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KI'he Generalized Linear Model: \

e Consider observation y € CM of unknown vector € CV that is
— sent through known linear transform A, generating hidden z = Ax, then
— observed through a probabilistic measurement channel py|,(y|z).

Our goal is to infer & from y.

e When py and py|, are both Gaussian, the MMSE /MAP estimator is linear and
easy to state in closed-form. The more interesting case is when py and/or Pylz

are non-Gaussian.

e Equally interesting is when M < N: Compressive sensing tells us that
K-sparse € CV can be accurately recovered from M > O(K log N/K)

measurements when A is information-preserving (e.g., satisfies 2K-RIP).

e There are many applications of estimation under the generalized linear model

in engineering, biology, medicine, finance, etc.
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/Example Applications: \

e Pilot-aided channel estimation / “compressed channel sensing”

x: sparse channel impulse response (length V)
y: pilot observations (M < N with sparse channel)

A: built from pilot symbols and other aspects of linear-modulation

e Imaging (medical, radar, etc.)
x: spatial-domain image (rasterized)
y: noisy measurements (AWGN, Gaussian, phaseless, etc.)

A: typically Fourier-based (details are application dependent)

e Binary linear classification and feature selection
x: prediction vector (L to class-separating hyperplane, sparse)
y: binary experimental outcomes (e.g., {sick, healthy})

A: each row contains per-experient features (e.g., age, weight, etc.)

. /
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/Generalized Approximate Message Passing (GAMP): \

e Suppose we are interested in computing the MMSE or MAP estimate of x
from y (under known A, px, py|;).

e For general A, py, and Py|z: this is difficult. . .in fact NP hard.

e However, for sufficiently large and dense A, and separable py and Py|z: there

Is a remarkable new iterative algorithm that gets close: GAMP.

S. Rangan, “Generalized approximate message passing for estimation with random linear
mixing,” arXiv:1010.5141, Oct. 2010.

— In the large-system limit (M, N — oo with fixed M /N) when A is drawn
iid sub-Gaussian, and pyx and py|, are separable (i.e., independent r.v.s),
GAMP's performance is characterized by a state evolution whose fixed

points, when unique, coincide with the MMSE or MAP optimal estimates.

— In practice, A is finite sized and structured (e.g., Fourier). Still, for any A,
the fixed-points of the GAMP iterations correspond to the critical points

of the MAP optimization objective, maxg { Inpy|,(y|Ax) + Inpy(x)}.




Phil Schniter The Ohio State University

/A Revolution in Loopy Belief Propagation: \
e The GAMP algorithm can be Dy 1z, (y1]ate)

derived as an approximation

H
of the sum-product (in the Py,|z, (Y1]ai' @)

MMSE case) or max-product
(in the MAP case) loopy BP

algorithms.

pyM|zM (y1|a'f33)

e The approximation makes use of the central limit theorem and Taylor series

approximations that hold in the large-system limit.

e An interesting observation is that, because A is dense, the factor graph is
extremely loopy. Loosely speaking, these loops are OK because (for
normalized A) they get “weaker” as the problem gets larger.

e Note: Rigorous analyses of GAMP are based on the algorithm itself, not on

the loopy-BP approximations.

M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with
\\ applications to compressed sensing,” IEEE Trans. Inform. Thy., Feb. 2011. /
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/GAMP Heuristics (Sum-Product Case): \
1. Message from y; node to z; node: Py i (11][A)) B B o)
~ N via CLT Py, |22 (Y2|[Ax]2) px(22)
——
Pi—j(x;) oc/ Pyslz; (Wil 20, airter ) [1,es; Picr (20)
{m"l’}r;ﬁj
R - Py, lzar (Y |[AZ] 1) — B rx(zn)
%/ Py, 12, (Wilze) N (235 2:(25), Vi (z5)) = N AN (o) o
To compute 2;(x;), v7(x;), the means and variances of {p;«,},»; suffice, thus
Gaussian message passing!
Remaining problem: we have 2M N messages to compute (too many!).
2. Exploiting similarity among the messages (o)
{pic;i}M,, AMP employs a Taylor-series ap- Py (1] [A])) — O W ox()
proximation of their difference whose error Pyafes (v2[Ax]2) px (w2)
vanishes as M — oo for dense A (and simi-
lar for {pi_ﬁ};\le as N —00). Finally, need sl o
Dy, lzar (Ynt |[[A] s - px(TN)
to compute only O(M + N') messages! prren (o)
The resulting algorithm requires two matrix-vector multiplications per iteration, and

\\converges in typically < 25 iterations. /
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/GAMP Extensions: \

e Standard GAMP assumes known, separable pyx and py,.

e However, in practice. ..
— Densities px and py, are usually unknown.

— Often, they are also non-separable (i.e., elements of x are statistically

dependent; same for y|z)

e We have developed an EM-based methodology to learn px and py|, online and

subsequently leverage this information for near-optimal Bayesian inference.

J. P. Vila and P. Schniter, “Expectation-Maximization Gaussian-Mixture Approximate
Message Passing,” IEEE Trans. Signal Process., Oct. 2013.

e We also have developed a “turbo” methodology that handles probabilistic

dependencies among the elements of x and the elements of y|z.

P. Schniter, “Turbo reconstruction of structured sparse signals,” Proc. CISS, (Princeton,
NJ), Mar. 2010.
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/Some Communications Applications of (EM /turbo) GAMP: \

1. Communications over wideband channels

e joint channel-estimation/equalization /decoding

P. Schniter, “A Message-Passing Receiver for BICM-OFDM over Unknown
Clustered-Sparse Channels,” IEEE J. Sel. Topics Signal Process., Dec. 2011.

P. Schniter, “Belief-propagation-based joint channel estimation and decoding for
spectrally efficient communication over unknown sparse channels,” Physical
Communication, Mar. 2012.

2. Communications over underwater channels

e joint channel-tracking/equalization/decoding

P. Schniter and D. Meng, “A Message-Passing Receiver for BICM-OFDM over Unknown
Time-Varying Sparse Channels,” Allerton Conf., Sep. 2011.

3. Communications in impulsive noise

e joint channel-estimation /equalization /impulse-mitigation /decoding
M. Nassar, P. Schniter, and B. Evans, “A Factor-Graph Approach to Joint OFDM

Channel Estimation and Decoding in Impulsive Noise Environments,” IEEE Trans. Signal
Process., to appear.
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I[EEE 802.15.4a outdoor NLOS
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/1. Comms over Wideband Channels:

e Below left shows channel taps « = |z, .

real part

e At large communication bandwidths, channel impulse responses are sparse.
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.., Tr_1], where
— x, = x(nT) for bandwidth T—! = 256 MHz,

— x(t) = h(t) * pre(t), and
— h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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/Simplified Channel Model: \

First, let's simplify things to talk concretely about sparse channels. . .

Consider a discrete-time channel that is
e block-fading with block size IV,
e frequency-selective with L taps (where L < N),
e sparse with S non-zero complex-Gaussian taps (where 0 < .S < L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:
1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?

. /
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/Noncoherent Capacity of the Sparse Channel: \

For the unknown N-block-fading, L-length, S-sparse channel described earlier, we
established that [1]

1. In the high-SNR regime, the ergodic capacity obeys

N - S
Coparse(SNR) = log(SNR) + O(1).
2. To achieve the prelog factor R,.... = NT_S It suffices to use

e pilot-aided OFDM (with N subcarriers, of which S are pilots)

e with joint channel estimation and data decoding.
Key points:
e The effect of unknown channel support manifests only in the O(1) offset.

e [1] uses constructive proofs, but the decoder proposed there is not practical.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency

\\selective block-fading channels,” IEEE Trans. Info. Thy., Oct. 2011. /
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/Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. ..
e is practical, with decode complexity O(IN logy N + N|S|) per block,
e (empirically) achieves the optimal prelog factor R,... = NT_S

e significantly outperforms “compressed channel sensing” (CCS) schemes.

Our scheme uses. . .

e a conventional transmitter: pilot-aided BICM OFDM,

e a novel receiver: based on GAMP.

. /
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/Factor Graph for pilot-aided BICM-OFDM:
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using GAMP approximations in the GAMP sub-graph.

.

N
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/Numerical Results — Perfectly Sparse Channel: \
Transmitter:

e LDPC codewords with length ~ 10000 bits.

o 2M_QAM with 2M € {4,16, 64,256} and multi-level Gray mapping.

e OFDM with N = 1024 subcarriers.

e P pilot subcarriers and/or T training MSBs.

Channel:
o Length L = 256 = N/4.
e Sparsity S =64 = L/4.

Reference Schemes:
e Pilot-aided LASSO was implemented using SPGL1 with genie-aided tuning.

e Pilot-aided , support-aware MMSE, and info-bit+support-aware
\\ MMSE channel estimates were also tested. /
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/BER & Outage vs SNR (with P=L pilots and T'=0 MSBs): \

log,(BER) of GAMP BER=0.001 contours (64-QAM)
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Key points:

e GAMP outperforms both LASSO and the support genie (SG).

e GAMP performs nearly as well as the info-bit+support-aware genie (BSG).

e With P = L, all approaches yield prelog factor R = % = %, which falls short of

N-§S _ 15

\\ the optimal Reuee = “° = 13- /

15




Phil Schniter The Ohio State University

/BER & Outage vs SNR (with P=0 pilots & T'=SM training MSBs):\

log,0(BER) (256 QAM, 3.75 bpcu, 20dB SNR) BER=0.01 contours (256-QAM)
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Key points:

e GAMP favors P =0 pilot subcarriers and T'=S5M training MSBs.

— Precisely the necc/suff redundancy of the capacity-maximizing system!

e GAMP achieves the sparse-channel’s capacity-prelog factor, R,ase = NT_S

. /
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/In reality, channel taps are not perfectly sparse, nor i.i.d: \
e For example, consider channel taps = [xg,...,xr_1], where
— x, = x(nT) for bandwidth T—! = 256 MHz,
— x(t) = h(t) * pre(t), and
— h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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e The tap distribution varies as the lag increases, becoming more heavy-tailed.

e The big taps are clustered together in lag, as are the small ones.

. /
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/Proposed channel model: \

e Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit

in receiver design.

e \We propose a structured-sparse channel model based on a 2-state Gaussian

Mixture model with discrete-Markov-chain structure on the state:
CN(CE‘j; O,,u?) if dj=0 “small"
CN(z4;0,p5) ifdj=1 "big"
Pr{d;;1 =1} = p}o Pr{d; =0} + (1 —p?l) Pr{d; =1}

p(zj|dj) =

e Our model is parameterized by the lag-dependent quantities:
{,ujl} . big-state power-delay profile
{u3} : small-state power-delay profile
{p9'} : big-to-small transition probabilities

{pj°} : small-to-big transition probabilities

e Can learn these statistical params from observed realizations via the EM alg.

. /

18




Phil Schniter The Ohio State University

/Factor graph for pilot-aided BICM-OFDM: \
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(O = random variable B = posterior factor

To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using GAMP approximations in the GAMP sub-graph.

. /
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/Numerical results: \

Transmitter:

e OFDM with N = 1024 subcarriers.
o 16-QAM with multi-level Gray mapping

e LDPC codewords with length ~ 10000 yielding spectral efficiency of 2 bpcu.

e P “pilot subcarriers” and T “training MSBs."

Channel:

e 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)

e Length L =256 = N/4.

Reference Channel Estimation / Equalization Schemes:

e soft-input soft-output (SISO) versions of LMMSE and LASSO.

\\ e perfect-CSl| genie. /
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/BER versus F;, /N, for P = 224 pilots and 7" = 0 training MSBs: \
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Our scheme shows 4dB improvement over (turbo) LASSO.

\Our scheme only 0.5dB from perfect-CSl genie! /
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/BER versus F;, /N, for P = 0 pilots and T" = 448 training MSBs: \
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Use of training MSBs gives 1dB improvement over use of pilot subcarriers!
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/2. Communications over Underwater Channels: \
e SPACE-08 Underwater Experiment 2920156F038_C0_S6

e Time-varying channel response estimated using WHOI M-sequence:

165

r 105
r 160

r 155

r 150

absolute magnitude

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

time

e The channel is nearly over-spread: f;T5L = 20 X 10000 x 400 = 0.8 !

e Can't afford to ignore structure of temporal variations!

. /

23




Phil Schniter The Ohio State University

/BICM—OFDM Factor Graph with Temporal Channel Structure: \
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e Channel taps are modeled as independent Bernoulli-Gaussian processes:
— each tap’'s amplitude follows a temporal Gauss-Markov chain

— each tap’s on/off state follows a temporal discrete-Markov chain

. /
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/Performance versus SNR: \
Settings: 10° :
e experimentally measured f | temporal

t |
underwater channel —e— no tempora

o 16-QAM I
e 1024 total tones : ' |
e O pilot tones

e 256 training MSBs
e LDPC length 10k
e LDPC rate 0.5
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I I
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Exploiting the persistence in channel support and channel amplitudes was critical
in this difficult underwater application.

. /
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/3. Communications in Impulsive Noise: \

e In many wireless and power-line communication systems, the (time-domain)

noise is not Gaussian but impulsive.

sample index
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Alternating Noise GAMP : MC Decoding

\ ' &ChannelGAMP ST /
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/Factor Graph for pilot-aided BICM-OFDM: \
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/Numerical Results — Uncoded Case: \
Settings: 10°
e 5 channel taps
e GM noise o'l
e 256 total tones
e 15 pilot tones
r
e 30 null tones o 10T
o 4-QAM
10_3_ —A—PP ‘ ‘ o , i
—e— SBL &
—=—JCIS Y
——DFT | ‘ ‘ ‘ f
--- MFB
0™ ' ' ' ' '
-15 -10 -5 0 5 10 15
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Proposed “joint channel /impulsive-noise /symbol” estimation (JCIS) scheme gives

~15 dB gain over previous state-of-the-art and performs within 1 dB of MFB!

. /
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/Numerical Results — Coded Case: \
Settings: 10°
e 10 channel taps ‘ oo |
: P e
e GM noise VVVV
e 1024 total tones v
e 150 pilot tones 4
e 0 null tones _ \<\7
e 16-QAM - —v— -DFT O
—v— JCIS-1 ‘
e LDPC —a— JCISB-2 =
e Rate 0.5 p— jg:i?f M
e Length 60k n o RS
2 4 6 8 10
SNR [dB]
Proposed “joint channel /impulsive-noise/symbol /bit” estimation (JCISB) scheme
gives ~15 dB gain over traditional DF T-based receiver!

. /
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/Conclusions: \

e Inference in the generalized linear model yields an important but challenging

class of problems.

e The generalized approximate message passing (GAMP) is a important new

tool for solving such problems (under sufficiently large and dense transforms).

e Problems of this form manifest in BICM-OFDM comms receivers, where one
wants to optimally decode bits in the presence of unknown channels, symbols,

and noise.

e Often, the channel and noise processes have interesting statistical structures
(e.g., sparsity, clustering, time-variation) and decoding performance can be

dramatically improved when these structures are properly exploited.

e For such problems, GAMP can be “plugged into” the standard “turbo”
receiver architecture to yield near-optimal performance with manageable
complexity.
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