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We assume in this document that all quantities are real-valued. Extension to complex-valued

quantities is straightforward.

I. MAXIMA OF |K,| ALONG THE BOUNDARY OF Cy’ N S.

From the definitions of the dominant cone C” and the unit sphere S, points q on the boundary
of C3” NS have the properties that |¢y”| = max (g 5)4(0,v) \qé@] and HqH2 = 1. For a particular pair of

maximum elements {q.’, q' qs 91, let us define § to be the vector g with these two maximum elements

212+ 113, we know that |gi”| = /(1 —[|§]|3)/2. Note that §

omitted. Then since 1 = ||q|| =2|qy
parameterizes the (£, 0)"" edge of the C)”’ NS boundary when the magnitude of the largest coefficient
in ¢ is at most |¢\”|. (By the “(¢,0)" edge,” we mean the boundary between the dominant cones
of desired component ¢’ and interference component qff). The union of the (¢,0)" edges for all

(¢,9) # (0,v) forms the boundary of the desired cone.)

The kurtosis of responses on the (£,5)" edge can be written

4 .
Ky = Z lla™ I, k5

- R - g 10+ DI 3K

2
(1 a3)” (9 K) /a4 3 I s )
k

where ¢ extracts the elements of ¢ corresponding to source k.
Below we evaluate the gradient and Hessian of K, to show that there exists a unique local
maximum of || at the point § = 0 as long as K # —KY. Using straightforward calculus, it is

possible to derive the component of the gradient of Ky in the direction of ql()“)
Vel = (I~ DK +K©) + 4K g @)
dilo s s 4y s )
and component of the Hessian in the directions ql(7 and q(c).
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A stationary point occurs when the gradient components obey [V4/C, ]\ =0 V(a,b) ¢ {(0,v), (¢,6)}.

Hence, from (2),

stationary 2
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@) = —az)\/u—uqu%)%, for oy € {~1,0,1}. (4)
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(0) (£)
Note that for stationary point coefficients ql()“) # 0, we require that 0 < % < 00. (Recall

14]|3 < 1.) Solving the family of equations (4) for ||§||3, and plugging the result back into (4), we
can derive an explicit expression for the coefficients of a stationary point. Using M® to denote

the number of nonzero gradient coefficients associated with the k™ source, it can be shown that
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& stationary - M IC(O) + IC(Z) + ’C Z . (5)

Evaluating the Hessian at the stationary points, we find from (4) and (3) that
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stationary - P 9 (a) () K(O)_HC(Z) > (6)
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Note that /KK is positive when a(“) and a(c) are both nonzero: since we previously required
that oo > % > (0 and oo > % > 0, it follows that K5 and K must be nonzero with
the same sign.é

For a stationary point to be a local maximum (minimum), it must have a negative (positive)

definite Hessian. Furthermore, a matrix is ND (PD) if and only if all of its principle minors are ND

(PD). Thus, we are motivated to consider the 2 x 2 Hessian minors. From (6), they have the form

a2 (K24 & o aPald KO 4O
. A0 Koy | ) - AW ~OrC]
5(1 - Hquz)( s +K7) (a) @ KO O ( (C)) KgO)HC(z) 16 5 (7)
A Orec] %4 < KO >— -

Consider the three cases:

1. g = ¢} = 0: Setting {oy”, '} = {0,0}, the matrix in (7) takes the form

1 g —2 0
S0 = B + k) ,
0 -2

which is ND when K{” 4+ K{” > 0 and PD when K" + K{” <
g’ #0, ¢ = 0: Setting {a”, o'’} = {£1,0}, the determinant of (7) equals

1 o kY + K
—5(1 —1gl13)* (K + KO | 4+ % )
—_—
>0

which is negative (assuming KC\” + Y # 0) implying (7) is indefinite.



3. ql()“) £ 0, qéc) = 0: Setting {al()“),aif)} = {%1, 1}, the determinant of (7) equals

© © © ©
HO- TP+ (44 B B

,Cga) —"_ ’C'(SC)

which is positive (assuming K + K # 0), hence (7) is either ND or PD. Noting that the

elements on the diagonal are positive when K + K% > 0 and negative when KO+ K% < 0,

we see that (7) will be PD when K + K% > 0 and ND when K + K9 < 0.

Note from (4) that K + K = 0 implies § = 0, thus the assumption that K + K # 0
in cases 2 and 3 above is justified. From the three cases above, we see that the only ¢ locally
maximizing/minimizing IC, are § = 0 and ¢ with strictly nonzero elements. Taking the case
K + K > 0, the point ¢ = 0 yields a local K, maximum of (K5’ + KY”)/4 according to (1).
When £ + K < 0, the point § = 0 yields a local Ky minimum of (KY +K) /4. In either case,
|IC,| attains a local maximum at ¢ = 0. (Using similar arguments, it can be shown that ¢ with
strictly nonzero elements yields a |Cy| local minimum.) To conclude, the local || maximum over
the (£,0)"" edge of the C{”’ N'S boundary occurs at § = 0 as long as K + K # 0. (In the case
K + K =0, it is easy to see from (1) that ¢ = 0 gives K, = 0, and so ¢ = 0 must be a local
minimum of the non-negative quantity |, |.)

So far we have determined the local |KC,| maximum in the § space. But earlier we specified that
the valid region of § is constrained to vectors whose largest element has magnitude of at most
lgs”|. Hence, there is a possibility that the maximum value of |KC,| might not be attained at the
local maximum of our desired region, but rather on the boundary of our desired region in the ¢
space. (The maximum of |IC,| will definitely be attained on the boundary of the ¢ region when
K 4+ K¢ = 0, where we found that no local maxima exist.) These boundary points have the
property that there exists some pair (m,n) ¢ {(0,v), (¢,5)} such that |gv"| = |¢5”| = |¢§”|. We can
parameterize the boundary of the ¢ region using q5, where q5 if formed by removing the coefficients

gv"”, ¢y and ¢’ from q. But writing

m m u(k), 4
Ky = 1qV1KD + gL + g 1K + ) g 1 K
k

12 s 4
(1-1gl3)” (K + K&+ k) 194+ D147 1l K& (8)
k

and noticing the similarities between (8) and (1), it is evident that the search for [ICy| maxima
over § is analogous to the search over §: we get a local maximum of |K,| = [K§ + K8 + K| /9

at 5 = 0, with the possibility for a non-local maximum on the boundary of valid (3 This process
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(of searching over the boundary of the boundary of the boundary) repeats itself until we have no
more free parameters. At the end, we have a family of candidate points {q} with M =2,3,4,...
nonzero coefficients of equal magnitude \/1/—M , where the set of nonzero indices includes (0, v).
Using M® to denote the number of nonzero coefficients associated with the k' source (so that

M =3, M™), these candidate maxima have absolute kurtosis

Kl = D0 a1k
k 7
= D> M®(/1/MKEP
k
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where the last step follows from the restriction M > 2. To conclude,

1
max IKy(q) < = (‘IC;O)| + max |le9")‘> (9)
gebndr€Vns) 4 k

I1. SUPREMA OF |[K,| IN CJ" NS.

Parameterizing g € ¢ NS by g, which is g with the element ¢ removed, we have

Ky = la? KO+ > 1a® ), K
k
_i2)? (|4
= (1-lal3) £+ Y g (10)
k

which is exactly (1) if we make the substitutions K¢’ — 3K and ¢ — q. Thus, the results of
the previous section imply that there exists a unique local |K ;| maximum at § = 0 (always, since
KO # 0) attaining the value |IC§;O) |. Note that § = 0 corresponds to q = e,

We must also consider whether larger values of |ICy| are attained on the boundary of the open

set Cy N S. Recalling that (9) gives an upper bound for |/C,| on the boundary, if
1
k01> ¢ (1| + mpx i)
4 k
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we can be sure that the supremum of || over C¥ NS is attained at the point q= e} with value

ISV

III. SUPREMA OF |K,| OVER { € Ocns : |Gl > &}

To determine the suprema of |K,| over
— _ _ 19 1
Qcns,>0.5 = {q € Qens - [|1ql5 > §}=

we first consider the interior of Qcﬂg,>0,5. Since we have shown (in the previous section) that
the unique local maximum within Qcns occurs at § = 0, there exists no local maximum within

ang7>0,5, and thus the supremum over QCmS,>0.5 is attained on the boundary. Since

bndr(@cms,>0.5) = bndT(QCmS) u{g: ||f7||§ =5}

the |KCy| supremum over bndr(Qcns ~0.5) will either occur on the boundary of Qcns or in {q :

12
lgll; = 3}-
Since we have already examined |K,| on bndr(Qcns), we now focus on K,(g) when ||g||3 =

%. Such g can be parameterized by §, defined as g with elements ¢ and q“) omitted, for all

combinations (¢, ) # (0,v). Since 1 = HqH |q(0) 24 HqH2 = |gs”|* + &, we have |¢;”|* = 1, and

()12

since § = 3 = ¢ + 112, we have [gl°[2 = 1 — [|4]}3. Thus

4
K, = Z g™, K&

(k)14 .
= \q“”!“Cw) g [ + D g™l K
k

1 10 oy 14 o
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We now evaluate the gradient and Hessian of ICy(q). From (11), the IC, gradient component in the

direction of ql()“) equals

a 9 1 a a a
Vol = 4 (413 - 0 + @K ) g (12)

and Hessian component in the directions q(“) and qilc) equals

(a) _ Lyg® )20 (g ) = (¢
[H K ](ac) _ (2( ) + ”q”2 2)]C +3( ) ]C ( 7b) ( 7d)7 (13)

2q," 4y K, (a,b) # (c,d).



A stationary point occurs when the gradient components obey [V4iC, ]\ =0 V(a,b) ¢ {(0,v), (¢,6)}.

Hence, from (2),

(a)
ay

(a) /ng) (a)
ay’ (——II I3 )IC“)’ for oy € {~1,0,1}. (14)

stationary

(0)
Note that for stationary point coeflicients q(a) # 0, we require that 0 < ”gfa) < o00. (Recall

||q||2 < 1.) Evaluating the Hessian at the stationary points, we find from (14) and (13) that

(5 = 1K ((0f)? (2555 +3) = 1) (@,b) = (e d),

stationary: o) (a) (C) 1 (15)
(4~ 112K <2a o W) (a,b) # (¢ d).

@ o . . a ¢ . (€) £)
Note that v/ KUK s positive when ozl() ) and ozil) are both nonzero: since ZW >0 and & C) > 0,

1 ae
HGT

then K and K must be nonzero with the same sign. As before, we examine the 2 x 2 prmmple

minors:

1. ¢ = ¢ = 0: Using {a}",a’} = {0,0}, the matrix takes the form
1 o2 -1 0
A~ K ,
0

which is ND when K{” > 0 and PD when K{” < 0.
2. ¢\ #0,q¢} = 0: Using {ey”, 0’} = {£1,0}, the matrix takes the form

1 e +1 0
o2 (@)
8(3 — IR | ,
0 -1

which is indefinite (assuming Ko #0).
3. ¢, #0,q #0: Using {oq”, o’} = {&1,1}, the determinant equals

1 o ]C(f) o
16 — W10 (1+ o + 1
which is positive (assuming K’ # 0), hence the matrix is either ND or PD. Noting from (15)
that the elements on the diagonal will be positive when K5 > 0 and negative when Y < 0, we

see that the minor will be PD when K > 0 and ND when K% < 0.

Since £ = 0 implies § = 0, the assumption that Y

# 0 in cases 2 and 3 above is justified.
From the three cases above, we see that the only ¢ locally maximizing/minimizing /C, are ¢ = 0

and § with strictly nonzero elements. Taking the case K > 0, the point ¢ = 0 yields a local Ky



maximum of (KC§” + K”)/4 according to (11). When K{” < 0, the point ¢ = 0 yields a local K,
minimum of (K" 4+ K5”)/4. In either case, |K,| attains a local maximum of [KC§” +K{”|/4 at § = 0.
(Using similar arguments, it can be shown that ¢ with strictly nonzero elements yields a || local
minimum.) If we compare these maxima over all choices (¢,6), we find that |IC,| is upper bounded
by |K”]/4 + maxy, || /4.

To conclude, the supremum of |ICy| over ang7>0,5 occurs on the boundary of ang7>0,5 and
attains a value of at most [KC§” | /4+maxy |KCS”|/4. Note that, since Qcns, ~0.5 is open, the supremum

exists outside the set.



