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Fixed Points of Generalized Approximate Message
Passing With Arbitrary Matrices

Sundeep Rangan, Fellow, IEEE, Philip Schniter, Fellow, IEEE, Erwin Riegler,
Alyson K. Fletcher, Member, IEEE, and Volkan Cevher, Senior Member, IEEE

Abstract— The estimation of a random vector with independent
components passed through a linear transform followed by a
componentwise (possibly nonlinear) output map arises in a range
of applications. Approximate message passing (AMP) methods,
based on Gaussian approximations of loopy belief propagation,
have recently attracted considerable attention for such prob-
lems. For large random transforms, these methods exhibit fast
convergence and admit precise analytic characterizations with
testable conditions for optimality, even for certain non-convex
problem instances. However, the behavior of AMP under general
transforms is not fully understood. In this paper, we consider
the generalized AMP (GAMP) algorithm and relate the method
to more common optimization techniques. This analysis enables
a precise characterization of the GAMP algorithm fixed points
that applies to arbitrary transforms. In particular, we show that
the fixed points of the so-called max-sum GAMP algorithm for
MAP estimation are critical points of a constrained maximization
of the posterior density. The fixed points of the sum-product
GAMP algorithm for estimation of the posterior marginals can
be interpreted as critical points of a certain free energy.

Index Terms— Message passing, belief propagation, variational
optimization, compressed sensing, ADMM.

I. INTRODUCTION

CONSIDER the constrained optimization problem

(̂x, ẑ) := arg min
x,z

F(x, z) s.t. z = Ax, (1)
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Fig. 1. System model: The GAMP method considered here can be used for
approximate MAP and MMSE estimation of x from y.

where x ∈ R
n , z ∈ R

m , A ∈ R
m×n , and the objective function

admits a decomposition of the form

F(x, z) := fx (x)+ fz(z)

fx (x) =
n

∑

j=1

fx j (x j ), fz(z) =
m

∑

i=1

fzi (zi ), (2)

for scalar functions fx j (·) and fzi (·). One example where this
optimization arises is the estimation problem in Fig. 1. Here,
a random vector x has independent components with densities
px j (x j ) and passes through a linear transform to yield an
output z = Ax. The problem is to estimate x and z from
measurements y generated according to a conditional density
py|z(y|z) that is separable as a product of conditional densities
pyi |zi (yi |zi ). Under this observation model, the vectors x and z
will have a posterior joint density given by

px,z|y(x, z|y) = 1

Z(y)
e−F(x,z)

�{z=Ax}, (3)

where F(x, z) is given by (2) when the scalar functions are
set to the negative log prior density and likelihood:

fx j (x j ) = − log px j (x j ), fzi (zi ) = − log pyi |zi (yi |zi ).

Note that in (3), F(x, z) is implicitly a function of y, Z(y) is
a normalization constant, and the point mass �{z=Ax} imposes
the linear constraint that z = Ax. The optimization (1) in
this case produces the maximum a posteriori (MAP) estimate
of x and z. In statistics, the system in Fig. 1 is sometimes
referred to as a generalized linear model [2], [3] and is used in
a range of applications including regression, inverse problems,
and filtering. Bayesian forms of compressed sensing can also
be considered in this framework by imposing a sparse prior
for the components x j [4], [5]. In all these applications,
one may instead be interested in estimating the posterior
marginals p(x j |y) and p(zi |y). We relate this objective to an
optimization of the form (1)-(2) in the sequel.
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Most current numerical methods for solving the constrained
optimization problem (1) attempt to exploit the separable
structure of the objective function (2) either through gen-
eralizations of iterative shrinkage and thresholding (ISTA)
algorithms [6]–[11] or the alternating direction method of
multipliers (ADMM) approach [12]–[21]. There are now many
of these methods, and we provide a brief review in Section II.

However, in recent years, there has been considerable
interest in so-called approximate message passing (AMP)
methods based on Gaussian and quadratic approximations of
loopy belief propagation in graphical models [22]–[27]. The
main appealing feature of the AMP algorithms is that for
certain large random matrices A, the asymptotic behavior of
the algorithm can be rigorously and exactly predicted with
testable conditions for optimality, even for many non-convex
instances. Moreover, in the case of these large, random matri-
ces, simulations appear to show very fast convergence of AMP
methods when compared against state-of-the-art conventional
optimization techniques.

Despite recent extensions to larger classes of random matri-
ces [28], [29], the behavior of AMP methods under general A
is not fully understood. Indeed, for general A, it is well-known
that AMP methods may diverge [30], [31]. While AMP has
been successfully applied in a range of applications [32]–[36],
the methods often require tuning to stabilize the algorithms.
Various general procedures to stabilize AMP have also been
proposed [30], [37]–[39].

To better understand these convergence issues, the broad
purpose of this paper is to show that certain forms of AMP
algorithms can be seen as variants of more conventional
optimization methods. This analysis will enable a precise
characterization of the fixed points of the AMP methods that
applies to arbitrary A, and a potential framework to understand
the convergence.

Our study focuses on a Generalized AMP (GAMP) method
proposed in [27] and rigorously analyzed in [40]. We consider
this algorithm since many other variants of AMP are special
cases of this general procedure. The GAMP method has two
common versions: max-sum GAMP for the MAP estimation of
the vectors x and z for the problem in Fig. 1, and sum-product
GAMP for approximate inference of the posterior marginals.

For both versions of GAMP, the algorithms produce esti-
mates x and z along with certain “quadratic” terms. Our first
main result (Theorem 1) shows that the fixed points (̂x, ẑ) of
max-sum GAMP are critical points of the optimization (1).
In addition, the quadratic terms can be considered as diag-
onal approximations of the inverse Hessian of the objective
function. For sum-product GAMP, we show (Theorem 2) that
the algorithm’s fixed points are stationary points of a certain
energy function.

A conference version of this paper appeared in [1]. This
paper includes all the proofs and more extensive discussion
regarding relations between GAMP and classic optimization
and free energy minimization techniques. In addition, since
the publication of the conference version of this paper in [1],
several other works such as [30], [39], [41], and [42] have
built on the ideas and these are also discussed.

Algorithm 1 Generalized Approximate Message Pass-
ing (GAMP)

Require: Matrix A ∈ R
m×n , functions fx (x), fz(z) ∈ R, and

algorithm choice MaxSum or SumProduct.
1: t ← 0
2: Initialize xt ∈ R

n , τ t
x ∈ R

n+
3: st−1 ← 0 ∈ R

m

4: S← A.A (componentwise square)
5: repeat
6: {Output node update}
7: τ t

p ← Sτ t
x

8: pt ← Axt − st−1.τ t
p

9: if MaxSum then
10: zt ← proxτ t

p fz
(pt )

11: τ t
z ← τ t

p . prox′
τ t

p fz
(pt )

12: else if SumProduct then
13: zt ← E(z|pt , τ t

p )
14: τ t

z ← var(z|pt , τ t
p )

15: end if
16: st ← (zt − pt )./τ t

p
17: τ t

s ← (1− τ t
z ./τ t

p )./τ t
p

18:

19: {Input node update}
20: τ t

r ← 1./(ST τ t
s )

21: rt ← xt + τ t
r .AT st

22: if MaxSum then
23: xt+1 ← proxτ t

r fx
(rt )

24: τ t+1
x ← τ t

r . prox′
τ t
r fx

(rt )

25: else if SumProduct then
26: xt+1 ← E(x|rt , τ t

r )
27: τ t+1

x ← var(x|rt , τ t
r )

28: end if
29: until Terminated

II. REVIEW OF GAMP AND RELATED METHODS

A. Generalized Approximate Message Passing

Graphical-model methods [43] are a natural approach to the
optimization problem (1) given the separable structure of the
objective function (2). However, traditional graphical model
techniques such as loopy belief propagation (loopy BP) are
computationally attractive only when the constraint matrix A is
sparse. Approximate message passing (AMP) refers to a class
of Gaussian and quadratic approximations of loopy BP that
can be applied to dense A. AMP approximations of loopy BP
originated in CDMA multiuser detection problems [44]–[46]
and have received considerable recent attention in the context
of compressed sensing [22]–[27], [47]. The Gaussian approx-
imations used in AMP are also closely related to expectation
propagation techniques [48], [49].

In this work, we study the so-called Generalized
AMP (GAMP) algorithm [27] rigorously analyzed in [40].
The procedure, shown in Algorithm 1, produces a sequence
of estimates (xt , zt ) of (x, z) along with the quadratic terms
τ t
x , τ t

r ∈ R
n+ and τ t

z , τ t
p , τ t

s ∈ R
m , where t ∈ Z+ represents
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Algorithm 2 Iterative Shrinkage and Thresholding Algorithm
(ISTA)
Require: Matrix A, scalar c ≥ 0, functions fx (·), fz(·).
1: t ← 0
2: Initialize xt .
3: repeat
4: zt ← Axt

5: qt ← ∇ fz(zt )
6: xt+1← arg minx fx (x)+ (qt )T Ax + (c/2)‖x − xt‖2
7: until Terminated

the iteration number. Here and in the sequel, we use “.” to
denote componentwise vector multiplication and “./” to denote
componentwise vector division.

We focus on two variants of the GAMP algorithm: max-sum
GAMP and sum-product GAMP.

1) Max-Sum GAMP: In the max-sum version of the algo-
rithm, the outputs (xt , zt ) represent estimates of the solution
to the optimization problem (1), or equivalently the MAP
estimates for the posterior (3). Since the objective function has
the separable form (2), each iteration of the algorithm involves
four componentwise update steps: the proximal updates shown
in lines 10 and 23, where

prox f (v) := arg min
u∈R

f (u)+ 1

2
(u − v)2, (4)

and lines 11 and 24, involving the derivative of the proximal
operator from (4).

In particular, lines 10 and 11 are to be interpreted as

zt
i = proxτ t

pi
fzi

(pt
i ), i = 1, . . . , m, (5)

τ t
zi
= τ t

pi
prox′τ t

pi
fzi

(pt
i ), i = 1, . . . , m, (6)

= τ t
pi

(

1+ τ t
pi

∂2 fzi (z
t
i )

∂z2
i

)−1
, i = 1, . . . , m, (7)

with similar interpretations for lines 23 and 24. Thus, max-
sum GAMP reduces the vector-valued optimization (1) to a
sequence of scalar optimizations.

When discussing max-sum GAMP, we will assume that both
fx and fz are twice differentiable and convex, so that the
outputs of the proximal operator and its derivative exist and
are unique. We make these assumptions for the sake of clarity,
but note that—in practice—GAMP is often used with non-
differentiable functions. A common example is when fx (x) =
λ‖x‖1 for λ > 0, in which case

proxτ t
r j

fx j
(r t

j ) = sgn(r t
j ) max{|r t

j | − λτ t
r j

, 0} (8)

and

prox′τ t
r j

fx j
(r t

j ) =
{

1, |r t
j | > λτ t

r j
;

0, |r t
j | < λτ t

r j
.

(9)

Although prox′
τ t

r j
fx j

(r t
j ) is undefined when r t

j = λτ t
r j

, its value

can be set to either 0 or 1 with minimal effect, because the
event r t

j = λτ t
r j

almost never occurs (due, e.g., to the presence
of noise in r t

j ). The rigorous GAMP analysis [40] assumes

only that the prox functions in lines 10 and 23 are Lipschitz
continuous (and hence differentiable almost everywhere).

2) Sum-Product GAMP: The purpose of the sum-product
GAMP algorithm is to provide estimates of the posterior
marginals

p(x j |y), p(zi |y), (10)

from the joint density (3). Exact computation of these marginal
densities is, in general, computationally intractable. Sum-
product GAMP instead provides estimates of these densities.
Specifically, at each iteration t , it forms the estimated densities,
called beliefs, given by:

bt
x j

(x j ) = p(x j |r t
j , τ

t
r j

), bt
zi
(zi ) = p(zi |pt

i , τ
t
pi

), (11)

where we use the notation

p(x j |r j , τr j ) ∝ exp

[

− fx j (x j )− 1
2τr j

(x j − r j )
2
]

, (12a)

p(zi |pi , τpi ) ∝ exp
[

− fzi (zi )− 1
2τpi

(zi − pi )
2
]

. (12b)

As we will discuss in Section IV, these belief estimates can be
“derived” as estimates of the minima of a certain large system
limit of the Bethe Free Energy.

Now, the products of the densities in (12) are given by

p(x|r, τr ) =
n

∏

j=1

p(x j |r j , τr j )

∝ exp

[

− fx (x)− 1

2
‖x − r‖2τr

]

, (13a)

p(z|p, τp) =
m

∏

i=1

p(zi |zi , τpi )

∝ exp

[

− fz(z)− 1

2
‖z − p‖2τp

]

, (13b)

where, for any vectors v ∈ R
r and τ ∈ R

r with τ > 0, we
use the notation

‖v‖2τ :=
r

∑

i=1

|vi |2
τi

.

In the sum-product version of GAMP, the expectations and
variances in lines 13, 14, 26 and 27 of Algorithm 1 are
to be taken with respect to the probability density functions
in (13). Thus, xt and τ t

x are the estimates of the posterior
means and variances of the components of x and zt and τ t

z
are the estimates of the posterior means and variances of the
components of z.

Since the densities (13) are separable, the expectations and
variances can be computed via scalar integrals. Thus, the
sum-product GAMP algorithm reduces the vector-valued to
marginalization problem to a sequence of scalar estimation
problems.

B. Iterative Shrinkage and Thresholding Algorithm

The goal in the paper is to relate the GAMP method
to more conventional optimization techniques. One of the
more common of such approaches is a generalization of the
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Algorithm 3 Alternating Direction Method of Multipliers
(ADMM)
Require: A, α, functions fx (·), fz(·), Qx (·), Qz(·)
1: t ← 0
2: Initialize xt , zt , st

3: repeat
4: xt+1← arg minx L(x, zt , st )+ Qx(x, xt , zt , α)
5: zt+1 ← arg minz L(xt+1, z, st )+ Qz(z, zt , xt+1, α)
6: st+1 ← st + α(zt+1 − Axt+1)
7: until Terminated

Iterative Shrinkage and Thresholding Algorithm (ISTA) shown
in Algorithm 2 [6]–[9], where ∇ f denotes the gradient of f .

The algorithm is built on the idea that, at each iteration t ,
the second cost term in the minimization arg minx fx (x) +
fz(Ax) specified by (1) is replaced by a quadratic majorizing
cost gz(x) ≥ fz(Ax) that coincides at the point x = xt

(i.e., gz(xt ) = fz(Axt )). The function gz(x) defined implicitly
in line 6 achieves this majorization via appropriate choice of
c > 0. This approach is motivated by the fact that, if fx (x)
and fz(z) are both separable, as in (2), then both the gradient
in line 5 and minimization in line 6 can be performed compo-
nentwise. Moreover, when fx (x) = λ‖x‖1, as in the LASSO
problem [50], the minimization in line 6 can be computed
directly via the shrinkage and thresholding operation (8)—
hence the name of the algorithm. The convergence of the ISTA
method tends to be slow, but a number of enhanced methods
have been successful and widely-used [8]–[11].

C. Alternating Direction Method of Multipliers

A second common class of methods is built around the
Alternating Direction Method of Multipliers (ADMM) [12]
approach shown in Algorithm 3. The Lagrangian for the
optimization problem (1) is given by

L(x, z, s) := F(x, z)+ sT (z− Ax), (14)

where s are the dual parameters. ADMM attempts to produce
a sequence of estimates (xt , zt , st ) that converge to a saddle
point of the Lagrangian (14). The parameters of the algorithm
are a step-size α > 0 and the penalty terms Qz(·) and Qx (·),
which classical ADMM would choose as

Qx (x, xt , zt , α) = α

2
‖zt − Ax‖2 (15a)

Qz(z, zt , xt+1, α) = α

2
‖z− Axt+1‖2. (15b)

When the objective function admits a separable form (2)
and one uses the auxiliary function Qz(·) in (15b), the
z-minimization in line 5 separates into m scalar optimizations.
However, due to the quadratic term ‖Ax‖2 in (15a), the
x-minimization in line 4 does not separate for general A.
To circumvent this problem, one might consider a separa-
ble inexact x-minimization, since many inexact variants of
ADMM are known to converge [13]. For example, Qx (·) might
be chosen to yield separability while majorizing the original

cost in line 4, as was done for ISTA’s line 6, i.e.,

Qx (x, xt , zt , α)

= α

2
‖zt − Ax‖2 + 1

2
(x − xt )T (cI− αAT A)(x − xt ) (16)

with c ≥ α‖A‖2, after which ADMM’s line 4 would become

arg min
x

fx (x)+ c

2

∥

∥

∥x − xt + α

c
AT

(

Axt − zt − 1

α
st

)∥

∥

∥

2
. (17)

This approach is known as “linearized ADMM” [51], or as
“split inexact Uzawa” [15] in the optimization literature, and
it has close connections to other well-known techniques like
Douglas–Rachford splitting [13], split Bregman [14], proximal
forward-backward splitting [16], and various primal-dual algo-
rithms [17]–[21]. Many other choices of penalty Qx (·) have
also been considered in the literature (see, e.g., the overview
in [19]).

Other variants of ADMM are also possible [12]. For exam-
ple, the step-size α might vary with the iteration t , or the
penalty terms might have the form (z − Ax)T P(z − Ax) for
positive semidefinite P. As we will see, these generalizations
provide a connection to GAMP.

III. FIXED-POINTS OF MAX-SUM GAMP

Our first result connects the max-sum GAMP algorithm to
inexact ADMM. Given points (x, z), define the matrices

Qx :=
(

Diag(dx)+ AT Diag(dz)A
)−1

(18a)

Qz :=
(

Diag(dz)
−1 + A Diag(dx )

−1AT
)−1

(18b)

where Diag(d) denotes the diagonal matrix with diagonal
entries equal to those in the vector d, and where dx and dz

contain the componentwise second derivatives, i.e., the diag-
onals of the Hessian matrices

dx := diag [H fx (x)] , dz := diag
[H fz(z)

]

. (19)

Note that when fx and fz are strictly convex, the elements in
dx and dz are positive. Observe that the matrix Qx in (18a)
is the inverse Hessian of the objective function F(x, z) con-
strained to z = Ax. That is,

Qx = [Hx F(x, Ax)]−1 .

Theorem 1: The outputs of the max-sum GAMP version of
Algorithm 1 satisfy the recursions

xt+1 = arg min
x

[

L(x, zt , st )+ 1

2
‖x − xt‖2τ t

r

]

(20a)

zt+1 = arg min
z

[

L(xt+1, z, st )+ 1

2
‖z− Axt+1‖2

τ t+1
p

]

(20b)

st+1 = st + (zt+1 − Axt+1)./τ t+1
p (20c)

where L(x, z, s) is the Lagrangian defined in (14).
Now suppose that (̂x, ẑ, s, τx , τs) is a fixed point of the

algorithm (where the “hats” on x̂ and ẑ are used to distinguish
them from free variables). Then, this fixed point is a critical
point of the constrained optimization (1) in that ẑ = Ax̂ and

∇x L (̂x, ẑ, s) = 0, ∇zL (̂x, ẑ, s) = 0. (21)
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Moreover, the quadratic terms τx , τs are the approximate
diagonals (as defined in Appendix A) of Qx and Qz in (18) at
(x, z) = (̂x, ẑ).

Proof: See Appendix B.
The first part of the theorem, equations (20), shows

that max-sum GAMP can be interpreted as the ADMM
Algorithm 3 with adaptive vector-valued step-sizes τ t

r and τ t
p

and a particular choice of penalty Qx (·). To more precisely
connect GAMP and existing algorithms, it helps to express
GAMP’s x-update (20a) as the θ=0 case of

arg min
x

fx (x)+ 1

2

∥

∥x − xt + τ t
r .AT (

θ(st−1 − st )− st)
∥

∥

2
τ t
r
,

(22)

and recognize that the ISTA-inspired inexact ADMM x-update
(17) coincides with the θ =1 case under step-sizes α = 1/τ t

p
and c = 1/τ t

r . The convergence of this algorithm for particular
θ ∈ [0, 1] was studied in [19]–[21] under convex functions
fx (·) and fz(·) and non-adaptive step-sizes. Unfortunately,
these convergence results do not directly apply to the adaptive
vector-valued step-sizes of GAMP.

The second part of the theorem, equation (21), shows
that if the algorithm converges then its fixed points will
be critical points of the constrained optimization (1). This
part of the theorem can be considered as a generalization
of [52, Proposition 7.1], which considers quadratic fz , and
of [47, Proposition 5.1], which considers quadratic fz and
fx (x) = ‖x‖1.

The third part of Theorem 1 then shows that the quadratic
term τx can be interpreted as an “approximate diagonal” of
the inverse Hessian under the large random matrix model
described in Appendix A.

Finally, it is useful to compare the fixed-points of GAMP
with those of standard BP. A classic result of [53] shows that
any fixed point for standard max-sum loopy BP is locally
optimal in the sense that one cannot improve the objective
function by perturbing the solution on any set of components
whose variables belong to a subgraph that contains at most
one cycle. In particular, if the overall graph is acyclic, any
fixed-point of standard max-sum loopy BP is globally optimal.
Also, for any graph, the objective function cannot be reduced
by changing any individual component. The local optimality
for GAMP provided by Theorem 1 is weaker than that for
max-sum loopy BP in that GAMP’s fixed-points only satisfy
first-order conditions for saddle points of the Lagrangian. This
implies that, even an individual component may only be locally
optimal.

IV. FIXED-POINTS OF SUM-PRODUCT GAMP

A. Bethe Free Energy

A classic result in graphical models is that the fixed points
of loopy BP can be interpreted as critical points in the
constrained minimization of a energy function known as the
Bethe Free energy (BFE) [54], [55]. In this section, we will
show that sum-product GAMP has a similar energy function
interpretation.

Specifically, consider a set of scalar densities

bx j (x j ), bzi (zi ), qzi (zi ), (23)

where the densities qzi (zi ) are Gaussian. Given any such set,
define the product densities

bx(x) =
n

∏

j=1

bx j (x j ), bz(z) =
m

∏

i=1

bzi (zi ) (24a)

qz(z) =
m

∏

i=1

qzi (zi ), (24b)

and the energy function

JSP(bx , bz, qz) := D(bx‖e− fx )+ D(bz‖e− fz )

+D(bz‖qz)+ H (bz), (25)

where H (bz) is the differential entropy. With these definitions,
consider the constrained minimization

min
bx ,bz,qz

JSP(bx , bz, qz)

s.t. E(z|bz) = E(z|qz) = AE(x|bx)

τp = S var(x|bx), S = A.A

qz(z) ∼ N (

z|μp, Diag(τp)
)

, (26)

Here and below, we use E(x|bx) to denote the expected value
of x ∼ bx , and similar for E(z|bz). Also, we use var(x|bx)
to denote the vector whose j th component is the variance of
x j ∼ bx j , and similar for var(z|bz). We stress that var(x|bx)
is a vector, not a covariance matrix. Note also that the last
constraint in (26) simply states that qz must be Gaussian with
independent components.

Note that since

D(bz‖qz)+ H (bz) = −E
[

log qz(z) | bz
]

,

the objective function (25) is separately convex in (bx , bz)
and qz . However, it is not, in general, jointly convex in
all three densities. Also, the final two constraints in the
optimization (26), on the variances and Gaussianity of qz , are
also not convex.

Our main result, Theorem 2 below, shows that sum-product
GAMP can be interpreted as a method to approximately
minimize this non-convex energy function. This result was
first stated in the conference version of this paper [1]. Since
the publication of that paper, it was stated in [41] that, in
the case of additive white Gaussian noise (AWGN) output
channels, the constrained optimization (26) can be interpreted
as an approximation of the Bethe Free energy optimization
that is valid when (a) the matrix A has i.i.d. zero mean
entries and m, n → ∞, and (b) the standard marginalization
constraints in the BFE optimization are replaced by matching
constraints on the first and second moments. A subsequent
work [42] derived a similar approximate BFE optimization
for arbitrary output channels and matrix uncertainties. We will
not discuss the BFE interpretation in this work; the reader
is referred to [41] and [42]. However, in recognition of the
relation to the Bethe free energy minimization, we will call
the energy function (25) the large-system-limit Bethe Free
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energy (LSL-BFE) and call the constrained minimization (26)
the LSL-BFE optimization.

B. GAMP Optimization

To relate the LSL-BFE optimization (26) to sum-product
GAMP, we first rewrite the optimization to remove the minima
over qz . Given a density bz(z), define the function

Hgauss(bz, τp) := D(bz‖qz)+ H (bz),

qz(z) = N (z|μp, Diag(τp)), μp = E(z|bz). (27)

This function is simply the last two terms of JSP(bx , bz, qz)
in (25) with qz(z) being the Gaussian density with mean
μp = E(z|bz) and variance var(z|qz) = τp . It can be calculated
that

Hgauss(bz, τp) = 1

2

m
∑

i=1

[

var(zi |bzi )

τpi

+ log(2πτpi )

]

. (28)

Note that from (27), Hgauss(bz, τp) ≥ H (bz) for all τp

with equality when bz is itself Gaussian with variance
var(z|bz) = τp . Hence, we will call Hgauss(bz, τp) the
Gaussian entropy upper bound function. Using this upper
bound function, we can replace the minimization over
Gaussian qz in (26) with an optimization over the vector of
variances τp . This results in the equivalent optimization

min
bx ,bz,τp

JSP(bx , bz, τp)

s.t. E(z|bz) = AE(x|bx)

τp = S var(x|bx), S = A.A (29)

where the objective function is

JSP(bx , bz, τp) := D(bx‖e− fx )+ D(bz‖e− fz )

+ Hgauss(bz, τp). (30)

With some abuse of notation, we have used JSP(·) to denote
both the LSL-BFE function in terms of qz as in (25) and the
function in terms of the variance vector τp as given in (30).

Corresponding to (29), define the Lagrangian

LSP(bx , bz, τp, s) = JSP(bx , bz, τp)

+ sT (E(z|bz)− AE(x|bx)), (31)

where s represents a vector of dual parameters. Note that this
Lagrangian does not include the constraint τp = S var(x|bx);
we will handle that separately. We can now state the main
result.

Theorem 2: Consider the outputs of the sum-product
GAMP version of Algorithm 1, and define the densities

bt+1
x (x) = p(x|rt , τ t

r ), bt
z(z) = p(z|pt , τ t

p ), (32)

where p(x|r, τr ) and p(z|p, τp) are given in (13). Then, the
GAMP algorithm input node update satisfies

bt+1
x = arg min

bx

[

LSP(bx , bt
z, τ

t
p , st )+ 1

2
(τ t

s )T S var(x|bx)

+ 1

2

∥

∥E(x|bx)− E(x|bt
x)

∥

∥

2
τ t
r

]

. (33)

where LSP(x, z, s) is the Lagrangian in (31). Similarly, the
steps in the output node update for the GAMP algorithm are
equivalent to:

τ t
p = S var(x|bt

x), (34a)

bt
z = arg min

bz

[

LSP(bt
x , bz, τ

t
p , st−1)

+ 1

2

∥

∥E(z|bz)− AE(x|bt
x)

∥

∥

2
τ t

p

]

, (34b)

st = st−1 + 1

τ t
p

[

E(z|bt
z)− AE(x|bt

x)
]

, (34c)

τ t
s = 2∇τp LSP(bt

x , bt
z, τ

t
p , st ). (34d)

Moreover, any fixed point of the sum-product GAMP algorithm
is a critical point of the constrained optimization (29).

Proof: See Appendix C.
Theorem 2 exposes connections between sum-product

GAMP and both the ISTA and ADMM methods described
earlier. The minimizations over bx and bz and the update of
the dual parameters st in (33), (34b) and (34c) follow the
format of the ADMM minimizations in Algorithm 3 for certain
choices of the auxiliary functions. On the other hand, the role
of τ t

s in (33) and (34d) follows the gradient-based method of
the generalized ISTA method in Algorithm 2 for the constraint
τs = S var(x|bx). So, the sum-product GAMP algorithm can
be seen as a hybrid of the ISTA and ADMM methods for the
optimization problem (29).

Unfortunately, this hybrid ISTA-ADMM method is
non-standard and we are not aware of existing convergence
theory. However, Theorem 2 at least shows that, if the sum-
product GAMP algorithm converges, then its fixed points
correspond to critical points of the optimization problem (29).

V. CONCLUSIONS

Although AMP methods admit precise analyses in the
context of large i.i.d. transform matrices A, their behavior
for general matrices is less well-understood. This limitation
is unfortunate since many transforms arising in practical
problems such as imaging and regression are not well-modeled
as realizations of large i.i.d. matrices. To help overcome these
limitations, this paper draws connections between AMP and
certain variants of standard optimization methods that employ
adaptive vector-valued step-sizes. These connections enable a
precise characterization of the fixed-points of both max-sum
and sum-product GAMP for the case of arbitrary transform
matrices A.

However, much work remains to be done. Most impor-
tantly, while our results relate GAMP to standard optimization
methods, these do not guarantee the algorithm’s convergence.
As mentioned in the Introduction, for general A, it is well-
known that GAMP methods may diverge [30], [31]. Several
recent modifications have been proposed to improve the sta-
bility of GAMP, including damping [30], [37]. One potential
line of future work is to consider alternates to GAMP that are
based on direct minimization of the energy function. Some
preliminary works in this regard have been presented in [38],
which proposes a coordinate descent method and [39], which
uses an ADMM-based method.
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GAMP-based methods have also been extended in a
wide variety of ways, such as combining EM with
GAMP [56]–[59], turbo and hybrid GAMP methods [60], [61],
applications in dictionary learning and matrix factorization
[62]–[66], and applications in blind deconvolution and self-
calibration [67]. Another line of work would be to understand
if one can find free energy and optimization interpretations of
these algorithms. For dictionary learning and matrix factoriza-
tion some initial work has appeared in [42] and [65].
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APPENDIX A
APPROXIMATE DIAGONALS

Given a matrix A ∈ R
m×n and positive vectors dx ∈ R

n

and dz , consider the positive matrices (18). We analyze the
asymptotic behavior of these matrices under the following
assumptions:

Assumption 1: Consider a sequence of matrices Qx and Qz

of the form (18), indexed by the dimension n satisfying:

(a) The dimension m is a deterministic function of n with
limn→∞ m/n = β for some β > 0,

(b) The positive vectors dx and dz are deterministic vectors
with

lim sup
n→∞

‖dx‖∞ <∞, lim sup
n→∞

‖dz‖∞ <∞.

(c) The components of A are independent, zero-mean with
var(Aij ) = Si j for some deterministic matrix S such
that

lim sup
n

max
i, j

nSi j <∞.

Theorem 3 ( [68]): Consider a sequence of matrices Qx

and Qz in Assumption 1. Then, for each n, there exists positive
vectors ξ x and ξ z satisfying the nonlinear equations

1./ξ z = 1./dz + Sξ x , 1./ξ x = 1./dx + ST ξ z, (35)

where the vector inverses are componentwise. Moreover, the
vectors ξ z and ξ x are asymptotic diagonals of Qx and Qz in
the following sense: For any deterministic sequence of positive
vectors ux ∈ R

n and uz ∈ R
m, such that

lim sup
n→∞

‖ux‖∞ <∞, lim sup
n→∞

‖uz‖∞ <∞,

the following limits hold almost surely

lim
n→∞

1

n

n
∑

j=1

[

ux j ((Qx) j j − ξx j )
] = 0

lim
n→∞

1

m

m
∑

i=1

[

uzi ((Qz)ii − ξzi )
] = 0.

Proof: This result is a special case of the
results in [68].

The result says that, for certain large random matrices A, ξ x
and ξ z are approximate diagonals of the matrices Qx and Qz ,

respectively. This motivates the following definition for deter-
ministic A.

Definition 1: Consider matrices Qx and Qz of the form (18)
for some deterministic (i.e., non-random) A, dx and dz . Let
S = A.A be the componentwise square of A. Then, the
unique positive solutions ξ z and ξ x to (35) will be called the
approximate diagonals of Qz and Qx , respectively.

APPENDIX B
PROOF OF THEOREM 1

To prove (20b), observe that

arg min
z

[

L(xt , z, st−1)+ 1

2
‖z− Axt‖2τ t

p

]

(a)= arg min
z

[

fz(z)+ (st−1)T z+ 1

2
‖z− Axt‖2τ t

p

]

(b)= arg min
z

[

fz(z)+ 1

2
‖z− pt‖2τ t

p

]

(c)= zt ,

where (a) follows from substituting (2) and (14) into (20b)
and eliminating the terms that do not depend on z; (b) follows
from the definition of pt in line 8; and (c) follows from the
definition of zt in line 10. This proves (20b). The update (20a)
can be proven similarly. To prove (20c), observe that

st (a)= (zt − pt )./τ t
p

(b)= st−1 + (zt − Axt )./τ t
p ,

where (a) follows from the update of st in line 16 in
Algorithm 1 (recall that the division is componentwise); and
(b) follows from the update for pt in line 8. We have thus
proven the equivalence of the max-sum GAMP algorithm with
the Lagrangian updates (20).

Now consider any fixed point (̂z, x̂, s) of the max-sum
GAMP algorithm. A fixed point of (20c) requires that

ẑ = Ax̂, (36)

so the fixed point satisfies the constraint of the optimiza-
tion (1). Now, using (36) and the fact that ẑ is the minima
of (20b), we have that

∇zL (̂x, ẑ, s) = 0.

Similarly, since x is the minima of (20a), we have that

∇zL (̂x, ẑ, s) = 0.

Thus, the fixed point (̂x, ẑ, s) is a critical point of the
Lagrangian (14).

Finally, consider the quadratic terms (τx , τr , τs) at the
fixed point. From the updates of τx and τr in Algorithm 1
[see also (7)] and the definition of dx in (19), we obtain

1./τx = dx + 1./τr = dx + ST τs . (37)

Similarly, the updates of τs and τp show that

1./τs = 1./dz + τp = 1./dz + Sτx . (38)

Then, according to Definition 1, τx and τs are the approxi-
mate diagonals of Qx and Qz in (18), respectively.
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APPENDIX C
PROOF OF THEOREM 2

We prove this theorem in two parts. First we show that the
sum-product GAMP updates are equivalent to (33) and (34).
Then we show that any fixed points of these updates are critical
points of the constrained optimization (29).

A. Equivalence of the Updates

We begin by proving (33). Define bt+1
x as the solution to

the minimization (33). So, we must show that this solution is
given by the equation for bt+1

x (x) in (32). We use induction:
Suppose that bt+1

x in (32) is the solution to (33) for some t .
We will then show that it is the solution for t + 1.

First, combining the induction hypothesis that bt+1
x is

given in (32) with lines 26 and 27 of Algorithm 1,
we have

xt = E(x|bt
x), τ t

x = var(x|bt
x). (39)

That is, xt and τ t
x are the mean and variance vectors of the

density bt
x . We next simplify the right hand side of (33) to

remove terms that do not depend on bx :

LSP(bx , bt
z, τ

t
p , st )+ 1

2
(τ t

s )T S var(x|bx)

+ 1

2

∥

∥E(x|bx)− E(x|bt
x)

∥

∥

2
τ t
r

(a)= D(bx‖e− fx )− (st )T AE(x|bx)+ 1

2
(τ t

s )T S var(x|bx)

+ 1

2

∥

∥E(x|bx)− E(x|bt
x)

∥

∥

2
τ t
r
+ const

(b)= D(bx‖e− fx )− (st )T AE(x|bx)+
(

1

2τ t
r

)T

var(x|bx)

+ 1

2

∥

∥E(x|bx)− xt
∥

∥

2
τ t
r
+ const (40)

(c)= D(bx‖e− fx )+
(

1

2τ t
r

)T

var(x|bx)

+ 1

2

∥

∥E(x|bx)− rt
∥

∥

2
τ t
r
+ const

(d)= D(bx‖e− fx )+ 1

2
E

(

‖x − rt‖2τ t
r

∣

∣

∣ bx

)

+ const, (41)

where in all the steps “const” denotes any terms that do not
depend on bx , and (a) follows from the definition of the
Lagrangian (31) and the objective function (30); (b) follows
from (39) and the fact that τ t

r = 1./(ST τ t
s ) in line 20 of

Algorithm 1; (c) follows from the definition of rt in line 21;
and finally (d) follows from the simplification:

(

1./τ t
r

)T var(x|bx)+
∥

∥E(x|bx)− rt
∥

∥

2
τ t
r

=
n

∑

j=1

[

1

τrt
j

(

var(x j |bx j )+ (E(x j |bx j )− r t
j )

2
)

]

=
n

∑

j=1

[

1

τ t
r j

(

E(x2
j |bx j )− 2r t

j E(x j |bx j )
)

]

+ const

= E

(

‖x − rt‖2τ t
r

∣

∣

∣ bx

)

+ const.

Substituting (41) into (33), and using the definition of
p(x|r, τr ) in (13),

bt+1
x = arg min

bx

D(bx‖e− fx )+ 1

2
E

(

‖x − rt‖2τ t
r

∣

∣

∣ bx

)

= arg min
bx

−H (bx)+ E

(

fx (x)+ 1

2
‖x − rt‖2τ t

r

∣

∣

∣

∣

bx

)

= arg min
bx

−H (bx)− E
(

log p(x|rt , τ t
r ) | bx

)

= arg min
bx

D
(

bx ‖ p(·|rt , τ t
r )

)

, (42)

which proves that bt+1
x satisfies (32).

Similarly, one can show that the solution bt
z in (34b) is

given by (32). In addition, zt and τ t
z in lines 13 and 14 of

Algorithm 1 are the mean and variances of the estimated
densities,

zt = E(z|bt
z), τ t

z = var(z|bt
z). (43)

Equation (34a) follows directly from line 7 and (39). Also,
combining lines 8 and 16, we obtain (34c).

Finally, to prove (34d), we take the derivatives

∇τp LSP(bt
x, bt

z, τ
t
p , st )

(a)= ∇τp Hgauss(b
t
z, τ

t
p )

(b)= 1

2

[

1./τ t
p − τ t

z ./(τ t
p .τ t

p )
]

(c)= 1

2
τ t
s ,

where (a) follows from removing the terms in (31) that do
not depend on τp; (b) can be verified by simply taking the
derivative of Hgauss in (28) with respect to each component τpi ;
and (c) follows from the definition of τ t

s in line 17 of
Algorithm 1. This proves (34d), and we have estab-
lished that the sum-product GAMP updates are equivalent
to (33) and (34).

B. Characterization of the Fixed Points

First, by substituting the constraint τp = S var(x|bx),
we can rewrite the optimization (29) as

min
bx ,bz

JSP(bx , bz, S var(x|bx))

s.t. E(z|bz) = AE(x|bx). (44)

Corresponding to this optimization, define the Lagrangian

˜LSP(bx , bz, s) = JSP(bx , bz, S var(x|bx))

+ sT (E(z|bx)− AE(x|bx)) , (45)

where s are the dual parameters. Now, let (̂bx ,̂bz, s) be any
fixed points of the updates (33) and (34). To show that (̂bx ,̂bz)
are critical points of the optimization (44), we need to show
that they satisfy the constraint E(z|̂bz) = AE(x|̂bx) and that
(̂bx ,̂bz) are stationary points of the Lagrangian ˜LSP(bx , bz, s).

From (34c), we have that, at any fixed point (̂bx ,̂bz)

E(z|̂bz) = AE(x|̂bx), (46)

and so the linear constraint is satisfied.
To show that (̂bx ,̂bz) are stationary points of the

Lagrangian, we introduce the following notation: suppose that
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V (b) is a scalar-valued or vector-valued functional of a den-
sity b(u), and that 
b(u) is a perturbation direction of that
density. That is, 
b(u) is in the tangent plane of the set of
densities, so thatÂ

∫


b(u) du = 0 and 
b(u) = 0 when
b0(u) = 0. We denote the differential of the functional V (b)
in the direction 
b at the point b = b0 by

∂V (b)

∂b

∣

∣

∣

∣

b=b0

·
b = lim
ε→0

1

ε

[

V
(

b0 + ε
b
)− V (b0)

]

,

which is defined when the limit exists. See [69] for a complete
treatment of differentials of functionals. Using this notation,
we need to show that

∂

∂bx

˜LSP(bx ,̂bz, s)

∣

∣

∣

∣

bx=̂bx

·
bx = 0, (47a)

∂

∂bz

˜LSP(̂bx , bz, s)

∣

∣

∣

∣

bz=̂bz

·
bz = 0, (47b)

for all perturbation directions 
bx and 
bz .
To prove (47a), first note that, for any 
bx , the partial

derivative of the augmenting term in (33) is given by

1

2

∂

∂bx

∥

∥E(x|bx)− E(x|̂bx)
∥

∥

2
τr

∣

∣

∣

∣

bx=̂bx

·
bx

= (

E(x|̂bx)− E(x|̂bx)
)T

Diag(τr )
−1

× ∂

∂bx
E(x|̂bx)·
bx = 0. (48)

Also, since ̂bx is a minima of (33), it is a stationary point of
the function. Hence, for any perturbation direction 
bx ,

∂

∂bx

[

LSP(bx ,̂bz, τp, s)+ 1

2
(τs)

T S var(x|bx)

+ 1

2

∥

∥E(x|bx)− E(x|̂bx)
∥

∥

2
τr

]

bx=̂bx
·
bx = 0

(a)⇐⇒ ∂

∂bx

[

LSP(bx ,̂bz, τp, s)

+ 1

2
(τs)

T S var(x|bx)
]

bx=̂bx
·
bx = 0

(b)⇐⇒ ∂

∂bx

[

LSP(bx ,̂bz, τp, s)

+ ∂

∂τp
LSP(̂bx ,̂bz, τp, ŝ)T τp(bx)

]

bx=̂bx
·
bx = 0

(c)⇐⇒ ∂

∂bx

[

LSP(bx ,̂bz, τp, s)
]

bx=̂bx
·
bx

+ ∂

∂τp
LSP(̂bx ,̂bz, τp, ŝ)T ∂

∂bx
τp(bx)

∣

∣

∣

bx=̂bx
·
bx = 0

(d)⇐⇒ ∂

∂bx
LSP(bx,̂bz, τp(bx), s)

∣

∣

∣

bx=̂bx
·
bx = 0

(e)⇐⇒ ∂

∂bx
LSP(bx,̂bz, S var(x|bx), s)

∣

∣

∣

bx=̂bx
·
bx = 0

( f )⇐⇒ ∂

∂bx

˜LSP(bx,̂bz, s)
∣

∣

∣

bx=̂bx
·
bx = 0, (49)

where (a) follows from (48); (b) follows from the fixed
points (34a) and (34d) and the clarifying notation τp(bx) =
S var(x|bx); (c) follows from straightforward calculus;

(d) follows from the multivariable chain rule; (e) follows from
the definition of τp(bx); and (f) follows from the definition of
the modified Lagrangian in (45). This proves (47a). The proof
of (47b) is similar.
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