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The Generalized Linear Model:

• Consider observation y ∈ C
M of unknown vector x ∈ C

N that is

– sent through known linear transform A, generating hidden z = Ax, then

– observed through a probabilistic measurement channel py|z(y|z).

Our goal is to infer x from y.

• When px and py|z are both Gaussian, the MMSE/MAP estimator is linear and

easy to state in closed-form. The more interesting case is when px and/or py|z

are non-Gaussian.

• Equally interesting is when M ≪ N : Compressive sensing tells us that

K-sparse x ∈ C
N can be accurately recovered from M & O(K logN/K)

measurements when A is information-preserving (e.g., satisfies 2K-RIP).

• There are many applications of estimation under the generalized linear model

in engineering, biology, medicine, finance, etc.
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Example Applications:

• Pilot-aided channel estimation / “compressed channel sensing”

x: sparse channel impulse response (length N)

y: pilot observations (M < N with sparse channel)

A: built from pilot symbols and other aspects of linear-modulation

• Imaging (medical, radar, etc.)

x: spatial-domain image (rasterized)

y: noisy measurements (AWGN, Gaussian, phaseless, etc.)

A: typically Fourier-based (details are application dependent)

• Binary linear classification and feature selection

x: prediction vector (⊥ to class-separating hyperplane, sparse)

y: binary experimental outcomes (e.g., {sick, healthy})

A: each row contains per-experient features (e.g., age, weight, etc.)
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Generalized Approximate Message Passing (GAMP):

• Suppose we are interested in computing the MMSE or MAP estimate of x

from y (under known A, px, py|z).

• For general A, px, and py|z, this is difficult. . . in fact NP hard.

• However, for sufficiently large and dense A, and separable px and py|z, there

is a remarkable new iterative algorithm that gets close: GAMP.
S. Rangan, “Generalized approximate message passing for estimation with random linear

mixing,” arXiv:1010.5141, Oct. 2010.

– In the large-system limit (M,N → ∞ with fixed M/N) when A is drawn

iid sub-Gaussian, and px and py|z are separable (i.e., independent r.v.s),

GAMP’s performance is characterized by a state evolution whose fixed

points, when unique, coincide with the MMSE or MAP optimal estimates.

– In practice, A is finite sized and structured (e.g., Fourier). Still, for any A,

the fixed-points of the GAMP iterations correspond to the critical points

of the MAP optimization objective, maxx
{

ln py|z(y|Ax) + ln px(x)
}

.
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A Revolution in Loopy Belief Propagation:

• The GAMP algorithm can be

derived as an approximation

of the sum-product (in the

MMSE case) or max-product

(in the MAP case) loopy BP

algorithms.
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• The approximation makes use of the central limit theorem and Taylor series

approximations that hold in the large-system limit.

• An interesting observation is that, because A is dense, the factor graph is

extremely loopy. Loosely speaking, these loops are OK because (for

normalized A) they get “weaker” as the problem gets larger.

• Note: Rigorous analyses of GAMP are based on the algorithm itself, not on

the loopy-BP approximations.

M. Bayati and A. Montanari, “The dynamics of message passing on dense graphs, with

applications to compressed sensing,” IEEE Trans. Inform. Thy., Feb. 2011.
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GAMP Heuristics (Sum-Product Case):
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1. Message from yi node to xj node:
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∫

{xr}r 6=j
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To compute ẑi(xj), ν
z
i (xj), the means and variances of {pi←r}r 6=j suffice, thus

Gaussian message passing!

Remaining problem: we have 2MN messages to compute (too many!).

2. Exploiting similarity among the messages

{pi←j}
M
i=1

, AMP employs a Taylor-series ap-

proximation of their difference whose error

vanishes as M→∞ for dense A (and simi-

lar for {pi→j}
N
j=1

as N→∞). Finally, need

to compute only O(M+N) messages!
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The resulting algorithm requires two matrix-vector multiplications per iteration, and

converges in typically . 25 iterations.
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GAMP Extensions:

• Standard GAMP assumes known, separable px and py|z.

• However, in practice. . .

– Densities px and py|z are usually unknown.

– Often, they are also non-separable (i.e., elements of x are statistically

dependent; same for y|z)

• We have developed an EM-based methodology to learn px and py|z online and

subsequently leverage this information for near-optimal Bayesian inference.
J. P. Vila and P. Schniter, “Expectation-Maximization Gaussian-Mixture Approximate

Message Passing,” IEEE Trans. Signal Process., Oct. 2013.

• We also have developed a “turbo” methodology that handles probabilistic

dependencies among the elements of x and the elements of y|z.
P. Schniter, “Turbo reconstruction of structured sparse signals,” Proc. CISS, (Princeton,

NJ), Mar. 2010.
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Some Communications Applications of (EM/turbo) GAMP:

1. Communications over wideband channels

• joint channel-estimation/equalization/decoding
P. Schniter, “A Message-Passing Receiver for BICM-OFDM over Unknown

Clustered-Sparse Channels,” IEEE J. Sel. Topics Signal Process., Dec. 2011.

P. Schniter, “Belief-propagation-based joint channel estimation and decoding for

spectrally efficient communication over unknown sparse channels,” Physical

Communication, Mar. 2012.

2. Communications over underwater channels

• joint channel-tracking/equalization/decoding
P. Schniter and D. Meng, “A Message-Passing Receiver for BICM-OFDM over Unknown

Time-Varying Sparse Channels,” Allerton Conf., Sep. 2011.

3. Communications in impulsive noise

• joint channel-estimation/equalization/impulse-mitigation/decoding
M. Nassar, P. Schniter, and B. Evans, “A Factor-Graph Approach to Joint OFDM

Channel Estimation and Decoding in Impulsive Noise Environments,” IEEE Trans. Signal

Process., to appear.
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1. Comms over Wideband Channels:

• At large communication bandwidths, channel impulse responses are sparse.

• Below left shows channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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Simplified Channel Model:

First, let’s simplify things to talk concretely about sparse channels. . .

Consider a discrete-time channel that is

• block-fading with block size N ,

• frequency-selective with L taps (where L < N),

• sparse with S non-zero complex-Gaussian taps (where 0 < S ≤ L),

where both the channel coefficients and support are unknown to the receiver.

Important questions:

1. What is the capacity of this channel?

2. How can we build a practical comm system that operates near this capacity?
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Noncoherent Capacity of the Sparse Channel:

For the unknown N -block-fading, L-length, S-sparse channel described earlier, we

established that [1]

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with joint channel estimation and data decoding.

Key points:

• The effect of unknown channel support manifests only in the O(1) offset.

• [1] uses constructive proofs, but the decoder proposed there is not practical.

[1] A. Pachai-Kannu and P. Schniter, “On communication over unknown sparse frequency

selective block-fading channels,” IEEE Trans. Info. Thy., Oct. 2011.
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Practical Communication over the unknown Sparse Channel:

We now propose a communication scheme that. . .

• is practical, with decode complexity O(N log2N +N |S|) per block,

• (empirically) achieves the optimal prelog factor Rsparse =
N−S
N

,

• significantly outperforms “compressed channel sensing” (CCS) schemes.

Our scheme uses. . .

• a conventional transmitter: pilot-aided BICM OFDM,

• a novel receiver: based on GAMP.
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Factor Graph for pilot-aided BICM-OFDM:

SISO (de)coding GAMP
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using GAMP approximations in the GAMP sub-graph.
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Numerical Results — Perfectly Sparse Channel:

Transmitter:

• LDPC codewords with length ∼ 10000 bits.

• 2M -QAM with 2M ∈ {4, 16, 64, 256} and multi-level Gray mapping.

• OFDM with N = 1024 subcarriers.

• P pilot subcarriers and/or T training MSBs.

Channel:

• Length L = 256 = N/4.

• Sparsity S = 64 = L/4.

Reference Schemes:

• Pilot-aided LASSO was implemented using SPGL1 with genie-aided tuning.

• Pilot-aided LMMSE, support-aware MMSE, and info-bit+support-aware

MMSE channel estimates were also tested.
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BER & Outage vs SNR (with P =L pilots and T =0 MSBs):
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Key points:

• GAMP outperforms both LASSO and the support genie (SG).

• GAMP performs nearly as well as the info-bit+support-aware genie (BSG).

• With P = L, all approaches yield prelog factor R = N−L
N

= 3

4
, which falls short of

the optimal Rsparse =
N−S
N

= 15

16
.
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BER & Outage vs SNR (with P =0 pilots & T =SM training MSBs):
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Key points:

• GAMP favors P =0 pilot subcarriers and T =SM training MSBs.

– Precisely the necc/suff redundancy of the capacity-maximizing system!

• GAMP achieves the sparse-channel’s capacity-prelog factor, Rsparse =
N−S
N

.
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In reality, channel taps are not perfectly sparse, nor i.i.d:

• For example, consider channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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• The tap distribution varies as the lag increases, becoming more heavy-tailed.

• The big taps are clustered together in lag, as are the small ones.
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Proposed channel model:

• Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit

in receiver design.

• We propose a structured-sparse channel model based on a 2-state Gaussian

Mixture model with discrete-Markov-chain structure on the state:

p(xj | dj) =







CN (xj ; 0, µ
0
j ) if dj=0 “small”

CN (xj ; 0, µ
1
j ) if dj=1 “big”

Pr{dj+1 = 1} = p10j Pr{dj = 0}+ (1− p01j ) Pr{dj = 1}

• Our model is parameterized by the lag-dependent quantities:

{µ1

j} : big-state power-delay profile

{µ0

j} : small-state power-delay profile

{p01j } : big-to-small transition probabilities

{p10j } : small-to-big transition probabilities

• Can learn these statistical params from observed realizations via the EM alg.
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Factor graph for pilot-aided BICM-OFDM:
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using GAMP approximations in the GAMP sub-graph.
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Numerical results:

Transmitter:

• OFDM with N = 1024 subcarriers.

• 16-QAM with multi-level Gray mapping

• LDPC codewords with length ∼ 10000 yielding spectral efficiency of 2 bpcu.

• P “pilot subcarriers” and T “training MSBs.”

Channel:

• 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)

• Length L = 256 = N/4.

Reference Channel Estimation / Equalization Schemes:

• soft-input soft-output (SISO) versions of LMMSE and LASSO.

• perfect-CSI genie.

20



Phil Schniter The Ohio State University✬

✫

✩

✪

BER versus Eb/No for P = 224 pilots and T = 0 training MSBs:
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Our scheme shows 4dB improvement over (turbo) LASSO.

Our scheme only 0.5dB from perfect-CSI genie!
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BER versus Eb/No for P = 0 pilots and T = 448 training MSBs:
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Use of training MSBs gives 1dB improvement over use of pilot subcarriers!
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2. Communications over Underwater Channels:

• SPACE-08 Underwater Experiment 2920156F038 C0 S6

• Time-varying channel response estimated using WHOI M-sequence:

 

 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

50

100

150

200

250

300

350

400

450

500

0

0.1

0.2

0.3

0.4

0.5

time

la
g

ab
so
lu
te

m
ag
n
it
u
d
e

 

 

−25 −20 −15 −10 −5 0 5 10 15 20 25

50

100

150

200

250

300

350

400

450

500

20

25

30

35

40

45

50

55

60

65

Hz
la
g

d
B

• The channel is nearly over-spread: fdTsL = 20× 1

10000
× 400 = 0.8 !

• Can’t afford to ignore structure of temporal variations!
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BICM-OFDM Factor Graph with Temporal Channel Structure:

SISO (de)coding GAMP
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• Channel taps are modeled as independent Bernoulli-Gaussian processes:

– each tap’s amplitude follows a temporal Gauss-Markov chain

– each tap’s on/off state follows a temporal discrete-Markov chain
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Performance versus SNR:

Settings:

• experimentally measured

underwater channel

• 16-QAM

• 1024 total tones

• 0 pilot tones

• 256 training MSBs

• LDPC length 10k

• LDPC rate 0.5
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Exploiting the persistence in channel support and channel amplitudes was critical

in this difficult underwater application.
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3. Communications in Impulsive Noise:

• In many wireless and power-line communication systems, the (time-domain)

noise is not Gaussian but impulsive.

• The marginal noise statistics are well

captured by a 2-state Gaussian mixture

(i.e., Middleton class-A) model.

• Noise burstiness is well captured by a

discrete Markov chain on the noise state.
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Factor Graph for pilot-aided BICM-OFDM:
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Numerical Results — Uncoded Case:

Settings:

• 5 channel taps

• GM noise

• 256 total tones

• 15 pilot tones

• 80 null tones

• 4-QAM

Proposed “joint channel/impulsive-noise/symbol” estimation (JCIS) scheme gives

∼15 dB gain over previous state-of-the-art and performs within 1 dB of MFB!
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Numerical Results — Coded Case:

Settings:

• 10 channel taps

• GM noise

• 1024 total tones

• 150 pilot tones

• 0 null tones

• 16-QAM

• LDPC

• Rate 0.5

• Length 60k

Proposed “joint channel/impulsive-noise/symbol/bit” estimation (JCISB) scheme

gives ∼15 dB gain over traditional DFT-based receiver!
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✪

Conclusions:

• Inference in the generalized linear model yields an important but challenging

class of problems.

• The generalized approximate message passing (GAMP) is a important new

tool for solving such problems (under sufficiently large and dense transforms).

• Problems of this form manifest in BICM-OFDM comms receivers, where one

wants to optimally decode bits in the presence of unknown channels, symbols,

and noise.

• Often, the channel and noise processes have interesting statistical structures

(e.g., sparsity, clustering, time-variation) and decoding performance can be

dramatically improved when these structures are properly exploited.

• For such problems, GAMP can be “plugged into” the standard “turbo”

receiver architecture to yield near-optimal performance with manageable

complexity.
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