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Bounds for the MSE Performance of Constant
Modulus Estimators

Philip Schniter and C. Richard Johnson, Jr., Fellow, IEEE

Abstract—The constant modulus (CM) criterion has become
popular in the design of blind linear estimators of sub-Gaussian in-
dependent and identically distributed (i.i.d.) processes transmitted
through unknown linear channels in the presence of unknown ad-
ditive interference. In this paper, we present an upper bound for the
conditionally unbiased mean-squared error (UMSE) of CM-min-
imizing estimators that depends only on the source kurtoses and
the UMSE of Wiener estimators. Further analysis reveals that the
extra UMSE of CM estimators can be upper-bounded by approxi-
mately the square of the Wiener (i.e., minimum) UMSE. Since our
results hold for vector-valued finite-impulse response/infinite-im-
pulse response (FIR/IIR) linear channels, vector-valued FIR/IIR
estimators with a possibly constrained number of adjustable pa-
rameters, and multiple interferers with arbitrary distribution, they
confirm the longstanding conjecture regarding the general mean-
square error (MSE) robustness of CM estimators.

Index Terms—Blind beamforming, blind deconvolution, blind
equalization, blind multiuser detection, constant modulus algo-
rithm, Godard algorithm.

I. INTRODUCTION

CONSIDER the linear estimation problem of Fig. 1, where
a desired source sequence combines linearly

with interfering sources through vector channels
. Our goal is to estimate the desired

source using the (vector) linear estimator . The linear
estimates which minimize the mean-squared error (MSE)

(1)

are generated by the minimum MSE (MMSE) estimator, or
Wiener estimator . Specification of , however,
requires knowledge of the joint statistics of the observed
sequence and the desired source sequence , which
are typically unavailable when the channel is unknown.

When only the statistics of the observed sequence are
known, it may still be possible to estimate up to unknown
magnitude and delay, i.e.,
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for some , some , and all . The literature refers to
this problem asblindestimation (or blind deconvolution). In [1],
Shalvi and Weinstein showed that, when the sources and chan-
nels satisfy particular properties, perfect blind estimation is pos-
sible with knowledge of only the second- and fourth-order mo-
ments of the estimates . Based on this observation, Shalvi
and Weinstein proposed a blind estimation criterion based on
minimizing the kurtosis of the estimates. It was later shown
by Li and Ding [2] (and more recently by Regalia [3]) that
the Shalvi–Weinstein (SW) estimators are closely related to the
popular constant modulus (CM) estimators, proposed a decade
earlier by Godard [4] and by Treichler and Larimore [5].

Minimization of the CM criterion has become perhaps the
most studied and implemented means of blind equalization for
data communication over dispersive channels (see, e.g., [6] and
the references therein) and has also been used successfully as a
means of blind beamforming (see, e.g., [7]). The CM criterion
is defined below in terms of the estimates and a design
parameter .

(2)

The popularity of the CM criterion is usually attributed to

1) the existence of a simple adaptive algorithm (“CMA” [4],
[5]) for estimation and tracking of the CM-minimizing
estimator , and

2) the excellent MSE performance of CM-minimizing esti-
mators.

The second of these two points was first conjectured in the orig-
inal works [4], [5] and provides the theme for the recently pub-
lished comprehensive survey [6]. In this paper, we attempt to
precisely quantify the general MSE performance of CM-mini-
mizing estimators.

The last decade has seen a plethora of papers giving evidence
for the “robustness” of CM performance in situations where the
CM-minimizing (and MMSE) estimators are not perfect. Most
of these studies, however, focus onparticular features of the
system model that prevent perfect estimation, such as

1) the presence of additive white Gaussian noise (AWGN)
corrupting the observation (e.g., [8]–[10]);

2) channels that do not provide adequate diversity (e.g., [8],
[11]); or

3) estimators with an insufficient number of adjustable pa-
rameters (e.g., [12], [13]).

A notable exception is the work of Zenget al. [14], in which an
algorithm is given to bound the MSE of CM-minimizing esti-
mators for the case of a single source transmitted through a fi-
nite-duration impulse response (FIR) linear channel in the pres-
ence of AWGN. The channel model assumed by [14] is general
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Fig. 1. Linear system model withK sources of interference.

enough to incorporate most combinations of the three conditions
above, though not as general as the multisource model of Fig.
1. The bounding algorithm in [14] is rather involved, however,
preventing a direct link between the MSE performance of CM
and Wiener estimators (see Table I).

The main contribution of this paper is a (closed-form) bound
on the MSE performance of CM-minimizing estimators that is
a simple function of the MSE performance of Weiner estima-
tors. This bound, derived under the multisource linear model
in Fig. 1, provides the most formal link (established to date)
between the CM and Wiener estimators, and as such, the most
general testament to the MSE robustness of the CM criterion.

The organization of the paper is as follows. Section II dis-
cusses the properties of the system model and of the MSE and
CM estimation criteria in detail, Section III derives the bound
for the MSE performance of the CM criterion, and Section IV
presents the results of numerical simulations demonstrating the
efficacy of our bounding technique. Section V concludes the
paper.

II. BACKGROUND

In this section, we give more detailed information on the
linear system model and the MSE, unbiased MSE, and CM cri-
teria. The following notation is used throughout: denotes
transpose, conjugate, Hermitian, and Moore-Pen-
rose pseudo-inverse. Likewise, denotes expectation,
the -norm defined by the -norm defined
by for positive semidefinite , the identity matrix,

the -transform, and the field of nonnegative real num-
bers. In general, we use boldface lowercase type to denote vector
quantities and boldface uppercase type to denote matrix quanti-
ties.

A. Linear System Model

First we formalize the linear time-invariant multichannel
model illustrated in Fig. 1. Say that the desired symbol sequence

and sources of interference each
pass through separate linear “channels” before being observed
at the receiver. The interference processes may correspond, e.g.,
to interference signals or additive noise processes. In addition,
say that the receiver uses a sequence of-dimensional vector
observations to estimate (a possibly delayed version of)
the desired source sequence, where the case corresponds
to a receiver that employs multiple sensors and/or samples at

an integer multiple of the symbol rate. The observationscan
be written

(3)

where denote the impulse response coefficients of the
linear time-invariant (LTI) channel . We assume that

is causal and bounded-input bounded-output (BIBO)
stable. Note that such admit infinite-impulse response
(IIR) channel models.

From the vector-valued observation sequence , the re-
ceiver generates a sequence of linear estimatesof ,
where is a fixed integer. Using to denote the impulse re-
sponse of the linear estimator , the estimates are formed as

(4)

We will assume that the linear system is BIBO stable with
constrainedautoregressive moving average (ARMA) structure,
i.e., the th element of takes the form

where the “active” numerator coefficients , and
the active denominator coefficients are constrained
to the polynomial indexes and , respectively.

In the sequel, we will focus almost exclusively on the global
channel-plus-estimator cascade . The
impulse response coefficients of can be written

(5)

allowing the estimates to be written as

(6)
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TABLE I
ZENG ET AL.’S CM-UMSE BOUNDING ALGORITHM [14]

Adopting the following vector notation helps to streamline the
remainder of the paper.

For instance, the estimates can be rewritten concisely as

(7)

The source-specific unit vector will also prove convenient.
is a column vector with a single nonzero element of value

located such that

We now point out two important properties of. First, it is
important to recognize that placing a particular structure on the
channel and/or estimator will restrict the set ofattainableglobal
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responses, which we will denote by . For example, when the
estimator is FIR, (5) implies that , where we
get (8) (see the bottom of this page). Restricting the estimator
to be sparse or autoregressive, for example, would generate a
different attainable set . Next, BIBO-stable and
imply BIBO-stable , so that exists for all ,
and thus does as well.

Throughout the paper, we make the following assumptions on
the source processes.

S1) For all , is zero-mean independent and identi-
cally distributed (i.i.d).

S2) are jointly independent.

S3) For all , .

S4) , where denotes kurtosis

(9)

S5) If, for any , or is not real-valued, then

for all .

B. The Mean-Squared Error Criterion

The well-known mean-squared error (MSE) criterion was de-
fined in (1) in terms of the estimate and the estimand .
Using S1)–S3), we may rewrite (1) in terms of the global re-
sponse

(10)

Denoting MMSE quantities by the subscript “,” it can be
shown [15] that in the unconstrained (noncausal) IIR case,
S1)–S3) imply that the MMSE response is

for (11)

while in the FIR case, S1)–S3) imply

In this latter case, is the projection of onto the row
space of .

C. Unbiased Mean-Squared Error (UMSE)

Since both symbol power and channel gain are unknown in
the “blind” scenario, blind estimators suffer from a gain ambi-
guity. To ensure that our estimator performance evaluation is

meaningful in the face of such ambiguity, we base our evalua-
tion on normalized versions of the blind estimators where the
normalization factor is the receiver gain . Given that the es-
timate can be decomposed into signal and interference terms
as

(12)

where

`` with the term removed ''

`` with the term removed ''

the normalized estimate can be referred to as “condi-
tionally unbiased” since .

The (conditionally) unbiased MSE (UMSE) associated with
, an estimate of , is then defined

(13)

Substituting (12) into (13), we find that

(14)

where the second equality invokes assumptions S1)–S3).
Note that UMSE is related to signal-to-interfer-

ence-plus-noise ratio (SINR) via SINR , where

SINR

D. The Constant Modulus (CM) Criterion

The constant modulus (CM) criterion, introduced indepen-
dently in [4] and [5], was defined in (2) in terms of the statistics
of . In (2), is a positive parameter known as the “dis-
persion constant.” Though is often chosen according to the
marginal statistics of the desired source process (when they are
known), we will see that the UMSE performance of CM-mini-
mizing estimators is insensitive to.

In the two “ideal” situations below, CM-minimizing esti-
mates are known to take the form , where

for some and . Note that these estimates have zero UMSE
and, as such, areperfectup to a scalar ambiguity. For a single
i.i.d. source that satisfies S4) and S5), this perfect CM-estima-
tion property has been proven for

• unconstrained doubly infinite estimators with BIBO chan-
nels [16], and

...
...

...
...

...
...

(8)
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• causal FIR estimators with full-column rank (FCR)
[17], [18].

In Section III-C, we extend the perfect CM-estimation property
to the multisource linear model described in Section II-A.

For more comprehensive surveys on the CM criterion, see [6]
and [19].

III. CM PERFORMANCEUNDER GENERAL ADDITIVE

INTERFERENCE

An algorithm for bounding the MSE performance of CM min-
imizers has been derived by Zenget al. for the case of a real-
valued i.i.d. source, an FIR channel, AWGN, and a finite-length
estimator. The development for FCR and non-FCRappear in
[9] and [14], respectively. Using the notation established in Sec-
tion II-A, the algorithm of [14] is summarized in Table I. Though
the relatively complicated Zeng algorithm generates reasonably
tight CM-UMSE upper bounds (as we shall see in Section IV),
we have found that it is possible to derive tight bounds for the
UMSE of CM-minimizing symbol estimators that

• have a closed-form expression;
• support arbitrary additive interference;
• support complex-valued channels and estimators; and
• support IIR (as well as FIR) channels and estimators.

We will now derive such bounds. Section III-A outlines our
approach, Section III-B presents the main results, and Section
III-C comments on these results. Proof details appear in the Ap-
pendix.

A. The CM-UMSE Bounding Strategy

Say that is an attainable global reference response for the
desired user at some fixed delay . Formally,

, where

s.t.

defines the set of global responsesassociated1 with user
at delay . The set2 of (attainable) locally CM-minimizing

global responses for the desired user at delaywill be denoted
by and defined as

In general, it is not possible to determine closed-form expres-
sions for , making it difficult to evaluate the UMSE of
CM-minimizing estimators.

When is in the vicinity of a (the meaning of which
will be made more precise later) then, by definition, this
must have CM cost less than or equal to the cost at. In this
case, , where

s.t. (15)

This approach implies the following CM-UMSE upper bound:

(16)

1Note that under S1)–S3), a particular {user, delay} combination is “associ-
ated” with an estimate if and only if that {user, delay} contributes more energy
to the estimate than any otherfuser, delayg.

2We refer to the CM-minimizing responses as a set to avoid establishing the
existence or uniqueness of CM local minima withinQ \Q at this time.

Fig. 2. Illustration of CM-UMSE upper-bounding technique using reference
qqq .

Note that the maximization on the right of (16) does not ex-
plicitly involve the attainibility constraint ; the constraint is
implicitly incorporated through .

The tightness of the upper bound (16) will depend on
the size and shape of , motivating careful selection
of the reference . Notice that the size of can
usually be reduced via replacement of with , where

. This implies that the direction
(rather than the size) of is important; the tightness of the
CM-UMSE bound (16) will depend on collinearity of and

. Fig. 2 presents an illustration of this idea.

Zeng has shown that in the case of an i.i.d. source, an FIR
channel, and AWGN noise, is nearly collinear to the MMSE
response [14]. These findings, together with the abun-
dant interpretations of the MMSE estimator and the existence of
closed-form expressions for suggest the reference choice

.

Determining a CM-UMSE upper bound from (16) can be ac-
complished as follows. Since both and are in-
variant to phase rotation of(i.e., scalar multiplication of by

for ), we can restrict our attention to the set of “de-ro-
tated” responses s.t. . Such allow parameteri-
zation in terms of gain and interference response
(defined in Section II-C), where . In terms of the pair

, the upper bound in (16) may then be rewritten
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where

from (14). Under particular conditions on the gainand the
reference (made explicit in Section III-B), there exists a
minimum interference gain

s.t.

(17)

which can be used in the containment

s.t.

implying

Applying (14) to the previous statement yields

and putting these arguments together, we arrive at the CM-
UMSE bound

(18)

The roles of various quantities can be summarized using
Fig. 2. Starting with the (attainable) global reference response

, the scalar minimizes the CM cost that characterizes
all scaled versions of . Since the CM minimum is
known to lie within the set , delineated in Fig. 2
by long-dashed lines, the maximum UMSE within
forms a valid upper bound for CM-UMSE.3 Determining
the maximum UMSE within is accomplished by
first deriving , the smallest upper bound on interference
gain for all that have a total gain of, and
then finding the particular combination of that
maximizes UMSE. The angle shown in Fig. 2 gives a
simple trigonometric interpretation of the UMSE bound (18):

. Also apparent from Fig. 2 is
the notion that the valid range forwill depend on the choice
of .

B. Derivation of the CM-UMSE Bounds

In this section, we derive CM-UMSE bounds based on the
method described in Section III-A. The main steps in the deriva-
tion are presented as lemmas, with proofs appearing in the Ap-
pendix.

It is convenient to now define thenormalizedkurtosis (not to
be confused with in (9))

(19)

3Though a tighter CM-UMSE bound would follow from use of the fact that
9qqq 2 Q (� qqq ) \ Q (denoted by the shaded area in Fig. 2), the set
Q (� qqq ) \ Q is too difficult to describe analytically.

Under the following definition of :

otherwise
(20)

our results will hold for both real-valued and complex-valued
models. Note that, under S1) and S5),represents the normal-
ized kurtosis of a Gaussian source. As shown in Subsection A of
the Appendix, the normalized and unnormalized kurtoses are re-
lated through when S3) and S5) hold.
The following kurtosis-based quantities will all prove useful in
the sequel:

(21)

(22)

(23)

(24)

The first step is to express the CM cost (2) in terms of the
global response (defined in Section II-A).

Lemma 1: The CM cost may be written in terms of global
response as

(25)

Similar expressions for the CM cost have been generated for the
case of a desired user in AWGN (see, e.g., [6]).

The CM cost expression (25) can now be used to compute the
CM cost at scaled versions of a reference.

Lemma 2: For any

and

(26)

where is the normalized kurtosis of the estimates generated
by the reference .

The expression for in (26) leads directly to an ex-
pression for , from which the minimum interference
gain of (17) can be derived.

Lemma 3: The nonnegative gain satisfying definition
(17) can be upper-bounded as

when (27)

where is defined in (42).

Equations (18) and (27) lead to an upper bound for the UMSE
of CM-minimizing estimators.
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(a) (b)

Fig. 3. Upper bound on (a) CM-UMSE and (b) extra CM-UMSE versusJ (qqq ) (when� = 1) from (31) with second-order approximation from (32).
From left to right,f� ; � g = f1000;0g, f1;�2g, andf1;0g.

Theorem 1: When there exists a Wiener estimator associated
with the desired user and delaygenerating estimates with kur-
tosis obeying

(28)

the UMSE of CM-minimizing estimators associated with the
same user/delay can be upper-bounded by , where

(29)

Furthermore, (28) guarantees the existence of a CM-minimizing
estimator associated with this user/delay whenis FIR.

While Theorem 1 presents a closed-form CM-UMSE
bounding expression in terms of the kurtosis of the MMSE

estimates, it is also possible to derive lower and upper bounds
in terms of the UMSE of the MMSE estimator.

Theorem 2: If Wiener UMSE , where
we get (30) (see the the bottom of the page). The UMSE of
CM-minimizing estimators associated with the same user/delay
can be upper-bounded as follows:

where we get (31) (see the bottom of the following page). Fur-
thermore, (30) guarantees the existence of a CM-minimizing es-
timator associated with this user/delay whenis FIR.

Note that the two cases of in (30) and of
in (31) coincide as .

Equation (31) leads to an elegant approximation of theextra
UMSE of CM-minimizing estimators

(30)
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(a) (b)

Fig. 4. Bounds on CM-UMSE versus estimator lengthN for SPIB microwave channel #5 and 8-PAM.

Theorem 3: If , then the extra UMSE of
CM-minimizing estimators can be bounded as

where we get (32) at the bottom of this page.
Equation (32) implies that the extra UMSE of CM-min-

imizing estimators is upper-bounded by approximately the
squareof the minimum UMSE. Fig. 3 plots the upper bound

on CM-UMSE and extra CM-UMSE from (31) as a function
of for various values of and . The
second-order approximation based on (32) appears very good
for all but the largest values of UMSE.

C. Comments on the CM-UMSE Bounds

1) Implicit Incorporation of : First, recall that the
CM-UMSE bounding procedure incorporated , the set

(31)

(32)
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(a) (b)

Fig. 5. Bounds on CM-UMSE versus SNR of AWGN for SPIB microwave channel #5,N = 20, and8-PAM.

of attainable global responses,only in the requirement that
. Thus Theorems 1–3, written under the reference

choice , implicitly incorporate the
channel and/or estimator constraints that define. For ex-
ample, if is the MMSE response constrained to the set of
ARMA estimators, then CM-UMSE bounds based on this
will implicitly incorporate the causality constraint. The implicit
incorporation of the attainable set makes these bounding
theorems quite general and easy to use.

2) Effect of : When

and

the expressions in Theorems 1–3 simplify

when

when

Typical scenarios leading to include

a) sub-Gaussian desired source in the presence of AWGN, or
b) constant-modulus desired source in the presence of non-

super-Gaussian interference.

Note that in the two cases above, the CM-UMSE upper bound
is independent of the specific distribution of the desired and
interfering sources, respectively.

The case , on the other hand, might arise from
the use of dense (and/or shaped) source constellations in the
presence of interfering sources that are “more sub-Gaussian.”
In fact, source assumption S4) allows for arbitrarily large ,
which could result from a nearly Gaussian desired source in the
presence of non-Gaussian interference. Though Theorems 1–3
remain valid for arbitrarily high , the requirements placed
on via become more stringent (recall Fig. 3).

3) Generalization of Perfect CM-Estimation Property:
Finally, we note that the -based CM-UMSE bound
in Theorem 2 implies that the perfect CM-estimation property,
proven under more restrictive conditions in [16]–[18], extends
to the general multisource linear model of Fig. 1.

Corollary 1: CM-minimizing estimators are perfect (up to a
scaling) when Wiener estimators are perfect.
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(a) (b)

Fig. 6. Bounds on CM-UMSE forN = 8; 10 BPSK sources, AWGN at�20 dB, and randomHHH.

Proof: From Theorem 2

Hence, the estimators are perfect up to a (fixed) scale factor.

IV. NUMERICAL EXAMPLES

In Sections IV-A–IV.C, we compare the UMSE bounds in
(29) and (31) to the UMSE bound of the Zenget al.method of
Table I, to the UMSE of the CM estimators found by gradient
descent,4 and to the minimum UMSE (i.e., that obtained by
the MMSE solution). The results suggest that, over a wide
range of conditions, i) the CM-UMSE bounds are close to the
CM-UMSE found by gradient descent, and ii) the CM-UMSE
performance is close to the optimal UMSE performance. In
other words, the CM-UMSE bounds are tight, and the CM
estimator is robust in a MSE sense.

A. Performance Versus Estimator Length for Fixed Channel

In practical equalization applications, CM-minimizing esti-
mators will not be perfect due to violation of the FCR re-
quirement discussed in Section II-D. For instance, even in the
absence of noise and interferers, insufficient estimator length
can lead to a matrix that is wider than tall, thus preventing

4Gradient descent results were obtained via the MATLAB routine “fminu ,”
which was initialized randomly in a small ball around the MMSE estimator.

FCR. For FIR channels with adequate “diversity,” it is well
known that there exists a finite estimator length sufficient for
the achievement of FCR . When diversity is not adequate,
however, as with a baud-spaced scalar channel (i.e., )
or with multiple channels sharing common zeros,5 there ex-
ists no finite sufficient length. Consequently, the performance
of the CM criterion under so-called “channel undermodeling”
and “lack of disparity” has been a topic of recent interest (see,
e.g., [8], [11]–[13]).

Using the -spaced microwave channel impulse response
model #5 from the Signal Processing Information Base (SPIB)
database,6 CM estimator performance was calculated versus es-
timator length. Fig. 4(a) plots the UMSE of CM-minimizing es-
timators as predicted by various bounds and by gradient descent.
Note that all methods yield CM-UMSE bounds nearly indistin-
guishable from the minimum UMSE. Fig. 4(b) plots the same
information in the form of extra CM-UMSE (i.e., CM-UMSE
minus minimum UMSE), and once again we see that the bounds
are tight and give nearly identical performance. For the higher
equalizer lengths, it is apparent that numerical inaccuracies pre-
vented the CM gradient descent procedure from finding the true
minimum (resulting in ’s above the upper bound line).

5See, e.g., [6] or [19] for more information on length and diversity require-
ments.

6The SPIB microwave channel database resides at http://spib.rice.edu/spib/
microwave.html
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(a) (b)

Fig. 7. Bounds on CM-UMSE forN = 8; 5 BPSK sources, #5 sources with� = 2:9 (one of which is desired), AWGN at�30 dB, and random .

B. Performance Versus AWGN for Fixed Channel

Using the same microwave channel model, we conducted a
different experiment in which AWGN was introduced at var-
ious power levels (for fixed equalizer length ). Fig. 5(a)
shows that the UMSE predicted by the CM bounds is very close
to that predicted by gradient descent for all but the highest levels
of AWGN, and as before, the CM-UMSE performance is quite
close to Weiner UMSE performance. Fig. 5(b) reveals slight dif-
ferences in bound performance: Zenget al.’s algorithmic bound
appears slightly tighter than our closed-form bounds at lower
signal-to-noise ratio (SNR).

C. Performance with Random Mixing Matrices

While the convolutive nature of the channel in single-user
equalization applications gives a block-Toeplitz structure,
multiuser applications (e.g., beamforming) may lead towith
a more general, non-Toeplitz, structure. When the number of
sources is greater than the estimator length (which, in our model,
is always the case when noise is present), the channel matrix
will be non-FCR and different estimation techniques will yield
different levels of performance.

Here, we present the results of experiments wherewas
generated with zero-mean Gaussian entries. Fig. 6 corresponds
to a desired source having constant modulus (i.e., )
in the presence of AWGN and constant modulus interference,
Fig. 7 corresponds to a nearly Gaussian desired source in the
same interference environment, and Fig. 8 corresponds to a de-

sired source with constant modulus in the presence of AWGN
and super-Gaussian interference. As with our previous experi-
ments, Figs. 6–8 demonstrate that i) the closed-form CM-UMSE
bounds are tight and ii) that the CM estimators generate nearly
MMSE estimates under arbitrary forms of additive interference.

V. CONCLUSION

In this paper we have derived, for the general multisource
linear model of Fig. 1, two closed-form bounding expressions
for the UMSE of CM-minimizing estimators. The first bound is
based on the kurtosis of the MMSE estimates, while the second
is based on the UMSE of the MMSE estimators. Analysis of the
second bound shows that theextra UMSE of CM-minimizing
estimators is upper-bounded by approximately thesquareof the
minimum UMSE. Thus the CM-minimizing estimator gener-
ates nearly MMSE estimates when the minimum MSE is small.
Numerical simulations suggest that the bounds are tight (with
respect to the performance of CM-minimizing estimators de-
signed by gradient descent).

This work confirms the long-standing conjecture (see, e.g.,
[4] and [5]) that the MSE performance of the CM-minimizing
estimator is robust togenerallinear channels and general (mul-
tisource) additive interference. As such, our results supersede
previous work demonstrating the MSE robustness of CM-min-
imizing estimators in special cases (e.g., when only AWGN is
present, when the channel does not provide adequate diversity,
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(a) (b)

Fig. 8. Bounds on CM-UMSE forN = 8, five BPSK sources (one of which is desired), #5 sources with� = 4, AWGN at�20 dB, and random .

or when the estimator has an insufficient number of adjustable
parameters).

APPENDIX I
DERIVATION DETAILS FOR CM-UMSE BOUNDS

This appendix contains the proofs of the theorems and
lemmas found in Section III.

A. Proof of Lemma 1

In this section we derive an expression for the CM costin
terms of the global response. From (9) and (2)

(33)

Source assumptions S1)–S2) imply [20]

(34)

From S3), S5), and the definitions of and in (19) and
(20)

real-valued

(35)

Similarly, S1)–S3) and S5) imply

(36)

real-valued
(37)

Plugging (34)–(37) into (33), we arrive at (25).

B. Proof of Lemma 2

In this section, we are interested in computing

For any , (25) implies

(38)

Calculating the first and second partial derivatives of (38) w.r.t.
, it can be shown that
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is the minimizing value of , where

(39)

is the normalized kurtosis of the reference estimates. Plugging
the expression for into (38), we arrive at the expression for

given in (26).

C. Proof of Leema 3

In this section, we are interested in deriving an expression for
the interference radius defined in (17) and establishing
conditions under which this radius is well defined. Rather than
working with (17) directly, we find it easier to use the equivalent
definition

s.t.

(40)

First we rewrite the CM cost expression (25) in terms of gain
and interference response(defined in Section II-C).

Using the fact that

Plugging the previous expression into (25), we find that

(41)

From (26) and (41), the following statements (see (42) at the
bottom of this page) are equivalent. The reversal of inequality in
(42) occurs because (as implied by S4)). Since (21)
defined , we know that .
Combining this with the fact that , we
have

Thus the following is a sufficient condition for (42):

(43)

Because is positive, the set of that satisfy (43)
is equivalent to the set of points that lie between the roots

of the quadratic

Because is an interference response, not all values of are
valid. As explained below, we only need to concern ourselves
with . This implies that a valid upper bound
on from (17) is given by the smaller root of when
i) this smaller root is nonnegative real and ii) the larger root of

is .
When both roots of lie in the interval ,

there exist two valid regions in the gain-interference space
with CM cost smaller than at the reference, i.e., the set

becomes disjoint. The “inner” part
of this disjoint set allows UMSE bounding since it can be
contained by for a positive interference
radius , but the “outer” part of the set doesnot permit
practial bounding. Such disjointness of arises

from a source such that . In these sce-
narios, the point of lowest CM cost in the “outer” regions of

occurs at points on the boundary of

(42)
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of the form and hence
with . Thus when , we can be assured
that all valid interference responses (i.e., )
with CM cost less than the reference can be bounded by some
radius .

Solving for the roots of yields (for )

and both roots are nonnegative real when

It can be shown that occurs when

Since implies

both root requirements are satisfied when

(44)

D. Proof of Theorem 1

In this section we use the expression for from (27) and
a suitably chosen reference response to upper-
bound . Plugging (27) in (18)

when (45)

Note that the fraction on the right of (45) is nonnegative
and strictly increasing in over the valid range
of . Hence, finding that maximizes this
expression can be accomplished by findingthat maxi-
mizes . To find these maxima, we first rewrite

from (42)

where and are independent of. Computing the partial
derivative with respect to the quantity

Setting the partial derivative to zero yields the unique finite max-
imum

Plugging into (42) gives the simple result

and the requirement (44) translates into

(46)

Finally, plugging into (45) gives

(47)

We now establish the existence of an attainable CM-mini-
mizing global response associated with the desired user at delay

, i.e., . For simplicity, we assume that the
space is finite-dimensional. We will exploit the Weierstrass
theorem ([21, p. 40]), which says that a continuous cost func-
tional has a local minimum in a compact set if there exist points
in the interior of the set which give cost lower than anywhere on
the boundary.

By definition, all points in have CM cost less
than or equal to , the CM cost everywhere on the
boundary of . To make this inequality strict, we
expand to form the new set , defined in
terms of boundary cost (for arbitrarily small ).
Thus all points on the boundary of will have CM
cost strictly greater than . But how do we know that
such a set exists? We simply need to reformulate
(42) with -larger , resulting in -larger and a
modified quadratic in sufficient condition (43). As long
as the new roots (call them and ) satisfy
and , the set is well-de-
fined, and as long as this holds for the worst case(i.e., ),

will itself be well-defined. This behavior can be
guaranteed, for arbitrarily small, by replacing (46) with the
stricter condition

(48)

To summarize, (48) guarantees the existence of a closed and
bounded set containing an interior point with
CM cost strictly smaller than all points on the set boundary.

Due to attainibility requirements, our local minimum
search must be constrained to the relative interior of the
manifold (which has been embedded in a possibly higher
dimensional -space). Can we apply the Weierstrass theorem
on this manifold? First, we know the manifold intersects

, namely, at the point . Second, we know
that the relative boundary of the manifold occurs outside

, namely, at infinity. These two observations imply
that the boundary of relative to must be
a subset of the boundary of . Hence, the interior
of relative to contains points which
give kurtosis strictly higher than those on the boundary of

relative to . Finally, the domain (i.e.,
) relative to ) is closed and bounded, hence

compact. Thus the Weierstrass theorem ensures the existence
of a local CM minimum in the interior of

relative to under (48). Recalling that ,
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we see that there exists an attainable locally CM-minimizing
response associated with the desired user at delay.

Theorem 1 follows directly from (47) with reference choice
. Note that we restrict ourselves to

, which may not always be the case.

E. Proof of Theorem 2

In this section we find an upper bound for that
involves the UMSE of a reference estimator rather
than the kurtosis of reference estimates. The choice of the
reference to be the MMSE estimator can be considered a spe-
cial case. The conditions we establish below will guarantee that

.
We will take advantage of the fact that in (47)

is a strictly decreasing function of over
its valid range. From (39)

Examining the previous equation, im-
plies that

(49)

and

(50)

Note that in (50) and the super-Gaussian case of (49), equality
is reached by global responses of the form , where

corresponds to the source with minimum and maximum kur-
tosis, respectively.

Considering first the sub-Gaussian interference case
, we claim

(51)

since the definition of in (14) implies

Applying (51) to (47), we obtain

when (48) is satisfied. Inequality (51) implies that

is sufficient for the left inequality of (48). Turning our attention
to the right inequality of (48), we can use (50) to say

(52)

since (14) implies

Then, inequality (52) implies that a sufficient condition for the
right side of (48) is

Using , it can be shown that

Thus satisfaction of our sufficient condition for the left in-
equality in (48) suffices for both inequalities in (48).

Treatment of the super-Gaussian interference case
is analogous. With the methods used to obtain (52), (49)

implies

(53)
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Applying (53) to (47), we obtain the first expression at the
bottom of this page as long as (48) is satisfied. Substituting

in (53), we find that

hence a sufficient condition for the left inequality of (48) be-
comes

or, equivalently,

It can be shown that the quadratic inequality above is satisfied
by

and since

is strictly increasing in , the following must be suffi-
cient for the left inequality of (48):

(54)

As for the right inequality of (48), it can be shown that the quan-
tities in (54) are smaller than . Thus satisfaction of
(54) suffices for both inequalities in (48).

F. Proof of Theorem 3

Here, we reformulate the upper bound (31). To sim-
plify the presentation of the proof, the shorthand notation

will be used.

Starting with the non-super-Gaussian case (i.e., ),
(31) says

from which routine manipulations yield

For such that , the binomial series [22] may be
used to claim

Applying the previous expression with

we find the second expression at the bottom of this page. Finally,
subtraction of gives the first case in (32).

For the super-Gaussian case (i.e., ), (31) becomes
the first expression at the top of the following page from which
routine manipulations yield the second expression at the top of
the following page. As before, we use the binomial series ex-
pansion for , but now with

After some algebra, we find

Finally, we apply the series approximation
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with

for . Straightforward algebra yields

Taking the limit , it is evident that no problems arise
at the point . Subtraction of from the last statement
gives the second case in (32).

REFERENCES

[1] O. Shalvi and E. Weinstein, “New criteria for blind deconvolution of
nonminimum phase systems (channels),”IEEE Trans. Inform. Theory,
vol. 36, pp. 312–321, Mar. 1990.

[2] Y. Li and Z. Ding, “Convergence analysis of finite length blind adap-
tive equalizers,”IEEE Trans. Signal Processing, vol. 43, pp. 2120–2129,
Sept. 1995.

[3] P. Regalia, “On the equivalence between the Godard and Shalvi-Wein-
stein schemes of blind equalization,”Signal Processing, vol. 73, no. 1–2,
pp. 185–190, Feb. 1999.

[4] D. N. Godard, “Self-recovering equalization and carrier tracking in two-
dimensional data communication systems,”IEEE Trans. Commun., vol.
COM-28, pp. 1867–1875, Nov. 1980.

[5] J. R. Treichler and B. G. Agee, “A new approach to multipath correc-
tion of constant modulus signals,”IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-31, pp. 459–472, Apr. 1983.

[6] C. R. Johnson, Jr., P. Schniter, T. J. Endres, J. D. Behm, D. R. Brown, and
R. A. Casas, “Blind equalization using the constant modulus criterion:
A review,” Proc. IEEE (Special Issue on Blind System Identification and
Estimation), vol. 86, pp. 1927–1950, Oct. 1998.

[7] J. J. Shynk and R. P. Gooch, “The constant modulus array for cochannel
signal copy and direction finding,”IEEE Trans. Signal Processing, vol.
44, pp. 652–660, Mar. 1996.

[8] I. Fijalkow, A. Touzni, and J. R. Treichler, “Fractionally spaced equal-
ization using CMA: Robustness to channel noise and lack of disparity,”
IEEE Trans. Signal Processing, vol. 45, pp. 56–66, Jan. 1997.

[9] H. H. Zeng, L. Tong, and C. R. Johnson Jr., “Relationships between the
constant modulus and Wiener receivers,”IEEE Trans. Inform. Theory,
vol. 44, pp. 1523–1538, July 1998.

[10] D. Liu and L. Tong, “An analysis of constant modulus algorithm for
array signal processing,”Signal Processing, vol. 73, pp. 81–104, 1999.

[11] Y. Li, K. J. R. Liu, and Z. Ding, “Length and cost dependent local minima
of unconstrained blind channel equalizers,”IEEE Trans. Signal Pro-
cessing, vol. 44, pp. 2726–2735, Nov. 1996.

[12] T. J. Endres, B. D. O. Anderson, C. R. Johnson, Jr., and M. Green, “Ro-
bustness to fractionally-spaced equalizer length using the constant mod-
ulus criterion,” IEEE Trans. Signal Processing, vol. 47, pp. 544–549,
Feb. 1999.

[13] P. Regalia and M. Mboup, “Undermodeled equalization: A characteri-
zation of stationary points for a family of blind criteria,”IEEE Trans.
Signal Processing, vol. 47, pp. 760–770, Mar. 1999.

[14] H. H. Zeng, L. Tong, and C. R. Johnson, Jr., “An analysis of constant
modulus receivers,”IEEE Trans. Signal Processing, vol. 47, pp.
2990–2999, Nov. 1999.

[15] P. Schniter, “Blind estimation without priors: Performance, convergence,
and efficient implementation,” Ph.D. dissertation, Cornell Univ., Ithaca,
NY, May 2000.

[16] G. J. Foschini, “Equalizing without altering or detecting data (digital
radio systems),”AT&T Tech. J., vol. 64, no. 8, pp. 1885–1911, Oct. 1985.

[17] L. Tong, “A fractionally spaced adaptive blind equalizer,” inProc.
Conf. Information Science and Systems, Princeton, NJ, Mar. 1992, pp.
711–716.

[18] Y. Li and Z. Ding, “Global convergence of fractionally spaced Godard
(CMA) adaptive equalizers,”IEEE Trans. Signal Processing, vol. 44,
pp. 818–826, Apr. 1996.

[19] C. R. Johnson, Jr.et al., “The core of FSE-CMA behavior theory,” in
Unsupervised Adaptive Filtering, Volume 2: Blind Deconvolution, S.
Haykin et al., Ed. New York: Wiley, 2000.

[20] B. Porat,Digital Processing of Random Signals. Englewood Cliffs,
NJ: Prentice-Hall, 1994.

[21] D. G. Luenberger,Optimization by Vector Space Methods. New York:
Wiley, 1969.

[22] W. Rudin, Principles of Mathematical Analysis, 3rd ed. New York:
McGraw-Hill, 1976.


