IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 48, NO. 10, OCTOBER 2000 2785

Sufficient Conditions for the Local Convergence of
Constant Modulus Algorithms

Philip Schniter and C. Richard Johnson, Bellow, IEEE

Abstract—The constant modulus (CM) criterion has become
popular in the design of blind linear estimators of sub-Gaussian
i.i.d. processes transmitted through unknown linear channels in the
presence of unknown additive interference. The existence of mul-
tiple CM minima, however, makes it difficult for CM-minimizing s — h®(z) :@: f(z) — ¥n
schemes to generate estimates of the desired source (as opposed
an interferer) in multiuser environments. In this paper, we present
three separate sufficient conditions under which gradient descent
(GD) minimization of CM cost will locally converge to an estimator
of the desired source at a particular delay. The sufficient condi- 550 — h¥(2)
tions are expressed in terms of statistical properties of the initial
estimates, specifically, CM cost, kurtosis, and signal-to-interfer-
ence-plus-noise ratio (SINR). Implications on CM-GD initializa-
tion methods are also discussed.

desired{ s — h9(2)

Tn
interference

Fig. 1. Linear system model witR" sources of interference.

Index Terms—Blind beamforming, blind deconvolution, blind plemented means of blind equalization for data communication
equalization, blind multiuser detection, constant modulus algo- Over dispersive channels (see, e.qg., [3] and the references within)
rithm, Godard algorithm. and has also been used successfully as a means of blind beam-

forming (see, e.g., [4]). The CM criterion is defined below in
| INTRODUCTION terms of the estimatefyy,, } and a design parameter

ONSIDER the linear estimati)on problem of Fig. 1, where Te(yn) = E{(lynl* —7)*} . (2)
. 0 . . .
a desired source sequen@éb } combines linearly with The popularity of the CM criterion is usually attributed to 1)

K interfering sources through vector chann@é® (z), - - -, ) . . .
h(K)(z)}. Our goal is to estimate the desired source using tF[]he existence of a simple adaptive algorithm (known as the CM

(vector) linear estimatof(z). The linear estimate$y,, } that a?gorithm or CMA [1], [2]) for estimation and tracking of the

minimize the mean-squared error (MSE) CM-minimizing estimatoif .(z) and 2) the excellent MSE per-
q formance of CM-minimizing estimators. The second of these

— L0 2} two points was first conjectured in the original works [1], [2]

(1) and recently established by the authors for arbitrary linear chan-
nels and additive interference [5].

are generated by the minimum MSE (MMSE) estimator, or perhaps the greatest challenge facing successful application

Wiener estimatof,,, ,(z). Specification off,,, (), however, of the CM criterion in arbitrary interference environments

requires knowledge of the joint statistics of the observgdsyits from the difficulty in determining CM-minimizing

I, v (Yn) = E{

; 0 : ) ) . .
sequence{rn} .and the desired SOUVCESQV}, which are estimates of the desired source (as opposed to mistakenly esti-
typically unavailable when the channel is unknown. mating an interferer). The potential for “interference capture”

When only the statistics of the observed sigha),} are is a direct consequence of the fact that the CM criterion exhibits
known, it may still be possible to estime{teﬁlo)} up to unknown multiple local minima in the estimator parameter space, each
magnitude and delay, i.ey, = 3, ff’rn_i ~ m(oju for corresponding to a CM estimator of a particular source at a
somex € C, somer € Z, and alln. The literature refers to this particular delay. Such multimodality might be suspected from
problem aslind estimation (or blind deconvolution). (2); the CM criterion is based on a particular property of the

Minimization of the so-called constant modulus (CM) criestimates{y, }, and one can imagine a case in which this
terion [1], [2] has become perhaps the most studied and iproperty is satisfied to a similar extent by, e, } ~ {35?)}

and {y,} = {sS)} when {3510)} and {sS)} have the same
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cessive interference cancellation scheme, whereby estimates of II. BACKGROUND
then strongest sub-Gaussian sources are used to remove theliﬁ this section, we give more detailed information on the
respective contributions to the received signal before estimatilti')rpear system mc;del and the CM criterion. The following no-
of then + 1th source [9]. Both of these approaches, howev%mon is used throughout: '

require knowledge of the number of (non-Gaussian) sources(_)t transpose;

result in significant increase in computational complexity A conjugatio'n'

when the number of sources is large, and generate estimator%')H hermitian: '

with questionable MSE performance. Instead, we focus onE{'} expectation,

the well-known standard CM (or “Godard” [1]) criterion ancciJ . . . i i
consider desired-source convergence as an outcome of pr gftddition, I' denotes the identity matrb®™ the field of
on-negative real numbers, afi@||, the p-norm defined by

initialization.

Closed-form expressions for CM estimators do not gen 2 |zl In gene_rz_jll, we use boldface lowercase type to
ally exist, and thus, gradient descent (GD) methods provide t eenqte vecto_r_quant|t|es and boldface uppercase type to denote

: . . m:%tnx quantities.
typical means of solving for these estimators. Because exac
gradient descent requires statistical knowledge of the receivEd
process that is not usually available in practical situatistes, "
chasticGD algorithms such as CMA are used to estimate andFirst, we formalize the linear time-invariant multichannel
track the (possibly time-varying) CM estimator. It is widely acmodelillustrated in Fig. 1. Say that the desired symbol sequence
cepted, however, that small step-size stochastic GD algorithiiss } and K sources of interferencgsy’}, -- -, {si; '} each
exhibit mean transient and steady-state behaviors very clos@®&ss through separate linear “channels” before being observed
those of exact GD under typical operating conditions [10], [11§t the receiver. The interference processes may correspond, e.g.,
Hence, we circumvent the details of stochastic adaptation [g,interference signals or additive noise processes. In addition,
restricting our attention to (exact) GD minimization of the C\pay that the receiver uses a sequencéafimensional vector
cost. An important property of GD minimization is that the lo@bservations{r,,} to estimate (a possibly delayed version of)

cation of algorithm initialization completely determines the sthe desired source sequence, where the Pasel corresponds

tionary point to which the GD trajectory will eventually conl0 a receiver that employs multiple sensors and/or samples at
e of the symbol rate. The observations can

verge. The description of the CM-GD regions-of-convergenée' int.eger multipl W vy (k) (k) ()
(ROC) in terms of estimator parameters appears to be a vVBR/Writtenr, = 355 o > 70 b;™'s,,~;, where{h,” } denote
difficult problem, however, and attempts at finding closed-forf'€ impulse response coefficients of the linear time-invariant

(k) (k) i
expressions for the ROC boundaries have thus far been undid!) channelr'™(z). We assume thak'™'(z) is causal and
cessful [12], [13]. bounded-input bounded-output (BIBO) stable. Note that such

In this paper, we derive three sufficient conditions undé’f(k)(z) admit infinite-duration impulse response (IIR) channel
’ odels.

which CM-GD minimization will generate an estimator for thd" .
g From the vector-valued observation sequeficg}, the re-

desired source. The conditions are expressed in terms of statis- I . IO
tical properties of the initial estimates, specifically, CM cosf€VET 9enerates a sequence of linear estimagelsof {s,,~, },

kurtosis, and signal to interference-plus-noise ratio (SIN .hereu |sf?hf|x|e_d|ntegei_r. Uimgf"ta; to d(;,\_notte the |mfpulseorle-
Earlier attempts at describing the interference capture or ”Ioc:ﬂo_nse 80 € }r}far gs\;r\;;a vﬁlflze)l’ssuemees tlr:r;? ter)]zelli;ee;rrr;estears
convergence” properties of CMA have been made by Treick:)l?z )_isZ:IBiITB_C)oostaing;\;iirnonstraine BRMA structure. 1o ythe
and Larimore in [14] and Li and Ding in [15]. Treichler an % B

. L S th element off (z) takes the form
Larimore constructed a simplifying approximation to the medn
behavior of CMA for the case of a constant envelope signal

Linear System Model

in tonal interference and inferred the roles of initial SINR and LY ® @
initial estimator parameterization on desired convergence. Li Z b 2™
and Ding derived a sufficient kurtosis condition for the local [f(2)], = =0<P>
convergence of the Shalvi-Weinstein algorithm (SWA) [16] Lo B
and suggested that the condition applies to small-stepsize 1+ 2“71 z

CMA as well. Our analysis and simulations suggest that the

l(;)ocr?tlrggt?:g r(g:]:rrggﬁ] bCT:i?TYSIO(;fo[flg]MA differs from that of SWAWhere theLf)p ) 4 1 “active” numerator coeﬁicient$b§” >} and

The organization of the paper is as follows. Section || gigheLa " active denominator coefficients; ™ } are constrained

) ol indi (p) (p) ;
cusses relevant properties of the system model and of the ¢Rfhe polynomial indicegn;™ } and{m;" }, respectively.
criterion, Section IIl derives initialization conditions sufficient " the sequel, we will focus almost exclusively on the global

. . - -esti k) . fH (k) i
for CM-GD convergence to desired source estimates, and sghannel-plus-estimataf®) (z) := f"(2)h™(»). The impulse

tion IV discusses the implications of these conditions on choifgSPonse coefficients af*(z) can be written

of CM-GD initialization scheme. Section V presents numerical oo
simulations verifying our analyzes, and Section VI concludes %(Lk) — Z fflh("ji A3)
the paper.

i=—00
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oo

allowing the estimates to be written as = Zf:o > i _., Wheregdenoteswith theq,(,o) term removed, ans(n) denotes
¢®s®  Adopting the following vector notation helps tos(n) with the s’ term removed.

streamline the remainder of the paper. The SINR associated with,, which is an estimate 03‘5102,,,
® W . is then defined as
q(k) = (...’q_l’qo ’ql s ...) (0) (0) 2 9
. - Eqlw s,” (0)
... 0 (@) - (K) (0 (1) = (K) { n-v } v

q .= y 41,491, y4-1"5 490 "5 90 > » 4o SINR, = 5 = ||_||2 (8)

. t E{ 7's(n) } a1l

Q§O)a Q§l)a T Q]§IS)a ) | |
s(k)(n) _ ( N sgﬁl, sﬁl’“), sfﬁl, >t where the equality invokes assumptions S1)-S3).

©) (1) S(Ii)l ORI C. Constant Modulus Criterion

s(n) = ( St a1 T The constant modulus (CM) criterion, which was introduced
$U0), 351021, 821217 o S;I:’)l? )t independently in [1] and [2], was defined in (2) in terms of the
estimates{y, }. In (2), v is a positive parameter known as the
For instance, the estimates can be rewritten concisely as ~ “dispersion constant.” Although is often chosen according to
the (marginal) statistics of the desired source process (when they
- ()t () . are known), we will see below that the choiceyafoes not affect
Un = Z ¢ (n) = q's(n). 4 the SINR performance of the CM-minimizing estimator.
k=0 For general sources, channels, and estimators fitting the
We now point out two important properties @f First, it is framework of Fig. 1 and S1)-S5), the authors have bounded
important to recognize that placing a particular structure on thee MSE performance of the CM-minimizing estimator [5].
channel and/or estimator will restrict the setitthinableglobal To avoid the inherent gain ambiguityof blind estimators,
responses, which we will denote Ig,. For example, when the the analysis examined conditionally unbiased MSE (UMSE)

estimator is FIR, (3) implies thate Q, = row(H), where performance, which can be directly related to SINR as follows:
) (K) 30 () (0 (K) UMSE, = SINR;%—E [5]. An approximation of one of these
hy’---hy’ hi"---hi"" hy’---hy - bounds is given below. Let SINR ,, denote the maximum (i.e.,
0 ... 0 héo) . -héK) h§0) . ,th) o Wiener) SINR associated with estimation of the desired source
H = _at delaywr. Then, the SINR characterizing CM-minimizing
: : : : : : estimators of the desired source at the same delay can be
written as

0 ---0 0 ---0 h(()o)---hél()
() SINR;!=SINR;!, + A SINRZ, +O(SINRZ) (9)
Restricting the estimator to be spare or autoregressive, for ' ' '
example, would generate a different attainable @gt Next, as long as SINR , > B. Here, A and B are constants that
BIBO stable f(z) and k*)(z) imply BIBO stableq*)(z) so depend on the kurtoses of the desired and interfering sources.
that||g™||, exists for allp > 1, and thus||g, || does as well. ~ As an exampled = 1/2 andB = V2 +1 = 3.8 dB when no
Throughout the paper, we make the following assumptions eaurces are super-Gaussian, and no sources have kurtosis less

the K + 1 source processes. than the desired source [i.éi(sgf)) < IC(sﬁf“)) <0VE]
S1) For allk, {s%1 is zero-mean i.i.d. From (9), it can be seen that the SINR of CM-minimizing
S2) {S;O)}’ . {sﬁf")} are jointly statistically indepen- estimators approaches infinity as the Wiener SINR approaches
dent. infinity. In other words, the conditions leading to perfect Wiener
S3) For allk, E{|s§f)|2} = o2 estimators also lead to CM-minimizing estimators, which are

“perfect” up to a gain ambiguity [3], [17]. Equation (9) also
shows that the SINR performance of CM-minimizing estimators
K(spn) := E{|sn|*} — 2 E*{|s,)?} — |E{32}|2 . (6) Isinsensitive to choice of dispersion constant

S4) zc(s;”) < 0, whereX’( - ) denotes kurtosis:

S5) If, for anyk, ¢ (z) or {s%1 is not real-valued, then Ill. SUFFICIENT CONDITIONS FORLOCAL CONVERGENCE OF

32 )
E{sﬁf“) }+ = 0forall k. CM-GD

Note that S4) assumes the desired source is “sub-Gaussi#n, Main Idea

whereas S5) assumes that all sources are “circularly-symmetric’rhe set of global responses associated with the desired source

if any of the global responses or sources are complex valued(.k — 0) at estimation delay will be denotedQ,(,O) and defined

B. Signal to Interference-Plus-Noise Ratio as follows.

(0)

q,’| > max

(k) ‘ } . 10
(k, 0)2(0, ) 1% (10)

0) () . 1Gain ambiguity occurs when both the symbol power and channel gain are
yn =) s, +T3(n) (7)  unknown.

Given global responsg we can decompose the estimate into ij)) = {q s.t.
signal and interference terms:
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Note that under S1)-S3), the previous definition associates ar Q@
estimator with a particular {source, delay} combination if and

only if that {source, delay} contributes more energy to the es-

timate than any other {source, delay}. Choosing, as a reference

set, the responses on the boundar@f)(f) with minimum CM

{¢g,} == argmin J.(gq) (11) |
gcbndr(QL") a
P L7
we will denote the set of all responses®” with CM cost no o RN
higher thanJ.(g,.) by IR G b (@)
Q.(q,) :={qg stJ.g) <J.(g)}n QY. q

The main idea is this. Since all points in a CM gradient deg. 2. lllustration of maximum interference gabg,..(«) below which all
scent (CM-GD) trajectory have CM cost less than or equal ?g‘l;\le;?lorfes with gﬁ‘z‘%‘j contained in the CM cost regiah. (q,.). Note
the cost at initialization, a CM-GD trajectory initialized within max) =
Q.(g,.) must be entirely contained i@.(qg,.) and, thus, inol®.
In other words, when a particular resposgelds sufficiently
small CM cost, CM-GD initialized fromg will preserve the
{source, delay} combination associated wgtiNote that initial-
izing within Q.(q,.) is sufficient, but not necessary, for eventual o
CM-GD convergence to a stationary pointgi” . Ja. st (a*7 ;*6) € Qc(qr)} :
Since the size and shape®f(q,.) are not easily characteriz- (13)
able, we find it more useful to derive sufficient CM-GD initial-
ization conditions in terms of well-known statistical quantities Under particular conditions amandg,. (which will be made
such as kurtosis and SINR. It has been shown that CM cost aiglicit in Section I11-B), there exists a maximum interference

kurtosis are closely related [15], and we will see that translgainp, specified as a function of system gairbelow which all
tion between these two quantities is relatively straightforwarg.are contained iQ.(q,):

Translation of the initial CM-cost condition into an initial SINR

condition is more difficult but can be accomplished through def- bmax(a) := max b(a) s.t.

inition of SINRyn », the SINR above which al} have scaled WV gl < ba), (a, 9 € Qu(g,)}. (14)
versions inQ.(q,.):

so that (12) becomes

| a3
SlNRmin,l/ ;= min x S.t. \v’(a, Q): W >
2

For an illustration ofz, b,,,..(a), andQ.(g,.), see Fig. 2. Now,
consider the quantity
SINRyiy, » := min z S.t.{V ¢:SINR,(q¢) >z )
SINR,(a, bpax) := 72 — Paax(c )
da, s.t.—— || || c Qc(Q,)} (12) bma.x( )
Since SINR (a, bumax) is adecreasing function 6f,,.(a) (over
If initializations in the set{g: SINR,(g) > SINRu, .} are its valid domain), (14) implies that
scaled so that they lie withi@.(qg,.), the resulting CM-GD tra- ||Q||
jectories will remain withinQ.(g,.) and, hence, withir!". || IE 2 > SINR,(a, bax) = (a,9) € Qu(q,).
In other words, when a particular respogsgelds sufficiently 2
high SINR, CM-GD initialized from a properly scaled versiorJsing the previous expression to minimize SINR in accordance
of ¢ will preserve the source/delay combination associated withith (13) yields the key quantities defined in (12):
g. This sufficient SINR property is formalized below. ]
SinceQ.(g,) and SINR.(g) are all invariant to phase rota- SINRuin, ,» = min SINR, (@, bmax) (19)
tion (i.e., scalar multiplication by’# for ¢ € R) of ¢, andgq, a, = argmin SINR,(a, buax)- (16)
respectively, we can (w.l.0.g.) restrict our attention to the “dero- @
tated” set of global responség s.t. q,(, ) € R*}. Suchg allow  To summarize, when SINRg) > SINRyin,,» and||g||2 = a.,
parameterization in terms of gain= ||q||2 and interference re- CM-GD initialized from ¢ will preserve the {source, delay}
sponsej (defined in Section 11-B), wherfig||2 < a. Interms of combination associated with

the pair(a, g), the SINR (8) can be written
B. Derivation of Sufficient Conditions

—l9ll3 In this section, we formalize the previously described ini-

SINR,(a, 7) = 9113 tialization conditions for CM-GD local convergence. The main



SCHNITER AND JOHNSON: LOCAL CONVERGENCE OF CONSTANT MODULUS ALGORITHMS 2789

steps in the derivation are presented as theorems and lemmakemma 1: The CM cost (2) may be written in terms of global

with proofs appearing in the Appendix. responsey as
It is convenient to now define theormalizedkurtosis [not to I.(a) .
. Y . J.(q : ;
be confused withk( - ) in (6)]: = > (ﬁgk) _ ,ig) Hq(k)H4 + 12| gll
o4 —2(v/a)lall3 + (v/o3)%. (24)
E s%k)
) = (17) Lemma 2: The minimum CM cost on the boundary 6£”
E? {‘sg)‘ } is
Under the following definition of:, Jela:) = qebﬁj(n@m) 7e(4)
4
2
(k) =7 <1 G)! X ) . (25)
3, sn €ER VE, min
g = { s " (18) fia "o R 26
2, otherwise

Theorem 1:If {y,} are initial estimates of the desired source
our results will hold for both real-valued and complex-valuedt delayv [i.e., v, = ¢,;.s(n) for g,;; € Qi N Q,] with CM
models. Note that under S1) and Sk), represents the nor- €Ost

malized kurtosis of a Gaussian source. It can be shown that the

normalized and un-normalized kurtoses are relatedCby,"”) J(yn) <42 <1 - 4 ) (26)

= (v — k,)o* under S3) and S5). Next, we define the min- r) + mmin 4 215

imum and maximum (normalized) interference kurtoses.

then estimators resulting from subsequent CM-minimizing gra-
dient descent will also yield estimates of the desired source at

min m,ﬁ’“), dim (q(o)) >1 delayw. o . .
min ) OSk=E (19) Theorem 2: If {y,, } areinitial estimates of the desired source
’ min ,mg’“), dim (q(o)) =1 at delayv [i.e., yn = gl 5(n) for g, € Q’(’O) N Qo] with
1<k<K variances; = o, | and normalized kurtosis
kP = max k(P (20)
0<k<K

Ky < /{,‘;m =1 (I{go) + kI 4 2/{5,) (27)
where “dim” denotes the dimension of a vector. Note that the ) ) L
second case in (19) applies only when the desired source ciigh estimators resulting from subsequent CM-minimizing gra-
tributes zero intersymbol interference (ISI). The following kurdient descent will also yield estimates of the desired source at
tosis-based quantities will also be convenient in the sequel. d€lay?- © _ _

Theorem 3:If ry” < (k'™ + 2r,4)/3, and if {y,} are
initial estimates with variance; = o7 |« and SINR.(y,,) >

min

N 1) SINRwmin, »,» Where we have (28), shown at the bottom of the
Prin == o ;«;go) page, then estimators resulting from subsequent CM-mini-
7 . mizing gradient descent will also yield estimates of the desired
g T Hs 29) source at delay.
pmax - (0) ( ) . .
Kg — Ks We now make a few comments on the theorems. First, notice
the stringent gain condition = 07|« in Theorems 2 and 3.
o2 i=n 4 (23) Is this a necessary component of our sufficient conditions? The
Ylerit w0 4 RPN 4 2k, answer is a qualified yes. It is possible to construct situations
( V 1 + Pmin RAX < e
2 - \/1+pmin’ ? -
SINRmin, v = Pmax + \/1 - (1 + pmax)(3 - pmin)/4 p 7£ 1 (28)
1-— \/1 - (1 + pmax)(3 - pmin)/4 RIAX e
? s g
5! + Pmin
FYE Pmax = -1

)
N 3 - Pmin
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in which the critical values of kurtosis from (27) or SINR from TABLE |

(28) are satisfied, yet misconvergence occurs because the gaimNGL-E-SPIKE KURTOSES:ﬁDRzg'SBMécl\TgWAVE CHANNEL MODELS
conditiono} = o3|t is ot satisfied. Fortunately, it appears

that such scenarios are quite rare unha?izs far froma§|mt Of  Chamnel # || 1 2 | 3| 4| 5 | 6 7 8 9 || worit
unless the SINR and/or kurtosis conditions are themselves n
violation. Thus, in practice, successful CM-GD convergenc
should be quite robust to small violations in the gain conditiot
We mention that its possible to rederive Theorems 2 and 3 s_9FSK
that they guarantee convergence for inigglin a bounded in- _64-QAM | 143 | 1.48 | 1.53 | 1.68 | 167 | 162 ] 1.53 | 1.60 | 1.60 | 1.69
terval aroundy§|mt and appropriately adjusted kurtosis/SINR

requirements. This should be evident from the proofs in the . I : : .
Appendix. kurtosis of the initial estimates can be expressed directly in

i (k).
Finally, it should be pointed out that the relatively complit€ms of the channel coefficieni#,™ }:

cated expressions in Theorem 3 simplify under the operating

BPSK 1.17 | 1.17 [ 1.41 | 1.98 | 1.94 | 1.76 | 1.16 | 1.69 | 1.70 2
8-PAM 1.87 | 1.86 | 2.02 | 2.37 | 2.34 | 2.23 | 1.86 | 2.19 | 2.19 || 2.38
1.09 [ 1.15 | 1.26 | 1.49 | 1.47 | 1.38 { 1.24 | 1.35 | 1.35 || 1.5

” . : lg®|:
conditions commonly encountered in, e.g., data communica- o — Z ( *) ) T, +x
tion. When the sources of interference are nonsuper-Gaussian AN 77 lgll3 !
(i.e., ki™x < ng) and none have kurtosis less than the desired LA
source [i.e.x” < x{], we find that ppm = 1, and thus, Z 1°h; ‘ (“S - "9)
SINRyin,» = 1 ++/2 0r 3.8 dB. LK . + rig.

Ols
IV. IMPLICATIONS FORCM-GD INITIALIZATION SCHEMES Z 1h; ‘

. . . k.,
In the previous section, we have shown that there exist sta- ‘

tistical properties of initial estimates guaranteeing that subSgwe assume a single sub-Gaussian user in the presence of ad-
quent CM gradient descent will produce an estimator of thgtive white Gaussian noise (AWGN) of varianeg at each

same source at the same delay. In this section, we suggest B@Wsor, the previous expression simplifies to
one might satisfy these initialization conditions.

We consider CM initialization procedures that are capable of Z
being described by the following two-step procedure: 1) design
of one or more initialization hypotheses and 2) choice amongty = ( s
hypotheses. Note that most popular CM initialization proce- <Z
dures, such as the single-spike scheme discussed below, fall
within this general framework.

In evaluating a CM-GD initialization scheme, we must then Table | shows initial kurtoses, from (29) for Signal Pro-
consider the difficulty in both the design and evaluation afessing Information Ba8¢SPIB) microwave channel modelsin
initialization hypotheses. The theorems in the previous secti@¥VGN (resulting in 20 dB SNR at channel output), along with
suggest that when a particular source or delay is desired, iffie critical kurtosis:;™* from (27). From Table |, we see that the
tialization hypotheses should be designed to either i) maximigigle-spike initialization procedure generates estimates with
SINR or ii) minimize CM cost or kurtosisvhen the initial Kkurtosis less than the critical value for all SPIB channels. The
estimates are known to correspond to a desired source/deigyplication is thathe CM gradient descent from a single-spike

1th(°)‘4

I‘E(O) — Kg ‘

+rg. (29)

T

2
2
1th§°)‘ +02 /a§>

combination initialization with magnitude chosen in accordance with The-
orem 2 typically preserves the estimation delay of the initial es-
A. “Single-Spike” Initialization timates Similar conjectures have been made in [15] and [17].

The so-called single-spike initialization, which was first Since MMSE performance is known to vary (significantly)

. . ! S . with estimation delay, the recently established connection
proposed in [1], is quite popular in single-user enwronmentﬁ. tween Wiener and CM performance [5] implies that the MSE
Single-spike initializations for single-sensor baud-space(?

; . . . performance of CM-minimizing estimators should also vary
equalizers (i.e.,P = 1) are characterized by impulse re- o .

. . g . _s  with estimation delay. Thus, from our observations on the local
sponses with a single nonzero coefficient, ifz) = z7°.

. : : . ?onvergence of single-spike initializations, we conclude that
There exists a straightforward extension to multirate/ Uhe asymptotic MSE performance of CM-GD estimators can be
tichannel (i.e.,P > 1) estimators:f(z) = 127° for

1= (\/1/—P, . \/1/—P)t c R”. For P = 2, this has been directly linked to the choice of initial spike delay.
called the “double-spike” initialization [17]. The spike positiorl3
is often an important design parameter, as we explain below.

Since the spike method yields an initial global responseAlthough the single-spike scheme has desirable properties in

equaling (a delayed version of) the channel response, {f®isy)single-user applications, one would notexpectitto yield
reliable estimates of the desired source when in the presence

Initialization Using Partial Information

2Thus, initial kurtosis cannot be the sole indicator of CM-GD convergence, 3The SPIB microwave channel database resideshatp : //spib.
as claimed in [15]. rice.edu/spib/microwave.html.
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of significant sub-Gaussian interference since single-spike il
tialized CM-GD might lock onto a sub-Gaussian interferer ir
stead of the desired source. With partial knowledge of the ¢
sired user’s channel, however, it may be possible to constr
rough guesses of the desired estimator that are good enougt
use as CM-GD initializations. Then, if the initialization satisfie: .
the sufficient conditions in the previous section, we know thi
CM-GD can be used to design an estimator with nearly optim
MSE performance (as discussed in Section II-C). The “parti
knowledge” may come in various forms, for example, sho
training records in semi-blind equalization applications, rou¢  ©
direction-of-arrival knowledge in array applications, spreadir -1
sequences in code-division multiple access (CDMA) applic
tions, or desired polarization angle in cross-pole interferen k=2, K =1
cancellation. Ik ' T '

We have seen that various criteria could be used to design
evaluate initialization hypotheses. Since reliable evaluation
higher order statistics typically require a larger sample size th 1
second-order statistics, the design and/or evaluation of SIN
based initializations might be advantageous when sample s
is an issue. For this reason, SINR-based methods will be c«
sidered for the remainder of this section. Still, good results ha
been reported for kurtosis-based CM-GD initialization schem
for CDMA applications when sample size is not an issue [18] o

The SINR-maximizing linear estimator is given by Wiene _i5
estimatorf,, ,(z). It can be shown that the Wiener estimato
has the form [19] Kg=2.K,=4

b
&)

9 (desired)

(desired)

0.5

q

, . , 1.5 -

Fo) == (e (1) 00 (%) @0
, z* z* /s
1t / .

where ()7 denotes pseudo-inverse. As evident from (30 » 7
design off,, ,(z) requires knowledge of the desired channe § b e
L (z) in addition to the autocorrelation of the receive« o5t —% =
signal. Although various methods exist for the design of blin 7/ N - "
SINR-maximizing (i.e., %)SE-minimizing) estimators basel F— N / g
on partial knowledge oh'" (), the Wiener expression (30) B g )
suggests the following CM initialization when given only ¢ _(: > ﬁ‘ . 05 QT/“ 15

. 0
channel estimath(o)(z) and knowledge ofs{r(2)rf(1/2*)}. q, (interference)

<

. e f NOFA! Fig. 3. CM-GD trajectories in channel-plus-estimator space R?) for (a)
Tu(2) =2 E{r(z)r = h - (Bl) < =1andk{V =1, (b)x{» = 2andx{V =1, and (c)x{> = 2 and
z* k(D = 4. Q) boundaries (dash-dotted), SINR . boundaries (dashed),
) o ] ) xS boundaries (dotted), anfl(¢) < J.(q,.) regions (shaded) are also shown.
Note that (31) may require additional scaling to satisfy thehannel estimators resulting irf of (23) are shown by the fat shaded arcs.
U,Q-requirements of Theorems 2 and 3. Note that dotted and dash-dotted Iings are C(_)incident in (a), whereas dotted,
Y dash-dotted, and dashed lines are coincident in (c).

V. NUMERICAL EXAMPLES . o . o
lowing arbitrarily-chosen channel matr# (having condition

In Fig. 3, CM-GD minimization trajectories conducted in espymper 3):
timator space are plotted in channel-plus-estimator spaee (
R?) to demonstrate the key results of this paper. CM-GD can
be described by the update equatfgn+1) = f(n)—uVJ,,
wheref = (---, f*, fb, fi, ---)* is a vector containing the
estimator parameter coefficienys,is a vanishingly small pos-  Fig. 3(a)—(c) depicts th@,(,o) boundaries as dash-dotted lines,
itive stepsize, andv; denotes the gradient with respect tdhe SINR,;y, ., boundaries as dashed lines, and;«t[j‘ét bound-
f- When the estimator is FIR, we can wrije= (fHH)t, im- aries as dotted lines. Note that in Fig. 3(a), the dash-dotted
plying the global-response CM-GD update equatiopm+1) = and dotted lines are coincident, whereas in Fig. 3(c), the dash-
g(n) —pH (VJ.)*. In all experiments, we use a two-parameotted, dashed, and dotted lines are coincident. The three sub-
eter estimator and an FIR channel that corresponds to the folbts in Fig. 3 differ only in the kurtosis of the desired source: In

<0.2940 —0.0596)
0.1987  0.9801/
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(a)

probability
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9T ~10 -5 0 5 10
initial SINR
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probability
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-20 -15 -10

-5
initial SINR

o o o
s » <3

probability

@
[

o F

0 1 1 1 1
~20 -15 -10 -5 0
initial SINR

10

Fig. 4. Estimated probability of convergence to desired source/delay for random channels and random initializations scaled according to ¥ ladaresticha
of initialization SINR. (a)<(®> = 1 with interferingx{*) € {1, 3}. (b) k{» = 2 with interferingx{*) € {1, 2}. (c) ") = 2 with interferingx{*) € {2, 4}.
SINR..;n, .. from (28) shown by dashed lines.

Fig. 3(a), the sources haws” = 1 andx{? = 1,in Fig. 3(b), tion of Theorem 2, which in turn is more restrictive than the
they havex!” = 2 andx{"” = 1, whereas in Fig. 3(c), they J.-based condition of Theorem 1: The sufficient-SINR region
haverx'” = 2 andx'Y = 4. (between the dashed lines) is contained by the sufficient-kur-

The following three behaviors can be observed in every su{lﬁ—s's region (between the dotted lines), which is contained by

plot of Fig. 3. First, all trajectories entering in@. (g, ) (which e sufficients.. region (between the dash-dotted lines). The rel-

: . . ative ordering of these three conditions is, in fact, formally im-
is denoted by the shaded region between the dash-dotted '”}ﬁ. d by the proofs in the Appendix.

E:rcr)]nverge ;0 '\?n estlllmat_o r for_ th_e _d_e\lc,_lre(cjj spﬁrce, ﬁonf|rm| Ywe stress again that initial kurtosis or SINR is not sufficient
eorem 1. Next, all trajectories initialized with sma enougﬂ)r desired local convergence; initial estimator gain plays an im-

kurtosis (indicated by the region between the dotted lines) afdyant role. This is demonstrated by Fig. 3(a) and (b), wherein
proper gain (indicated by the fat shaded arc) converge t0 giime trajectories initialized within the SINRy) > SINRuin, »
estimator for the desired source, thus confirming Theorem 24ion (between the dashed lines), but with insufficient initial
Finally, all trajectories initialized with high enough SINR ('”'gain, converge to the undesired equilibgia= (0, +1)*. Al-
dicated by the region between the dashed lines) and proper g@ugh recognized in [14], this fact was overlooked in [15], re-
(again indicated by the fat shaded arc) converge to estimatgifting in some overly strong claims about the convergence be-
for the desired source, confirming Theorem 3. havior of CMA.

Fig. 3 suggests that the sufficient-SINR condition of The- In Fig. 4, we examine probability of CM-GD convergence to

orem 3 is more restrictive than the sufficient-kurtosis conddesired {source, delay} versus SINR for higher dimensional es-
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timators. CM gradient descents randomly initialized in a ball If (¢, ) represents the {source, delay} pair of minimum in-

aroundf,, , (and subsequently normalized according to Theerference kurtosis [recall the definition af*im in (19)], we

orem 3) were conducted using random channel mat{ig8sc  henceforth usg™ to denoteg® with the termsz.” andq "

R19%11 with zero-mean Gaussian elements. Every data poigimoved. Then, we have

in Fig. 4 represents an average of 500 CM-GD simulations.

Fig. 4(a) demonstratesgo) = 1 and ten interfering sources ] ] L4
ith e F) i (0) i ; min Z (Ii(k) —K ) g®

with x5™" = 1; Fig. 4(b) demonstrates,™” = 2, five interfering (; ;)=(0,.) s 9 4

sources with:{¥) = 1, and five interfering sources with") = K a0 =q{"

2;(5ig. 4(c) demon_stratesg_o) = 2, five int_erf(%ing sourceswith  _ (,{20) i 2,%) ¢ Yy 3 (,{gk) _ ,{g) é(k)H4

ks~ = 2, and five interfering sources withy ’ = 4. & 4
Fig. 4 also confirms the claim of Theorem 3: All prop- 5

erly-scaled CM-GD initializations with SINRgreater than  min ||q||? =2¢ + a3

SINRui, . CONverge to the desired source. Recalling that thig-#(0.) 7 =4'"

SINR condition is sufficient, but not necessary, for desired ] ] ] ] ]

convergence, it is interesting to note that both Figs. 3 and™Augging the two previous equations into (24), we find that

suggest that the sufficiency of our SINR condition becomes

“looser” as the kurtosis of the desired source rises above the min I}lin([
=

J(¢) <& min J. (ql(,o), é)
e . L . (£,1)£(0,) (0 (0) &
minimum interference kurtosis (i.e., g, increases). o

) 9 ", 4

where
VI. CONCLUSIONS

In this paper, we have derived, under the general lineat, (qﬁo),q)
model of Fig. 1, three sufficient conditions for the convergence———+

of CM-minimizing gradient descent to an estimator for a par- s 4 4
ticular source at a particular delay. The sufficient conditions are .= (,{go)_i_,{glin_g,{g) ¢ +Z (ng) _,{g) §» H
expressed in terms of statistical properties of initial estimates, & N
i.e., estimates generated by an estimator parameterization 2 2

from which the gradient descent procedure is initialized. More thig <2 (JI(IO) + ||(?||§)

specifically, we have proven that when initial estimators result 5

in sufficiently low CM cost, or in sufficiently low kurtosiand —2(v/0?) <2 @O + ||é||§> + (v/0?)?

a particular variance, CM-GD will preserve the source/delay

combination associated with the initial estimator. In addition, _ (,igO) + R 4 g,ig) ‘ql(lo)‘4

we have proven that when the SINR of the initial estimators )

(with respect to a particular source/delay combination) is above  _ 4 ((7/03) _ mg||(1||§)) ngO) + J.(q) /o (32)

a prescribed threshold and the estimates have a particular
variance, CM-GD will converge to an estimator of the sa
source/delay. These results suggest ways in whigbriori

channel knowledge may be used to predict and control the

rT?eroing the partial derivative Ofc(q,(,o), q) w.r.t. |q,(,0)|2 yields

2y _ o112
convergence behavior of CMA and are of particular importance  arg min J, (ql(/0)7 é) =2 %{"s) .“ﬂ”‘l”? (33)
in multiuser applications. lgs? 2 Rs '+ KP4 25,
APPENDIX and thus
DERIVATION DETAILS FOR LOCAL CONVERGENCECONDITIONS J ( (0) .
] ) . cl Qv R Q)
This Appendix contains the proofs of the theorems and+
lemmas found in Section IlI-B. Ts
Jo(q rolldlls — 264(v/o2)dll3 + (v/03)?
A. Proof of Lemma 1 = (4) —4- (o)g ; -
o3 Ks ' + KD 4 25,

See [5] or [19].

4
=32 (o) o ot
5 Proof of Lemma 2 > (58 = g ) |2, + o gl — 2(v/02) gl
We are interested in computing the minimum CM cost on the
boundary of the se@,(,o). The approach we take is to minimize
J. over aset containing bn@@,(,o)g, which, as shown below, still o
yields a minimum within bndrQ."’). Specifically, we consider USing the abbreviation

the set

{q: ¢ = g9 for (e, 4) # (0, V)} > bndr(Qf,O)).

) -1
+ (y/02)? <1 —4 (ﬁgm + R 2%) ) (34)

(0) min
s -2
d:=" R, 2Ry (35)
Ks ' + R+ 2k
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Gradient and Hessian analysis [19] reveals that wkigit <  which implies that the maximum critical kurtosis is
2, — k57, the (unique) global minimum of, (g5 |uuin, ) OC-

curs atg = 0, implying [via (34)] that Ky = (:«sgo) + R 2/«ag) /4.
_ (@) e (q,(,o) o é) Since S1)-S3) imply that? = ||q||302, the expression for
min = = min i l|q||3|:ma @bove is easily rewritten in terms of estimate variance
qundr(Q(Vm) s q O 2

a,.

2 Yy
@) (-
2 0 min - ’ .
o2 O R 4 2y E. Proof of Theorem 3
(36) Section IlI-A established that estimators yielding gairand

producing estimates of SINRyreater than SINR;,, ,. are con-
tained within the se2.(q,.), and thus, further CM-GD adap-

C. Proof of Theorem 1 tation of these estimates will guarantee estimation of the de-

If g, € o satisfies . (g,.) < J.(g,), then by defi- sired source. In this section, we will derive explicit formulas

nition, g,... € Q.(q.). (Note that forg, .. to be meaningful, for the quantities SINR;y,, ,» anda... This will be accomplished

we also require that it be an attainable global response, i_tg.rough (15) and (16) after first solving féf..(a) defined in

Ginit € 9..) CombiningQ.(q,) C o with the fact that a
CM-GD trajectory initialized withinQ.(g,.) remains entirely
within Q.(g,.), we conclude that a CM-GD trajectory initialized
atg;,;; remains entirely withinQ{. Using theJ.(q,) expres- _ _
sion (25) appearing in Lemma 2, we arrive at (26). gllz < b(a) = Jela, @) < Jelg,)}- (37)

To find by,.x(a), (14) may be translated as

bmax(a) = max b(a) s.t.

To proceed further, the CM cost expression (24) must be
o ' rewritten in terms of gaim = ||g||» and interference responge
Continuing the arguments used in the proof of Lemma 1, th@hich was defined in Section 11-B). Using the fact tﬁ@&o) 2

D. Proof of Theorem 2

CM cost expression (24) can be restated as follows [19].  _ ;2 _ lgl12
Jc(q) 4
25 = mullalls =20/l + (/2 S (59— ) [0,
k
From Theorem 1, a CM cost satisfying (26) suffices to guarantee _ (R(o) B Hg) ‘q(o)r n Z (/«a(’“) _ Hg) Hq(k)‘r
the desired CM-GD property. Normalizing (26) b§ and plug- ° v . ° 4

ging in the previous expression, we obtain the equivalent suffi- _ _
cient conditions = ("go) - “g) (a* — 2a%|[glI3 + llall3)

D) (s (1 ) 4 ) 2 (s =) 2]

4 0 .
O—S I‘Eg ) + I‘E?lm + 2"5g

0>

Plugging the previous expression into (24), we find that
0> ryllallz = 2(v/o)llall3 + (v/a2)*

- 4 0D _ 5 (w0 i) g + w0
st 2, 2L 4
_ 4 _ =2 (K = ) algll3 + (1 =y ) il
vy <201/0D) gl = (/02 | <5 lallz* o)l
fis R 2 —2(v/07)a” + (v/03). (38)

It is now apparent that the critical value ef depends on the From (25) and (38), the following statements are equiva-
gain [/g|2. Maximizing the critical kurtosis w.r.f|g||> can be |ent, as shown in (39) at the bottom of the next page. The
accomplished by finding, which zeros the partial derivative of reversal of inequality in (39) occurs becaus® — kg < O

[as implied by S4)]. Using the definition of** in (20),
4 ) @y2 0= (@)@ < 1implies that

R 4 2K, .
T

w.r.t. 2. Straightforward calculus reveals that the maximizing & ' 4
value of{lgl is < (0 = y) gl

—_ 5

4 0 fax S K
||q||§|nlaX = <12> (0) : S 7 max =4 fnax ’ (40)
O—S Ks + Ii;nln + 2Iig (Iis - Iiﬂ)HqHQ? Iis > Iiﬂ'

27/02)(@®) ™ ~ (7/02)? (ﬁ@ "
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Thus, withp..x defined in (22), the following becomes a suffi-First, we tackle the super-Gaussian casg*f > r,). As-

cient condition for (39). suming for the moment that,,.. # —1, we plug (42) into (15)
4 o112 - to obtain
||q||2 —2a ||q||2 + C(a7 qr)? K S K’g
—||4 2112 .max . C(CL, q7)
(1 + pmaX)HqHQ —2a ||Q||2 + O(CL, qr)7 R > Rg- Pmax + 1- (pmax + 1)T

(41) SINRpin, , = min
Focusing first on the super-Gaussian caggt > x,), we @
see from (41) that valid? __(a) satisfying (37) can be deter-

max

mined by solving for the roots of

Cla, q,
1- \/1 - (pmax + 1)%

(46)
Since the fraction on the right of (46) is non-negative and strictly
Pi(z) = (14 pmax)z® — 2%z + Cla, q,.). decreasing ifC(a, g,.)/a* over the valid rang€(a, g¢,.)/a* €
[0, 1 — pmax] identified by (44), findingz that minimizes this
Specifically, we are interested in the smaller root whes  expression [in accordance with (16)] can be accomplished by
Pmax > 0 and the larger root wheh + pp. < 0. In either finding a that maximize<_(a, g,.)/a*. To find these maxima,

of these two cases, the appropriate root has the form we first write C(a, q,.)/a* using (39):
C(a, g, C(a, g, - -
1_\/1_(pmax+1)w %:CO—FCI.(M) 1+02-(a2) 2
D (@) = ¢ - (42
Pmax + 1 whereCy, Cy, andC; are independent of. Computing the

partial derivative with respect to the quantity and setting it

When1 + pu.. = 0 instead,P, (x) becomes linear, and equal to zero, we find that

C(a, q,) 2 Cy v 4
2 — ) 1y = — = —
Vnan(2) = 2a2 (43) = 2 Cy 03 ) \ k{? 4 gmin 2k, . “n

As a valid interference power, we require thg, (a) € Plugginga? into (39) and using the definition of,,,;, in (21)
[0, a?]. Straightforward manipulations show that for all Va“‘bives the simple resut(a., g,)/a* = (3 — pmin)/4. With this

super-Gaussian values f,ax (i-., fmax < 0) value ofa,, requirement (44) translates into

C(CL q ) min
2 2 ) Ay .
boax(a) €[0,a°] & 0< — 4 <1— pmax. (44) ﬁgo) < min { KL 3+ 2%’ e _ jgmin _ 2%} . (48)

From (41), it can be seen that the same arguments may be _ )
applied to the nonsuper-Gaussian casg®t < r,) by setting In the super-Gaussian case, we know At < 4pmax —pmin

pmax 0 zero. This yields — 2rg4, and hence, (48) simplifies to
C ] 0 /{18“1“ + 2K
() = a? (1 —y/1- M) (45) I
Finally, plugginga.. into (46) gives
with the requirement that < C(a, g,.)/a* < 1.
The expressions fdr?,,(a) in (42), (43), and (45) cannow g g . . Pmaxt V1= (14 pmax)(3 — Pmin)/4 (49)

be used to calculate SINR,, ., anda, given in (15) and (16). 1= /1= 1+ pmax)(3 = pmin) /4

Jc(qT) > Jc(av Q)
4
0> 32 (s = o) [+ (7 = ) (=200l + )

2
4
+ﬁgo)a4_2<%> ? + <12> ©) :
o3 02/ \ & 4 rmin 425,

1 . NI _ _
AANONpS (5 = ,) [, — 20203 + il

Ks & — Kg

2
1 0) 4 v 2 v 4
Ks — Kg 5 5 Ks  + R+ 25K,

Cla,q,)
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Revisiting the super-Gaussian case with. = —1, we plug ]
(43) into (15) and get
! [10]
SINRyjn, » = min 2 <C((L4q7)> _1
o ¢ [11]

Again, the quantity to be minimized is strictly decreasing in[12]
C(a, q,)/a* over [0, 1 — puax]- As above, maximization of
C(a, q,.)/a* yields thea, of (47) and the same condition on [13]
H§°>. Applying these to the previous equation

5 : 14
SINRujp , = o Pmin s0)
' 3- Pmin
For the nonsuper-Gaussian cas&¥* < r,), we plug (45) [15]
into (15) and obtain
[16]
1 _ C(a7 q’l’)
4
SINRyp , = min a . (51) 117
a 11 C(a, q,)
4
a
(18]

Since (51) equals (46) Wity = 0 (i.e., wheng**
kg4), the nonsuper-Gaussian will have the sames (47) and
the same translation of (44) given by (48). After substituting[19]
Ky = Ry into (48), the nonsuper-Gaussian property implies
that (48) simplifies again to

W < M2
- 3
Plugging a. from (47) into (51), the nonsuper-Gaussia
SINRyin, »» becomes

V 1+ Pmin
2- V 1+pmin'

Finally, S1)-S3) imply thai = ||g||3 = o7 /o2, linking the
critical gaina, in (47) to the critical estimate varian0§|crit in

Sl NRmin, v = (52)
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