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Abstract—This paper focuses on the downlink of a cellular
system and studies opportunistic multiuser scheduling under
imperfect channel state information, by exploiting the memory
inherent in the channel. The channel between the base station
and each user is modeled by a two-state Markov chain and the
scheduled user sends back an ARQ feedback that arrives at the
scheduler with a random delay, i.i.d. across users and time. The
scheduler indirectly estimates the channel via accumulated de-
layed-ARQ feedback and uses this information to make scheduling
decisions. The throughput maximization problem is formulated
as a partially observable Markov decision process (POMDP). For
the case of two users in the system, it is shown that a greedy policy
is sum throughput optimal for any distribution on the ARQ feed-
back delay. For the case of more than two users, the greedy policy
is suboptimal and numerical studies demonstrate that it has near
optimal performance. Also, the greedy policy can be implemented
by a simple algorithm that does not require the statistics of the
underlying Markov channel or the ARQ feedback delay, thus
making it robust against errors in system parameter estimation.
Establishing an equivalence between the two-user system and a
genie-aided system, a simple closed form expression for the sum
capacity of the downlink is obtained. Further, inner and outer
bounds on the capacity region of the downlink are obtained.

Index Terms—ARQ feedback, capacity region, cellular down-
link, delay, greedy policy, Markov channel, Markov decision pro-
cesses, opportunistic multiuser scheduling, sum capacity.

I. INTRODUCTION

W ITH THE ever-increasing demand for high data rates,
opportunistic multiuser scheduling, introduced by

Knopp and Humblet in [1], and defined as allocating the
resources to the user experiencing the most favorable channel
conditions, has gained immense popularity among wireless net-
work designers. Opportunistic multiuser scheduling essentially
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exploits the multiuser diversity in the system and has motivated
several researchers (e.g., [2]–[6]) to study the performance
gains obtained by opportunistic scheduling under various
scenarios. While the i.i.d. flat fading model is used in these
works to model time varying channels (for a general treatment
on opportunistic scheduling with minimal assumptions on the
channel, see [7]), it fails to capture the memory in the channel
observed in realistic scenarios. Hence, more recently, oppor-
tunistic scheduling has also been investigated by modeling
the channels by Markov chains (e.g., [8]–[13]). However, in
these works, the channel state information that is crucial for
the success of any opportunistic scheduling scheme is assumed
to be readily available at the scheduler. This is a simplifying
assumption that does not hold in reality, where a non-trivial
amount of resource must be spent in gathering the informa-
tion on the channel state. Another line of work (e.g., [14],
[15]) attempts to exploit the memory in the Markov-modeled
channels to gather this information. Specifically, Automatic
Repeat reQuest (ARQ) feedback, that is traditionally used for
error control (e.g., [16]–[19]) at the data link layer, is used to
estimate the state of the Markov-modeled channels.
These two lines of work can be combined to create a new de-

sign paradigm: exploit multiuser diversity in Markov-modeled
channels (e.g., [8]–[13]) and use the already existing ARQ feed-
back mechanism to estimate the state of these Markov-modeled
channels (e.g., [14], [15]). Assuming instantaneous ARQ feed-
back (i.e., it arrives at the end of the slot) and ON-OFF Markov
channel model (the Gilbert-Elliott model [20]), this problem
was addressed in independent works [21], [22]. In [21], the
authors studied opportunistic spectrum access in a cognitive
radio setting—a setup mathematically equivalent to the instan-
taneous ARQ based opportunistic scheduling in aMarkov-mod-
eled downlink—and showed that a simple greedy scheduling
policy is optimal. In [22], we directly addressed the instanta-
neous ARQ based downlink scheduling problem. By identifying
a special mathematical structure in the problem, we derived a
closed form expression for the two-user sum capacity of the
downlink and obtained bounds on the system capacity region.
In this paper, we model the downlink channels by two state

(ON-OFF) Markov chains and study the ARQ based joint
channel learning-scheduling problem when the ARQ feedback
arrives at the scheduler with a random delay that is i.i.d.
across users and time. The delay in the feedback channel is an
important consideration that cannot be overlooked in realistic
scenarios. The effect of feedback delay on channel resource
allocation has been studied under various settings in the past
(e.g., [23]–[26]). While these works assume deterministic delay,
we consider random, i.i.d. feedback delay. An instance when
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1026 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 58, NO. 2, FEBRUARY 2012

the feedback delay can be i.i.d. and non-negligible is when the
delay is of the order of the scheduling slot length, results from
channel propagation time of the feedback signal, and when
the feedback channel environment changes drastically due to
high mobility of users—a possibility in reality. In essence,
by modeling the feedback delay to be random, we attempt to
capture the effect of the non-idealities of the feedback channel
on the joint channel learning-scheduling problem, in a more
general framework.
When compared to the instantaneous ARQ case, the ran-

domly delayed ARQ case adds additional layers of complexity
to the scheduling problem, making it different and far more
challenging than the former. However, we show that, when
there are two users in the system, for any ARQ delay distribu-
tion, the greedy policy that was optimal in the instantaneous
ARQ case [21] is also optimal in the delayed ARQ case. For
more than two users, however, using a counterexample, we
show that the greedy policy is not, in general, optimal. Despite
the suboptimality, extensive numerical experiments suggest
that the greedy policy has near optimal performance. Encour-
aged by this insight, we study the structure of the greedy policy
and show that it can be implemented via a simple algorithm
that is immune to errors in the estimates of the Markov channel
parameters and the ARQ delay statistics. We also study the
fundamental limits of the Markov-modeled downlink with ran-
domly delayed ARQ feedback. By establishing an equivalence
between the two-user downlink and a genie-aided system, we
derive a simple closed form expression for the sum capacity
of the two-user downlink, while obtaining bounds on the sum
capacity for larger number of users. We further derive inner
and outer bounds on the capacity region of the downlink and
tighten these bounds for special cases of the system parameters.
The rest of the paper is organized as follows. The problem

setup is described in Section II, followed by a study of the
optimality properties of the greedy policy in Section III-A.
Section III-B contains a numerical performance analysis of the
greedy policy. In Section III-C, we discuss the implementation
structure of the greedy policy. We then study the sum capacity
and the capacity region of the Markov-modeled downlink in
Section IV, followed by concluding remarks in Section V.

II. PROBLEM SETUP

A. Channel Model

We consider downlink transmissions with users. For each
user, there is an associated queue at the base station that accumu-
lates packets intended for that user. We assume that each queue
is infinitely backlogged. The channel between the base station
and each user is modeled by an i.i.d. two-state Markov chain.
Each state corresponds to the degree of decodability of the data
sent through the channel. State 1 (ON) corresponds to full de-
codability, while state 0 (OFF) corresponds to zero decodability.
Note also that the states can be interpreted as a quantized rep-
resentation of the underlying channel strength, which lies on a
continuum. Time is slotted and the channel of each user remains
fixed for a slot and moves into another state in the next slot fol-
lowing the state transition probability of the Markov chain. The

time slots of all users are synchronized. The two-state Markov
channel is characterized by a 2 2 probability transition matrix

(1)

where

We focus on the case when the crossover from ON to OFF state
(respectively, OFF to ON) is less likely to occur than staying in
ON state (respectively, OFF state). This is positive correlation,
i.e., . We restrict our attention to throughout this
paper and include discussions on the case, where possible.

B. Scheduling Problem

The base station (henceforth known as the scheduler) is the
central controller that controls the transmission to the users in
each slot. In any time slot, the scheduler does not know the
exact channel state of the users and it must schedule the trans-
mission of the head-of-line packet of exactly one user. Thus, a
TDMA styled scheduling is performed here. The power spent
in each transmission is fixed. At the beginning of a time slot,
the head-of-line packet of the scheduled user is transmitted.
The scheduled user attempts to decode the received packet and
based on the decodability of the packet sends back ACK(bit
1)/NACK(bit 0) feedback signals to the scheduler at the end of
the time slot, over an error-free feedback channel. The feedback
channel is assumed to suffer from a random delay that is i.i.d.
across users and time. This delayed feedback information, along
with the label of the time slot from which it is acquired, will be
used by the scheduler in scheduling decisions. The scheduler
aims to maximize the sum of the rate of successful transmission
of packets to all the users in the system. We formally define the
problem below.

C. Formal Problem Definition
Since the scheduler must make scheduling decisions based

only on a partial observation1 of the underlying Markov chain,
the scheduling problem can be represented by a partially ob-
servable Markov decision process (POMDP). See [29] for an
overview of POMDPs. We now formulate our problem in the
language of POMDPs. The key quantities used throughout this
paper are summarized in Appendix E.
Horizon: The number of consecutive slots over which sched-

uling is performed is the horizon. We index the time slots in
decreasing order with slot 1 corresponding to the end of the
horizon. Throughout this paper, the horizon is denoted by ,
i.e., the scheduling process begins at slot .
Feedback arriving at slot : For some slot , , let be

the number of ARQ feedback bits arriving at the end of
slot from the users scheduled in the previous slots. Due to the
random nature of the feedback delay, can take values in the

1In this case, the set of time-stamped binary delayed feedback on the channels.
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set . Let represent all the ARQ feedback
arriving at the end of slot . Thus , if
and , if . The ARQ feedback is time-stamped
and thus, since the scheduler has a record on which users were
scheduled in the past slots, it can map the feedback bits to
the users and slots they originated from. Let be the feedback
that originated during slot , where . Note that since in
each slot one and only one user is scheduled, is neither empty
nor has multiple values, i.e., with bit 0 mapped to
NACK and bit 1 to ACK feedback.
Delay of feedback from user in slot : Let be the

random variable corresponding to the delay, in number of
slots, experienced by the feedback sent by user in slot . Let

correspond to the case when the ARQ feedback
originating from user in slot arrives at the scheduler at the
end of the same slot . We assume the distribution of to
be i.i.d. across users and time throughout this work, and let

, denote the probability mass function of
.
Belief value of user in slot : This represents the

probability that the channel of user , in slot , is
in the ON state, given all the past feedback about the channel.
Define , for , as the -step belief evolution
operator given by
with and for . Now
if, at the end of slot , the arriving feedback contains the
ARQ feedback from user from slot ,
i.e., , then, if is the latest slot from which an ARQ feedback
from user has arrived, then is obtained by applying the
1-step belief evolution operator repeatedly over all the time slots
between ‘now’ (slot ) and slot , i.e.,

if
if

(2)

where we have used . If is not the
latest slot from which an ARQ feedback from user has ar-
rived (possible since the random nature of the feedback delay
can result in out-of-turn arrival of ARQ feedback), then due
to the first-order Markovian nature of the channels, this ARQ
feedback does not have any new information to affect the belief
value, and so . Similarly, if does not
contain any feedback from user , then .
Reward structure: In any slot , a reward of 1 is accrued at the

scheduler when the channel of the scheduled user is found to be
in the ON state, else 0 is accrued.
Scheduling Policy : A scheduling policy in slot is a

mapping from all the information available at the scheduler in
slot along with the slot index to a scheduling decision .
Formally,

(3)

where are the past scheduling decisions
and are the belief values of the channels
of all users, corresponding to slots , held by
the scheduler at the moment (slot ).

Net expected reward in slot , : With the scheduling policy,
, fixed, the net expected reward in slot , i.e., , is

the sum of the reward expected in the current slot and the net
reward expected in all the future slots . Formally, with
denoting the scheduling decision in slot ,

(4)

where is the expected immediate reward and the ex-
pectation in the future reward is over the feedback received in
slot , i.e., , along with the originating slot indices. Note that
the belief vector is up-to-date based on all
previous scheduling decisions and the ARQ feedback received
before slot . With the reward structure defined earlier, the ex-
pected immediate reward can be written as

Performance Metric: For a given scheduling policy
, the performance metric is given by the sum

throughput (sum rate of successful transmission) over a fi-
nite horizon, :

(5)

where is the initial belief values of the channels.

III. GREEDY POLICY—OPTIMALITY, PERFORMANCE
EVALUATION AND THE IMPLEMENTATION STRUCTURE

A. On the Optimality of the Greedy Policy

Consider the following policy:

(6)

Since the above given policy attempts to maximize the expected
immediate reward, without any regard to the expected future
reward, it follows an approach that is fundamentally greedy in
nature.We henceforth call the greedy policy and let
denote the scheduling decision in slot under the greedy policy.
We now proceed to establish the optimality of the greedy policy
when . We first introduce the following lemma.

Lemma 1: For any , and any ,
with ,

(7)

A formal proof of the lemma can be found in Appendix A.
The results of Lemma 1 can be explained intuitively. Note that
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is the belief value of the channel (probability that the
channel is in the ON-state) in the current slot given the be-
lief value, slots earlier, was . Also note that (sim-
ilarly ) gives the belief value in the current slot given
the channel was in the ON state (similarly OFF state)
slots earlier. Now, since the Markov channel is positively cor-
related , the probability that the channel is in the ON
state in the current slot given it was in the ON state slots
earlier is at least as high as the probability that the
channel is ON in the current slot given it was ON with prob-
ability , slots earlier . This explains
the first inequality in Lemma 1. The second and third inequali-
ties can be explained along similar lines. Regarding the last in-
equality, consider slots such that . Due to the Mar-
kovian nature of the channel, the closer slot is to , the stronger
is the memory, i.e., the dependency of the channel state in with
that of . Now, since the channel is positively correlated, if the
channel was in the ON state in slot , the closer is to , the
higher is the probability that the channel is ON in slot . By def-
inition, this probability is given by with .
Thus monotonically decreases with . Using a similar
explanation, monotonically increases with . The lim-
iting value of both these functions, as , is the probability
that the channel is ON when no information on the past channel
states is available. This is given by the steady state probability2.
This explains for any , .

Proposition 2: For , the sum throughput,
, of the system is maximized by the greedy

policy for any ARQ delay distribution.
Proof: The following is a condensed version of the

proof. Detailed proof can be found in [31]. Consider a
slot . Fix a sequence of scheduling decisions

. Recall the definition of
, the feedback arriving at the end of slot , from

Section II-C. Let denote the originating slots corre-
sponding to feedback , i.e., if the feedback from users
and , for , both arrive at slot
, then and . Also define

as the latest slot from which the
ARQ feedback of user 1 is available at the scheduler by (the
beginning of) slot . Formally, if at least one ARQ feedback
from user 1 has arrived at the scheduler by slot , then

(8)

If no ARQ feedback from user 1 has arrived by slot , i.e.,
if a such that ‘

,’ then . Let ,
when , be a measure of ‘freshness’ of the latest feed-
back from user 1. Let when . Similarly define
, for user 2. With these definitions, the proof proceeds in

two steps: In step 1, we show that the greedy decision in slot ,
given the ARQ feedback and the scheduling decision from slot

, is independent of the feedback and scheduling de-
cision corresponding to slot . In step 2, we show

2We will discuss the steady state probability in Section IV.

that, if the greedy policy is implemented in slot , then the ex-
pected immediate reward in slot is independent of the sched-
uling decisions . We then provide induction based argu-
ments to establish the proposition.
Step 1: Let and

. The greedy decision in slot , condi-
tioned on the past feedback and scheduling decisions is given
by

(9)

The preceding equation comes directly from the first order Mar-
kovian property of the underlying channels. Consider the case
when or

. By examining the belief values in the current slot for
all possible values of feedback and , along with Lemma
1, the greedy decision can be written as

if
if
if

(10)

Thus the greedy decision is independent of feedback if
. We now proceed to generalize (10). Let denote the latest

slot for which an ARQ feedback is available from one of the
users by slot and let for and for

be a measure of freshness of the latest ARQ feedback.
Thus, using the preceding discussion, we have

if
if
if

(11)

where is the user not scheduled in slot . This completes
step 1 of the proof.
Step 2: If the greedy policy is implemented in slot , the im-
mediate reward expected in slot , conditioned on scheduling
decisions and initial belief can be rewritten as

(12)

where is defined after (10). Note that

(13)

since, with , i.e., no past feedback at the scheduler, the be-
lief values at slot is independent of the past scheduling deci-
sions and is simply given by . Now rewriting
the second part of (12),

(14)



MURUGESAN et al.: MULTIUSER SCHEDULING IN A MARKOV-MODELED DOWNLINK USING RANDOMLY DELAYED ARQ FEEDBACK 1029

Consider . From the first
step of the proof, the greedy decision in slot can be made
solely based on the latest feedback, i.e., . This was
recorded in (11). Thus, averaging over , we have

(15)

where is the state of the channel of user in slot .
We can now simplify (14) as

(16)

We have used the following argument in the last equality: the
event is controlled by the
underlying Markov dynamics and is independent of the sched-
uling decisions . Likewise, this event is independent of the
value of since we have assumed that the feedback channel and
the forward channel are independent.
By explicitly including the probability mass function of the

quantity as a function of the ARQ delay statistics, we can
rewrite (12) as

(17)

The expected reward in slot is thus independent of the se-
quence of actions if the greedy policy is
implemented in slot . By extension, the total reward expected
from slot until the horizon is independent of the scheduling
vector if the greedy policy is implemented in slots

, i.e.,

(18)

Thus, if the greedy policy is optimal in slots ,
then, it is also optimal in slot . Since is arbitrary and since
the greedy policy is optimal at the horizon, by induction, the
greedy policy is optimal in every slot . This
establishes the proposition.

Remarks: When the Markov channels are negatively corre-
lated, i.e., , using arguments similar to those in the pre-
ceding proof, we have shown [31] that the greedy policy is op-
timal when , for any ARQ delay distribution. Returning
to the original positive correlation setup, the arguments in the
proof of Proposition 2 hold true even when the ARQ delay is
not identically distributed across time. Thus, the greedy policy
is optimal for even when the ARQ delay distribution is
time-variant. Also, since is arbitrary, the greedy policy max-
imizes the sum throughput over an infinite horizon. We record
this below.

Corollary 3: For , the greedy policy is optimal when
the performance metric is the sum throughput over an infinite
horizon, i.e.,

(19)

for any initial belief .
The optimality of the greedy policy does not extend to the

case . We record this in the following proposition.

Proposition 4: The greedy policy is not, in general, optimal
when there are more than two users in the downlink.

Proof Outline: We establish the proposition using a
counterexample with deterministic ARQ delay of ,
i.e., , and arbitrary values of and

. We construct a variant of the greedy policy that
schedules a non-greedy user in a specific time slot under a
specific sample path of the past channel states observable by
the scheduler. In the rest of the slots and under other realiza-
tions, the constructed policy performs greedy scheduling. We
explicitly evaluate the difference in the rewards corresponding
to the constructed policy and the greedy policy and show that,
there exists system parameters such that the constructed policy
has a reward strictly larger than the greedy policy. Thus the
greedy policy is, in general, not optimal when . A formal
proof can be found in Appendix B.

Remarks: Note that, in contrast, it has been shown in [21]
that the greedy policy is optimal for any number of users when
the ARQ feedback is instantaneous, i.e., . To summarize,
the optimality of the greedy policy vanishes
• when the ARQ delay is increased from zero to higher
values, with the number of users unconstrained, or

• when the number of users is increased from two to higher
values, with the ARQ delay being random and uncon-
strained.

These observations point to the volatile nature of the underlying
dynamics of the scheduling problem, with respect to the greedy
policy optimality.
It would be interesting to see how the optimality properties

of the greedy policy extend to more general channel models.
Considering the multi-rate channels, i.e., when the number
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TABLE I
COMPARISON OF THE PERFORMANCE OF THE GREEDY POLICY WITH THE OPTIMAL REWARD

TABLE II
COMPARISON OF THE PERFORMANCE OF THE GREEDY POLICY WITH THE OPTIMAL REWARD IN THE GENIE-AIDED SYSTEM. MAXIMUM ARQ DELAY,

of states is greater than two, the special ‘toggle’ structure
that led to the optimality of the greedy policy in the ON-OFF
channel vanishes. In fact, we have shown [30] that, even when
the number of states is increased by 1, the general greedy
policy optimality vanishes and the optimality can be shown
to hold only under very restrictive conditions on the Markov
channel statistics. Now, consider the case when the two-state
Markov channels are non-identical across users. In this setup,
using a counterexample, we have shown [31] that the greedy
policy is not, in general, optimal, even when and the
ARQ delay is instantaneous. In summary, the optimality of the
greedy policy vanishes even under minimal deviations from the
original setup. These observations further indicate the volatile
nature of the underlying scheduling problem dynamics.
Returning to the original setup at hand, numerical results sug-

gest that the greedy policy, despite being not optimal in general,
has near optimal performance. We discuss this next.

B. Performance Evaluation of the Greedy Policy

Table I provides a sample of the net expected reward under
the greedy policy in comparison with that of the op-
timal policy when , and when , for horizon
length . The ARQ delay probability mass function is gen-
erated (uniform) randomly with the maximum delay fixed
first. The low values of the quantity

illustrates the near optimal performance of the greedy

policy for the system parameters considered. Note that, the op-
timal reward, , is evaluated by a brute-force search over the
scheduling decisions in every slot , that is
prohibitively complex for larger values of and . We, there-
fore, perform an indirect study of the greedy policy performance
in Tables II–IV, that allows us to consider wider range of system
parameters. We first define the genie-aided system as follows:
for any slot , the feedback includes the channel state infor-
mation, corresponding to slot , of not only the scheduled user
but also that of all the users in the system. Thus the optimal

reward in the genie-aided system, , is an upper bound to
the optimal reward in the original system, . Also, can
be evaluated using closed-form expressions, with complexity
much lower than that of . We will discuss the evaluation of

in the context of the genie-aided system sum capacity in
Section IV-A.
In Table II, with the maximum ARQ delay , the

net expected reward under the greedy policy is compared with
when andwhen , for randomly generated

values of and . The length of the horizon is fixed at .
The probability mass function of the ARQ delay, denoted by
‘Delay’ in the table, is controlled to have a weakening ‘tail’ from

to . The quantity
is an upper bound to the quantity subopt introduced earlier.
Table III is similarly constructed with the maximum ARQ delay

. In both Tables II and III, we see that is pre-
dominantly low-valued, suggesting that the greedy policy has
near optimal performance. Also, note that, as the tail of the ARQ
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TABLE III
COMPARISON OF THE PERFORMANCE OF THE GREEDY POLICY WITH THE OPTIMAL REWARD IN THE GENIE-AIDED SYSTEM. MAXIMUM ARQ DELAY,

TABLE IV
ILLUSTRATION OF THE EFFECT OF THE MARKOV CHANNEL MEMORY, ON THE REWARD FUNCTIONS. MAXIMUM ARQ DELAY,

delay mass function weakens, both and increase.
This is expected since, with a weakening tail, the ARQ feed-
back is stochastically more ‘fresh,’ thereby facilitating better in-
formed scheduling decisions and higher rewards in both genie-
aided and original systems. Also note that, as the tail weakens,
the gap between the optimal rewards in the genie-aided system
and the original system can be expected to increase, since the
gap between the information content of the full feedback (genie-
aided system) and the ARQ feedback increases with a weak-
ening tail. Thus, the relatively high values of corre-
sponding to weaker delay tails, could be due to an inherent
system level gap between the genie-aided and the original sys-
tems, and need not necessarily be a pointer to the greedy policy
performance. The last statement is further strengthened by the
fact that the greedy policy is optimal when the ARQ delay tail
is at the weakest, i.e., when the feedback is instantaneous [21].
In Table IV, we study the effect of the Markov channel

memory, defined as , on the reward functions. With
, and , we consider two ex-

treme values of the channel memory, i.e., and
. In both cases of channel memory, we have fixed

the steady state probability of the ON state to be , by
fixing . This essentially provides a degree of fairness
when comparing these two cases. Note that, for a fixed delay
statistic, the rewards and increase with increase
in the channel memory. This is due to an increase in the value
of the feedback, as the channel memory increases. Also, we see
an increase in the value of as the memory increases.

This points to two underlying phenomena: 1) An increase in
the inherent sub-optimality associated with greedy scheduling
as the channel memory increases 2) Similar to the case of
weakening delay tail, an increase in the channel memory results
in an increase in the system level gap between the genie-aided
and the original systems, by way of an increase in the gap
between the information content of full feedback (genie-aided
system) and the ARQ feedback.
In Fig. 1, we compare the performance of the greedy policy

with that of a random policy that ignores the ARQ
feedback and schedules purely based on initial beliefs. For
randomly generated system parameters, and are
plotted alongside and , for increasing horizon
lengths. From the figure, we observe that the greedy policy
achieves a performance comparable to that of the optimal policy
in both the original and the genie-aided systems, while
is significantly lower than . Also, understandably, the
performance gap between the greedy and the random policies
appears to be large for large system memory, i.e., , the
case with Figs. 1(b) and 1(c).
Summarizing, Tables I–IV suggest that the greedy policy has

near optimal performance for a wide range of system parameters
and that the ARQ delay profile and the channel memory affect
the reward values in ways that can be explained intuitively. In
addition, note that is also an upper bound to the quantity

. Thus the low values of provide the
following larger message: using only the 1-bit ARQ feedback
for opportunistic scheduling is associated with system level per-
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Fig. 1. Net expected reward under the greedy policy in comparison with system-level performance limits. System parameters used: plot (a) , ,
, , , , (b) , , , ,

, (c) , , , , (d) ,
, , , .

formance comparable to the case when feedback is available
from all the users.

C. Structure of the Greedy Policy

Motivated by the near optimal performance of the greedy
policy, we proceed to study its structure, which turns out to
be very amenable for practical implementation. We begin by
defining the following quantity:
Schedule order vector, , in slot : The user indices in de-

creasing order of , i.e.,

...

Thus, the greedy decision in slot is .
Now, in any slot , any user falls under one of the

following two cases:
1) The scheduler has received at least one ARQ feedback
from user by the beginning of slot . Let , for
, be the latest slot for which the ARQ feedback from user
is available at the scheduler. Since the channel is first-order
Markovian, the belief value of the channel of user in the
current slot is dependent only on the feedback and .
The belief value is given by

if
if

(20)

2) The scheduler does not have any ARQ feedback from user
by the beginning of slot . In this case

(21)

Recall that is the initial belief value of the channel
of user when the scheduling process started at slot .

At slot , let denote the set of users, , whose latest feed-
back, , is an ACK. Let denote the set of users, , whose
latest feedback, , is a NACK. Let the users from whom the
scheduler has not yet received any feedback constitute set .
From (20) and (21), using Lemma 1, the greedy decision in slot
can be written as

if
if
if

(22)

Now, for ease of implementation, we visualize the sets
, and as queues with elements ordered in the

following specific ways: Let denote the el-
ement of queue and the elements be ordered such
that , where de-
notes the cardinality of set . Note that the user that
gave an ACK from the most recent slot lies at the head
of queue . The elements of are ordered such that

. The elements
of satisfy , i.e., the user
with the oldest NACK feedback lies on top of queue . Define
a combined queue constructed by concatenating the queues ,
and in that order. From (20) and (21), using Lemma 1,
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Fig. 2. Greedy policy implementation under random ARQ delay.

we see that the users in the combined queue are arranged in
decreasing order (top-down) of belief values with the top-most
user being the greedy decision in slot . Thus the combined
queue is, in fact, the schedule order vector .
We now discuss the evolution of the schedule order vector.

For every user whose ARQ feedback is contained in , im-
plement the following procedure: Let indicate the originating
slot for the ARQ feedback from user contained in . Now,
if is the latest slot from which the ARQ feedback of user
is available at the scheduler, then . The new schedule
order vector is formed by removing user from its cur-
rent position (in ) and placing it in the sub-queue (if

) or in the sub-queue (if ) at an appro-
priate location (so that the ordering based on is not violated).
If , i.e., is not the latest slot, then user is not moved.
Similarly, users whose ARQ feedback are not contained in
are not moved. The last two statements are direct consequences
of the following facts:
• For an user whose ARQ feedback is contained in but
is not the latest feedback from that user, the belief value
evolves as . Similarly, for an user
whose ARQ feedback is not contained in , the belief
value evolves as . Both these cases
were discussed in Section II-C.

• From Lemma 1, if , then .
Now, at slot , the user on top of is the greedy decision.
Thus the greedy decision in any slot is determined by the latest
ARQ feedback and the corresponding originating slot index of
all the users in the system. Note that this implementation does
not require the Markov channel statistics (other than the knowl-
edge that ) and the statistics of the ARQ feedback delay.
An illustration of the greedy policy implementation is provided
in Fig. 2. For the special case of deterministic ARQ feedback
delay , the evolution from to is greatly simpli-
fied [31] leading to a simpler implementation structure. This is
illustrated in Fig. 3.

IV. ON DOWNLINK SUM CAPACITY AND CAPACITY REGION

We now proceed to study the fundamental limits on the down-
link system performance—the sum capacity and the capacity
region.

A. Sum Capacity of the Downlink

The sum capacity of the downlink is defined as the maximum
sum throughput over an infinite horizon with steady state initial
conditions. Formally, with users in the system,

(23)
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Fig. 3. Greedy policy implementation under deterministically delayed ARQ, i.e., .

where , , the steady state prob-
ability of the Markov channel. We now proceed to derive .

The Markov chain transition matrix can be

expressed as , where

with . Assuming3 ,

3 leads to , a trivial case with no steady state.

Recall, from Section III-B, the definition of the genie-aided
system: In any slot , the feedback contains the channel state
information, corresponding to slot , of not only the scheduled
user but also that of all the users in the system. Also, the delay
profile from the original system is retained in the genie-aided
system, i.e., the cumulative feedback arrive at the sched-
uler with delay that is i.i.d. across scheduling choice
and originating slot with the probability mass function
. Thus, thanks to the cumulative nature of the feedback,

the scheduling decision in the current slot does not affect the
information available for scheduling in future slots. Hence, the
greedy policy is optimal in the genie-aided system. With this in-
sight, we now report our result on the sum capacity of the orig-
inal downlink with two users.

Proposition 5: When , the sum capacity of the
Markov-modeled downlink with randomly delayed ARQ
equals that of the genie-aided system. This sum capacity equals

(24)
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Furthermore, the greedy policy achieves this sum capacity.
Proof: We first focus on the sum capacity of the genie-

aided system, i.e., the sum throughput of the greedy policy in
the genie-aided system. Recall, from Section III-A, the quantity
—the measure of freshness of the latest ARQ feedback. We
defined such that the latest feedback is slots
old. We extend the meaning of to the genie-aided system. Due
to the first order Markovian nature of the channels, in the genie-
aided system, conditioned on the latest feedback, (with
denoting the current slot), the belief values (and hence the
greedy scheduling decision) in the current slot are independent
of the feedback from previous slots, i.e., . Thus, with

denoting the conditional (conditioned on )
immediate reward corresponding to the greedy policy, in the
-user genie-aided system with steady state initial conditions,

the sum capacity of the genie-aided system can be written as

(25)

We now evaluate . From Lemma 1, the belief
value (in the current slot) of an user with an ON channel
slots earlier, i.e., , is higher than the belief value of an
user with an OFF channel slots earlier, i.e., . Thus,
in steady state,

(26)

By explicitly including the probability mass function of the
quantity as a function of the ARQ delay statistics, from (25)
and (26), we have

(27)

When , with minor algebraic manipulations, we have

(28)

We now proceed to prove that the sum throughput of the
greedy policy in the original system equals that of the greedy
policy in the genie-aided system when . We established
in the course of the proof of Proposition 2 that, in the original
system with , conditioned on , the greedy decision
in the current slot is solely determined by the ARQ feedback
from slot with the following decision rule: When the
user scheduled in slot , i.e., , sends back an ACK,

that user is scheduled in the current slot , i.e., . Oth-
erwise, the other user is scheduled in slot . We can interpret this
decision logic of the greedy policy as below: When at least one
of the users had an ON channel in slot , that user4 is
identified for scheduling in the current slot , leading to an ex-
pected current reward of . Reward is accrued only
when both the channels were in the OFF state in slot .
Note that the decision rule and the accrued immediate re-

wards corresponding to the greedy policy in the original system
are the same as that of the greedy policy in the genie-aided
system. Thus, in the original system, under the greedy policy,
no improvement in the immediate reward can be achieved even
if the channel states of both the users in slot are avail-
able at the scheduler in slot . This, along with the fact that both
the systems have the same delay profile, establishes the equiv-
alence between the original and the genie-aided systems, when

, in terms of the sum throughput achieved by the greedy
policy. We have already proved the sum throughput optimality
of the greedy policy in the original system when (Propo-
sition 2) and in the genie-aided system for a general value of .
Thus the sum capacity of the original system for is given
by in (28). The proposition thus follows.

Remarks: Insights on the result in Proposition 5 can be ob-
tained by examining the fundamental trade-off when scheduling
in the Markov-modeled downlink. In particular, scheduling
must take into account
1) data transmission in the current slot, which influences the
immediate reward, and

2) probing of the channel for future scheduling decisions,
which influences the reward expected in future slots.

The optimal schedule strikes a balance between these two objec-
tives (that need not contradict each other). From the discussion
in the proof of Proposition 5, we see that, in the original system,
when , the choice of the user whose channel is probed
becomes irrelevant as far as the optimal future reward is con-
cerned. Similarly, in the genie-aided system, since the channel
state information of all the users (general system) is sent to
the scheduler (with equal delay that is i.i.d. across the scheduling
choice) irrespective of which user was scheduled, the optimal
future reward is independent of the current scheduling decision.
This results in the optimality of the greedy policy in the original
and the genie-aided systems and creates a sum capacity equiv-
alence between these two systems, when .
The equivalence with the genie-aided system vanishes when

, since observing only one user is not enough to capture
an ‘ON-user,’ if one exists. This was possible when .
Thus, when , there is room for throughput improvement
when the channel state information of all the users is available
at the scheduler even if there is a delay (the genie-aided system).
The genie-aided system sum capacity is thus an upper bound to
the sum capacity of the original system. We record this next.

Corollary 6: When , the sum capacity, , of
the downlink can be bounded as

(29)

4User is given higher priority if both channels were ON.
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Fig. 4. Illustration of bounds on the capacity region of the downlink with ran-
domly delayed ARQ when and when .

Proof: The lower bound , given in (24), is
achieved by the scheduler when, in each slot, it considers
only two users (fixed set) for scheduling and ignores the rest,
effectively emulating a two-user downlink. The upper bound
is the sum capacity of the genie-aided system with users, as
given in (27).

B. Bounds on the Capacity Region of the Downlink

Define the capacity region of the downlink as the exhaustive
set of achievable throughput vectors. Formally, let denote
the throughput of user under policy . Let be the indi-
cator function on whether user was scheduled in slot , i.e.,

if
otherwise.

(30)

Thus

(31)

where is the immediate reward accrued by the
scheduler in slot under policy . The expectation is over
the belief vector with steady state initial conditions. Now,
the capacity region of the downlink, , is defined as the union
of the throughput vectors, , over all scheduling
policies, i.e.,

(32)

Let be the convex hull of the set of points , de-
fined as

where is the cardinality of set . With these definitions
we now state our results on the downlink capacity region.

Proposition 7: An outer bound on the capacity region of
the Markov-modeled downlink with randomly delayed ARQ is
given by the complement of the -dimensional polyhedron
represented by

(33)

where

An inner bound on the capacity region is given by the set of
points such that

(34)

where . is the origin .
with at the location.

with at
locations and , where

Fig. 4 illustrates the capacity region bounds from Proposition
7 when and when . A detailed proof of the
proposition is available in Appendix C.



MURUGESAN et al.: MULTIUSER SCHEDULING IN A MARKOV-MODELED DOWNLINK USING RANDOMLY DELAYED ARQ FEEDBACK 1037

Fig. 5. Illustration of the capacity region of the genie-aided system and tighter
bounds on the capacity region of the original system when , with deter-
ministic ARQ delay.

For the special case of users and deterministic ARQ
feedback delay, , we obtain the exact capacity region of
the genie-aided system and hence tighter bounds to the capacity
region of the original system.

Proposition 8: For users, with a deterministic ARQ
delay of , slots, the capacity region of the genie-
aided system is given by the set of points such that

(35)

The relative positions of the points , , , and
are illustrated in Fig. 5. A detailed proof of the proposition is
available in Appendix D.
We now report tighter bounds on the capacity region of the

original system, when and the ARQ delay is determin-
istic.

Corollary 9: For users, with a deterministic ARQ
delay of , slots, an outer bound on the capacity re-
gion of the original system is given by the set of points
such that

(36)

and an inner bound is given by the set of points such
that

with , the sum capacity of the
system.

Proof: The outer bound is the region complementary to the
capacity region of the genie-aided system reported in Propo-
sition 8. The inner bound was obtained in Proposition 7 with

from (24) re-derived using .

Fig. 5 illustrates the improved outer bound from Corollary 9
along with the bounds derived in Proposition 7.

V. CONCLUSION

We addressed the problem of opportunistic multiuser sched-
uling for a system consisting of a base station or access point
transmitting to users within its domain. We model the down-
link channels by two-state Markov chains, with ON and OFF
states, and assume that the data destined for each user is infin-
itely backlogged. We allow for the ARQ feedback from each
user to the base station to be randomly (i.i.d. over all users) de-
layed. For the case of two users in the system, we showed that
the greedy policy is sum throughput optimal for any distribution
of the ARQ feedback delay. However, for more than two users,
there exists scenarios for which the greedy policy is not op-
timal. Nevertheless, extensive numerical experiments suggest
that the greedy policy has near optimal performance. Encour-
aged by this, we studied the structure of the greedy policy and
showed that it can be implemented by a simple algorithm that
does not require the statistics of the underlying Markov channel
nor the ARQ feedback delay, thusmaking it robust against errors
in estimation of these statistics. Focusing on the fundamental
limits of the downlink system, we obtained an elegant closed
form expression for the sum capacity of the two-user downlink
and derived inner and outer bounds on the capacity region of the
Markov-modeled downlink with randomly delayed ARQ feed-
back.
In summary, we addressed opportunistic multiuser sched-

uling based on existing ARQ feedback mechanisms, while
taking into account an important non-ideality in the feed-
back channel—the random delay. We studied this scheduling
problem by examining various aspects of the ‘easy to imple-
ment’ greedy policy and by establishing fundamental limits
on the downlink system performance. We believe that the
work we have initiated here, along with the proof techniques
we have developed, could be the first steps towards studying
the joint channel learning—scheduling problem under more
general scenarios: such as, when the users have heterogeneous
demands or when the queues are non-backlogged with random
packet arrivals.
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TABLE V
BELIEF VALUES, SCHEDULING DECISIONS, IMMEDIATE REWARDS IN SLOTS 2 AND 1 FOR VARIOUS REALIZATIONS OF ARQ FEEDBACK UNDER THE

GREEDY POLICY

APPENDIX A
PROOF OF LEMMA 1

Recall the definition of the -step belief evolution operator:
with

and for and
. For , ,

(37)

Thus if, for , , then,
since , we have . By induction,
using for any , we have

for any and . The
second inequality in the lemma can be proved along the same
lines using .
Consider the third inequality. By definition, for any
, . Thus,

if , then . When
, by induction, for any .
This establishes the third inequality.
Considering the last inequality, the belief evolution operator

can be expressed as

(38)

for and . Thus

. Note that, since , .

Also, . This
establishes the last inequality in the lemma.

APPENDIX B
PROOF OF PROPOSITION 4

The proof proceeds in two steps: (1) We first construct a
counterexample to the optimality of the greedy policy when the
horizon, and arbitraty number of users ; , (2)
Based on this counterexample, we then construct a more gen-
eral counterexample, with arbitrary ; and ; .
We proceed with the first step next.
Assume an arbitrary number of users, ; . Let the

horizon . Assume a deterministic ARQ delay of one
time slot, i.e., and . Let
the users be indexed in decreasing order of their initial beliefs,
i.e., . The net expected reward
corresponding to the greedy policy is given by

(39)

Note that since the delay is one slot, the first ARQ feedback
comes at the end of slot 3. Thus, the greedy decision in both
slots 4 and 3 is user 1. Also, the greedy scheduler has access to
feedback only, at the beginning of slot 2 and both feedback
and , at the beginning of slot 1. Therefore, is averaged

over and is averaged over and . The average total
reward under greedy policy can thus be evaluated by averaging
over all realizations of and . Table V lists the belief values
of the three users in slots 2 and 1 for various values of
along with the greedy decisions and immediate rewards in slots
2 and 1. Note from the table that the belief value at slot 2 is
a function of only, while at slot 1 is a function of both
and , consistent with the preceding discussion.
The probabilities of occurrence of the various realizations of

are summarized below

if
if
if
if

(40)
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TABLE VI
BELIEF VALUES, SCHEDULING DECISIONS, IMMEDIATE REWARDS IN SLOTS 2 AND 1 FOR VARIOUS REALIZATIONS OF ARQ FEEDBACK UNDER POLICY

Thus the net expected reward under the greedy policy is given
by

(41)

Now, with indicating the optimal decision in slot , con-
sider the following policy such that

. Since the ARQ delay is deterministic and equals
one slot, the decision in slot 2 does not affect the reward in slot
1. Thus the greedy policy is optimal in slot 2. Trivially, greedy
policy is optimal in slot 1, as well. Thus , . The
average total reward under is given by

(42)

We evaluate along the lines of the greedy net
expected reward evaluation. Table VI summarizes the beliefs,
scheduling decision and immediate rewards in slots 2 and
1 for all the realizations of when .
Users are once again ordered according to their initial belief
values, i.e., . Note from the table that
the belief value at slot 2 is a function of only, while at
slot 1 is a function of both and , consistent with the ARQ
delay profile.
The probabilities of occurrence of the various realizations of

when , are summarized below.

if
if
if
if

(43)

Thus, the net expected reward under policy is given by

(44)

We now proceed to show that, for , deterministic ARQ
delay and horizon , such that the net
expected reward corresponding to policy is strictly higher
than that of the greedy policy. The difference in reward, after
algebraic manipulations is given by

(45)

For the special case , we have

(46)

For any , since ,
. With the net expected re-

ward of the optimal policy being no less than ,
we see that the greedy policy is not in general optimal. Table VII
lists a few other values of for which the greedy policy
is suboptimal. This establishes a counterexample for the opti-
mality of the greedy policy when .
A more general counterexample for an arbitrary horizon

length can be constructed based on the one thus established.
We proceed with this construction in the sequel. As before,
assume and a deterministic
ARQ delay of one time slot, i.e., . With

indicating the underlying state of the channel of user
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TABLE VII
SAMPLE SYSTEM PARAMETERS WHEN THE GREEDY POLICY IS SUBOPTIMAL. NUMBER OF USERS , DETERMINISTIC DELAY , HORIZON

IS USED.

in slot , consider the following realization of the channel:

. Recall the policy from
above. We define a variant of this policy, , as follows.
Policy performs greedy scheduling in slots .
Under realization , policy , being a greedy scheduler,
schedules user 1 in slots . Thus the realization

is observable by
policy by the beginning of slot 4. From slot 4, under realiza-
tion , define policy such that it behaves along the lines
of policy defined earlier. Also, policy performs greedy
scheduling in all slots under all channel realizations
other than . Thus the reward difference between policy
and the greedy scheduler is given by the difference in slots

, under realization , weighted by the probability of
this realization. Formally,

(47)

with . Note
that the belief values reflect the realization and the
greedy nature of both policies until slot 5. Now, since policy
is defined to behave like policy from slot 4, we can use the
reward difference expression in (45) to simplify (47), as below.

(48)

Note that the last equality is always positive rendering the
greedy policy suboptimal. This establishes a more general
counterexample to the optimality of the greedy policy when

. The proposition is thus proved.

APPENDIX C
PROOF OF PROPOSITION 7

Considering the genie-aided system, for any policy , let the

throughput vector be denoted by . For a

subset of users , by the definition of sum capacity,
we have

(49)

This establishes the complement of the polyhedron as an outer
bound on the capacity region of the genie-aided system, and by
extension, an outer bound on the capacity region of the original
system.
Now, consider the inner bound

.
In the original system, throughput vector

can be achieved by scheduling to
user at all times. Recall that the greedy policy achieves the
sum capacity when . Also the sum throughput

is split equally between the two users thanks to the
inherent symmetry between users. Thus throughput vector

can
be achieved by greedy scheduling over the users and alone
at all slots. Throughput vector corresponds to idling in every
slot. Therefore, any throughput vector in the convex hull

can
be achieved by time sharing between the policies that
achieve throughput vectors . This
establishes the result on the inner bound.

APPENDIX D
PROOF OF PROPOSITION 8

We proceed by first showing that the region complementary to
is an outer bound on the capacity

region of the genie-aided downlink. Consider a broad class of
schedulers in the genie-aided system, with each member iden-
tified by the parameters . A member
of this class obeys the following decision logic at slot :

• If , then schedule user 1 with prob-

ability and user 2 w.p. .

• If , then

• If , then

• If , then

Note that, thanks to the first order Markovian nature of the
underlying channels, any scheduling policy in the genie-aided
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system falls under the above class of schedulers or will
have a member of this class achieving the same throughput
vector as itself. We now proceed to show that the throughput
vector achieved by any member of this class belongs to

.
With fixed, the throughput for

user 1 is given by

(50)

with . Similarly,

(51)

For notational simplicity, we will henceforth denote the
throughputs simply by and . The sum throughput is now
given by

(52)

Note that the values of and are irrelevant from the sum
throughput point of view. From here, the proof proceeds by con-
sidering two cases: when and when . When

, we show that . When
, we show that .

Detailed proofs for these statements are available in [31]. Com-
bining these two cases, we establish that the region complemen-
tary to is an outer bound on the ca-
pacity region of the genie-aided system.
Revisiting the class of schedulers identified by , it

can be shown from (50) and (51) that a scheduler with
achieves a throughput vector

. Similarly, a
scheduler with achieves a throughput vector

.
Throughput vectors or can be achieved by scheduling to
only user 1 or 2, respectively, at all times. Thus any throughput
vector within the region can be
supported by time sharing between the schedulers that achieve
throughput vector . This establishes

as an inner bound on the capacity
region of the genie-aided system.
Combining the outer and inner bound results establishes the

proposition.

APPENDIX E
KEY QUANTITIES

N Number of users in the downlink.

.

.

Horizon.

Belief value of user in slot .

-step belief evolution operator.

Index of the user scheduled in slot .

Scheduling policy applied in slot .

Greedy scheduling policy applied in slot .

Feedback originating from slot .

Feedback arriving at slot .

Delay of feedback from user in slot .

Probability mass function of i.i.d. delay .

Net expected reward in slot .

Sum capacity of the downlink.

Sum capacity of the genie-aided downlink.

Throughput of user under scheduling policy
.
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