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We assume in this document that all quantities are real-valued. Extension to complex-valued

quantities is straightforward.

I. Maxima of |Ky| along the boundary of C(0)
ν ∩ S.

From the definitions of the dominant cone C(0)
ν and the unit sphere S, points q on the boundary

of C(0)
ν ∩S have the properties that |q(0)

ν | = max(`,δ)6=(0,ν) |q(`)

δ | and ‖q‖2
2

= 1. For a particular pair of

maximum elements {q(0)
ν , q(`)

δ }, let us define q̆ to be the vector q with these two maximum elements

omitted. Then since 1 = ‖q‖2
2

= 2|q(0)
ν |2 + ‖q̆‖2

2, we know that |q(0)
ν | =

√

(1 − ‖q̆‖2
2)/2. Note that q̆

parameterizes the (`, δ)th edge of the C(0)
ν ∩S boundary when the magnitude of the largest coefficient

in q̆ is at most |q(0)
ν |. (By the “(`, δ)th edge,” we mean the boundary between the dominant cones

of desired component q(0)
ν and interference component q(`)

δ . The union of the (`, δ)th edges for all

(`, δ) 6= (0, ν) forms the boundary of the desired cone.)

The kurtosis of responses on the (`, δ)th edge can be written

Ky =
∑

k

‖q(k)‖4

4
K(k)

s

= |q(0)
ν |4K(0)

s + |q(`)

δ |4K(`)
s +

∑

k

‖q̆(k)‖4
4 K(k)

s

=
(

1 − ‖q̆‖2
2

)2 (
K(0)

s + K(`)
s

)
/4 +

∑

k

‖q̆(k)‖4
4 K(k)

s (1)

where q̆
(k) extracts the elements of q̆ corresponding to source k.

Below we evaluate the gradient and Hessian of Ky to show that there exists a unique local

maximum of |Ky| at the point q̆ = 0 as long as K(`)
s 6= −K(0)

s . Using straightforward calculus, it is

possible to derive the component of the gradient of Ky in the direction of q(a)

b :

[∇q̆Ky]
(a)

b
=

(

(‖q̆‖2
2 − 1)(K(0)

s + K(`)
s ) + 4(q(a)

b )2K(a)
s

)

q(a)

b (2)

and component of the Hessian in the directions q(a)

b and q(c)

d :

[Hq̆Ky]
(a,c)

b,d
=







(2(q(a)

b )2 + ‖q̆‖2
2 − 1)(K(0)

s + K(`)
s ) + 12(q(a)

b )2K(a)
s , (a, b) = (c, d),

2q(a)

b q(c)

d (K(0)
s + K(`)

s ), (a, b) 6= (c, d).

(3)

A stationary point occurs when the gradient components obey [∇q̆Ky]
(a)

b
= 0 ∀(a, b) /∈ {(0, ν), (`, δ)}.

Hence, from (2),

q(a)

b

∣
∣
stationary

=
1

2
α(a)

b

√

(1 − ‖q̆‖2
2)
K(0)

s + K(`)
s

K(a)
s

, for α(a)

b ∈ {−1, 0, 1}. (4)
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Note that for stationary point coefficients q(a)

b 6= 0, we require that 0 < K
(0)
s +K

(`)
s

K
(a)
s

< ∞. (Recall

‖q̆‖2
2 ≤ 1.) Solving the family of equations (4) for ‖q̆‖2

2, and plugging the result back into (4), we

can derive an explicit expression for the coefficients of a stationary point. Using M (k) to denote

the number of nonzero gradient coefficients associated with the kth source, it can be shown that

q(a)

b

∣
∣
stationary

= α(a)

b





√
√
√
√

4K(a)
s

K(0)
s + K(`)

s

+ K(a)
s

∑

k

M (k)

K(k)
s





−1

(5)

Evaluating the Hessian at the stationary points, we find from (4) and (3) that

[Hq̆Ky]
(a,c)

b,d

∣
∣
stationary

=







1
2(1 − ‖q̆‖2

2)(K
(0)
s + K(`)

s )
(

(α(a)

b )2
(
K

(0)
s +K

(`)
s

K
(a)
s

+ 6
)

− 2
)

(a, b) = (c, d),

1
2(1 − ‖q̆‖2

2)(K
(0)
s + K(`)

s )

(

α(a)

b α(c)

d
K

(0)
s +K

(`)
s√

K
(a)
s K

(c)
s

)

(a, b) 6= (c, d).
(6)

Note that
√

K(a)
s K(c)

s is positive when α(a)

b and α(c)

d are both nonzero: since we previously required

that ∞ > K
(0)
s +K

(`)
s

K
(a)
s

> 0 and ∞ > K
(0)
s +K

(`)
s

K
(c)
s

> 0, it follows that K(a)
s and K(c)

s must be nonzero with

the same sign.

For a stationary point to be a local maximum (minimum), it must have a negative (positive)

definite Hessian. Furthermore, a matrix is ND (PD) if and only if all of its principle minors are ND

(PD). Thus, we are motivated to consider the 2× 2 Hessian minors. From (6), they have the form

1

2
(1 − ‖q̆‖2

2)(K(0)
s + K(`)

s )






(α(a)

b )2
(
K

(0)
s +K

(`)
s

K
(a)
s

+ 6
)

− 2 α(a)

b α(c)

d
K

(0)
s +K

(`)
s√

K
(a)
s K

(c)
s

α(a)

b α(c)

d
K

(0)
s +K

(`)
s√

K
(a)
s K

(c)
s

(α(c)

d )2
(
K

(0)
s +K

(`)
s

K
(c)
s

+ 6
)

− 2.




 (7)

Consider the three cases:

1. q(a)

b = q(c)

d = 0: Setting {α(a)

b , α(c)

d } = {0, 0}, the matrix in (7) takes the form

1

2
(1 − ‖q̆‖2

2)(K(0)
s + K(`)

s )




−2 0

0 −2



 ,

which is ND when K(0)
s + K(`)

s > 0 and PD when K(0)
s + K(`)

s < 0.

2. q(a)

b 6= 0, q(c)

d = 0: Setting {α(a)

b , α(c)

d } = {±1, 0}, the determinant of (7) equals

−1

2
(1 − ‖q̆‖2

2)
2(K(0)

s + K(`)
s )2








4 +
K(0)

s + K(`)
s

K(a)
s

︸ ︷︷ ︸

≥0








,

which is negative (assuming K(0)
s + K(`)

s 6= 0) implying (7) is indefinite.
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3. q(a)

b 6= 0, q(c)

d 6= 0: Setting {α(a)

b , α(c)

d } = {±1, 1}, the determinant of (7) equals

1

4
(1 − ‖q̆‖2

2)
2(K(0)

s + K(`)
s )2

(

4 +
K(0)

s + K(`)
s

K(a)
s

+
K(0)

s + K(`)
s

K(c)
s

)

,

which is positive (assuming K(0)
s + K(`)

s 6= 0), hence (7) is either ND or PD. Noting that the

elements on the diagonal are positive when K(0)
s + K(`)

s > 0 and negative when K(0)
s + K(`)

s < 0,

we see that (7) will be PD when K(0)
s + K(`)

s > 0 and ND when K(0)
s + K(`)

s < 0.

Note from (4) that K(0)
s + K(`)

s = 0 implies q̆ = 0, thus the assumption that K(0)
s + K(`)

s 6= 0

in cases 2 and 3 above is justified. From the three cases above, we see that the only q̆ locally

maximizing/minimizing Ky are q̆ = 0 and q̆ with strictly nonzero elements. Taking the case

K(0)
s + K(`)

s > 0, the point q̆ = 0 yields a local Ky maximum of (K(0)
s + K(`)

s )/4 according to (1).

When K(0)
s +K(`)

s < 0, the point q̆ = 0 yields a local Ky minimum of (K(0)
s +K(`)

s )/4. In either case,

|Ky| attains a local maximum at q̆ = 0. (Using similar arguments, it can be shown that q̆ with

strictly nonzero elements yields a |Ky| local minimum.) To conclude, the local |Ky| maximum over

the (`, δ)th edge of the C(0)
ν ∩ S boundary occurs at q̆ = 0 as long as K(0)

s + K(`)
s 6= 0. (In the case

K(0)
s + K(`)

s = 0, it is easy to see from (1) that q̆ = 0 gives Ky = 0, and so q̆ = 0 must be a local

minimum of the non-negative quantity |Ky|.)
So far we have determined the local |Ky| maximum in the q̆ space. But earlier we specified that

the valid region of q̆ is constrained to vectors whose largest element has magnitude of at most

|q(0)
ν |. Hence, there is a possibility that the maximum value of |Ky| might not be attained at the

local maximum of our desired region, but rather on the boundary of our desired region in the q̆

space. (The maximum of |Ky| will definitely be attained on the boundary of the q̆ region when

K(0)
s + K(`)

s = 0, where we found that no local maxima exist.) These boundary points have the

property that there exists some pair (m,n) /∈ {(0, ν), (`, δ)} such that |q(m)
n | = |q(0)

ν | = |q(`)

δ |. We can

parameterize the boundary of the q̆ region using ˘̆q, where ˘̆q if formed by removing the coefficients

q(m)
n , q(0)

ν and q(`)

δ from q. But writing

Ky = |q(0)
ν |4K(0)

s + |q(`)

δ |4K(`)
s + |q(m)

n |4K(m)
s +

∑

k

‖ ˘̆q(k)‖
4

4 K(k)
s

=
(

1 − ‖q̆‖2
2

)2 (
K(0)

s + K(`)
s + K(m)

s

)
/9 +

∑

k

‖ ˘̆q(k)‖
4

4 K(k)
s (8)

and noticing the similarities between (8) and (1), it is evident that the search for |Ky| maxima

over ˘̆q is analogous to the search over q̆: we get a local maximum of |Ky| = |K(0)
s + K(`)

s + K(m)
s |/9

at ˘̆q = 0, with the possibility for a non-local maximum on the boundary of valid ˘̆q. This process
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(of searching over the boundary of the boundary of the boundary) repeats itself until we have no

more free parameters. At the end, we have a family of candidate points {q} with M = 2, 3, 4, . . .

nonzero coefficients of equal magnitude
√

1/M , where the set of nonzero indices includes (0, ν).

Using M (k) to denote the number of nonzero coefficients associated with the kth source (so that

M =
∑

k M (k)), these candidate maxima have absolute kurtosis

|Ky| =

∣
∣
∣
∣
∣

∑

k

∑

i

|q(k)

i |4K(k)
s

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∑

k

M (k)(
√

1/M )4K(k)
s

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

1

M2

∑

k

M (k)K(k)
s

∣
∣
∣
∣
∣

=
1

M2

∣
∣
∣
∣
∣
∣
∣

K(0)
s + (M (0) − 1)

︸ ︷︷ ︸

≥0

K(0)
s +

∑

k 6=0

M (k)K(k)
s

∣
∣
∣
∣
∣
∣
∣

≤ 1

M2

∣
∣K(0)

s

∣
∣ +

M − 1

M2
max

k

∣
∣K(k)

s

∣
∣

≤ 1

4

(
∣
∣K(0)

s

∣
∣ + max

k

∣
∣K(k)

s

∣
∣

)

where the last step follows from the restriction M ≥ 2. To conclude,

max
q∈bndr(C

(0)
ν ∩S)

|Ky(q)| ≤ 1

4

(
∣
∣K(0)

s

∣
∣ + max

k

∣
∣K(k)

s

∣
∣

)

(9)

II. Suprema of |Ky| in C(0)
ν ∩ S.

Parameterizing q ∈ C(0)
ν ∩ S by q̄, which is q with the element q(0)

ν removed, we have

Ky = |q(0)
ν |4K(0)

s +
∑

k

‖q̄(k)‖4
4 K(k)

s

=
(

1 − ‖q̄‖2
2

)2
K(0)

s +
∑

k

‖q̄(k)‖4
4 K(k)

s (10)

which is exactly (1) if we make the substitutions K(`)
s → 3K(0)

s and q̆ → q̄. Thus, the results of

the previous section imply that there exists a unique local |Ky| maximum at q̄ = 0 (always, since

K(0)
s 6= 0) attaining the value |K(0)

s |. Note that q̄ = 0 corresponds to q = e
(0)
ν .

We must also consider whether larger values of |Ky| are attained on the boundary of the open

set C(0)
ν ∩ S. Recalling that (9) gives an upper bound for |Ky| on the boundary, if

|K(0)
s | >

1

4

(
∣
∣K(0)

s

∣
∣ + max

k

∣
∣K(k)

s

∣
∣

)

,
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we can be sure that the supremum of |Ky| over C(0)
ν ∩ S is attained at the point q = e

(0)
ν with value

|K(0)
s |.

III. Suprema of |Ky| over {q̄ ∈ Q̄C∩S : ‖q̄‖2
2 > 1

2}

To determine the suprema of |Ky| over

Q̄C∩S,>0.5 := {q̄ ∈ Q̄C∩S : ‖q̄‖2
2 >

1

2
},

we first consider the interior of Q̄C∩S,>0.5. Since we have shown (in the previous section) that

the unique local maximum within Q̄C∩S occurs at q̄ = 0, there exists no local maximum within

Q̄C∩S,>0.5, and thus the supremum over Q̄C∩S,>0.5 is attained on the boundary. Since

bndr(Q̄C∩S,>0.5) = bndr(Q̄C∩S) ∪ {q̄ : ‖q̄‖2
2 =

1

2
}

the |Ky| supremum over bndr(Q̄C∩S,>0.5) will either occur on the boundary of Q̄C∩S or in {q̄ :

‖q̄‖2
2 = 1

2}.
Since we have already examined |Ky| on bndr(Q̄C∩S), we now focus on Ky(q̄) when ‖q̄‖2

2 =

1
2 . Such q̄ can be parameterized by q̆, defined as q with elements q(0)

ν and q(`)

δ omitted, for all

combinations (`, δ) 6= (0, ν). Since 1 = ‖q‖2
2

= |q(0)
ν |2 + ‖q̄‖2

2 = |q(0)
ν |2 + 1

2 , we have |q(0)
ν |2 = 1

2 , and

since 1
2 = ‖q̄‖2

2 = |q(`)

δ |2 + ‖q̆‖2
2, we have |q(`)

δ |2 = 1
2 − ‖q̆‖2

2. Thus

Ky =
∑

k

‖q(k)‖4

4
K(k)

s

= |q(0)
ν |4K(0)

s + |q(`)

δ |4K(`)
s +

∑

k

‖q̆(k)‖4
4 K(k)

s

=
1

4
K(0)

s +

(
1

2
− ‖q̆‖2

2

)2

K(`)
s +

∑

k

‖q̆(k)‖4
4 K(k)

s . (11)

We now evaluate the gradient and Hessian of Ky(q̆). From (11), the Ky gradient component in the

direction of q(a)

b equals

[∇q̆Ky]
(a)

b
= 4

(

(‖q̆‖2
2 −

1

2
)K(`)

s + (q(a)

b )2K(a)
s

)

q(a)

b (12)

and Hessian component in the directions q(a)

b and q(c)

d equals

1

4
[Hq̆Ky]

(a,c)

b,d
=







(2(q(a)

b )2 + ‖q̆‖2
2 − 1

2)K(`)
s + 3(q(a)

b )2K(a)
s , (a, b) = (c, d),

2q(a)

b q(c)

d K(`)
s , (a, b) 6= (c, d).

(13)
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A stationary point occurs when the gradient components obey [∇q̆Ky]
(a)

b
= 0 ∀(a, b) /∈ {(0, ν), (`, δ)}.

Hence, from (2),

q(a)

b

∣
∣
stationary

= α(a)

b

√

(
1

2
− ‖q̆‖2

2)
K(`)

s

K(a)
s

, for α(a)

b ∈ {−1, 0, 1}. (14)

Note that for stationary point coefficients q(a)

b 6= 0, we require that 0 < K
(`)
s

K
(a)
s

< ∞. (Recall

‖q̆‖2
2 ≤ 1

2 .) Evaluating the Hessian at the stationary points, we find from (14) and (13) that

1

4
[Hq̆Ky]

(a,c)

b,d

∣
∣
stationary

=







(1
2 − ‖q̆‖2

2)K
(`)
s

(

(α(a)

b )2
(

2K
(`)
s

K
(a)
s

+ 3
)

− 1
)

(a, b) = (c, d),

(1
2 − ‖q̆‖2

2)K
(`)
s

(

2α(a)

b α(c)

d
K

(`)
s√

K
(a)
s K

(c)
s

)

(a, b) 6= (c, d).
(15)

Note that
√

K(a)
s K(c)

s is positive when α(a)

b and α(c)

d are both nonzero: since K
(`)
s

K
(a)
s

> 0 and K
(`)
s

K
(c)
s

> 0,

then K(a)
s and K(c)

s must be nonzero with the same sign. As before, we examine the 2 × 2 principle

minors:

1. q(a)

b = q(c)

d = 0: Using {α(a)

b , α(c)

d } = {0, 0}, the matrix takes the form

4(
1

2
− ‖q̆‖2

2)K(`)
s




−1 0

0 −1



 ,

which is ND when K(`)
s > 0 and PD when K(`)

s < 0.

2. q(a)

b 6= 0, q(c)

d = 0: Using {α(a)

b , α(c)

d } = {±1, 0}, the matrix takes the form

8(
1

2
− ‖q̆‖2

2)K(`)
s





K
(`)
s

K
(a)
s

+ 1 0

0 −1



 ,

which is indefinite (assuming K(`)
s 6= 0).

3. q(a)

b 6= 0, q(c)

d 6= 0: Using {α(a)

b , α(c)

d } = {±1, 1}, the determinant equals

16(
1

2
− ‖q̆‖2

2)
2(K(`)

s )2
(

1 +
K(`)

s

K(a)
s

+
K(`)

s

K(c)
s

)

,

which is positive (assuming K(`)
s 6= 0), hence the matrix is either ND or PD. Noting from (15)

that the elements on the diagonal will be positive when K(`)
s > 0 and negative when K(`)

s < 0, we

see that the minor will be PD when K(`)
s > 0 and ND when K(`)

s < 0.

Since K(`)
s = 0 implies q̆ = 0, the assumption that K(`)

s 6= 0 in cases 2 and 3 above is justified.

From the three cases above, we see that the only q̆ locally maximizing/minimizing Ky are q̆ = 0

and q̆ with strictly nonzero elements. Taking the case K(`)
s > 0, the point q̆ = 0 yields a local Ky

7



maximum of (K(0)
s + K(`)

s )/4 according to (11). When K(`)
s < 0, the point q̆ = 0 yields a local Ky

minimum of (K(0)
s +K(`)

s )/4. In either case, |Ky| attains a local maximum of |K(0)
s +K(`)

s |/4 at q̆ = 0.

(Using similar arguments, it can be shown that q̆ with strictly nonzero elements yields a |Ky| local

minimum.) If we compare these maxima over all choices (`, δ), we find that |Ky| is upper bounded

by |K(0)
s |/4 + maxk |K(k)

s |/4.
To conclude, the supremum of |Ky| over Q̄C∩S,>0.5 occurs on the boundary of Q̄C∩S,>0.5 and

attains a value of at most |K(0)
s |/4+maxk |K(k)

s |/4. Note that, since Q̄C∩S,>0.5 is open, the supremum

exists outside the set.
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