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On the Spectral Efficiency of Noncoherent
Doubly Selective Block-Fading Channels

Arun Pachai Kannu and Philip Schniter, Senior Member, IEEE

Abstract—In this paper, we consider noncoherent single-an-
tenna communication over doubly selective block-fading channels
with discrete block-fading interval � . In our noncoherent setup,
neither the transmitter nor the receiver know the channel fading
coefficients, though both know the channel statistics. In partic-
ular, we consider discrete-time channels whose impulse-response
trajectories obey a complex-exponential basis expansion model
with uncorrelated coefficients, and we show that such a model
holds in the limit � � � for pulse-shaped transmission/recep-
tion over certain wide-sense stationary uncorrelated scattering
channels. First, we show that, when the inputs are chosen from
continuous distributions, the channel’s multiplexing gain (i.e.,
capacity pre-log factor) equals ������ � � � � ���,
for discrete delay spread � and discrete Doppler spread
� . Next, for the case of strictly doubly selective fading (i.e.,
� � � and � � �), we establish that, for cyclic-pre-
fixed affine pilot-aided transmission (PAT) schemes designed to
minimize the mean-squared error (MSE) attained by pilot-aided
minimum-MSE channel estimation, the pre-log factor of the
achievable rate is less than the channel’s multiplexing gain. We
then provide guidelines for the design of PAT schemes whose
achievable-rate pre-log factor equals the channel’s multiplexing
gain and construct an example.

Index Terms—Achievable rate, channel capacity, channel es-
timation, doubly dispersive, doubly selective, multiplexing gain,
noncoherent, pilots, spectral efficiency, training.

I. INTRODUCTION

R ECENTLY, there has been great interest in characterizing
the capacity of wireless multipath channels under the

practical assumption that neither the transmitter nor the receiver
has channel state information (CSI). In this paper, we focus
on channels that are simultaneously time- and frequency-se-
lective, which pertain to applications with simultaneously high
signaling bandwidth and mobility. The high-SNR capacity
of the noncoherent Gaussian flat-fading channel was charac-
terized in the MIMO case by Zheng and Tse [1] using the
block-fading approximation, whereby the channel coefficients
are assumed to remain constant over a block of symbols and
change independently from block to block. Later, Vikalo et al.
[2] characterized the high-SNR capacity of the noncoherent
Gaussian frequency-selective block-fading SISO channel under
the assumption that the discrete block-length exceeds the
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discrete channel delay spread . Liang and Veeravalli [3]
characterized the high-SNR capacity of the SISO Gaussian
time-selective block-fading channel, assuming that, within the
block, the channel coefficients vary according to a finite-term
Fourier series with expansion coefficients that have
a full-rank covariance matrix,1 but change independently from
block to block. In [3], they also find the asymptotic capacity
of a MIMO sub-block correlated time-selective fading model,
in which the channel remains constant within a sub-block.
For the aforementioned noncoherent block-fading Gaussian
channels, it has been shown that the capacity as a function
of SNR obeys , where the mul-
tiplexing gain is given by in the SISO flat-fading
case, in the SISO frequency-selective case,2 and

in the SISO time-selective case. While the afore-
mentioned works focus on block-fading channels, there exists
other work by Lapidoth [4], [5] on the capacity of stationary
fading channels.

In this paper, we consider a SISO channel that combines
the frequency-selectivity of [2] with the time-selectivity of
[3], henceforth referred to as the block-fading doubly selective
channel (DSC). More precisely, this discrete-time channel uses
a finite-length impulse response whose Gaussian coef-
ficients vary according to an -term Fourier series within
the block, but change independently from block to block. When
the fading coefficients are uncorrelated in both time and fre-
quency, we show that, under continuous input distributions, the
channel’s multiplexing gain obeys .

Next, we study pilot-aided transmission (PAT) over this
block-fading DSC. In PAT, the transmitter embeds a known
pilot (i.e., training) signal that aids the receiver in data decoding
under channel uncertainty. Often, PAT enables the receiver
to compute an explicit channel estimate, thereby facilitating
the use of coherent decoding strategies (see [6] for a recent
comprehensive PAT overview). We are interested in finding
PAT schemes for which the pre-log factor of the asymptotic
achievable-rate expression equals the channel’s multiplexing
gain, i.e., . Throughout the paper,
we refer to such PAT schemes as “spectrally efficient.” For the
design of such PAT schemes, we consider the only the case that

since, in the case that , it
would be trivial to achieve a multiplexing gain of .

When linear minimum mean-squared error (LMMSE) pilot-
aided channel estimation is performed at the receiver, the re-
sulting mean-squared error (MSE) remains dependent on the
PAT scheme in use. Thus, PAT schemes have been proposed
to minimize this MSE—under fixed levels of pilot and data

1Note that in the case of � � � , the � -length vector of coefficients
has a rank-deficient correlation matrix.

2Assuming uncorrelated intersymbol interference (ISI) coefficients.
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power—in [2], [7]–[9]. Henceforth, we refer to these optimized
PAT schemes as “MMSE-PAT” schemes. Previous studies have
established that MMSE-PAT schemes are spectrally efficient
for flat [1], [7]; frequency-selective [2]; and time-selective [9],
[10] block-fading channels. We establish here, however, that
cyclic-prefixed MMSE-PAT schemes are not spectrally efficient
for strictly doubly selective (i.e., and

) block-fading channels. For these channels, we then develop
guidelines for the design of spectrally efficient PAT schemes and
propose one such scheme.

Before continuing, a few comments are in order.
1) Our work relies on the block-fading assumption, which

can be justified in systems that employ block interleaving
or frequency hopping. Other investigations have circum-
vented the block-fading assumption through the use of
time-selective channel models whose coefficients vary
from symbol to symbol in a stationary manner. For these
stationary models, it is necessary to make a distinction
between nonregular3 (e.g., bandlimited) fading processes
and regular (e.g., Gauss–Markov) fading processes. While
nonregular fading channels have been shown to behave
similarly to time-selective block-fading channels, regular
fading channels behave quite differently [11]. Recent
results on stationary doubly selective channels have a
similar flavor [5]. The details, however, lie outside the
scope of this work.

2) Our work relies on the assumption that intrablock
time-variation can be accurately modeled by a finite-term
Fourier series with uncorrelated coefficients. Though we
provide a detailed justification in the sequel, the key idea
is that, due to velocity limitations on the communicating
terminals and the scattering surfaces, the channel fading
processes will be bandlimited. It is well known that ban-
dlimited random sequences can be well approximated by
finite-term Fourier series, where the approximation error
decreases with block size.

3) Some authors (e.g., [12]) have studied the capacity of
noncoherent underspread doubly selective channels by
first claiming that there exists a fixed set of approxi-
mate channel eigenfunctions (as motivated by [13]) but
then later ignoring the resulting approximation error.
The approximation error, which—if not ignored—would
contribute signal- and channel-dependent additive inter-
ference to the observation, can be very small when the
spreading is very mild, i.e., when , but can
become large as the spreading gets more severe, i.e., as

(see the interference lower bounds in [14]).
Note that for some underwater acoustic
channels [15]. We avoid the approximate eigenfunction
approach since we do not assume very mild spreading.
We also note the existence of very recent results [16] that
account for the approximation error.

The paper is organized as follows. Section II details the
modeling assumptions, Section III analyzes the high-SNR
capacity of the noncoherent doubly selective block-fading

3Regular processes allow for perfect prediction of the future samples from
(a possibly infinite number of) past samples while nonregular processes do not.
For more details, see [11].

channel, Section IV details the PAT setup for this channel, and
Sections V–VI analyze several PAT schemes.

A. Notation

Matrices (column vectors) are denoted by upper (lower) bold-
face letters. The Hermitian is denoted by , the transpose
by , the conjugate by , the determinant by , and
the Frobenius norm by . The Loewner partial order is de-
noted by , i.e., means that is positive semidef-
inite. The expectation is denoted by , the trace by ,
the Dirac delta by , the Kronecker delta by , the Kro-
necker product by , the modulo- operation by , and
the integer ceiling operation by . The null space of a matrix
is denoted by , the column space by , and the di-
mension of a vector space by . The operation ex-
tracts the th element of a matrix, where the indices ,

begin with 0, and constructs a diagonal matrix from
its vector-valued argument. Appropriately dimensioned identity
and all-zero matrices are denoted by and , respectively, while
the identity matrix is denoted by . The set-union op-
eration is denoted by , set-intersection by , set-minus by ,
and the empty set by . The integers are denoted by , reals by

, positive reals by , and complex numbers by .

II. SYSTEM MODEL

In Section II-A, we describe the baseband-equivalent
discrete-time block-fading doubly selective channel model
assumed for the analysis in Sections III–IV. One of our key
assumptions is that the channel can be parameterized using a
discrete Fourier complex exponential (CE) basis with uncorre-
lated coefficients.

To lend credence to our discrete-time CE basis expansion
model (BEM) and to establish links with physical channel
descriptors like Doppler spread and delay spread, we show in
Section II-B that, when pulse-shaped transmission/reception is
used to communicate over a continuous-time channel that ex-
hibits wide-sense stationary uncorrelated scattering (WSSUS)
with limited Doppler and delay spreads, and when the com-
bined transmission/reception pulse has a width of at most one
symbol interval, the resulting system yields a discrete-time
channel parameterization whose discrete Fourier coefficients
become uncorrelated in the large-block limit (i.e., ).

A. Block-Fading CE-BEM Doubly Selective Channel

Our discrete-time block-fading DSC model is now summa-
rized. Within a fading block of length , we assume that the
channel output can be described as

(1)

where is the channel input, is the
time- channel impulse response, and is circular
white Gaussian noise (CWGN) of unit variance. Here,
refers to the discrete delay spread. We assume an energy-pre-
serving channel, i.e., , so that
describes the signal-to-noise ratio (SNR), as well as the input

Authorized licensed use limited to: The Ohio State University. Downloaded on June 01,2010 at 19:40:16 UTC from IEEE Xplore.  Restrictions apply. 



KANNU AND SCHNITER: ON THE SPECTRAL EFFICIENCY OF NONCOHERENT DOUBLY SELECTIVE BLOCK-FADING CHANNELS 2831

power constraint .

Defining ,
and , we obtain the vector
model

(2)

where is given element-wise as
.

Using a discrete Fourier expansion of the th tap trajectory

(3)

where denotes the discrete Doppler spread, we
will assume that the Fourier coefficients are uncorrelated,
i.e., when either
or , as well as Gaussian. Using the definitions

, ,

, and

, (3) can be written in vector
form as

(4)

where and where is given
element-wise as . Given our
previous assumptions, is zero-mean Gaussian with diagonal
positive-definite covariance matrix such that

. The discrete Fourier expansion model (3) is
sometimes referred to as a complex-exponential basis expan-
sion model (CE-BEM) after [17]. For later use, we define
the spreading index . The role of on the
multiplexing gain of the CE-BEM DSC will become evident
in Section III.

Across blocks, we assume that the channel coefficients are in-
dependent and identical distributed. This assumption can be jus-
tified for block-interleaved systems or for time-division or fre-
quency-hopped systems where blocks are sufficiently separated
across time and/or frequency. Finally, we assume that there is
no interblock interference, as when a suitable guard interval has
been placed between blocks.

B. Connection to Pulse-Shaped Communication Across
WSSUS Channels

In an effort to justify the block-fading CE-BEM DSC model
described in Section II-A and assumed for the analyses in
Sections III–IV, we now draw parallels to continuous-time
pulse-shaped communication. In particular, we show that
pulse-shaped communication can, in certain cases, yield a
discrete-time channel parameterization whose discrete Fourier
coefficients become uncorrelated as .

Consider a baseband-equivalent wireless multipath channel
that can be modeled as a linear time-variant (LTV) distortion
plus an additive noise

(5)

We assume that, over a small time duration of seconds,
the channel obeys the following wide-sense stationary
uncorrelated scattering (WSSUS) [18] model

(6)

(we refer interested readers to the discussion of stationarity over
in [3, p.3097]). If we define

(7)

then the practical assumptions of finite path-length differences
and finite rates of path-length variation imply that

(8)

where denotes causal delay spread (in seconds) and
single-sided Doppler spread (in Hz).

Now consider baseband-equivalent modulation, as described
by , where is the sampling interval
in seconds and where is a unit-energy pulse, and baseband-
equivalent demodulation, as described by the received samples

for . We will assume that the
baud rate is larger than the Doppler spread, i.e., .
From (5), one can write

(9)

with and

(10)

Parsing the received signal into length- blocks, we ob-
tain a discrete-time block-fading model akin to (1), but with
possibly infinite discrete delay spread. We will assume that the
block duration is less than the small-scale fading
duration , so that the WSSUS property holds within each
block. Note that the Hz sampling rate implicit in pulse-shaped
transmission/reception may limit the capacity of the discrete-
time channel relative to the continuous-time channel from which
it is derived.

Consider now the block , for which channel re-
sponse is characterized by for and

. The th channel tap trajectory can be parameterized
w.l.o.g. using the -term discrete Fourier expansion

(11)
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Using the pulse ambiguity function

(12)

we can state the following lemma.

Lemma 1 (Statistics of Discrete Fourier Coefficients): Say
that the support of is with . Then, for

any

(13)

Furthermore, when either

or .
Proof: See Appendix A

Notice that, in (13), is

a local average of over the in-
terval . Due to the sup-
port of specified by (8), it follows that

when either or

.
When using a pulse that satisfies the condition in Lemma 1

and a block size that is finite but large, Lemma 1 suggests that
it is reasonable to approximate the discrete Fourier coefficients

, for and , as uncorrelated
with variance

(14)

In this case, is zero-valued when either

or ,
where

(15)

(16)

Furthermore, the -sample delay spread, in combination
with (9), implies that depends only on the input sam-
ples .

In summary, if we apply the large- approximation (14) to
the pulse-shaped continuous-time WSSUS model (5)–(8), and
use a pulse with maximum width , then we obtain a
discrete-time CE-BEM DSC model that satisfies the conditions
of Section II-A with discrete Doppler and delay spreads given
by (15)–(16). We note that of width corresponds to a
combined transmission/reception pulse of
width . The discrete-time channel model of Section II-A will
be assumed for the remainder of the paper.

III. CAPACITY ANALYSIS

For the noncoherent block-fading CE-BEM DSC described
in Section II-A, we now analyze the per-channel-use ergodic
capacity, which can be expressed as [19]

(17)

where denotes mutual information between the channel
output and input, and where the supremum is taken over all
random input distributions satisfying the power constraint. It is
known that all rates below the ergodic capacity can be achieved
by coding over a large number of block-fading intervals [19],
[20].

We define , the channel’s multiplexing gain, as the pre-log
factor in the high-SNR expression for the channel capacity

(18)

For the block-fading DSC, the coherent ergodic capacity (i.e.,
when is known to the receiver), is given by [20]

(19)
where and the expectation is taken over the
random matrix . Using gives a lower bound on

. Also, any meeting the constraint in (19) satisfies
. Thus, we have4

(20)

Denoting the eigenvalues of by , we have

(21)

Since the random fading matrix is full rank (almost
surely)5 the eigenvalues are positive and .
Thus, in the coherent case, the multiplexing gain of the doubly
selective channel is unity. But, in the noncoherent case, the
multiplexing gain is generally less than unity. In partic-
ular, we claim that the multiplexing gain of the noncoherent
block-fading DSC, in the case of continuously distributed
inputs, is . To prove this claim, we
first derive an upper bound on the pre-log factor of mutual
information between the input and output of the block-fading
DSC, and later establish the achievability of this bound. Since

4Since ��� � ��� � ��� implies ��� ������ � ��� ������.
5This property follows from the fact that first� columns of��� form an upper

triangular matrix and the diagonal elements ����	� � 
�� � � � � ��
are almost surely nonzero, each being Gaussian with nonzero variance.
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the optimal input distribution in terms of mutual information
may depend on the SNR , we allow the input distribution to
change with respect to to find upper bound on the asymptotic
mutual information.

Theorem 1 (Achievable Spectral Efficiency): For the
block-fading CE-BEM DSC, any sequence of continuous
random input vectors indexed by SNR , satisfying the
power constraint , and converging
in distribution to a continuous random vector , yields

(22)

Proof: See Appendix B.

The following lemma specifies a fixed input distribution that
achieves the mutual information upper bound given in (22).

Lemma 2 (Achievability): For the block-fading CE-BEM
DSC, when the input is i.i.d. zero-mean unit-variance circular
Gaussian

(23)

Proof: See Appendix C.

It can be seen, from (23), that the loss in multiplexing gain,
relative to the coherent case, increases with the spreading index

. Since , larger values of correspond to
higher levels of time-frequency dispersion. Thus, our findings,
which imply that channel dispersion limits multiplexing gain,
are intuitively satisfying. For , the multiplexing gain will
be close to unity, i.e., that of the coherent case. Such channels
have relatively few unknown parameters and thus are not ex-
pected to incur much “training overhead.” For general ,
the multiplexing gain of the block-fading DSC, under continu-
ously distributed inputs, coincides with previous results on spe-
cial cases of this channel: flat fading (i.e.,

) [1], [21]; time-selective fading (i.e., ) [3]; and fre-
quency-selective fading (i.e., ) [2].

For , Theorem 1 and Lemma 2 establish that the pre-log
factor of mutual information with continuous inputs is zero.
DSCs for which can be interpreted as “overspread” chan-
nels [22]. As noted by Kailath [23], time and frequency varia-
tions of overspread channels are impossible to track even in the
absence of noise since they imply that the number of unknown
channel parameters will be more than the number
of received observations . Our result can be compared
with a related result from Lapidoth [24] that shows that the non-
coherent channel capacity grows only double-logarithmically
when the differential entropy (denoted by ) of the channel
matrix satisfies . Intuitively, if , no
element of can be perfectly estimated with the full knowledge
of other elements of , so that there are more unknowns than
observations. In fact, we make use of this result in our proof.

Note that, because Theorem 1 restricts the input distribution
to be continuous, it does not characterize the pre-log factor of
the capacity6 of the DSC.

6We have not established that the capacity achieving input distribution for our
DSC model is a continuous one.

IV. PILOT-AIDED TRANSMISSION

In this section, we detail the encoding and decoding tech-
niques assumed for the PAT schemes analyzed in this paper.
Since a primary advantage of using PAT for noncoherent chan-
nels is the application of communication techniques developed
for coherent channels, we focus on the use of Gaussian coding
and (weighted) minimum-distance decoding via pilot-aided
linear MMSE (LMMSE) channel estimates. We are mainly
interested in designing PAT schemes that achieve the pre-log
factors promised by the mutual information bounds in Theorem
1 and Lemma 2. We restrict our attention to the case where

, which allows a nonzero pre-log factor.

A. PAT Encoder

We assume either cyclic-prefixed (CP) or zero-prefixed (ZP)
block-transmission, so that

if
if . (24)

Since, for both CP and ZP, the vector
completely specifies the transmission vector defined in Sec-
tion Section II-A, we focus our attention on the structure of

. We consider generated by the general class of affine pre-
coding schemes [25]

(25)

where is a fixed pilot vector, is a fixed full-rank
linear precoding matrix, and is a zero-mean informa-
tion-bearing symbol vector and we refer to its dimension as
“data dimension.” For the purpose of achievable-rate analysis,
we can assume w.l.o.g. that the columns of are orthonormal,
since the mutual information between and remains unaf-
fected by invertible transformations of . Denoting the CP/ZP
precoding matrix by , so that ,
the DSC model (2) becomes

(26)

The transmitted power constraint
will be enforced via constraints on and

.
Defining and

, input-output relation (2) can
also be written as . Note that, in the sequel,
we will use these two input-output representations interchange-
ably. Due to zero-mean , the pilot and data components of
are and , respectively. Thus, it follows
from (4) that

(27)

Note that, when the channel statistics and are known,
estimation of is equivalent to estimation of .

To achieve arbitrarily small probability of decoding error
over the block-fading DSC, we construct long codewords
that span multiple blocks. Let denote a codebook in
which each codeword spans blocks. Thus, we can write

Authorized licensed use limited to: The Ohio State University. Downloaded on June 01,2010 at 19:40:16 UTC from IEEE Xplore.  Restrictions apply. 



2834 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

, where is the “seg-
ment” of codeword that corresponds to the th block. We
consider codebooks generated according to a Gaussian distribu-
tion, so that each codeword, and its segments, are independently
generated with positive-definite segment covariance matrix .
Recall that Gaussian codes are capacity-optimal for coherent
Gaussian-noise channels [20].

B. PAT Decoder

We assume that PAT decoding consists of a channel estima-
tion stage followed by a data detection stage. The channel esti-
mator computes the LMMSE estimate of , given the observa-
tion , the pilots , and the (joint) second-order statistics of ,

and . Specifically, with and ,
the channel estimate is

(28)

where, from (27)

(29)

(30)

The channel estimation MSE is given by

(31)
We define element-wise as

and , which will be used
in the sequel.

For data detection, we employ weighted minimum-distance
decoding based on the LMMSE channel estimates. Recall that
the maximum-likelihood (ML) decoder for coherent Gaussian-
noise channels is a weighted minimum-distance decoder [26]
and notice that this decoder is relatively simple compared to one
that performs joint data detection and channel estimation. Given
our multiblock coding scheme, the decoder is specified as

(32)

where and denote the observation and the estimated
channel matrix, respectively, of the th block. The choice of the
weighting matrix is, for the moment, arbitrary.

C. Spectral Efficiency of PAT

For PAT, we say that a rate is achievable if the probability
of decoding error can be made arbitrarily small at that rate. Since
our PAT schemes use Gaussian codes, we employ Theorem 1,
which bounds the multiplexing gain of noncoherent DSC with
continuously distributed inputs, in the following definition.

Definition 1: A PAT scheme is spectrally efficient if its
achievable rate over the block-fading CE-BEM DSC
satisfies .

For the case of flat or frequency-selective channels,
MMSE-PAT schemes (i.e., those designed to minimize
channel-estimation-error variance) have been shown to be
spectrally efficient [1], [2], [7]. In the sequel, we establish that
all CP-based affine MMSE-PAT schemes are spectrally ineffi-
cient over the CE-BEM strictly DSC and propose a spectrally
efficient (nonMMSE) affine PAT scheme.

V. LOSSLESS LINEARLY SEPARABLE PAT

In this section, we focus on affine PAT schemes for which
the pilot and data components can be linearly separated without
energy loss at the output of the CE-BEM DSC channel, i.e.,
from in (26) and (27). Practically speaking, these losslessly
linearly separable (LLS) PAT schemes are those that enable the
receiver to compute channel estimates in the absence of data
interference. From (27), it can be seen that the LLS criterion
can be stated as

(33)

where refers to the collection of data matrices constructed
from all possible codeword realizations. In the sequel,
we use the term MMSE-PAT when referring to any PAT
scheme that minimizes the channel-estimation-error variance

subject to a fixed positive pilot energy .

Lemma 3: All MMSE-PAT schemes for the CE-BEM DSC
are LLS.

Proof: It has been shown in [9, Theorem 1 ], [27] that
all CP-based affine MMSE-PAT schemes are LLS, and it can
be inferred from [8] that ZP-based single-carrier MMSE-PAT
schemes are also LLS.

A. Achievable Rate

We now analyze the achievable rate of LLS PAT, assuming
the encoder/decoder specified in Section IV-B. To do this, we
first choose the weighting matrix in (32). Let the columns of

form an orthonormal basis for the left null space of .
Assuming the LLS condition (33), the projection

(34)

preserves the data component. Then writing
with estimate and error , we
get

(35)

From [28], we know that the rate-maximizing weighting op-
erator for (under the restricted set of Gaussian codebooks)
will be the “whitening operator” , where .
Thus, we use

(36)
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in the decoder (32). [28, Theorem 2] then directly implies7 the
following.

Lemma 4: For an affine PAT scheme that is LLS according to
(33) and that uses the weighting factor from (36) in decoder
(32), the achievable rate is

(37)

We note that the rate expression (37) resembles that for the
coherent case [20] when in (35) is considered as “effective”
Gaussian noise.

B. Asymptotic Achievable Rate

We now study the achievable rate of LLS PAT in the
high-SNR regime. Since the channel estimation error becomes
part of the effective noise in (37), the MSE from (31)
directly influences the asymptotic behavior of the achievable
rate. The following theorem gives a condition on the MSE

of linearly separable PAT that is sufficient to ensure that
the achievable rate’s pre-log factor grows in proportion to the
data dimension.

Theorem 2: Suppose a PAT scheme is linearly sepa-
rable according to (33) and guarantees, for some fixed ,

estimation error that satisfies for all
. Then its asymptotic achievable rate obeys

(38)

Proof: See Appendix D.

When , the effective noise variance remains
bounded, enabling the growth of achievable rate (37) with
pre-log factor equal to the rank of . The estimation-error con-
dition required for Theorem 2 is quite mild and is satisfied, e.g.,
by all CP-based affine MMSE-PAT schemes, which is estab-
lished in Appendix E. In Appendix E, we show that all CP-based
affine MMSE-PAT schemes yield when

and , i.e., when the channel is strictly
doubly selective. Putting these two results together, we make
the following claim.

Theorem 3 (Spectral Inefficiency): For CE-BEM block-
fading DSCs with and , all CP-based
affine MMSE-PAT schemes are spectrally inefficient.

Proof: See Appendix E.

ZP-based single-carrier MMSE-PAT schemes, as character-
ized in [8], also yield , and hence are
also spectrally inefficient when and .

For singly selective channels, however, there do exist spec-
trally efficient MMSE-PAT schemes, such as those specified
for frequency-selective channels (i.e., ) in [2] and
for time-selective channels (i.e., ) in [3], [9], [10].
This can be understood by the fact that, in the frequency-
(time-) selective case, the effective channel matrix has

7The achievable rate result in [28] is derived assuming MMSE channel esti-
mates. However, when (33) is satisfied, the LMMSE estimates (28) are MMSE
because the pilot observations and the channel coefficients are jointly Gaussian.

deterministic eigenvectors, known to the trans-
mitter, so that MSE optimal pilot patterns can be designed to
estimate the channel parameters by sacrificing
only signaling dimensions to pilots. In the
doubly selective case, however, the eigenvectors of are
not deterministic and (under our assumptions) unknown to
the transmitter, so that pilot patterns that are MSE-optimal for
estimation of the channel parameters consume
more than signaling dimensions. In this sense,
Theorem 3 refines the upper bound on the data dimension
of CP-based affine MMSE-PAT schemes of strictly doubly
selective channels that was presented in [9].

VI. SPECTRALLY EFFICIENT PAT

As established in Section V, CP-based affine MMSE-PAT
schemes, as well as ZP-based single-carrier MMSE-PAT
schemes, are spectrally inefficient in strictly doubly selective
CE-BEM fading, i.e., when and , because
they sacrifice more than signaling dimensions
to pilots. In this section, we design spectrally efficient PAT
schemes by side-stepping the MMSE requirement.

Since we have restricted ourselves to nondata-aided channel
estimation, we reason that the lossless linear separability crite-
rion (33) is still essential, since, without it, channel estimation
would suffer unknown-data interference and, as a result, estima-
tion error would persist even as . Precise conditions for
spectrally efficient PAT are given in the following lemma.

Lemma 5: Suppose that a PAT scheme satisfies the
following conditions:

1) is full rank;
2) ;
3) guarantees LLS according to (33).
Then the PAT scheme is spectrally efficient.

Proof: See Appendix F.

In Lemma 5, the first condition avoids an undetermined
system of equations during channel estimation, the second en-
ables the transmission of linearly independent
data symbols per block, and the third prevents data-inter-
ference during channel estimation. To see how relaxing the
MMSE requirements helps in designing spectrally efficient
PAT, we recall a necessary requirement for CP-MMSE-PAT
[9]: for some constant . The restriction
on the pilot is less stringent in spectrally efficient PAT
design (Lemma 5), allowing us to consider a larger class of
PAT schemes. A spectrally efficient PAT (SE-PAT) scheme
satisfying these three requirements is now described.

Example 1 (SE-PAT): Assuming -block transmis-
sion over the CE-BEM DSC, consider the pilot index set

and the guard index
set . Then construct a ZP-based
affine PAT scheme where

(39)

for arbitrary and where is constructed from the
columns of whose indices are not in .
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For the example scheme, note that the first time
slots are used by pilots while the remaining time slots are used
for data transmission, thereby ensuring linear separability. It
can be readily verified that has rank and that

has full rank, so that all three conditions in Lemma 5 are
satisfied. Such SE-PAT schemes are advantageous in that they
yield higher achievable rates than spectrally inefficient (e.g.,
MMSE-PAT) schemes at high SNR.

VII. CONCLUSION

In this paper, the multiplexing gain (i.e., pre-log factor in
the channel capacity expression) of the noncoherent CE-BEM
DSC with continuous input distributions was shown to be

, where denotes the discrete fading-block in-
terval, denotes the channel’s discrete Doppler spread,
and denotes the channel’s discrete delay spread. Further-
more, in the limit of , the discrete time CE-BEM DSC
model was shown to coincide with a continuous-time WSSUS
channel model under pulse-shaped transmission/reception with
baud rate and pulse duration , where
denotes the single-sided Doppler spread, and the single-
sided delay spread, of the continuous-time WSSUS channel.
When this correspondence holds, the multiplexing gain obeys

.

In the second part of this paper, CP-based MMSE-PAT
schemes (i.e., affine PAT schemes that minimize the channel
estimation MSE achieved by a pilot-aided MMSE channel
estimator) were shown to be spectrally inefficient (i.e., the
pre-log factor in their achievable-rate expressions is less than
the channel’s multiplexing gain) when the CE-BEM DSC is
strictly doubly selective. Sufficient conditions on affine PAT
schemes that are spectrally efficient for these channels were
then proposed, and an example of a spectrally efficient affine
PAT scheme was provided.

APPENDIX A
PROOF OF LEMMA 1

In this appendix we analyze the statistics of the CE-BEM
coefficients by first considering the statistics of the
discrete-time impulse response coefficients . From
(6)–(7) and (10), it can be seen that [see (40)–(44), shown
at the bottom of the page]. From (11), we know

for , so
that [see (45)–(47), shown at the bottom of the page], where

for and otherwise. Com-
bining (44) with (47), we obtain (48)–(49), shown at the bottom
of the next page. To analyze the case of large block size , we
make the substitutions and in (49). Then, for the
values of and that yield integer-valued

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)
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and , we have (50), shown at the bottom of the page.
We now examine the -dependent term on the RHS of (50):

. First, if ,
then for all .
Next, if , then see (51)–(52), shown at the
bottom of the page, and hence, for this range of

if
if .

(53)
Similarly, if , then

(54)

(55)

from which an analysis similar to (51)–(52) implies that (53)
holds for this range of as well. Applying these results to
(49), we see that, for any , see (56), shown at the
bottom of the next page, where we have used the property

. Then, using
the fact that , we find
that [see (57)–(59), shown at the bottom of the next page,
where, for (59), we used the assumptions that
and that for
in conjunction with the fact that to write

. Writing
(59) in terms of the ambiguity function (12) yields

(60)

(48)

(49)

(50)

odd

even

(51)

odd

even
(52)
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If the support of is , then it can be seen that,

when , the functions and
share no common support, in which case (60) reduces to

(61)

APPENDIX B
PROOF OF THEOREM 1

Defining , we define the vector
.

Claim: .

Proof: Using the chain rule for mutual information [19],
we have (62) and (63), shown at the bottom of the page. In the
sequel, we analyze each term in (63) separately. In preparation,
we define the vectors
and their “complements” , which are composed of ele-
ments of not in . We also define the channel vectors

, where

(64)

Next we establish the useful result that
for some constant . Towards this aim, we use a special

case of the capacity result from [24, Thm. 4.2], which is stated
below.

Lemma 6 (Special Case of Theorem 4.2 From [24]):
Consider the following vector input-output relation for CWGN
block fading channel model . The input and

(56)

(57)

(58)

(59)

(62)

(63)
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the noise power are constrained as and

, respectively, for some positive constants
and . Furthermore assume that the channel fades indepen-
dently from block to block and only the channel fading statistics
are available at both the transmitter and receiver. If the differ-
ential entropy (denoted by ) of the channel fading matrix
satisfies , then the high-SNR asymptotic ergodic
channel capacity obeys .

In our model (64), since the elements of are independent
with positive variance, the covariance matrix of , denoted by

, is positive definite, and hence, the differential entropy sat-
isfies . Applying Lemma
6 to (64), it follows that .

The first term in (63) can be written
. Conditioned on , the uncer-

tainty in is due to channel coefficients and additive noise,
which are independent of . Hence, . Since

, we know .
Considering the general term inside the summation of (63)

it remains to be shown that .
Recall that and are jointly Gaussian conditioned on .

In terms of differential entropies,
. It follows that

(65)
where the expectation is with respect to . Now, given

, we split into MMSE estimate and
error as . Since
is Gaussian given , we have

, where the expectation inside the is w.r.t.
and and the expectation outside the is w.r.t. .

Denoting the covariance of
by , we have . Denote
the th eigenvalue of by and the corresponding
unit-norm eigenvector by . Thus, we have

, where
denotes the maximum eigenvalue of and de-
notes the corresponding unit-norm eigenvector. Now define

. For , since
correspond to a projection of onto

a subspace of smaller dimension, not all the elements of
can be estimated perfectly, even in the absence of noise

(i.e., ), and hence . Now,
, and hence, see (66),

shown at the bottom of the page. Combining (65) and (66),

we have . Since

is a sequence of continuous random vectors converging to a
continuous random vector,

with probability 1, and .

Now, if , the proof is complete since
in that case . For the case , we
define and, using
the chain rule for mutual information, obtain

. To complete the proof, we need to
establish that . For
this we have

(67)

(68)

since conditioning reduces entropy. Now,

for some constant . Bounding the maximum eigenvalue
of the covariance matrix of by the sum of its diagonal
elements, we see that

.
Since the Gaussian distribution maximizes the entropy for

a given covariance matrix, we have
. Finally,

is equal to the entropy of the unit variance white noise term
in , which is bounded and independent of . So, we have

.

APPENDIX C
PROOF OF LEMMA 2

Since mutual information is non-negative, it is sufficient to
restrict ourselves to the case of . We need only
to prove that the lower bound on the mutual information with
Gaussian inputs satisfies the equality in (22). Using the chain
rule for mutual information, we have

(69)

(70)

(66)
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Since corresponds to coherent case of perfect receiver
CSI and since is Gaussian with covariance , we have
[20]

(71)

Since is full rank (almost surely), re-using the arguments
following (20) yields

(72)

Now, for matrix appropriately constructed from the input
samples , (2) can be written as

Using the BEM model (4), we have . Since
captures all the degrees of freedom of DSC over a block, we

have . Conditioned on ,
the vectors and are jointly Gaussian, and hence, using the
statistics of and Jensen’s inequality, we have

(73)

(74)

(75)

for some constant , where (75) follows from the fact that
for some constant . So, finally

we have

(76)

The desired result follows from (70), (72) and (76).

APPENDIX D
PROOF OF THEOREM 2

According to Lemma 4, a linearly separable PAT scheme with
weighting matrix in (36) achieves the rate given in (37). To
derive a lower bound on the achievable-rate pre-log factor, we
first obtain a bound (in the positive semi-definite sense) on ,
the covariance matrix of . Because of the or-
thogonality of pilot and data subspaces of lossless linearly sep-
arable PAT, the elements of the (pilot based) channel estimation
error matrix are independent to the noise in the data subspace

and also to the data vector . So, we have

(77)

where the inequality (77) follows from applying the inequalities
, ,

and . Incorporating the condition , we
see that for some constant , . So, we have

and the achievable rate (37) can
be bounded as

(78)

(79)

where denotes the minimum eigenvalue of . Since
as , the channel estimates converge al-

most everywhere to the true channel, i.e., .

Also, since has rank equal to , we
have . To derive an upper bound on the
achievable-rate’s pre-log factor, we use Jensen’s inequality to
take the expectation inside the term of (37), thereby
obtaining . Together, the upper and lower
bounds yield (38).

APPENDIX E
PROOF OF THEOREM 3

In this proof, we restrict our attention to strictly doubly selec-
tive channels, i.e., DSCs for which and .
Throughout this proof, we consider all indices modulo- . Let

be an arbitrary CP-MMSE PAT scheme for strictly DSC.
We establish the desired result in the following two steps:

1) For the CP-MMSE-PAT scheme , the achievable rate
pre-log factor equals .

2) For strictly DSCs, any CP-MMSE-PAT scheme
obeys .

Step 1) of Proof:
The characterization of CP-based affine MMSE-PAT

in [9], [27] establishes that the linear separability condi-
tion (33) is satisfied, and furthermore that

. Recalling that is di-
agonal, and defining positive , we find

.
Thus, all CP-based affine MMSE-PAT schemes satisfy the
hypotheses of Theorem 2, and hence, the pre-log factor of
their achievable rates are equal to their corresponding data
dimension .

Step 2) of Proof:
Now, we show that, when and ,

CP-based affine MMSE-PAT guarantees data dimension
. To establish the condition on , we

use the method of contradiction. In particular, we proceed in
the following stages.

(i) Assume that there exists a CP-MMSE-PAT scheme for
strictly DSC that allows .

(ii) Find the necessary requirements on and for such a
PAT scheme.

(iii) Establish that the PAT schemes satisfying the require-
ments obtained in stage (ii) obey ,
contradicting the initial assumption of stage (i).

Stage (i)—Initial Assumption: Let us assume that there ex-
ists a CP-MMSE PAT scheme for strictly DSC that sat-
isfies .

Stage (ii)—Necessary Requirements: To attain the min-
imal MSE for a given pilot energy, the necessary conditions on
CP-based affine MMSE-PAT for the CE-BEM DSC (established
in [9], [27]) can be expressed as the pair (80)–(81) using

, , , and

(80)
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Fig. 1. Elements of the set ���� � � � � �� � � � arranged in a grid, using � � �� � ����.

(81)

We recall from [9] that condition (80) says that pilots and data
should be multiplexed in a way that preserves orthogonality at
the channel output, while condition (81) says that pilots should
be constructed so that the channel modes are independently
excited with equal energy. Also, notice that (80) states the
linear separability condition (33) in the case of a CE-BEM
DSC. Defining (82), shown at the bottom of the page, as a
(normalized) -time-shifted and -frequency-shifted version
of pilot vector , and constructing matrix from columns

, (80) can be conveniently
rewritten as . It will be convenient to visualize the el-
ements of arranged in a grid, as
in Fig. 1. For this, we use the abbreviation .

Let be a CP-based affine MMSE-PAT scheme with
data dimension (i.e., ).
We now deduce some essential properties of . Defining

(83)

where denotes the inner product, the MMSE con-
dition (81) implies that

(84)

Note also that

(85)

(86)

Together, (84) and (85) imply that the elements within any
rectangle of height and width in Fig. 1 are or-
thonormal. In addition to being a CP-MMSE-PAT,

satisfies , which results in additional
restrictions on and that are stated in Lemma 7.

Lemma 7: For a CP-MMSE-PAT with
, either or .

Proof: Let be the matrix constructed from columns
.

Since these columns form a rectangle of height and width
in Fig. 1, we know they are orthonormal. Furthermore,

since these columns form a subset of the columns of , we
know that . But, since the MMSE con-
dition (80) implies that the nullspace of has a di-
mension of least , i.e., that

, we see that . Hence, the
columns of form an orthonormal basis for the columns of

, which implies

(87)

(88)

Now let (see
Fig. 1). Considering that we can enclose these elements in a
height- and width- rectangle in Fig. 1, we can see
that the columns of form an orthonormal set, and that the
columns of are orthogonal to most columns in . Using
(88) to write the columns of as a linear combination of
those columns in that are not orthogonal to those in ,
we have

(89)

for such that (see the first equa-
tion shown at the bottom of the next page). Now, letting

(82)

Authorized licensed use limited to: The Ohio State University. Downloaded on June 01,2010 at 19:40:16 UTC from IEEE Xplore.  Restrictions apply. 



2842 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 6, JUNE 2010

and carrying out a similar proce-
dure, we have

(90)
for such that (see the second equation
shown at the bottom of the page).

Notice that the columns of must be orthogonal to those
in since they can all be placed inside a height- and
width- rectangle in Fig. 1. Since the basis expansions of

and share the common basis vector , the
contribution from to either or must be zero,
i.e., either (91) or (92) must hold

(91)

(92)

When (91) holds, becomes upper triangular, and (89)
implies

(93)

in which case the unit-norm property of and im-
plies that . When (92) holds, becomes upper
triangular, and (90) implies

(94)

in which case . Applying (86), this can be trans-
lated to .

Stage (iii)—Establish Contradiction: Now we examine the
implications of either or on the
MMSE pilot vector . In each case, we deduce that

, which contradicts our original assumption, thereby
completing the proof.

We start with the first case, where . Since
for some , from (82) and (93), we have

(95)

Thus, in order to avoid , which would not satisfy the
MMSE-PAT requirement (81), we must have
for some . In this case, (95) implies that

will be nonzero only if for such that

. Now, for , we define

if

else
(96)

and use requirement (84) to claim that

, which
can be met if and only if

(97)

From (96), it follows that (97) can be met if and only if

. Now, if , then one can recognize the pilot sequence
specified by (96) and (97) as being the time domain Kronecker
delta (TDKD) MMSE-PAT scheme from [9], [27], for which

.
We continue with the second case, where . Since

for some , from (82), (86), and (94), it
follows that

(98)

Keeping in mind our modulo- assumption on time-domain in-
dexing, say that is the largest integer in for
which both and for some .
Note that, if , then , else .
Furthermore, modulo- indexing implies for some

. Let denote the -point unitary discrete Fourier trans-
form (DFT) of . For a sequence obeying (98), we have

(99)

(100)

...
...

...

...
...

...
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and hence for . The
MMSE requirement (81) can be written in terms of as [9], [27]

(101)

Defining for and
using (101) with , we require

(102)

Since the magnitude of the left side of (102) is -periodic, (102)
can not be satisfied when . Now, if , then
the only sequence satisfying the requirement (102) is

, for constant . This
can be recognized as the frequency domain Kronecker delta
(FDKD) MMSE-PAT scheme from [9], [27], for which

.

APPENDIX F
PROOF OF LEMMA 5

First, we establish that, for the PAT schemes satisfying the
hypothesis, the total estimation error satisfies . Con-
structing using the orthonormal basis for the column space
of , we consider the projection

(103)

Since the PAT is lossless linearly separable satisfying (33),
the projection in (103) captures all the pilot energy and

. Denoting and , we have

(104)

Since is full rank, it follows that the matrix is full rank.
Note that where denotes the LMMSE
estimate of . Using the zero forcing estimate from (104) to
upper bound , we have

(105)

Since is full rank, we have for some
. Now, the desired result follows from the application

of Lemma 4.
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