D2 4+ D)PN log, PN,
multiplies.

Detail 9: LLR updating also reqU|re$Qkk PNL From (24), (37), (38), and Lemma 1, it follows that

= LS el 42)
PN d=-2D

As reported in Table Il, direct evaluation of (42) requiré® + 1 ~ 2D multiplies for eachk. Note that, if
PN-1

2D > log, PN, it would be more efficient to compul{er kT k=0 using a singleP N-point FFT. However, since

the cost of this step is relatively small, the differencenisignificant.

VI. NUMERICAL RESULTS

In this section, we compare the performance and compleXitheofast iterative frequency domain equalization
(IFDE) algorithm summarized in Table Il with the well knowtR-MMSE-DFE. While the FIR-MMSE-DFE was
originally derived for LTI channels [17], it can be straifgrivardly extended to the LTV channel casand then
design a recursive algorithm to update the filter coeffigaitthe symbol rate assuming a fixed estimation delay
A. In all simulations, BPSK symbols are transmitted over ay®WSSUS Rayleigh-fading channel with uniform
power profile (i.e.0? = Nh‘l) that is generated using Jakes method [27]. Throughout,ssanae IFDE uses an
ICI radius of D = [ f4TsPN| and frame overlap factor aP = 2. Both IFDE and FIR-MMSE-DFE designs are
based on known time-domain coefficierts, ;};"; .

3See the “Fast FIR-MMSE-DFE Details” document which will bade available as a technical report.
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First, we establish IFDE-BDFE design rules for frame lengti and number-of-iterations/. While we will see
that smaller values oP N (for fixed INV,,) are advantageous from a complexity standpoint (see Figxperiment$
suggest the choic® N > 4N, for good symbol error rate (SER) performance. With radixf2T'& in mind, we
choosePN = 2[l°2:4N:1 in the sequel. A related set of experiméntims shown that SER performance improves
with M up to aboutM = 10, after which there is little additional improvement. Irgstingly, we find that, after
2 iterations, IFDE-BDFE gives approximately the same peménce as FIR-MMSE-DFE. Hence, we focus on
IFDE-BDFE-2 and IFDE-BDFE-10 in the sequel, i.e., IFDE-BPHsingM = 2 and M = 10, respectively.

Next, we establish FIR-MMSE-DFE design rules for feedfaxvéilter length Ny and estimation delay\,
assuming that the feedback filter is just long enough to daalcpost-cursor ISI. To investigate the effect &Af we
fixed N; = N}, and conducted experimeftsieasuring MSE for several values df; (assumingfyZs = 0.0075
and SNR=10dB). Since the choick = Ny — 1 maximized performance in every case, we adopt this rule. To
investigate the effect oiV;, we fixedA = Ny — 1 and conducted experiments measuring MSEseveral values
of SNR (whenfyTs = 0.0075 and IV, = 64). In every case, performance increased wil, though the gains
diminished rapidly whenV, > IV;,. With complexity in mind, we adopt the rul&’y = Ny,

Having established IFDE-BDFE and FIR-MMSE-DFE design suleve are ready to compare the two ap-
proaches in performance and complexity. In Fig. 6, we com@ER performances wheN;, = 64 and f47s €
{0.001, 0.003,0.0075} over a wide range of SNR. Note that, at @ll7s, IFDE-BDFE-2 performs equivalently to
FIR-MMSE-DFE whereas IFDE-BDFE-10 outperforms FIR-MM®EE, significantly so when SNR 5. We also
plot the matched-filter bound (MFB) [18]—the ultimate in ¢aded) receiver performance—which is not far from
IFDE-BDFE-10.

Figure 7 examines the multiplies-per-symbol ratio of FIRABE-DFE to IFDE-BDFE-2 using the expressions in
Table Ill. Note that values- 1 in Fig. 7 imply a complexityadvantagefor IFDE-BDFE, and that this complexity
advantage increases witN;, and decreases withiyTs. Since FIR-MMSE-DFE and IFDE-BDFE-2 have similar
performance, Fig. 7 constitutes a dir@ctmplexitycomparison. A similar comparisdetween FIR-MMSE-DFE
and IFDE-BDFE-10 also shows complexity advantage over a& wéthge of( Ny, fy47Ts).

A final comment regarding the complexity comparison Fig. hisrder. One could argue that the FIR-MMSE-

4See Fig. 1 in the “Simulation Details” document.
5See Fig. 2 in the “Simulation Details” document.
6See Fig. 3 in the “Simulation Details” document.
"See Fig. 4 in the “Simulation Details” document.
8See Fig. 7 in the “Simulation Details” document.
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DFE, which—for our LTV channels—calculates a filter updeserysymbol period, is “overkill” for slowly varying
channels. For these channels, decent performance shauili fi®mm approximating the LTV channel response as
fixed over, say,N; symbol intervals and designing a sindiged MMSE-DFE to operate over thig/y-symbol
interval. In this case, there exist computationally effitienplementations that exploit the Toeplitz structure loé t
channel matrix [17], [28]. But for what range ¢f475s, V) will the channel be “slow enough” for this block-LTlI
approximation to hold? Numerical experimehat 10dB SNR have shown that this block-LTI approximation results
in an equivalent SNR loss ¢ 3dB whenfyTs N, > 0.11 and a loss of: 1dB whenfyTs N, > 0.06. For reference,

the curvesfyTs N, = 0.11 and f4Ts N, = 0.06 were superimposed on Figs. 7.

VIlI. CONCLUSION

In this paper, we presented an iterative frequency domaialegtion (IFDE) scheme for single-carrier transmis-
sions over noisy doubly dispersive channels. Time-domandewing is used make the effective ICI/IFI response
sparse, after which iterative symbol estimation is perfednin the frequency domain. The estimation algorithm
leverages the finite-alphabet property of symbols, thesepHCI/IFI structure, and the low computational cost of
the FFT. Simulations show that the IFDE performs signifiyabetter than the FIR-MMSE-DFE and within about
1 dB of the MFB over the SNR range of interest. A fast versionthef IFDE algorithm was also derived and its
complexity compared to that of a fast FIR-MMSE-DFE for LTVaginels. The IFDE algorithm was found to yield

significant cost savings relative to the fast FIR-MMSE-DFE feasonable channel lengths.
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APPENDIX |

CONDITIONAL MEAN AND VARIANCE
From (18), (20), and the definition @f™ (b)
pM ) = 'HFHZik B{i"|s; = b}
_ HFHZ e(87 + g (Blwils = b} - H,E))
_ S QU 5)

which leads to (22). In the last step above, we used the fattfify|s; = b} = H.F (5™ +4;(b — 5)) =
ka(”)Jr’Hszl(b ( )) Next we find an expression f([rrl(")(b)P. Before doing so, however, it will be convenient

to note from (18) and (20) that
s = i pH Z e (B + gl (@r - H,E))
= HpH Z (E(" + g (HyFs+ Cr — ’HkF§(”)))
Zf(n‘*‘ZlQ H(s—5M) +if Py
= " 0) +if' QM (s — 5™ +i(s" — b)) +if P (43)
and that, sinc&{s|s; = b} = 3™ — 4,(s\" — b),
B{ (s = 5™ + (5" — b)) (s = 5@ + (5" ~ )]s = b}
= Cov(s,s|s; =b)
= D(™) — qiff ™. (44)
Using (43), (44), and the definition ef™ (b),
o O = B{G" i) (5 — ) st = b}
= i’ QM (D(v) — iyif'vf”) Qi + 0%l P P,

which leads to (23).
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APPENDIX Il
FAST-IFDE DETAILS
A. Derivation of (36)
Here we derive an expression fgf"™) enabling fast computation. First, however, we present &ulsEmma.

Without loss of generality, we omit superscripts in this epgix.

Lemma 1. If H € CPN*PN has the banded structure of Fig. 1 wifpD + 1 non-zero diagonals, and iB =

FAHF, then
[Blnm = Z el P nd Fdlagd(H)]<m—n)
/ d__ b PN
Proof. Denotea, = diag;(H), so that[H],,, = an—mm Wherea; := [ag];. Then, sinceay = 0 for d ¢
{=pD,...,pD},
| PNZIPN-1 ‘
[B]n,m — m ejﬁnkak—l,le_]ﬁl
k=0 1=0
. PN-1
= 5y 2 O™ "dzadleﬂl "
d=—pD
i 5 o
= — e’ P [Fad]<m_n>PN,
PN d=—oD
where we used the substitutioh= £ — . O

From (24), (37), (38), and Lemma 1

Qnm Z 7 ag] iy, (45)
d_—2D
whereayg := F diag,(G). With ag ,, := [ag]m, We find
PN-1
Y = Z |Qn,k|2vn
n=0
PN-1 2D

1 — *
= px X v D e aguen, 0,
n=0  dl=—2D

PN-1 2D

1 52T m *
- ﬁ Z Ulk—m) p Z Ton (k= )advmal,m (46)
m=0 d,l=—2D

where, for (46),m = (k —n)py SO thatn = (k —m)p,. Defining the matrixD;, := D(Fi;) and the vector

B(d,1) such thatB(d, )]m = aamai

2D
y = > Di_4C(v)D{,3(d,1) (47)

dl=—2D
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Using the propertyD, F' = FTy,

1
VPN
D,_,C(v)D', = VPND, 4FD(Fv)FED[,

1
= — FT, ;,D(Fiv)TH? FH
\/W l—d ( )ld

1
= ——FD (T, 4Fiv) FY. 48

Substituting (48) into (47) yields (36).

B. Derivation of (39)

Here we derive an expression faf™ enabling fast computation. Without loss of generality, waitosu-
perscripts in this appendix. From the definition §f we notice Cg, = C*g,, and thus, with (11), (25),
and (41), we haveP = C"Y, g, F = CHGF = D(*)JYFEGF. Then we can writez;, = |p,||> =

S A FE GF)yy  if? SinceG is banded witt2D+1 non-zero diagonals, Lemma 1 implig” GF] 1 =

PN>

1 D j 27 nd ~ - =
JEN Zd:—D eJPn™ ad’<k_”>mv for Qg m = [ad]m. Thus

1 Ny—1 2
2K = by, Z eI PN Mg ke,
n=0
Ny—1
_ 2 —jiZZn(l—d) =
- NZV)\ Z e m O, (k=) e O, (k=)
dl=—D
PN-1
e 2 B 3
Y ai—p

whereb, := 320" by . 1200y, —m- Using Dy, from Appendix II-A, and definingd(d, 1) such tha{B(d, 1)],, =

Qa,m@j ,,, We find that

Z D,;_4C(b)D{’ ;B(d, 1) (49)
di=D

where [b],,, = b,,. Similar to Appendix II-A, we substitutd;_,C(b)DF , = FD(T,_4FHb)F into (49)

ﬁ
to get (39).
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Fig. 1. Desired “banded” structure of matrg((s, 0).
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L =ow
forn=0,1,2,...
fori=0...PN —1,
5 = tanh(L{"™ /2)
vt =1 (5"
end
t_(n) — F§(n)
fork=0...PN —1,
g\ = (M F D™ FIH] + 0*CCIT)~
x HiF D(v™)F3
ilin) _ zén) + gI(Cn)H(a:k _ ka(n))

end

1

s = pr™

QW = F" (T mllg il ) F
PO (S ollgill ) F
fori=0...PN —1,

(m) (4(m) _ 5(m) ]
Lo gy (Ref@i 5" — 5™} + Q17 Psi™)
l -

n)H
g D)™ — QI 2™ + o2|py |12
end

end

TABLE |

SUMMARY OF ITERATIVE SYMBOL DETECTION.
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Step

Cost Per Step

H(i,¢) = FJD(b)H (i, ¢)F for appropriatel
computex(z) from (35)
> = VPNC.C¥
L =owvi
forn=0,1,...,M — 1
fori=0,1,...,PN — 1
5" = tanh(L{™ /2)
o =1—(5")?
end
& = ps™
u™ = Fp™
R = HoC(u™YHY + =
fork=0,1,...,PN —1
compute(R{™)~!
g\ = (B) M Cu™)in
i =1 + g (o — HiE™)
end
s = FAt
compute{y\™ }FN"1 {a,}2P_,p, from (36)-(38)
compute{z\™}7N -1 from (39)-(41)
fori=0,1,...,PN — 1

[ = b Tl aplayl el PR

LT VPN
Re{Q{") (5{") =5 }+1Q)7} 125\

(n)

L(n‘H) — L(”) 4
1 T BN IENOINEN O

PNN, + (Ni + D)PN log, PN
(DLpst + 1)PN + 2PN log, PN
2PN + 1PN log, PN

0

%PN log, PN
%PN log, PN
3D?

min {2D%+1 D%, 7D? }
2D?
52

PN log, PN
5D?PN + (4D + 2D)PN log, PN
D?PN + (D + D)PN log, PN

2D
6

end
end
TABLE Ii

FAST IMPLEMENTATION OF THE ITERATIVE SYMBOL DETECTOR
IFDE-noBDFE:

8MD*/N + [2+ (N + D) + M(5D* + 3D + 2)| Plog, PN

+ [3 + Ny + M (min{gﬁf’, 5D%} +11D% + 2D + 8)} P

IFDE-BDFE:

3MD?®/N + [2 + (Lpst + 1)(Ny + D) + M(5D* + 3D + 2)} Plog, PN
+ [3 4 Los(D + Nu) + No + M (min{gﬁf’, 5D} +11D% + 2D + 8)] P

FIR-MMSE-DFE:

[S]e]

e 2
N? - INj—1

TABLE 11l

RELATIVE ALGORITHM COMPLEXITY (PER SYMBOL).
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Step Cost
H
« a
SRR -5 0
arg Ak
©,.'= Ay — o laral D?
computed;, and 6y, 3D2
by = —©; 10, D?
~ ~H ~ —1 ~
By = (ek i @,;19k) D2
Rl _ O, "' +brby Br b 2
ht1 = =
by Bk B
TABLE IV

RECURSIVEUPDATE OF(REC”))*l
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