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Bounds for the MSE Performance of Constant
Modulus Estimators

Philip Schniter and C. Richard Johnson, Bellow, IEEE

Abstract—The constant modulus (CM) criterion has become for somexa € C, somer € Z, and alln. The literature refers to
popularinthe design of blind linear estimators of sub-Gaussian in- - this problem ablind estimation (or blind deconvolution). In [1],
dependent and identically distributed (i.i.d.) processes transmitted  gp,51vi and Weinstein showed that. when the sources and chan-
through unknown linear channels in the presence of unknown ad- | ti ticul i ' fect blind estimation i
ditive interference. In this paper, we present an upper bound forthe €S S& isfy particular properties, perfect blind estimation is pos-
conditionally unbiased mean-squared error (UMSE) of CM-min-  Sible with knowledge of only the second- and fourth-order mo-
imizing estimators that depends only on the source kurtoses and ments of the estimatesy, }. Based on this observation, Shalvi
the UMSE of Wiener estimators. Further analysis reveals that the gnd Weinstein proposed a blind estimation criterion based on
extra UMSE of CM estimators can be upper-bounded by approxi- - minimizing the kurtosis of the estimates. It was later shown
mately the square of the Wiener (i.e., minimum) UMSE. Since our by Li and Ding [2] (and more recently by Regalia [3]) that
results hold for vector-valued finite-impulse response/infinite-im- Yy . g . i y by g
pulse response (FIR/IIR) linear channels, vector-valued FIR/IIR  the Shalvi-Weinstein (SW) estimators are closely related to the
estimators with a possibly constrained number of adjustable pa- popular constant modulus (CM) estimators, proposed a decade
rameters, and multiple_ interfer_ers with arbitrgry distribution, they earlier by Godard [4] and by Treichler and Larimore [5].
confirm the Iongstandltr:g COf‘IjeCtlfJI’e regalfdlng the general mean- Minimization of the CM criterion has become perhaps the
square error (MSE? robustness 0_ M e.stlmators. _ _ most studied and implemented means of blind equalization for

Indlt_ax _Termgl_—%llnd Ib_eamfo(;mmg,_ blind deconvolugoln, b“Td data communication over dispersive channels (see, e.g., [6] and
ﬁ?h”rﬁ 'Z(i;"gggr’d a'lg oriTh”mt'.user etection, constant modulus algo- e references therein) and has also been used successfully as a
' means of blind beamforming (see, e.g., [7]). The CM criterion

is defined below in terms of the estimatgg, } and a design
|. INTRODUCTION parametery.

ONSIDER the linear estimation problem of Fig. 1, where Jo(yn) == E{(Jyn]* — 7)*} 2
a desired source sequenéeﬁlo)} combines linearly
with K interfering sources{sﬁ,,’“)} through vector channels
{h(o)(z),...,h(K)(z)}. Our goal is to estimate the desired
source using the (vector) linear estimatpfz). The linear
estimateqy,, } which minimize the mean-squared error (MSE) 2)
2} o) mators.

=F

T (tn) { The second of these two points was first conjectured in the orig-

are generated by the minimum MSE (MMSE) estimator, anal works [4], [5] and provides the theme for the recently pub-

Wiener estimatoyf,, , (z). Specification off,,, ,(z), however, lished comprehensive survey [6]. In this paper, we attempt to

requires knowledge of the joint statistics of the observgutecisely quantify the general MSE performance of CM-mini-

sequencdr,} and the desired source sequerief’ }, which mizing estimators.

are typically unavailable when the channel is unknown. The last decade has seen a plethora of papers giving evidence
When only the statistics of the observed sequefigg are  fOr the.“r_ob.u.stness” of CM perfor.mance in situations where the

known, it may still be possible to estima{teﬁ,,o)} up to unknown CM-minimizing (and MMSE) estimators are not perfect. Most

The popularity of the CM criterion is usually attributed to

1) the existence of a simple adaptive algorithm (“CMA” [4],
[5]) for estimation and tracking of the CM-minimizing

estimatorf .(z), and

the excellent MSE performance of CM-minimizing esti-

yn - 3(02

magnitude and delay, i.e., of these studies, however, focus part.iculair features of the
. © system model that prevent perfect estimation, such as
Yn = Zfi Tn—i B Q=52 1) the presence of additive white Gaussian noise (AWGN)

T

corrupting the observation (e.g., [8]-[10]);
2) channels that do not provide adequate diversity (e.g., [8],
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Fig. 1. Linear system model with™ sources of interference.

enough to incorporate most combinations of the three conditices integer multiple of the symbol rate. The observatignsan
above, though not as general as the multisource model of Hig. written
1. The bounding algorithm in [14] is rather involved, however, K o
preventing a direct link between the MSE performance of CM _ B )
and Wiener estimators (see Table I). Tn = Z Z i Sn—i

The main contribution of this paper is a (closed-form) bound

on the MSE performance of CM-minimizing estimators that '\%/here{h(k)} denote the impulse response coefficients of the
a simple function of the MSE performance of Weiner estima- I

ime-i i (k)
tors. This bound, derived under the multisource linear mo I ke)a(lr )t|in;ec;er:;||a;r: d(Ll;rc:Lr?dh:g-ri]r?hut Ejzgﬁr:/gg difj’t”zte (g]laBtO)
in Fig. 1, provides the most formal link (established to date z P P

(k) it infinite-i
between the CM and Wiener estimators, and as such, the mi le. Note that such™(z) admit infinite-impulse response

general testament to the MSE robustness of the CM criterion. IR) channel models. .

The organization of the paper is as follows. Section Il dis- From the vector-valued obser'vat|0n sgque{m@}, tpo? re-
cusses the properties of the system model and of the MSE e ggnergtes asequence of linear estm{@t,e}so_f {5020 )
CM estimation criteria in detail, Section Il derives the bounN€re is a fixed integer. Using f,, } to denote the impulse re-

for the MSE performance of the CM criterion, and Section FPONSe of the linear estimatf(z), the estimates are formed as
presents the results of numerical simulations demonstrating the

®3)

k=0 =0

efficacy of our bounding technique. Section V concludes the Un = Z fffrnfi. (4)
paper. i=—o00
II. BACKGROUND We will assume that the linear systeff) is BIBO stable with

In thi i . detailed inf i thconstrainecﬁutoregressive moving average (ARMA) structure,
n this section, we give more detailed information on thg, - thepth element off (=) takes the form

linear system model and the MSE, unbiased MSE, and CM cri-

teria. The following notation is used througho(@#)* denotes L
transpose(-)* conjugate(-)" Hermitian, and-)" Moore-Pen- i b§p>z_n§1’>
rose pseudo-inverse. LikewisB{-} denotes expectatiofiz||,, [f(2)], = —=0

thep-norm defined byg/> ", = |=:|?, ||¢||.4 the2-norm defined b Ly (B i)
by v&H Ax for positive semidefinited, I the identity matrix, I+ ;1 a; 'z

Z the z-transform, andR™ the field of nonnegative real num-
bers. In general, we use boldface lowercase type to denote ve@iAkre thel,
quantities and boldface uppercase type to denote matrix quamié %)
ties. “

) 4 1 “active” numerator coefficient§b”’ }, and
active denominator coefficien{sz@} are constrained
to the polynomial indexe$n ™} and{m“’g}, respectively.

In the sequel, we will focus almost exclusively on the global
hannel-plus-estimator cascag® (z) := £ (2)h*(z). The

First we formghzg the linear time-invariant multichann mepulse response coefficients g () can be written
modelillustrated in Fig. 1. Say that the desired symbol sequenc

A. Linear System Model

{sﬁfn} and K sources of interferenc&;sg)}, ey {sﬁf")} each ‘ = W)
pass through separate linear “channels” before being observed qglk) = Z fih,Z; ()
at the receiver. The interference processes may correspond, e.g., i=—00

to interference signals or additive noise processes. In additior] . . .
. ) allowing the estimates to be written as

say that the receiver uses a sequenc&-afimensional vector

observationgr,,} to estimate (a possibly delayed version of) K oo

the desired source sequence, where the Easel corresponds Y = Z Z g s® (6)

to a receiver that employs multiple sensors and/or samples at Py P
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TABLE |
ZENG ET AL.'S CM-UMSE BOUNDING ALGORITHM [14]

The estimator f = (ff,..

Definitions: h” B® .. nl
H:= .
h® B
R = HH' + (2¢)°L.
& = 14 ()2 (HtH)T
Cu b1 Ci2 )

With & := ( bl a b}
012 be 022

Calculations: ¢, = H'R™'He,.

Assumptions: The desired (k = 0) channel is FIR with coefficients {h{”} € R”.
AWGN of variance o2 is present at each of P sensors, so that

o < S (408 T )
The sources are real-valued and satisfy (Sl)-(SS).
The dispersion constant is y = E{|sy’|*}/o?.

Nhl

,set a:=[®],,, b= (bz) and C:= (81; 823)

g% =g (0:v-1,v+1:

fo )t has Ny coefficients of size P x 1.

c RPNf X(Nf+Nh—1).

©
- h o

N,—1)/g%,(v), using MATLAB notation.

2
’Y”q(o) ”q;

Qrp =

0
ql('l)/—arVQmu

q =-C7'b.
8, = (a — b'C1p)~L
8o = llamr — o7l

=% - Jc,V(‘Il(r?I)/),

c2(8) = 3(6% + 6712 —

.
3lgulls — (3 = )llafu s

Jeu(a@) = 31a% 03 ~ 271a% 15 — B - Mlla; +72.

UMSE Bound: For the quartic polynomial D(8) = ¢2() — 4ca2(8)co, where
c1(8) = —2v(6% + 651),

find {6; < --- < 6} = real-valued roots of D(6), and

set 0, = min{d; | &; > &y}

If 6, # 0, D(d,) > 0, and () > 0 for all § € [J,, &), then
UMSE(q)) < 2 +671 -1,

else unable to compute bound.

—@B=11+E+lgll)*),

Adopting the following vector notation helps to streamline thEor instance, the estimates can be rewritten concisely as

remainder of the paper.

t
q(k) = (' R q(k1)7 (.Z(()k)7 (.Z§k)7 M ')

q:= ( 7(](01)7(](11)7-- 7q(11)7
t
Q(()O)7Q(()l)7 . 7Q(()B)7Q§O)7q() .“7q§1‘1)7 )

t
s i= (sl s 00

(0) (1) (Is) 3(0) s gD

s(n) == ( <1 8n419Sn410 - -9 St

0 1 ) t
KON ;>1,,,,,3§;>1,...) .

K
yn =Y 4"'8M(n) = ¢'s(n). 7

k=0

The source-specific unit vectef;k) will also prove convenient.
e is a column vector with a single nonzero element of value
1 Iocated such that

gle = ¢
We now point out two important properties @f First, it is

important to recognize that placing a particular structure on the
channel and/or estimator will restrict the seatthinableglobal
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responses, which we will denote k,. For example, when the meaningful in the face of such ambiguity, we base our evalua-

estimator is FIR, (5) implies thate Q, = row(H), where we tion on normalized versions of the blind estimators where the

get (8) (see the bottom of this page). Restricting the estimatarmalization factor is the receiver gajho). Given that the es-

to be sparse or autoregressive, for example, would generatinsatey, can be decomposed into signal and interference terms

different attainable ?6)@11 Next, BIBC()—)staqu‘(z) andh(k)(z) as

imply BIBO-stableg®)(z), so that]|g'*)]|,, exists for allp > 1, o

and thus|q|,, does as well. un = aVs\), +q'3(n), (12)
Throughout the paper, we make the following assumptions Ahere

the K + 1 source processes. - 0
g := g with the¢® term removed "

S1) Forallk, {sﬁf)} is zero-mean independent and identi-

. . ©) "
cally distributed (i.i.d). s(n) ;= "s(n) with t:]O?sn_,, term removed
s2) {0y, ..., {5} are jointly independent. the normalized estimatg, /g, gan 2)? referr?(g to as “condi-
S3) Forallk, E1| (k)|2} s tionally unbiased” sincé&{y,./q.” | ;2,1 = s;,2..-
o Snolyr = s _ The (conditionally) unbiased MSE (UMSE) associated with
S4) K(sn”) <0, whereK(-) denotes kurtosis Y, an estimate 0§’ is then defined
2 2
K(sp) = E{|3n|4} — 2E2{|3n|2} — |E' {siH .9 T () i= E{‘yn/%(,o) _ 3;02,, } ) (13)

S5) If, for any k, ¢*)(z) or {5} is not real-valued, then Substituting (12) into (13), we find that

2
E{s"y = 0 for all £. E{|g'3(n)|? qll3
{59 oot = EUTSOO) VG
B. The Mean-Squared Error Criterion g g

The well-known mean-squared error (MSE) criterion was dg\{here the second equahty invokes assumptlgns 81)783)'
Note that UMSE is related to signal-to-interfer-

fined in (1) in terms of the estimatg, and the estimandiol,,. . : o .l
Using S1)-S3), we may rewrite (1) in terms of the global r&nce-plus-noise ratio (SINR) Vi, = o;SINR, ", where

2
sponsey E{ NORON } op
2 SINR, = —— =X L
Jni@) = g = o2 (10) E{@3mP} Il

Denoting MMSE quantities by the subscript® it can be D. The Constant Modulus (CM) Criterion
shown [15] that in the unconstrained (noncausal) IIR case,The constant modulus (CM) criterion, introduced indepen-
S1)-S3) imply that the MMSE response is dently in [4] and [5], was defined in (2) in terms of the statistics
i of {y}. In (2), v is a positive parameter known as the “dis-
l o1 (k) w1 0 persion constant.” Though is often chosen according to the
2= () (Zh ()b (—)) OG), on constar .
' z* z* marginal statistics of the desired source process (when they are
foré=0,... K (11) kr!oyvn), we will see t_hat thg _UMSE performance of CM-mini-
mizing estimators is insensitive ta

k

while in the FIR case, S1)-S3) imply In the two “ideal” situations below, CM-minimizing esti-
0
G = HHHY) D, mates{y, } are known to take the form, = asﬁ,,ly, where
. : o _ iby/ (0

In this latter casey,,, ,, is the projection ok onto the row a =\ o [E{|sn’[*}
space ofH". for some¢ andr. Note that these estimates have zero UMSE

_ and, as such, angerfectup to a scalar ambiguity. For a single
C. Unbiased Mean-Squared Error (UMSE) i.i.d. source that satisfies S4) and S5), this perfect CM-estima-

Since both symbol power and channel gain are unknowntign property has been proven for
the “blind” scenario, blind estimators suffer from a gain ambi- < unconstrained doubly infinite estimators with BIBO chan-
guity. To ensure that our estimator performance evaluation is nels [16], and

I A A YA S R ACS)
o --- 0 héo) h((JK) hgo) th)

(8)
0o ... 0 0 - 0 &Y ... Bl
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» causal FIR estimators with full-column rank (FCR§
[17], [18].
In Section llI-C, we extend the perfect CM-estimation property
to the multisource linear model described in Section II-A.
For more comprehensive surveys on the CM criterion, see [6]
and [19].

I1l. CM PERFORMANCE UNDER GENERAL ADDITIVE
INTERFERENCE

An algorithm for bounding the MSE performance of CM min-
imizers has been derived by Zengal. for the case of a real-
valued i.i.d. source, an FIR channel, AWGN, and a finite-length
estimator. The development for FCR and non-FRERppear in
[9] and [14], respectively. Using the notation established in Sec-
tion II-A, the algorithm of [14] is summarized in Table I. Though
the relatively complicated Zeng algorithm generates reasonably
tight CM-UMSE upper bounds (as we shall see in Section 1V),
we have found that it is possible to derive tight bounds for the
UMSE of CM-minimizing symbol estimators that

 have a closed-form expression;
 support arbitrary additive interference;
« support complex-valued channels and estimators; and
 support IR (as well as FIR) channels and estimators.
We will now derive such bounds. Section IlI-A outlines our
approach, Section IlI-B presents the main results, and Section

ln-c ?Omments on these results. Proof details appear in the ARg. 2. lllustration of CM-UMSE upper-bounding technique using reference
pendix. g,

A. The CM-UMSE Bounding Strategy o .
Note that the maximization on the right of (16) does not ex-

Say thay,, is an attainable global reference response for thgcity involve the attainibility constraint2,; the constraint is
desired usetk = 0) at some fixed delay. Formally,q,., € implicitly incorporated throughy, ..

(0)
Q. N Q" where The tightness of the upper bound (16) will depend on
0 — {q st ¢ >  max qgk)‘}' the size and shape d@.(g,.,), motivating careful selection
’ i (k,8)7(0,v) of the referencey,.,. Notice that the size 0f.(g,,) can

usually be reduced via replacementgof, with 3.4,.,,, where

0 at delayr. The set of (attainable) locally CM-minimizing 2+ = argming Jo(fg,.,). This implies that the direction

global responses for the desired user at delayll be denoted (rather than the size) af., is important; the tightness of the
by {g.,} and defined as CM-UMSE bound (16) will depend on collinearity gf. , and

_ © g.,- Fig. 2 presents an illustration of this idea.
9.} = {arg,;ggt J(@}n Q7 Zeng has shown that in the case of an i.i.d. source, an FIR

In general, it is not possible to determine closed-form expre@annel, and AWGN noisg,, ,, is nearly collinear to the MMSE
sions for{q, ,}, making it difficult to evaluate the UMSE of responsey,, , [14]. These findings, together with the abun-
CM—minimizing estimators. dant interpretations of the MMSE estimator and the existence of
Wheng,., is in the vicinity of ag,,, (the meaning of which closed-form expressions far,, , suggest the reference choice
will be made more precise later) then, by definition, this, %r.» = Im.v-
must have CM cost less than or equal to the cogt. gt In this Determining a CM-UMSE upper bound from (16) can be ac-
casedq. , € Q.(q,,), Wwhere complished as follows. Since both.(¢g) and J,, .(q) are in-
. 0 variant to phase rotation af(i.e., scalar multiplication of by
_ Qc(q"”_) '__{q st.J:(g) S Jlg,) ¥ QY. (15) e’ for ¢ € R), we can restrict our attention to the set of “de-ro-
This approach implies the following CM-UMSE upper boundigieg” responseég s.t.q,(,o) € RT}. Suchg allow parameteri-
Jup(a.,) < max J,.(q). (16) zation in terms of gaim = ||q||2 and interference responge
’ 9CQ.(q,,) (defined in Section II-C), wherfg||> < a. In terms of the pair
INote that under S1)-S3), a particular {user, delay} combination is “assodi@- @), the upper bound in (16) may then be rewritten

ated” with an estimate if and only if that {user, delay} contributes more energy
to the estimate than any othguser, delay. <

,(,0) defines the set of global responsesociated with user

2We refer to the CM-minimizing responses as a set to avoid establishing the 5% Ju.(q) = max
existence or uniqueness of CM local minima witidn N QL% at this time. €Q.(8-q,,) a

max Jurla,q
2:(a,€Q(Brg,,) ( q>>
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where Under the following definition of,:
(%)
Jun(a, @) = ||gl302/(a® - ||g|3 L. 13, sl € R, Vk,n 20
(a.9) = [lallz05/(a” —[lal2) Fo =15 etherwise (20)

from (14). Under particular conditions on the gairand the oy results will hold for both real-valued and complex-valued
referenceg,., (made explicit in Section I11-B), there exists amodels. Note that, under S1) and S&) represents the normal-
minimum interference gain ized kurtosis of a Gaussian source. As shown in Subsection A of
by(a) == minb(a) s.t.{(a,q) € Qc(Brq, ) = llgll2 < b(a)} the Appendix, th?k?ormalié?d and unnormalized kurtoses are re-
lated throughC(sy, ) = (ks — kg)o when S3) and S5) hold.

17 . . i . .
(7 The following kurtosis-based quantities will all prove useful in

which can be used in the containment the sequel:

{(a,9) € Q:(Brq,,,)} C{(a,q) st|lgll2 < bi(a)} KT = min mgk) (22)
. . 0<k<K
implying K= max kM) (22)

max Juvla,q) < max J,,(a,q). kSR

T (0, D€L (Brar ) (@9 < @llglla<bi(a) (.9) . Rg —RJ™ (23)

Applying (14) to the previous statement yields Pumin - -
—(12 K _Ii;nax
max  Jy,.(a,g) = max <%) o2 Pmax = g—(o)- (24)
zllall2 <b..(a) gllali<b. () \ @® — |glI3 Ky = Ks
_ < bi(a) ) 2 The first step is to express the CM cost (2) in terms of the
a?—b2(a)) "7 global responsg (defined in Section II-A).
and putting these arguments together, we arrive at the CM{ gmma 1: The CM cost may be written in terms of global
UMSE bound ” responsey as
bi(a
Jun(g,,) <max | =L} o2, 18) J.(q) : :
o) < (52 ) 0 2 = 3 (W = ) 10
The roles of various quantities can be summarized using k )

Fig. 2. Starting with the (attainable) global reference response +rgllalls — 2 (v/o2) llall3 + (v/o2)" . (25)

qﬁw thle dscalar/_i,, m|n|m|ze;_the (t;hM ((:Zol\jlt th_at_ characte_rlze%im"ar expressions for the CM cost have been generated for the
all scaled versions og,,. Since the MINIMUME. ., 1S case of a desired user in ANGN (see, e.g., [6]).
known to lie within the setQ.(/,.q,.,), delineated in Fig. 2

by long-dashed lines, the maximum UMSE withh(5,.q,.,,) The CM cost expression (25) can now be used to compute the
forms a valid upper bound for CM-UMSE. Determining CM cost at scaled versions of a refereqge.
the maximum UMSE withinQ..(3.q,.,,) is accomplished by

) - . Lemma 2: For anyg,.
first deriving b, (a), the smallest upper bound on interference Y

gain for allg € Q.(f.q,,) that have a total gain of, and . 1 4\ 1

then finding the particular combination dofa,b,(a)} that fr = argmin J.(5g,,,) = Tals <;) -

maximizes UMSE. The anglé, shown in Fig. 2 gives a d ' Y 2o

simple trigonometric interpretation of the UMSE bound (18)‘3.‘n ) )

Juw(Q,,) < max,tan?(f,). Also apparent from Fig. 2 is Jo(Brt,) =7 (1= K,7) (26)

the notion that the valid range ferwill depend on the choice \yhere,;, is the normalized kurtosis of the estimates generated
of g, by the referencq, .

B. Derivation of the CM-UMSE Bounds The expression for.(/3,4,.,.) in (26) leads directly to an ex-

In this section, we derive CM-UMSE bounds based on tHg€ssion foQ.(5.4.,, ), from which the minimum interference
method described in Section Ill-A. The main steps in the derivi@in b«(a) of (17) can be derived.
tion are presented as lemmas, with proofs appearing in the Api.emma 3: The nonnegative gaib, () satisfying definition

pendix. (17) can be upper-bounded as
It is convenient to now define theormalizedkurtosis (not to
be confused withi(-) in (9)) o) < 1- \/1 — (punin + 1) E00)
E { S’glk) 4} : ¢ - ¢ pnlin + 1 ’
) U 1) (19) Cla,g,) 3 — pmi
RKg . 4 min
EQ{ sﬁf“) 2} when0 < 1 < 4 27)

whereC(a, g..,,) is defined in (42).

3Though a tighter CM-UMSE bound would follow from use of the fact that .
3., € Q.(5.q,,) N Q, (denoted by the shaded area in Fig. 2), the set Equations (18) and (27) lead to an upper bound for the UMSE

Q.(3-4,.,) N Q. is too difficult to describe analytically. of CM-minimizing estimators.



2550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 7, NOVEMBER 2000

O 1 4 T 0
— bound (31)
. — . approx (32)
- - u&m) b/ -10
-5 —— [ 4
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=40 e .
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(|_|,_|) SO0 e - S
g S
> g8 -50
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./' .
-85k -- M- .......... .......... ......... 4 80
-40 =30 -20 -10 0 -40 -30 -20 -10 0
UMSE(q_ ) [dB] UMSE(q, ) [dB]
(@) (b)

Fig. 3. Upper bound on (a) CM-UMSE and (b) extra CM-UMSE ver$us (q,, ,) (wheno? = 1) from (31) with second-order approximation from (32).
From left to right,{ pmin, Pmax} = {1000,0}, {1, -2}, and{1,0}.

Theorem 1: When there exists a Wiener estimator associatedtimates, it is also possible to derive lower and upper bounds
with the desired user and delaygenerating estimates with kur-in terms of the UMSE of the MMSE estimator.

tosis sy, obeying Theorem 2:If Wiener UMSE J,,..(q,,, ) < J,o2, where

1+ pmin Ky — Ky, <1 (28) we get (30) (see the the bottom of the page). The UMSE of
4 < Kg — KO~ CM-minimizing estimators associated with the same user/delay

can be upper-bounded as follows:

the UMSE of CM-minimizing estimators associated with the oo V< ()

same user/delay can be upper-bounded hy|:;™"*, where w8 ) € T (e

< ']u7V|ZjSX7Hym < ']u,u|::1,lsX7Ju’V(qm"V)

_ N Kg=Ryp, .
Ty [FS R 1 \/(pm”1 +1) ry—r(D T Pmin 52 where we get (31) (see the bottom of the following page). Fur-
Tviey o Punin + \/(pmin F ) s thermore, (30) guarantees the existence of a CM-minimizing es-
Kg—Hs timator associated with this user/delay whgis FIR.

(29)
Note that the two cases of/, in (30) and of

Furthermore, (28) guarantees the existence of a CM-minimizifyg ma%, o (@) (31) coincide a$:?* — .

vie,v

estimator associated with this user/delay whes FIR. Equation (31) leads to an elegant approximation of
While Theorem 1 presents a closed-form CM-UMSE/MSE of CM-minimizing estimators
bounding expression in terms of the kurtosis of the MMSE Eup(@ey) = Tuw (@) = Juw(@mp)-
2 (1 + pmin)_1 -1 Ii;nax < Kg
1—/1— (3~ pmin) (I +Pmax) /4
- = ? i ’ max -1
]0 ’ Pmax+\/1—(3—/7min)(1+Pmax)/4 Iis - Ii‘r] p # (30)
3—pPmin ’i?lax > Kg, Pmax = —1.

5+ pmin
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Fig. 4. Bounds on CM-UMSE versus estimator length for SPIB microwave channel #5 and 8-PAM.

Theorem 3:1f Jy (g, ) < J,02, then the extra UMSE of on CM-UMSE and extra CM-UMSE from (31) as a function

CM-minimizing estimators can be bounded as of Jw(q,,w)/o—s2 for various values 0p,,;;, and p..x. The
max,Jun (2, ) second-order approximation based on (32) appears very good
Eu(@en) S Euplew ’ for all but the largest values of UMSE.

where we get (32) at the bottom of this page.
Equation (32) implies that the extra UMSE of CM-minC: Comments on the CM-UMSE Bounds

imizing estimators is upper-bounded by approximately the 1) Implicit Incorporation of Q,: First, recall that the
squareof the minimum UMSE. Fig. 3 plots the upper boundCM-UMSE bounding procedure incorporated,, the set

r —2
Ju, v (@m0
1— \/(1+Pmin) (H—%) —Pmin
° 2

~max -
Ts» K S fg

—2
Jau, v (Gm
Jun(a ) pnﬁn+\/(1+pn1in) (H—%) —Pmin
max,Ju,v\@m ) | B
Ju vl : (31)

c,v =
s — 2
Ju,v(@m v v (@m,u)
1\/ (1+pmm)(1+—’ {4, >) (1+pmx*ﬂ—4)fpmin
° ° 2 max

) Ts» fg > kg-
Ju,u (g - IZ @)
Pmin+\/(1+/7min) (1‘1'%) (1+Pmax %) — Pmin
. 3 E]

max,Ju,. (@, ) max, Ju, . (@, )
gu,u c,v = JLL,V|C7V - Ju,u(Qm,u)

%pminjg,u(an,y) + @) (Jg,u(qrn,y)) , Ii;nax S Kg
%(pmin - p111ax)<]3,z/(qm,y) + 0O (J,Z’?V(qm?l/)) , Iﬁ;?lax > fig.

(32
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of attainable global responsesnly in the requirement that
g, € Qq. Thus Theorems 1- 3 written under the reference 20
, implicitly incorporate the
channel and/or estimator constraints that defidge For ex-
ample, ifg,, , is the MMSE response constrained to the set
ARMA estimators, then CM-UMSE bounds based on this,

choiceg,., =

20

anu € QOmQ

40 60
SNR-AWGN [dB]

@
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(b)

Bounds on CM-UMSE versus SNR of AWGN for SPIB microwave channeNy5= 20, and8-PAM.

2J2 (@)
+0O( W(qmy))~

= Ju,”(in,V)

qjypical scenarios leading {@,,;, = 1 include

W|" Imp|ICIt|y InCOFpOI‘ate the Causa“ty ConStraInt The Imp|ICit a) sub-Gaussian desired source in the presence of AWGN' or
incorporation of the attainable s, makes these bounding ) constant-modulus desired source in the presence of non-
theorems quite general and easy to use.

2) Effect ofpi,: When
AT S hg
and
Pmin = (Fy —

REE) (kg — 1Y) = 1

the expressions in Theorems 1-3 simplify

"‘9 Ry

(0

Jul/ qcz/

when

"‘9 Ry

(0)

Kg—Ks

—<

— K,
g ym<1

(0)

g — s

2

T, p(qmp))_Q _1

1+

oy
(-

g

) 59
w(qmp)) -1

when M<\/§—1
U

5

2

super-Gaussian interference.

Note that in the two cases above, the CM-UMSE upper bound
is independent of the specific distribution of the desired and
interfering sources, respectively.

The casepmin > 1, On the other hand, might arise from
the use of dense (and/or shaped) source constellations in the
presence of interfering sources that are “more sub-Gaussian.”
In fact, source assumption S4) allows for arbitrarily lapgg,,
which could result from a nearly Gaussian desired source in the
presence of non-Gaussian interference. Though Theorems 1-3
remain valid for arbitrarily highpmin, the requirements placed
ong,,, via.J, become more stringent (recall Fig. 3).

3) Generalization of Perfect CM-Estimation Property:
Finally, we note that the/,, ,.(g,, , )-based CM-UMSE bound
in Theorem 2 implies that the perfect CM-estimation property,
proven under more restrictive conditions in [16]-[18], extends
to the general multisource linear model of Fig. 1.

Corollary 1: CM-minimizing estimators are perfect (up to a
scaling) when Wiener estimators are perfect.
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Fig. 6. Bounds on CM-UMSE foV, = 8,10 BPSK sources, AWGN at20 dB, and randont{.
Proof: From Theorem 2 FCR. For FIR channels with adequate “diversity,” it is well
7 0= T _0 known that there exists a finite estimator length sufficient for
Ju (@) = 0= Juu(q,,) = 0. the achievement of FCR{. When diversity is not adequate,

Hence, the estimators are perfect up to a (fixed) scale fdctor.however, as with a baud-spaced scalar channel f.e< 1)
or with multiple channels sharing common zefothere ex-

IV. NUMERICAL EXAMPLES ists no finite sufficient length. Consequently, the performance

. of the CM criterion under so-called “channel undermodeling”

In Sections IV-A-IV.C, we compare the UMSE bounds i “ : o . .
(29) and (31) to the UMSE bound of the Zeetalmethod of ind Igck f{ dlslp;arlty has been a topic of recent interest (see,
&-9. [8], [11]-{13]).

Table I, to the UMSE of the CM estimators found by gradie
descent, and to the minimum UMSE (i.e., that obtained b
the MMSE solution). The results suggest that, over a wi
range of conditions, i) the CM-UMSE bounds are close to t
CM-UMSE found by gradient descent, and ii) the CM-UMS

Using theT'/2-spaced microwave channel impulse response
odel #5 from the Signal Processing Information Base (SPIB)
atabasé,CM estimator performance was calculated versus es-

fator length. Fig. 4(a) plots the UMSE of CM-minimizing es-

) . mators as predicted by various bounds and by gradient descent.

performance is close to the optimal UMSI.E performance. ote that all methods yield CM-UMSE bounds nearly indistin-

oth_er wor_ds, the C.’M'UMSE bounds are tight, and the C uishable from the minimum UMSE. Fig. 4(b) plots the same

estimator is robust in a MSE sense. information in the form of extra CM-UMSE (i.e., CM-UMSE

A. Performance Versus Estimator Length for Fixed Channel Minus minimum UMSE), and once again we see that the bounds

] o o o .are tight and give nearly identical performance. For the higher

In practical equalization applications, CM-minimizing estizqalizer lengths, it is apparent that numerical inaccuracies pre-

mators will not be perfect due to violation of the FOR re-  ented the CM gradient descent procedure from finding the true

quirement discussed in Section II-D. For instance, even in the . im (resulting inx’s above the upper bound line).
absence of noise and interferers, insufficient estimator length

can lead to a matrig{ that is wider than tall, thus preventing 5Stee, e.g., [6] or [19] for more information on length and diversity require-
ments.

4Gradient descent results were obtained via thgMB routine ‘fminu ,” 6The SPIB microwave channel database resides at http:/spib.rice.edu/spib/
which was initialized randomly in a small ball around the MMSE estimator. microwave.html
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Fig. 7. Bounds on CM-UMSE foN; = 8,5 BPSK sources, #5 sources with*) = 2.9 (one of which is desired), AWGN at 30 dB, and randorf.

B. Performance Versus AWGN for Fixed Channel sired source with constant modulus in the presence of AWGN

Using the same microwave channel model, we conducted@ad supgr—Gaussian interference._As with our previous experi-
different experiment in which AWGN was introduced at varMents, Figs. 6-8 demonstrate thati) the closed-form CM-UMSE
ious power levels (for fixed equalizer lengify = 20). Fig. 5(a) bounds are tight and ii) that the CM estimators generate nearly

shows that the UMSE predicted by the CM bounds is very cloMMSE estimates under arbitrary forms of additive interference.
to that predicted by gradient descent for all but the highest levels

of AWGN, and as before, the CM-UMSE performance is quite

close to Weiner UMSE performance. Fig. 5(b) reveals slight dif- V. CONCLUSION

ferences in bound performance: Zeztgil's algorithmic bound  |n this paper we have derived, for the general multisource
appears slightly tighter than our closed-form bounds at lowgfear model of Fig. 1, two closed-form bounding expressions

signal-to-noise ratio (SNR). for the UMSE of CM-minimizing estimators. The first bound is
¢ ith d - . based on the kurtosis of the MMSE estimates, while the second
C. Performance with Random Mixing Matrices is based on the UMSE of the MMSE estimators. Analysis of the

While the convolutive nature of the channel in single-us&econd bound shows that thgtra UMSE of CM-minimizing
equalization applications give® a block-Toeplitz structure, estimators is upper-bounded by approximatelysifneareof the
multiuser applications (e.g., beamforming) may lea#tavith minimum UMSE. Thus the CM-minimizing estimator gener-

a more general, non-Toeplitz, structure. When the number atks nearly MMSE estimates when the minimum MSE is small.
sources is greater than the estimator length (which, in our modelmerical simulations suggest that the bounds are tight (with
is always the case when noise is present), the channel ridtrixespect to the performance of CM-minimizing estimators de-
will be non-FCR and different estimation techniques will yielgigned by gradient descent).

different levels of performance. This work confirms the long-standing conjecture (see, e.g.,

Here, we present the results of experiments wirevas [4] and [5]) that the MSE performance of the CM-minimizing
generated with zero-mean Gaussian entries. Fig. 6 correspoasiémator is robust tgenerallinear channels and general (mul-
to a desired source having constant modulus (ﬁa&o.), = 1) tisource) additive interference. As such, our results supersede
in the presence of AWGN and constant modulus interferengeevious work demonstrating the MSE robustness of CM-min-
Fig. 7 corresponds to a nearly Gaussian desired source in itézing estimators in special cases (e.g., when only AWGN is
same interference environment, and Fig. 8 corresponds to a pieesent, when the channel does not provide adequate diversity,
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Fig. 8. Bounds on CM-UMSE foN; = 8, five BPSK sources (one of which is desired), #5 sources mfith = 4, AWGN at—20 dB, and randorf.

or when the estimator has an insufficient number of adjustable _r {‘S(k)r} kot
parameters). " e
— [k _ 4 35
K K g, .
APPENDIX | ( ’ g) ’ (39)
DERIVATION DETAILS FOR CM-UMSE BOUNDS Similarly, S1)-S3) and S5) imply
This appendix contains the proofs of the theorems and  E{||y.||*} = Z||q(")||2a = ||g||302 (36)
lemmas found in Section IlI. &
real-valued{ s’
A. Proof of Lemma 1 E{y2} = lalize, 02 o } (37)
L 2% k
In this section we derive an expression for the CM chsn 0, E {3" } =0 Vk.
terms of the global responge From (9) and (2) Plugging (34)—(37) into (33), we arrive at (25).
Je(yn)=E{|yn|*} —2vE{|yn |’} +77 B. Proof of Lemma 2
2
=K(un)+2E{|yn Y+ E {vn } =2vE {lyn*} 7%, In this section, we are interested in computing
(33) By = arg mgn Je(Ba,.,)-
Source assumptions S1)-S2) imply [20 '
P )=52) imply [20] For anyg,. ,,, (25) implies
4
)= [k (s2). @) L)
zk: 4 ( ) 342(@)_,%) .
From S3), S5), and the definitions aﬁk) andx, in (19) and +/34"6g||qr s —2p32 (7/0—3) lla, |13 + (7/052)2- (38)

(20)

lC(s(k)) - E{ ’

Calculating the first and second partial derivatives of (38) w.r.t.
4} 34 real-valued{s(’“)} 3, it can be shown that

R

1

4 N2 i -1
_ o 4 ()] _ Bp = ——— < ) Ky,
} 208 E{si} =0 g, 112\ \ o2
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is the minimizing value of3, where From (26) and (41), the following statements (see (42) at the
Ik bottom of this page) %re equivalent. The reversal of inequality in
- E{|yn|*t B *) ‘ a0 . (42) occurs because )—mg <0 (asimplied by 84)). Since (21)
S Z ( s g) g, I3 T hg defined kit = ming<g<x £, we know thats™in — x, < 0.
Trw K ’ (39) Combining this with the fact that< ||g™||1/]1g™"||3 < 1, we
have

the expression fof, into (38), we arrive at the expression for

is the normalized kurtosis of the reference estimates. Plugging 4 IPNIE min PPN
on (0 =) a2 =) 2
J.(Brq,.,,) given in (26). k

4
> .min __ *(k)H
C. Proof of Leema 3 2 (+} rig) ;Hq 2

In this section, we are interested in deriving an expression for = (“an - ,{g) llall5-
the interference radius.(a) defined in (17) and establishing o o -
conditions under which this radius is well defined. Rather thal{"us the following is a sufficient condition for (42):
working with (17) directly, we find it easier to use the equivalent

definition B~ g lglls — 2alqll3 + O( )
| o> |1+—=2—4 q —2a q +Oa/7Q’I‘V' (43)
b*(a)znunb(a) S.t.{||é||2>b(a):>Jc(a, 6)>Jc(/37,q7,7u)}- Iﬁ;go) — kg 2 2 B
(40) A

First we rewrite the CM cost expression (25) in terms of gafR€CaUSE. + pumin is positive, the set of|[g||3} that satisfy (43)
a = ||q||2 and interference respongédefined in Section II-C). IS equivalent to the set of poin{s:} that lie between the roots

Using the fact thatq,(,o)|2 — a2 — ||g]32 {x1,22} of the quadratic
4 Pa(x) = (1 + pmin)x2 — 20’ + C(CL, qnu)'
Z (“gk) - "ig) Hq(k) H4 Becausg is an interference response, not all valuepgf. are
k 4 valid. As explained below, we only need to concern ourselves
= (mg()) - ng) ‘qﬁo)‘ with 0 < [[g]l> < av/2 . This implies that a valid upper bound
4 onb,*(a) from (17) is given by the smaller root &%, () when
+> (/«ag’“) - ;«ag) Hq(’“) H i) this smaller root is nonnegative real and ii) the larger root of
K * Py(z) is >a?/2.
_ (Kgo) _ ,{g) (a* — 202||q)12 + llgll2) When' both roots ofPf,,(a:) _Iie in th(_e 'interval [0,a?/2),
. there exist two valid regions in the gaininterference space
+3 (,igk) _,ig> Hq(k‘)H . with CM cost smaller than at the reference, i.e., the set
" 4 1q : (a,9) € Q.(frq,,)} becomes disjoint. The “inner” part

of this disjoint set allows UMSE bounding since it can be
~ contained by{g : ||g|l> < b1(a)} for a positive interference
Jele.q) _ Z (:«a““) -k ) Hq<k>H4 + 104 radius b (a), but the “outer” part of the set doe®t permit
o} ; ’ ! 47 practial bounding. Such disjointness @.(/.q,.,) arises
_9 (Kgo) _ Kg) a?||g||? + (Kgo) _ Kg) gl from a source_k # 0 such thatmgk) < ﬁ§°>“. In tk’}ese_sce—
narios, the point of lowest CM cost in the “outer” regions of
—2(y/0?) a* + (7/03)2. (41) {q: (a,9) € Q(fq,,)} occurs at points on the boundary of

Plugging the previous expression into (25), we find that

Jo(Brg,.,) < Je(a,q)
4
0< zk: (/‘Egk) — /«;g) Hq(k)H4 —+ (/«;éo) _ I‘Eg) (_2a2||q||§ + ||q||3)

2
+rVa* -2 <%> 24+ <%> iy

1 4
- (k) _ ~&)||" _ 9,.2(A]12 —14
0> Z( r) @], - 2a% a3 + lials

Ks & — Kg

2
1 0) 4 Y 2 Y -1
+W<ﬁg)a —2<§>a + o2 ) f (42)
s = T Ry s s

C(a.q,,)
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 ofthe formg = (..., 0,0,ac?®y/2"",0,0,...)* and hence and theC(a, g, ,)/a* requirement (44) translates into
with ||q||3 = @?/2. Thus whenz, > a?/2, we can be assured

that all valid interference responses (ifg,: (a,§) € (0)}) L+ Pmin < Ry ﬁ("(;) <1. (46)
with CM cost less than the reference can be bounded by some 4 Kg — Ks
radiusby.

Solving for the roots of?, (x) yields (forz; < x5) Finally, pIuggingC(a111aX,q,,7,,)/ max INO (45) gives

2 4_ ; Rg =Ky, .
{xl, xQ} _ a” =+ \/CL (pmln + I)C(CL, q'p’y) Ju,u(qqy) - 1-— \/(1 + pmin) P — Pmin -
Pmin + 1 o2 - Kg =Ry, ( )
Claa ) 8 Pmin T \/(1 + pmin) ng—ng()) — Pmin
2 1 :l: \/1 pmm + 1)#
=a ponin + 1 We now establish the existence of an attainable CM-mini-
_ mizing global response associated with the desired user at delay
and both roots are nonnegative real when v,ie.q., € Q,n QY. For simplicity, we assume that the
0<C(a,q,,)/a* < (pmin+1) " spaceg is finite-dimensional. We will exploit the Weierstrass
It can be shown that, > a2/2 occurs when theorem ([21, p. 40]), which says that a continuous cost func-
Cla,q,,)/a* < (3~ puin)/4 fuonal _hasglocal minimumin a_compact set if there exist points
e - in the interior of the set which give cost lower than anywhere on
Sincepnin > 1 implies the boundary.
(3= Pmin) /4 < (pmin + 1) By definition, all points inQ.(3,q,.,) have CM cost less
both root requirements are satisfied when than or equal toJ.(y.), the CM cost everywhere on the
Cla,q,,) 3= pmin boundary ofQ.(3.¢,.,). To make this inequality strict, we
s — 71— (44)  expandQ.(f.q,,) to form the new se€’,(3.q,,,), defined in
terms of boundary cost.(y..) + € (for arbitrarily smalle > 0).
D. Proof of Theorem 1 Thus all points on the boundary @..(3.g,.,,) will have CM

In this section we use the expressionfipfa) from (27) and Cost strictly greater than'.(y,). But how do we know that
a suitably chosen reference respogse € 0,n0Y to upper- such a seQ,(f,q,.,) exists? We simply need to reformulate

bound.J, ,(¢, ). Plugging (27) in (18) (42) with e-larger J..(y..), resulting inc-largerC(a, g,.,,) and a
o modified quadratid®, () in sufficient condition (43). As long
Tun(@o) 1— \/1 (Prmim -+ 1)C(a ) as the new roots (call them andz?) satisfyz| € [0,a?/2)
— =" < max andz) > a®/2, the set{q : (a,q) € Q.(3.q,,)} is well-de-
75 * puin + \/1 (Pmin + 1)M fined, and as long as this holds for the worst cagee., amax),
Cla,a,,)  3— pu Q.(5-q,.,) will itself be well-defined. This behavior can be
wheno < e T < 4p TR, (45) guaranteed, for arbitrarily smadl by replacing (46) with the
_ “ _ _ stricter condition
Note that the fraction on the right of (45) is nonnegative
and strictly increasing irC(a,q,.,)/a* over the valid range 14 pmin _ Ky — Ii(yg) <1 (48)
of C(a,gq,,)/a*. Hence, finding @ that maximizes this 4 Kg — Ks

expression can be accomplished by findingthat maxi-

mizes C(a, q,,)/a*. To find these maxima, we first rewrite To summarize, (48) guarantees the existence of a closed and

Cla.q,,)/a* from (42) bounded se.Qg(/},,q,,,l,) containing an interior point,.g,., with
CM cost strictly smaller than all points on the set boundary.
C(a,q,,) 1, 5 YN s Due to attainibility requirements, our local minimum
a* =G 5(“ )77 =y, o2 (@)™ +Ce search must be constrained to the relative interior of de

. _ ~manifold (which has been embedded in a possibly higher
whereC, andC; are independent of. Computing the partial dimensionalg-space). Can we apply the Weierstrass theorem
derivative with respect to the quantiy on this manifold? First, we know th€, manifold intersects

9 Cla,q,,)) - 4\ , Q.(5rq,0) n_amely, at the poinﬁ,,q,,yl,.'Second, we knpw
= C1(a”) Ky, a“—1].

o2

5

5 1 that the relative boundary of th@, manifold occurs outside
9(a?) Q.(5-4,.,.), namely, at infinity. These two observations imply

Setting the partial derivative to zero yields the unique finite maiPat the boundary 0@, N Q.(4,4,.,) relative toQ, must be

a

imum a subset of the boundary &@..(3.¢,.,). Hence, the interior
of @, N Q.(Aq,.,) relative to Q, contains points which

al. = <12) Foy, - give kurtosis strictly higher than those on the boundary of
75 Q. N Q.(A-q,,) relative to Q,. Finally, the domain (i.e.,

into (42) gives the simple result Q. N Q.(Brq,.,) relative t0Q,) is closed and bounded, hence
compact. Thus the Weierstrass theorem ensures the existence
Clamax; @) kS — Ky, _ 1 _ Ka = Ky, of a local CM minimum in the interior o0, N Q.(5.q,.,)
L T e O relative toQ, under (48). Recalling tha@.(f.q,.,) C Q.

Plugginga?

max
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we see that there exists an attainable locally CM-minimizingpplying (51) to (47), we obtain
response associated with the desired user at delay mas s,
Theorem 1 follows directly from (47) with reference choicelur lew "

Q) =, € QN Q,(,O). Note that we restrict ourselves to o2
4., € Q,, which may not always be the case. 7. -2
m,v 4 1-— (1 + pmin) (1 + —— ;ghp)) — Pmin

<

E. Proof of Theorem 2

_ _ Ju p(q,a V))_2 o
In this section we find an upper bound fdy, . (g, ,) that Puin + \/(1 + Pumin) (1 + Pmin
involves the UMSE of a reference estimatby,.(q,.,.) rather

than the kurtosis of reference estimatgs. The choice of the when (48) is satisfied. Inequality (51) implies that

reference to be the MMSE estimator can be considered a spe- 14 oo Tun (@) 2
cial case. The conditions we establish below will guarantee that % < <1 + L;”)
(0) a
Q'rnz/ 6 Ql/ . 5
We will take advantage of the fact thd, ,, |c., """ in (47) o S () < 14 2
is a strictly decreasing function 6k, — ,_)/(x, — K )) over o3 V Pmin + 1

its valid range. From (39)

: N4
Kg—Hy 2ok (“ﬂ - “gk)) Hq(’“)H4

is sufficient for the left inequality of (48). Turning our attention
to the right inequality of (48), we can use (50) to say

0 — 0 _
g = ris (g = =5 llall3 LR I
‘ — & 7 lallz T el
14 N
(”g_”go)) |Qz(/0)|4+2 k ("5 - l‘i.gk)) Hq(k)HzL o= h : _22 )
= 4 . 1 IALILAN 24 Ju U(Q) 1 + . J'u,,z/(q) (52)
(Iﬂlg—lis ) ||q|| O_S Pmin O';L
Examining the previous equatiof, < (||@||/|/@l|3) < 1im- since (14) implies
plies that
la+ |\~ 2
4 all4 q 2 qv 0'2 -
. A(k)) H*(k)H S (jo _ emaxy |[m)|4 ||q||2 _ _ s
rg—ry J1@Y) Z(rg—r7) [l = 1+
2,; (v = : lall3 lal3 (@)
0 hnlax < " _
> max P fnax g ]3 v q ]u v 2
—{m—ﬁ Vlalls, o>, _ Jul9) <1+ ’2(“’)> .
(49) s s
and Then, inequality (52) implies that a sufficient condition for the
AN o |12 i right side of (48) is
S (rg=®) [0 < (eg =) gl . (49)
‘ — ] (Q1 V) - ]3 V(QT 1/)
< (Kg I{mm) ||q||42L (50) <1 + O'—> 1+ pmin# <1
Note that in (50) and the super-Gaussian case of (49), equality (@) < 2
is reached by global responses of the fayre= ae(k) where < a2 = Pmin— 1~
k corresponds to the source with minimum and maximum kur-
tosis, respectively. Using pumin > 1, it can be shown that
Considering first the sub-Gaussian interference ¢ase* <
g C'eg - -1 + 2/ V Pmin + 1 S 2/ Pmin — )

Kg), We claim

Thus satisfaction of our sufficient condition for the left in-
Jun(q) -2 equality in (48) suffices for both inequalities in (48).
< +— ) (51)  Treatment of the super-Gaussian interference ¢ase* >
kg4) Is analogous. With the methods used to obtain (52), (49)

4
G

Kg — Ky
> =
Kg — m§°> - ||Q||42L

2
o

since the definition of/,, ,.(g) in (14) implies implies
2 )\ Rg—hy Ky — 5™ |lqll3
q = 4 (0) 1
4= (0) al2) = 1 all> ﬁg—mgo) ||‘I|| Kg—Fs llgll5
lal = (Ju2]+ 1) =1a T
v Pmax

1 , 2 Jur @\ (@)
(12 2ty ~(1+720) (a0 ) . 69

5
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Applying (53) to (47), we obtain the first expression at the Starting with the non-super-Gaussian case g% < «,),
bottom of this page as long as (48) is satisfied. Substitutiigl) says

(0) |2 2 —12 )
= — in (53), we find that —
o 1" = llgllz — llgllz in ( H) . il T [ i (@ ,w) 1— /(0 F praim) A7) 2= prom
K K, it
g—(g) 1-2 ||q||§ + ( + pmaX)HqTAQL O—g pmin+\/ 1+p11lin)(1+J)_2_p11lin
Rg — Ks
from which routine manipulations yield
hence a sufficient condition for the left inequality of (48) be- P 4
comes T Ic“jx e (@)
_ 2
(1 + pmiﬂ)/4 <1l- 2||Q1,V||§/||Q1,V||§ s
— _ _ P . 2 2
O+ ) (1000 8/, B2 2 L= V1= e = D puin 2T+ ) @ 5 %)
or, Equivalently, (pmin - 1) + pmin(2J —+ J )
a2 2 a2 Forz € R such thafz| < 1, the binomial series [22] may be
Q’I‘ v Q’I 1t i
(14 prnax) <Ilq : ||§> 2||q ||§ (3= puim)/4 < 0. usedtoclaim 2
rvil2 v X X
. . . Vi-r=1—-—=-__ _ (L3
It can be shown that the quadratic inequality above is satisfied * 2 8 @)
by Applying the previous expression with
a 2 1—+/1—(3—pmin)(1+pmax)/4
qu?l/”g { e lfl)-pmzi o)/ ) Pmax 7 —1 2 = ((pmin — 1) + pmin(2J + JQ))(Z] + JQ)
q”’_” 2 (3= Pmin)/8, Pmax = —1 we find the second expression at the bottom of this page. Finally,
and since subtraction ofJ gives the first case in (32).
Jun(g) = (||q||2/||q|| /(= lla@l3/llall?) For the super-Gaussian case (g7 > r,), (31) becomes

the first expression at the top of the following page from which
routine manipulations yield the second expression at the top of
the following page. As before, we use the binomial series ex-

is strictly increasing irj|g||3|/¢||3, the following must be suffi-
cient for the left inequality of (48):

Jun(a.,) 1—/1=(3—pmin ) (1+pmax)/4 £ -1 pansion fory/1 — z, but now with
REAC V7P SN ey e Y ) 5
052 @ p = —]_ r = (2plllax_2)J+(5p111in_1_pmax_pminpmax)<] +O(J )
5+pmin ’ max

(54) After some algebra, we find

As for the right inequality of (48), it can be shown that the quany, Y A (T o)
tities in (54) are smaller tha2y (pmin — 1). Thus satisfaction of = P
(54) suffices for both inequalities in (48). s 9 3
1 min — Fmax min 1)J owJ
_y. 1l b Prmasc) (P )2 + ()T
F. Proof of Theorem 3 2 (pmin - 1) + 2pminJ + (pmin - pmax)J

Here, we reformulate the upper bound (31). To sinfinally, we apply the series approximation
plify the presenta2t|on of the proof, the shorthand notation 1 1ty O
J = Ju(@p,,)/ o5 will be used. 1—y

i (@,,)\ 72 2, (.,
Max, Ky, 1-— (1 + pmin) 1 + - CEZ * ) 1 + Pmax CEZ : ) — Pmin
Jus - g

c,v
) >~

s v Ja (@
Pmin + \/(1 + pmin) (1 + M) (1 + pmax%) — Pmin

a

max,Jy v (g, )
Ju v ler

1 ((Prmin — 1) + punin(2J + J2)) (27 + J%)
T2 (Pmin — 1) + pmin(2J + J2)
+1«mm—1yﬂhm@J+J%f@J+J%2
8 (pmin - 1) + pmin(2J + JQ)
:J+%?ﬁ+0u%

2
s

+ O(J3)
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] Ina‘Xz*]u,V(qm,p)
Ju,vlc,v

1- \/(1 + pmin)(l + J)_2(1 + pma.XJ2) — Pmin

2
s

B Pmin + \/(1 + pmin)(l + J)_2(1 + p111aXJ2) — Pmin

max,J, . (g ) )
Ju7y | mLv

c,v

_ p111axJ2 +1- \/1 + (2 - 2pmax)J + (1 + Pmax + PminPmax — 5p111in)J2 + O(Jg)

2

05 (pmin -

1) + 2p1nin'] + (pmin - pmax)']2

with (8]

y= _(2pminJ + (pmin - pma.X)JQ)/(pmin - 1)

[0
for puin # 1. Straightforward algebra yields 110]
max,Ju,V(qva) 1

JuJ/ c,v
2 =J+ Q(pmin - pmaX)J2 + O(‘]g)'

(11]

T

Taking the limitp,.in — 1, it is evident that no problems arise
at the pointp,,;,, = 1. Subtraction of/ from the last statement
gives the second case in (32).

[13]
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