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Abstract—The goal of hyperspectral unmixing is to decompose
an electromagnetic spectral dataset measured over M spectral
bands and T pixels into N constituent material spectra (or “end-
members”) with corresponding spatial abundances. In this paper,
we propose a novel approach to hyperspectral unmixing based
on loopy belief propagation (BP) that enables the exploitation
of spectral coherence in the endmembers and spatial coherence
in the abundances. In particular, we partition the factor graph
into spectral coherence, spatial coherence, and bilinear subgraphs,
and pass messages between them using a “turbo” approach.
To perform message passing within the bilinear subgraph, we
employ the bilinear generalized approximate message passing
algorithm (BiG-AMP), a recently proposed belief-propagation-
based approach to matrix factorization. Furthermore, we propose
an expectation-maximization (EM) strategy to tune the prior
parameters and a model-order selection strategy to select the num-
ber of materials N . Numerical experiments conducted with both
synthetic and real-world data show favorable unmixing perfor-
mance relative to existing methods.

Index Terms—Approximate message passing, belief prop-
agation, expectation-maximization algorithms, hyperspectral
imaging.

I. INTRODUCTION

I N hyperspectral unmixing (HU), the objective is to jointly
estimate the spectral signatures and per-pixel abundances

of the N materials present in a scene, given measurements
across M spectral bands at each of T = T1 × T2 pixels. Often,
a linear mixing model [2], [3] is assumed, in which case the
measurements Y ∈ RM×T are modeled as

Y = SA+W , (1)

where the nth column of S ∈ R
M×N
+ represents the spectrum

(or “endmember”) of the nth material, the nth row of A ∈
R

N×T
+ represents the spatial abundance of the nth material,

andW represents noise. Both S andA must contain only non-
negative (NN) elements, and each column of A must obey the
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simplex constraint (i.e., NN and sum-to-one). Recently, nonlin-
ear mixing models have also been considered (e.g., [4], [5]),
although such models lie outside of the scope of this paper.

Traditionally, hyperspectral unmixing is a two-step proce-
dure, consisting of endmember extraction (EE) to recover the
endmembers followed by inversion to recover the abundances.
Many EE algorithms leverage the “pure pixel” assumption: for
each material, there exists at least one observed pixel con-
taining only that material (i.e., all columns of the N ×N
identity matrix can be found among the columns of A). Well-
known examples of pure-pixel-based EE algorithms include
N-FINDR[6] and VCA[7]. The existence of pure pixels in HU
is equivalent to “separability” in the problem of non-negative
matrix factorization (NMF), where the goal is to find S ∈
R

M×N
+ and A ∈ R

N×T
+ matching a given Z = SA. There,

separability has been shown to be sufficient for the existence
of unique factorizations [8] and polynomial-time solvers [9],
with a recent example being the FSNMF algorithm from [10].
In HU, however, the limited spatial-resolution of hyperspectral
cameras implies that the pure-pixel assumption does not always
hold in practice. With “mixed pixel” scenarios in mind, algo-
rithms such as Minimum Volume Simplex Analysis (MVSA)
[11] and Minimum Volume Enclosing Simplex (MVES) [12]
attempt to find the minimum-volume simplex that contains the
data Y .

In the inversion step, the extracted endmembers in Ŝ are used
to recover the simplex-constrained abundances inA. Often this
is done by solving [13], [14]

Â = argmin
A≥0

‖Y − ŜA‖2F s.t. 1T
NA = 1T

T , (2)

where 1N denotes the N × 1 vector of ones, which is usually
referred to as fully constrained least squares (FCLS).

Real-world hyperspectral datasets can contain significant
structure beyond non-negativity on smn and simplex constraints
on {ant}Nn=1. For example, the abundances {ant}Nn=1 will be
sparse if most pixels contain significant contributions from
only a small subset of the N materials. Also, the abundances
{ant}Tt=1 will be spatially coherent if the presence of a material
in a given pixel makes it more likely for that same mate-
rial to exist in neighboring pixels. Likewise, the endmembers
{smn}Mm=1 will be spectrally coherent if the radiance values
are correlated across frequency.

Various unmixing algorithms have been proposed to lever-
age these additional structures. For example, given an end-
member estimate Ŝ, the SUnSAL algorithm [15] estimates
sparse abundances A using �1-regularized least-squares (LS),
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Fig. 1. The factor graph for HUT-AMP for the toy-problem dimensions M = 3, N = 2, and T = 4. Circles represent random variables and dark squares represent
pdf factors. Each elongated bar in the left subgraph conglomerates the factors associated with an M -variable Markov chain (detailed in Fig. 2), while each square
in the right subgraph conglomerates the factors associated with a T1 × T2-pixel Markov random field (detailed in Fig. 3).

and the SUnSAL-TV algorithm [16] adds total-variation (TV)
regularization [17] to also penalize changes in abundance
across neighboring pixels (i.e., to exploit spatial coherence).
SUnSAL and SUnSAL-TV can be categorized as unmixing
algorithms, rather than inversion algorithms, since their �1-
regularization supports the use of large (i.e., N > M ) and
scene-independent endmember libraries for Ŝ. However, there
are limitations on the size of the library Ŝ, and it can be difficult
to determine suitable choices for the �1 and TV regularization
weights.

Traditional NMF techniques have also been enhanced to
account for spectral and spatial coherence. For instance, the
�1/2 NMF (L1

2 NMF) [18] algorithm promotes sparse abun-
dances by adding �1/2 regularization to the traditional NMF
formulation. The algorithms in [19]–[21] then expand on this
idea by adding additional regularizations to promote coherent
abundances. For example, the Substance Dependence con-
strained NMF (SDSNMF) [19], which was shown in [19] to
perform the best out of [19]–[21], employs a sparse pixel-
by-pixel weighting matrix that accounts for similarities in
the abundances across in the scene. Additional coherence-
promoting NMF techniques include a method based on hierar-
chical rank-2 decompositions [22], a method that promotes both
abundance separability and coherence [23], and a piece-wise
spectral/spatial smoothness constrained method [24].

Bayesian approaches to hyperspectral unmixing have also
been proposed. For example, the Bayesian Linear Unmixing
(BLU) algorithm [25] employs priors that enforce NN con-
straints on the endmembers and simplex constraints on the
per-pixel abundances, and returns either (approximately) min-
imum mean-square error (MMSE) or maximum a posteri-
ori (MAP) estimates using Gibbs sampling. The Spatially
Constrained Unmixing (SCU) [26] algorithm, an extension of
BLU, furthermore exploits spatial coherence using a hierar-
chical Dirichlet-process prior. Both BLU and SCU have been
shown to outperform N-FINDR and VCA-plus-FCLS under

certain conditions [26], but at the cost of several orders-of-
magnitude increase in runtime.

In this paper, we propose a novel empirical-Bayesian
approach to HU that is based on loopy belief propagation
(LBP) [27]. Our approach, referred to as HU turbo-AMP (HUT-
AMP), simplifies the intractable task of LBP on the entire
factor graph (see Fig. 1) by partitioning it into three subgraphs:
one that models spectral coherence (using N Gauss-Markov
chains), one that models spatial coherence (using N binary
Markov Random Fields (MRFs)), and one that models the NN
bilinear structure of (1). While the first two subgraphs yield
inference problems that are handled efficiently by standard
methods [28], [29], the third does not. Thus, to perform effi-
cient inference on the latter subgraph, we apply the recently
proposed Bilinear Generalized Approximate Message Passing
(BiG-AMP) algorithm [30]. BiG-AMP can be interpreted as
an extension of approximate message passing (AMP) tech-
niques [31]–[33], originally proposed for the linear observation
models that arise in compressive sensing, to bilinear models
like (1). To merge BiG-AMP-based inference with Markov-
chain and MRF-based inference, we leverage the “turbo AMP”
approach first proposed in [34] and subsequently applied to
joint channel-estimation and decoding [35], [36], compressive
image retrieval [37], [38], and compressive video retrieval [39],
all with state-of-the-art results. In formulating our statistical
model, we treat the parameters of the prior distributions as
deterministic unknowns and estimate them from the data using
the expectation-maximization (EM) algorithm, building on the
NN sparse reconstruction work in [40]. As such, our approach
can be classified as empirical Bayesian [41]. Lastly, when the
number of materials N is unknown, we show how it can be
accurately estimated using a classical model-order selection
(MOS) strategy [42]. The resulting algorithm has the follow-
ing desirable features: 1) it requires no tuning parameters, 2) it
exploits both spectral and spatial coherence, and 3) it uses a
computationally efficient inference procedure.
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We evaluate the performance of our proposed technique,
in comparison to several recently proposed methods, through
a detailed numerical study that includes both synthetic and
real-world datasets. The results, presented in Sec. IV, suggest
that HUT-AMP yields an excellent combination of unmixing
performance and computational complexity.

Regarding novel contributions to HU models, we believe
that our work (first presented in [1]) is the first to use either
of the following: i) Gauss-Markov chains to model spectral
coherence in endmembers, ii) Bernoulli truncated-Gaussian
mixtures to model abundance amplitudes. As for novel con-
tributions to inference methodology, we believe that our work
is the first to combine any of the following methods, and in
fact we combine all four of them: i) compressed sensing with
non-negative Bernoulli-Gaussian-mixture priors whose param-
eters are learned via EM [40], ii) turbo compressed sensing
that combines AMP with Markov-chain inference and learns
the parameters via EM [39], iii) turbo compressed sensing that
combines AMP with MRF inference and learns the parameters
via EM [38], iv) bilinear AMP [30].

Notation: For matrices, we use boldface capital letters likeA,
and we useAT, tr(A), and ‖A‖F to denote the transpose, trace,
and Frobenius norm, respectively. For vectors, we use bold-
face small letters like x, and we use ‖x‖p = (

∑
n |xn|p)1/p to

denote the �p norm, with xn = [x]n representing the nth ele-
ment of x. We use 1N to denote the N × 1 vector of ones.
Deterministic quantities are denoted using serif typeface (e.g.,
x,x,X), while random quantities are denoted using san-serif
typeface (e.g., x, x ,X ). For random variable x, we write the
probability density function (pdf) as px(x), the expectation
as E{x}, and the variance as var{x}. For a Gaussian random
variable x with mean m and variance v, we write the pdf as
N (x;m, v) and, for the special case of N (x; 0, 1), we abbrevi-
ate the pdf as ϕ(x) and write the complimentary cdf as Φc(x).
Finally, we use δ(x) (where x ∈ R) to denote the Dirac delta
distribution and δn (where n ∈ Z) to denote the Kronecker delta
sequence.

II. SIGNAL AND OBSERVATION MODELS

A. Background on BiG-AMP

As described in the introduction, a distinguishing feature of
our approach is the use of BiG-AMP [30] for bilinear infer-
ence. We begin by overviewing BiG-AMP, since its operating
assumptions affect the construction of our statistical model.

Consider the problem of estimating the elements of the matri-
ces S ∈ RM×N and A ∈ RN×T from a noisy observation
Y ∈ RM×T of the hidden bilinear form Z � SA ∈ RM×T .
(Our use of overbar notation will become clear in the sequel.)
Suppose that the elements of both S and A can be modeled as
independent random variables smn and ant with known prior
pdfs psmn(·) and pant(·), respectively, with smn being zero-
mean. Suppose also that the likelihood function of Z is known
and separable, i.e., of the form

pY |Z (Y |Z) =

M∏
m=1

T∏
t=1

pymt|zmt
(ymt|zmt). (3)

Finally, suppose that the dimensions M,N, T are sufficiently
large. In this case, approximations of the marginal posterior
pdfs of smn, ant, and zmt can tractably be computed using
loopy belief propagation (LBP) [27], and in particular using an
approximation of the sum-product algorithm (SPA) [43] known
as BiG-AMP [30]. More precisely, BiG-AMP approximates the
marginal posterior pdf of smn as

psmn|Y (smn|Y ) =
psmn

(smn)N (smn; q̂mn, ν
q
mn)∫

psmn
(s′mn)N (s′mn; q̂mn, ν

q
mn)ds′mn

,

(4)

where the parameters q̂mn and νqmn are iteratively updated at
each BiG-AMP iteration; similar approximations are made for
the marginal posteriors of ant and zmt. BiG-AMP also com-
putes the means and variances of these approximate marginal
posteriors at each iteration, yielding approximate MMSE esti-
mates of smn, ant, and zmt, as well as approximations of their
corresponding MSEs. For many priors of interest (e.g, the ones
used in this paper), these means and variances can be computed
in closed form.

In the big picture, BiG-AMP can be understood as a recent
generalization of the AMP methods [31]–[33] from linear to
bilinear inference. These AMP methods can be derived by
starting with the SPA and applying i) central-limit-theorem
arguments that approximate all messages as Gaussian and
ii) Taylor-series approximations that reduce the number of
messages. Under additional independence and sub-Gaussianity
assumptions, these AMP methods can be analyzed in the large-
system limit, where their behavior is fully characterized by a
state evolution [44]. When the state evolution has a unique fixed
point, the posterior approximations computed by AMP are in
fact Bayes-optimal in the large-system limit [44]. For finite-
sized problems, the fixed points of AMP are known to coincide
with the stationary points of a particular Bethe free energy
approximation [45], [46]. For a more detailed description of
how AMP methods fit into the larger family of variational
Bayesian methods, we refer the reader to the recent tutorial
[47]. For a detailed derivation of BiG-AMP, we refer the reader
to [30].

BiG-AMP’s complexity is in general dominated by ten
matrix multiplies (of the form SA) per iteration, although
simplifications can be made in the case of Gaussian
pymt|zmt

(ymt|zmt) that reduce the complexity to three matrix
multiplies per iteration [30]. Furthermore, when BiG-AMP’s
likelihood function and priors include unknown parameters Ω,
expectation-maximization (EM) methods can be used to learn
them, as described in [30]. BiG-AMP was shown [48] to yield
excellent performance on matrix completion, robust PCA, and
dictionary learning problems, and here we show that it performs
very well on the NMF and HU problems as well.

B. Augmented Observation Model

We model the elements of the mth row of the additive noise
matrix W in (1) as i.i.d zero-mean Gaussian with variance
ψm > 0. Thus, the BiG-AMP marginal likelihoods take the
form pym|zm(ymt|zmt) = N (ymt; zmt;ψm). For now we treat
ψ as known, but later (in Sec. III-C) we describe how it and
other model parameters can be learned from Y .
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Leveraging the zero-mean property of the noise, we first per-
form mean-removal on the observations Y . In particular, we
subtract the empirical mean

μ � 1

MT

T∑
t=1

M∑
m=1

ymt =
1

MT
1T
MY 1T (5)

from Y to obtain

Y � Y − μ1M1T
T (6)

=
(
S − μ1M1T

N

)︸ ︷︷ ︸
�S

A+W , (7)

where (7) employed (1) and 1T
NA = 1T

T , the latter of which
results from the simplex constraint on the columns ofA. It can
then be shown (see Appendix A) that the elements of S in (7)
are approximately zero-mean.

To enforce the linear equality constraint 1T
NA = 1T

T , we
augment the observation model (7) into the form[

Y

1T
T

]
︸ ︷︷ ︸
�Y

=

[
S

1T
N

]
︸ ︷︷ ︸
�S

A+

[
W

0T
T

]
︸ ︷︷ ︸
�W

. (8)

For the augmented model (8), the likelihood function of Z �
SA takes the form in (3) with

pym|zm(ymt|zmt) =

{
N (ymt; zmt, ψm) m = 1, . . . ,M

δ(ymt − zmt) m =M + 1.︸ ︷︷ ︸
�hmt(zmt)

(9)

We note that, ignoring spectral and spatial coherence, the
model (8) is appropriate for the application of BiG-AMP, since
the likelihood function pY |Z (Y |Z) is known (up toψ) and sep-

arable, and since the elements in S and A can be treated as
independent random variables with priors known up to a set of
parameters, with those in S being approximately zero-mean. In
the sequel, we describe how the model (8) can be extended to
capture spectral and spatial coherence. As we will see, this will
be done through the introduction of additional variables that
allow S andA to be treated as conditionally independent.

C. Endmember Prior

We desire a model that promotes spectral coherence in the
endmembers, i.e., correlation among the (mean removed) spec-
tral amplitudes {smn}Mm=1 of each material n. However, since
BiG-AMP needs smn to be independent, we cannot impose cor-
relation on these variables directly. Instead, we introduce an
auxiliary sequence of correlated amplitudes {emn}Mm=1 such
that smn are independent conditional on emn. In particular,

pS|E (S|E) =

M∏
m=1

N∏
n=1

ps|e(smn|emn) (10)

ps|e(smn|emn) = δ(smn − emn)︸ ︷︷ ︸
�fmn(smn, emn)

, (11)

Fig. 2. Factor graph for the stationary first-order Gauss-Markov chain used to
model coherence in the spectrum of the nth endmember, shown here for M = 4
spectral bands. Incoming messages from BiG-AMP flow downward into the
emn nodes, and outgoing messages to BiG-AMP flow upward from the emn

nodes.

implying that emn is merely a copy of smn. To impart correla-
tion within the auxiliary sequences {emn}Mm=1, we model them
as independent Gauss-Markov models

pE (E) =
N∏

n=1

p(e1n)
M∏

m=2

p(emn|em−1,n)︸ ︷︷ ︸
�pen(en)

, (12)

where en � [e1n, . . . , eMn]
T, en � [e1n, . . . , eMn]

T, and

p(e1n) = N (e1n;κn, σ
2
n) (13)

p(e1n|em−1,n) = N (
e1n; (1− ηn)em−1,n + ηnκn, η

2
nσ

2
n

)
.

(14)

In (13)–(14), κn ∈ R controls the mean of the nth process, σ2
n

controls the variance, and ηn ∈ [0, 1] controls the correlation.
The resulting factor graph is illustrated in Fig. 2.

We note that the model (13)–(14) does not explicitly enforce
non-negativity in smn because, for simplicity, we have omitted
the constraint smn ≥ −μ. Enforcement of smn ≥ −μ could be
accomplished by replacing the pdfs in (13)–(14) with truncated
Gaussian versions, but the computations required for infer-
ence would become much more tedious. In our experience, this
tedium is not warranted: with practical HU datasets,1 it suffices
to enforce non-negativity inA and keep Y ≈ SA.

D. Abundance Prior

We desire a model that promotes both sparsity and spatial
coherence in the abundances ant. To accomplish the latter, we
impose structure on the support of {ant}Tt=1 for each material
n. For this purpose, we introduce the support variables dnt ∈
{−1, 1}, where dnt = −1 indicates that ant is zero-valued, and
dnt = 1 indicates that ant is non-zero with probability 1, which
we will refer to as “active.” By modeling the abundances ant
as independent conditional on dnt, we comply with the inde-
pendence assumptions of BiG-AMP. In particular, we assume
that

pA|D(A|D) =

N∏
n=1

T∏
t=1

pan|dn(ant|dnt) (15)

pan|dn(ant|dnt) =
{
δ(ant) dnt = −1

ζn(ant) dnt = 1︸ ︷︷ ︸
�gnt(ant, dnt)

, (16)

1Throughout our numerical experiments, the proposed inference method
never produced a negative estimate of smn.
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Fig. 3. Factor graph for the Ising MRF used to model spatial coherence in the
support of the nth abundance map, here for T = 3× 3 pixels. Incoming mes-
sages from BiG-AMP flow diagonally upward into the dnt nodes, and outgoing
messages to BiG-AMP flow diagonally downward from the dnt nodes.

where ζn(·) denotes the pdf of ant when active. Essentially, we
employ a Bernoulli-ζn(·) distribution for the nth material.

We then place a Markov random field (MRF) prior on the
support of the nth material, dn � [dn1, . . . , dnT ]

T:

pD(D) =

N∏
n=1

pdn
(dn) (17)

pdn
(dn) ∝ exp

(
T∑

t=1

(
1

2

∑
i∈Dt

βndni − αn

)
dnt

)
, (18)

where Dt ⊂ {1, . . . , T}\t denotes the neighbors of pixel t.
Roughly speaking, larger βn yields higher spatial coherence
and larger αn yields higher sparsity. For simplicity, we adopt
a neighborhood structure corresponding to the classical Ising
model [28], as illustrated by the factor graph in Fig. 3.

As for the active abundances, we adopt a non-negative
Gaussian mixture (NNGM) distribution for ζn(·):

ζn(a) =

L∑
�=1

ωa
n�N+(a; θ

a
n�, φ

a
n�), (19)

where ωa
n� ≥ 0 and

∑L
�=1 ω

a
n� = 1. In (19), N+ refers to the

truncated Gaussian pdf

N+(x; θ, φ) �

⎧⎪⎨⎪⎩
0 x < 0

N (x; θ, φ)

Φc(θ/
√
φ)

x ≥ 0
, (20)

where θ ∈ R is a location parameter (but not the mean), φ > 0
is a scale parameter (but not the variance), and Φc(·) is the
complimentary cdf of the N (0, 1) distribution. In practice, we
find that L = 3 mixture components suffice, and we used this
value throughout our numerical experiments in Sec. IV. We use
a NNGM prior based on its ability to faithfully model a wide
range of distributions (including multi-modal ones) and the
ease by which its parameters, {ωa

n�, θ
a
n�, φ

a
n�}, can be accurately

tuned using the EM method developed in [40] and discussed in
Sec. III-C.

We note that the abundance model described in this section
treats the abundance coefficients as correlated across pixels but

statistically independent across materials. Meanwhile, the like-
lihood function described in Sec. II-B enforces a sum-to-one
constraint across materials at each pixel. These statistical struc-
tures are then merged in the posterior. An alternative approach
that allows an abundance prior with correlation across pix-
els and sum-to-one across materials recently appeared in [49].
Implementing this approach in conjunction with AMP is an
interesting topic for future research.

III. THE HUT-AMP ALGORITHM

A. Message Passing and Turbo Inference

Our overall goal is to jointly estimate the (correlated,
non-negative) endmembers S and (structured sparse, simplex-
constrained) abundances A from noisy observations Y of the
bilinear form Z = SA. Using the mean-removed, augmented
probabilistic models from Sec. II, the joint pdf of all random
variables can be factored as follows:

p(Y ,S,A,E,D)

= p(Y |S,A)p(S,E)p(A,D) (21)

= pY |Z (Y |SA)pS|E (S|E) pE (E) pA|D(A|D) pD(D)

(22)

=

(
M+1∏
m=1

T∏
t=1

hmt

(
N∑

n=1

smnant

))

×
N∏

n=1

(
δ(sM+1,n − 1) pen

(en)
M∏

m=1

fmn(smn, emn)

× pdn
(dn)

T∏
t=1

gnt(ant, dnt)

)
, (23)

yielding the factor graph in Fig. 1. Due to the cycles within the
factor graph, exact inference is NP-hard [50], and so we settle
for approximate MMSE inference.

To accomplish approximate MMSE inference, we apply a
form of loopy belief propagation that is inspired by the “turbo
decoding” approach used in modern communications receivers
[51]. In particular, after partitioning the overall factor graph into
three subgraphs, as in Fig. 1, we alternate between message-
passing within subgraphs and message-passing between sub-
graphs. In our case, BiG-AMP [30] is used for message-passing
within the bilinear subgraph and standard methods from [28],
[29] are used for message-passing within the other two sub-
graphs, which involve N Gauss-Markov chains and N binary
MRFs, respectively. Overall, our proposed approach can be
interpreted as a bilinear extension of the “turbo AMP” approach
first proposed in [34].

B. Messaging Between Subgraphs

For a detailed description of the message passing within
the Gauss-Markov, MRF, and BiG-AMP subgraphs, we refer
interested readers to [28], [29], and [30], respectively. We now
describe the message passing between subgraphs, which relies
on the sum-product algorithm (SPA) [43]. In our implementa-
tion of the SPA, we assume that all messages are scaled to form
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valid pdfs (in the case of continuous random variables) or prob-
ability mass functions (pmfs) (in the case of discrete random
variables), and we use Δb

c(·) to represent the message passed
from node b to node c.

As described in [43], the SPA message flowing out of a
variable node along a given edge equals the (scaled) prod-
uct of messages flowing into that node along its other edges.
Meanwhile, the SPA message flowing out of a factor node along
a given edge equals the (scaled) integral of the product of all
incoming messages times the factor associated with that node.
Finally, the SPA approximates the posterior of a given random
variable as the (scaled) product of messages flowing into that
random variable.

As discussed in Sec. II-A, a key property of BiG-AMP is
that certain messages within its sub-graph are approximated as
Gaussian. In particular,

Δ
smn

fmn
(s) = N (s; q̂mn, ν

q
mn) (24)

Δant
gnt

(a) = N (a; r̂nt, ν
r
nt), (25)

where the quantities q̂mn, ν
q
mn, r̂nt, ν

r
nt are computed during

the final iteration of BiG-AMP. Thus, the SPA approximated
posteriors on smn and ant take the form

psmn|qmn
(s | q̂mn; ν

q
mn) ∝ Δfmn

smn
(s)N (s; q̂mn, ν

q
mn) (26)

pant|rnt
(a | r̂nt; νrnt) ∝ Δgnt

ant
(a)N (a; r̂nt, ν

r
nt), (27)

where Δfmn
smn

(s) and Δgnt
ant

(a) can be interpreted as priors,
N (s; q̂mn, ν

q
mn) and N (a; r̂nt, ν

r
nt) can be interpreted as like-

lihoods, and (26) and (27) can be interpreted as Bayes rule. We
will use these properties in the sequel.

First, we discuss the message-passing between the bilinear
sub-graph and spectral-coherence sub-graph in Fig. 1. Given
(11), (24), and the construction of the factor graph in Fig. 1, the
SPA implies that

Δfmn
emn

(e) ∝
∫
fmn(s, e) Δ

smn

fmn
(s) ds (28)

= N (e; q̂mn, ν
q
mn). (29)

The messages in (29) are used as inputs to the Gauss-Markov
inference procedure. By construction, the outputs of the Gauss-
Markov inference procedure will also be Gaussian beliefs.
Denoting their means and variances by θsmn and φsmn, respec-
tively, we have that

Δemn

fmn
(e) ∝ N (e; θsmn, φ

s
mn) (30)

Δfmn
smn

(s) =

∫
fmn(s, e)Δ

emn

fmn
(e) de (31)

= N (s; θsmn, φ
s
mn). (32)

When BiG-AMP is subsequently called for inference on the
bilinear sub-graph, (32) is inserted into (26), i.e., Δfmn

smn
(·) acts

as the prior on smn.
Next we discuss the message-passing between the bilinear

sub-graph and the spatial-coherence sub-graph in Fig. 1. The
SPA, together with the construction of the factor graph in Fig. 1,
imply

Δgnt

dnt
(d) =

∫
gnt(a, d)Δ

ant
gnt

(a) da∑
d′=±1

∫
gnt(a, d′) Δant

gnt(a) da
, d ∈ ±1. (33)

Given (16) and (25), we find that∫
gnt(a, d) Δ

ant
gnt

(a) da

=

{
N (0; r̂nt, ν

r
nt) da d = −1∫

ζn(a) N (a; r̂nt, ν
r
nt) da d = 1

(34)

which implies

Δgnt

dnt
(d = +1) =

(
1 +

N (0; r̂nt, ν
r
nt)∫

ζn(a) N (a; r̂nt, νrnt)

)−1

(35a)

Δgnt

dnt
(d = −1) = 1−Δgnt

dnt
(d = +1), (35b)

where the fraction in (35a) is BiG-AMP’s approximation of the
likelihood ratio pY |dnt

(Y | − 1)/pY |dnt
(Y |+ 1).

The Bernoulli beliefs from (35) are used as inputs to the
MRF-based support-inference procedure. The outputs of the
MRF inference procedure will also be Bernoulli beliefs of
the form

Δdnt
gnt

(d = +1) = πnt (36a)

Δdnt
gnt

(d = −1) = 1− πnt (36b)

for some πnt ∈ (0, 1). The SPA and (16) then imply that

Δgnt
ant

(a) ∝
∑
d=±1

gnt(a, d) Δ
dnt
gnt

(d) (37)

= (1− πnt)δ(a) + πntζn(a) (38)

for ζn(·) defined in (19). When BiG-AMP is subsequently
called for inference on the bilinear sub-graph, (38) is inserted
into (27), i.e., Δgnt

ant
(·) acts as the prior on ant.

C. EM Learning of the Prior Parameters

In practice, we desire that the parameters

Ω =
{
ψ, {ωa

n�, θ
a
n�, φ

a
n�}∀n�, {ηn, κn, σ2

n, αn, βn}∀n
}

(39)

used for the assumed likelihood pymt|zmt
(ymt|·), NNGM abun-

dance prior ζn(·), Gauss-Markov chain pen(·), and binary
MRF pdn

(·) are well tuned. With this in mind, we propose
an expectation-maximization (EM) [52] procedure to tune Ω,
similar to that used for the GAMP-based sparse-reconstruction
algorithms in [53] and [40].

To tune Ω, the EM algorithm [52] iterates

Ωi+1 = argmax
Ω

E
{
ln p(E,A,D,Y;Ω) | Y ;Ωi

}
(40)

with the goal of increasing a lower bound on the true likelihood
p(Y ;Ω) at each EM-iteration i. In our case, the true posterior
distribution used to evaluate the expectation in (40) is NP-hard
to compute, and so we use the SPA-approximated posteriors
p̂E|Y(E|Y ) ∝∏m,n Δ

fmn
emn

(emn)Δ
emn

fmn
(emn) from (29)–(30),

p̂D|Y(D|Y ) ∝∏n,t Δ
gnt

dnt
(dnt)Δ

dnt
gnt

(dnt) from (35)–(36), and

p̂A|Y(A|Y ) ∝∏n,t Δ
ant
gnt

(ant)Δ
gnt
ant

(ant) from (25) and (38).
Furthermore, since it is difficult to perform the maximiza-
tion in (40) jointly, we maximize Ω one component at a time
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(while holding the others fixed), which is the well known
“incremental” variant of EM [54].

The resulting EM-update expressions for the noise and
NNGM parameters ψ, ωa

n�, θ
a
n�, φ

a
n� can be found in [40], and

those for the Gauss-Markov chain parameters ηn, κn, σ2
n can be

found in [39]. They are all computed in closed-form using read-
ily available quantities, and thus do not add significantly to the
complexity of HUT-AMP. The update procedure for the binary
MRF parameters αn, βn is described in [38] and uses gradi-
ent descent. Since a small number of gradient-descent iterations
suffice, this latter procedure does not significantly increase the
complexity of HUT-AMP.

D. EM Initialization

Since the EM algorithm may converge to a local maximum
of the likelihood, care must be taken when initializing the EM-
learned parameters. Below, we propose an initialization strategy
for HUT-AMP that, based on our empirical experience, seems
to work well.

We first initialize the endmembers S. For this, we found it
effective to use an off-the-shelf EE algorithm like VCA [7]
or FSNMF2 [10] to recover Ŝ0. Then, as described in (7),
we subtract the observation mean μ from Ŝ0 to obtain the

initialization Ŝ
0
.

With the aid of Ŝ
0
, we next run BiG-AMP under

1) the trivial endmember prior

Δfmn
smn

(s) = δ(s− ŝ0mn), (41)

which essentially fixes the endmembers at Ŝ
0
,

2) the agnostic NNGM abundance initialization from [40]:

Δgnt
ant

(a) = (1− π0
nt)δ(a) + π0

nt

L∑
�=1

ωa
n�N+(a; θ

a
n�, φ

a
n�)

(42)

with {ωa
n�, θ

a
n�, φ

a
n�}L�=1 set at the best fit to a uniform

distribution on the interval [0, 1] and π0
nt =

1
2 , and

3) the noise variance initialization from [40]:

ψ0
m =

‖Y ‖2F
(SNR0

m + 1)MT
∀m, (43)

where, without any prior knowledge of the true SNRm �
E{|zmt|2}/ψm, we suggest SNR0

m = 10 dB.
By running BiG-AMP under these settings, we initialize

the messages Δ
smn

fmn
(·) and Δant

gnt
(·) from (24)–(25) and we

also obtain an initial estimate of A from the mean of the
approximate posterior (27), which we shall refer to as Â0.

Finally, we initialize the remaining parameters in Ω. Starting
with the spectral coherence parameters, we set the mean κ0n and
variance (σ2

n)
0 at the empirical mean and variance, respectively,

2With FSNMF (which was used for all of the experiments in Sec. IV), we
found that it helped to post-process the observations to reduce the effects of
noise. For this, we used the standard PCA-based denoising approach described
in [3]: the signal subspace was estimated from the left singular vectors of Y
after row-wise mean-removal, and the FSNMF-estimated endmembers were
projected onto the signal subspace.

TABLE I
HUT-AMP PSEUDOCODE FOR FIXED NUMBER OF MATERIALS N

of the elements in the nth column of Ŝ
0
. Then, we initialize the

correlation ηn as suggested in [39], i.e.,

ϕ0
m =

‖y
m
‖2
2
− Tψ0

m

‖Â0‖2F
(44)

η0n = 1− 1

M − 1

M−1∑
m=1

|yT
m
y
m+1

|
ϕ0
m‖Â0‖2F

for n = 1, . . . , N, (45)

where yT
m

denotes the mth row of Y . Lastly, we initialize the
spatial coherence parameters as suggested in [38], i.e., β0

n =
0.4 and α0

n = 0.4, since [38] shows these values to work well
over a wide operating range.

E. HUT-AMP Summary

We now describe the scheduling of turbo-messaging and
EM-tuning steps, which together constitute the HUT-AMP
algorithm. Essentially, we elect to perform one EM update
per turbo iteration, yielding the steps tabulated in Table I. As
previously mentioned, the “BiGAMP” operation iterates the
BiG-AMP algorithm to convergence as described in [30], the
“GaussMarkov” operation performs standard Gauss-Markov
inference as described in [28], and the “MRF” operation
performs MRF inference via the belief-propagation method
described in [29].

F. Selection of Model Order N

In practice, the number of materials N present in a scene
may be unknown. Previous approaches such as the hyperspec-
tral signal subspace identification by minimum error (HySime)
[55], and a Neyman-Pearson detection theory-based thresh-
olding method (HFC) [56] directly address the problem of
estimating the number of materials N .

As an alternative, we apply a standard penalized log-
likelihood maximization [42] method to estimate N from the
observed data Y . Specifically, we aim to solve

N̂ = arg max
N

2 ln pY |Z (Y |ŜNÂN ; ψ̂ML)− γ(N), (46)
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where ŜN and ÂN are the estimates of the mean-removed
endmembers and abundances returned from N -material HUT-
AMP, ψ̂ML is the ML estimate of the noise variance, and γ(·)
is a penalty term. As recommended in [48], we choose γ(·)
in accordance with the small-sample-corrected Akaike infor-
mation criterion (AICc) [42], i.e., γ(N) = 2 MT

MT−n(N)−1n(N),
whereMT is the number of scalar observations in Y and n(N)
is the number of scalar degrees-of-freedom (DoF) in our model,
which depends on N . In particular, n(N) comprises MN DoF
from S, (N − 1)T DoF from A, and 5N + 2NL+N(L−
1) +M DoF from Ω. Plugging the standard form of the ML
estimate of ψ (see, e.g.,[42, eq. (7)]) into (46), we obtain

N̂ = arg max
N

−MT ln

(
‖Y − ŜNÂN‖2F

MT

)

− 2MTn(N)

MT − n(N)− 1
. (47)

To solve the maximization in (47), we first run N = 2 HUT-
AMP to completion and compute the penalized log-likelihood.
We then increment N by 1, and compute the penalized log-
likelihood again. If it increases, we incrementN by 1 and repeat
the procedure. Once the penalized log-likelihood decreases, we
stop the procedure and select the previous model order N ,
which is the local maximizer of the penalized log-likelihood.
We refer to the resulting procedure as “HUT-AMP with model-
order selection” (HUT-AMP-MOS).

We also note that a similar model-order selection strategy
can be implemented to tune the number of NNGM compo-
nents L used in (19), and we refer interested readers to [53]
for more details. We note, however, that the fixed choice L = 3
was sufficient to yield the excellent results in Sec. IV.

IV. NUMERICAL RESULTS

In this section, we report the results of several experiments
that we conducted to characterize the performance of our
proposed methods on both synthetic and real-world datasets.

In these experiments, we compared the endmembers Ŝ
recovered from our proposed HUT-AMP and HUT-AMP-
MOS3 unmixing algorithms to those recovered by the Bayesian
unmixing algorithm SCU [26]; the sparse NMF techniques
L 1

2 NMF [18] and SDSNMF [19]; and the endmember extrac-
tion (EE) algorithms VCA [7], FSNMF [10], and MVSA [11].

We also compared the abundances Â recovered by our pro-
posed HUT-AMP and HUT-AMP-MOS unmixing algorithms
to those recovered by SCU and SDSNMF, as well as those
recovered by FCLS (2) (implemented via Matlab’s lsqlin) and
SUnSAL-TV [16] using the endmember estimates produced by
VCA, FSNMF, and MVSA. We note that SCU, SDSNMF, and
SUnSAL-TV all exploit spatial coherence, and that SDSNMF is
in fact L 1

2 NMF with additional mechanisms to exploit spatial
coherence.

In all cases, algorithms were run using their authors’ imple-
mentation and suggested default settings, unless noted other-
wise. The only exceptions are SDSNMF and L 1

2 NMF, which

3Matlab code can be found at http://www.ece.osu.edu/ schniter/HUTAMP.

Fig. 4. Illustration of the non-negative endmember matrix S and the K-sparse
P -pure abundance matrix A for the first experiment.

we implemented in MATLAB since their authors declined to
provide source code. All algorithms (with the exception of
HUT-AMP-MOS) were supplied the true number of materi-
als N in each experiment. For SUnSAL-TV, the regularization
weights for the �1 and TV norms were hand-tuned, because
cross-validation tuning was too computationally expensive
given the sizes of the datasets. For FSNMF, we used the
PCA post-processing described in footnote 2 to reduce the
effects of measurement noise, since this greatly improved its
mean-squared estimation error.

A. Pixel Purity versus Abundance Sparsity

Our first experiment aims to assess EE performance as a
function of pixel purity and abundance sparsity. Our motiva-
tion stems from the fact that the proposed HUT-AMP algorithm
aims to exploit sparsity in the columns of the abundance matrix
A, while classical EE techniques like VCA and FSNMF aim
to exploit the presence of pure pixels, recalling the discussion
in Sec. I. Thus, we are interested in seeing how these contrast-
ing approaches fare under varying combinations of pixel purity
and abundance sparsity. We also compare against the minimum-
volume-simplex approach from [11], which is an alternative to
both pixel purity and abundance sparsity.

We first constructed synthetic data consisting of M = 100
spectral bands, T = 115 spatial pixels, and N = 10 materials.
The endmember matrix S ∈ R

M×N
+ was drawn i.i.d such that

smn ∼ N+(0.5, 0.05). The abundance matrix A ∈ R
N×T
+ was

generated as shown in Fig. 4, where P of the columns of A
were assigned (uniformly at random) to be pure pixels, and
the remaining columns were drawn K-sparse on the simplex.
In particular, for each of these latter columns, the support was
drawn uniformly at random, and the non-zero values {ak}Kk=1

were drawn from a Dirichlet distribution, i.e.,

p(a1, . . . , aK−1) =

⎧⎨⎩
Γ(αK)

Γ(α)K
∏K

k=1 a
α−1
k , ak∈ [0, 1]

0 else
(48a)

p(aK |a1, . . . , aK−1) = δ(1− a1 − · · · − aK), (48b)

where Γ(·) denotes the gamma function, with concentra-
tion parameter α = 1. Finally, the observation matrix Y was
created by adding white Gaussian noise W to Z = SA,
where the noise variance ψ was adjusted to achieve SNR �
1

MT ‖Z‖2F /ψ = 80 dB.
Fig. 5 shows empirical success probability averaged over

R = 100 realizations, as a function of pixel purity P
and sparsity K, for the HUT-AMP, MVSA, VCA, and
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Fig. 5. First experiment: Average success rate for near-perfect recovery of i.i.d
endmembers S and K-sparse and P -pure abundances A using (a) HUT-AMP,
(b) MVSA, (c) VCA, and (d) L 1

2
NMF.

L 1
2 NMF algorithms.4 It does not show FSNMF since its

performance was indistinguishable from VCA’s performance.
Here, a recovery was considered successful if NMSES �
‖S − Ŝ‖2F /‖S‖2F < −40 dB. As seen in Fig. 5(c) and
Fig. 5(d), VCA and FSNMF were only successful for the K =
1 and P = 10 cases, i.e., the pure-pixel cases. L 1

2 NMF did
slightly better, with successful recovery for K ≤ 2. HUT-AMP,
on the other hand, was able to successfully recover the end-
members for K ≤ 6-sparse abundances, even when there was
only P = 1 pure-pixels available. We attribute HUT-AMP’s
improved performance to its exploitation of sparsity rather than
pure pixels (as with VCA and FSNMF), and its ability to accu-
rately learn the underlying sparsity rate. Also, we conjecture
that sparsity (i.e., K > 1 and P < N ) is more important in
practice, since the spatial resolution of the hyperspectral sen-
sors may not guarantee pixel-purity for all materials, while
sparse abundances (i.e., K � N ) are more likely to hold.
Finally, we note that, although MVSA performed remarkably
well in this experiment, it performed relatively poorly for the
experiments in Sec. IV-B through Sec. IV-D.

Next, we repeat the previous experiment at SNR = 60 dB
with S randomly selected from the USGS Digital Spectral
Library splib06a,5 which contains laboratory-measured
reflectance values for various materials over M = 224 spectral
bands. In particular, for each Monte-Carlo realization we
randomly select N = 10 endmembers from the library such

4Since our experimental findings into sparsity-versus-purity would be biased
if the algorithms under test used different approaches to the exploitation of spa-
tial and/or spectral coherence, we turn off the coherence-exploiting mechanisms
in HUT-AMP and SDSNMF (reducing the latter to L 1

2
NMF) and compare to

other algorithms that do not exploit spatial or spectral coherence: VCA and
MVSA.

5See http://speclab.cr.usgs.gov/spectral.lib06/ds231/

Fig. 6. Second experiment: Average success rate for near-perfect recovery of
USGS endmembers S and K-sparse and P -pure abundances A using (a) HUT-
AMP, (b) MVSA, (c) VCA, and (d) L 1

2
NMF.

that mini�=j SAD(si, sj) ≥ 15 degrees, for spectral angle
distance

SAD(si, sj) � arccos

(
sTi sj

‖si‖2‖sj‖2

)
(49)

Figure 6 shows the empirical success probability for the HUT-
AMP, MVSA, VCA, and L 1

2 NMF algorithms. Although HUT-
AMP’s performance with USGS endmembers is not as good
as with i.i.d. endmembers, it still outperformed VCA and
L 1

2 NMF. As before, MVSA has the best performance.
Finally, we perform a variation on the previous experiment

that again uses randomly selected USGS endmembers. But
rather than using pure and/or K-sparse abundance vectors, it
uses fully mixed abundances whose N coefficients were gener-
ated from a Dirichlet distribution with concentration parameter
α (recall (48)). Recall that larger values of α correspond to more
dense mixing. Figure 7 reports the average NMSES of HUT-
AMP, MVSA, VCA, and L 1

2 NMF versus both the number of
materials, N , and the concentration parameter, α, at SNR =
40 dB. The figure shows that HUT-AMP, VCA, and L 1

2 NMF
gave similar performance overall, with small advantages to
HUT-AMP whenN ≤ 8 and α ≤ 10−13/8. Relative to the other
algorithms, MVSA tolerated higher values of α, but was more
sensitive to larger numbers of materials, N , when α was small.

B. Pure-Pixel Synthetic Abundances

The second experiment uses synthetic pure-pixel abun-
dances A with endmembers S chosen from the USGS Digital
Spectral Library. To construct the data, we partitioned a
scene of T = 50× 50 pixels into N = 5 equally sized ver-
tical strips, each containing a single pure material. We then
selected endmembers corresponding to the materials Grossular,
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Fig. 7. Third experiment: Average NMSES for recovery of N USGS endmem-
bers S with abundances A drawn from Dirichlet distribution with concentration
α using (a) HUT-AMP, (b) MVSA, (c) VCA, and (d) L 1

2
NMF.

Fig. 8. False-color image of the noiseless measurements Z used for the second
experiment. Since the pixels are pure, each strip shows the false color of one of
the N = 5 materials. They are, in order from left to right: Grossular, Alunite,
wxl Kaolinite, Hydroxyl-Apatite, and Amphibole.

Alunite, well crystallized (wxl) Kaolinite, Hydroxyl-Apatite,
and Amphibole, noting that similar results were obtained in
experiments we conducted with other materials. Fig. 8 shows a
false-color image constructed from the noiseless measurements
Z. We then vary the SNR on a grid from 15 dB to 35 dB by
adding white Gaussian noise.

Averaging over r = 50 realizations, Figures 9 and 10 show
the normalized mean-squared error of the estimated end-
members and abundances, respectively (i.e., NMSES and
NMSEA � ‖A− Â‖2F /‖A‖2F ), while Figure 11 shows the
average runtime versus SNR. For this pure-pixel dataset, these
figures show HUT-AMP dominating the other algorithms in
both endmember and abundance estimation accuracy at all
SNRs. In particular, HUT-AMP outperformed the best compet-
ing techniques by 4 to 12 dB in NMSES and as much as 90 dB
in NMSEA. We note that the biggest gains in NMSEA occurred
when SNR ≥ 24 dB.

We attribute HUT-AMP’s excellent NMSE to several factors.
First, it has the ability to jointly estimate endmembers and abun-
dances, to exploit spectral coherence in the endmembers, and

Fig. 9. NMSES vs. SNR for the synthetic pure pixel dataset.

Fig. 10. NMSEA vs. SNR for the synthetic pure pixel dataset.

Fig. 11. Runtime vs. SNR for the synthetic pure pixel dataset.
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Fig. 12. False-color image of the cropped scene of the SHARE 2012
dataset [57].

to exploit both spatial coherence and sparsity in the abundances
(of which there is plenty in this experiment). Furthermore, due
to the presence of pure-pixels throughout the scene, the “active”
distribution ζn(·) in (19) is simply a Bernoulli distribution,
which HUT-AMP is able to learn (via EM) and exploit (via
BiG-AMP) for improved performance.

Figure 11 shows that the runtime of HUT-AMP was approx-
imately 3 times slower than the EE-and-inversion techniques,
approximately 4 times faster than the spatial-coherence exploit-
ing SDSNMF algorithm, and approximately 200 times faster
than that of the Bayesian SCU algorithm. We conjecture that
the relatively slow runtime of SCU is due to its use of Gibbs
sampling.

Although not shown in the above figures, we also ran HUT-
AMP-MOS on this dataset at SNR = 30 dB. The result was
that HUT-AMP-MOS correctly estimated the number of mate-
rials (i.e., N = 5) on every realization and thus gave identical
NMSES and NMSEA as HUT-AMP. The total runtime of
HUT-AMP-MOS at this SNR was 94.27 seconds, which was
about 9 times slower than HUT-AMP but still 75 times faster
than SCU.

C. SHARE 2012 Avon Dataset

Next, we evaluated algorithm performance on the SHARE
2012 Avon dataset6 [57], which uses M = 360 spectral bands,
corresponding to wavelengths between 400 and 2450 nm, over
a large rural area. To do this, we first cropped down the full
image to the scene shown in Fig. 12, which is known to consist
ofN = 4 materials: grass, dry sand, black felt, and white TyVek
[58]. This scene was explicitly constructed for use in hyper-
spectral unmixing experiments, as efforts were made to ensure
that the vast majority of the pixels were pure. Also, the data was
collected on a nearly cloudless day, implying that shadowing
effects were minimal. To construct ground-truth endmembers,7

we averaged a 4× 4 pixel grid of the received spectra in
a “pure” region for each material. We then computed SAD

6The SHARE 2012 Avon dataset can be obtained from http://www.rit.edu/
cos/share2012/.

7In practical HU data, ground truth is difficult to obtain, since lab-measured
reflectivity can differ dramatically from received radiance at the sensor. In this
experiment, we circumvent these problems by exploiting the known purity of
the pixels and by minimizing noise effects through averaging.

TABLE II
MEDIAN SPECTRAL ANGLE DISTANCE (IN DEGREES) BETWEEN

RECOVERED AND GROUND-TRUTH ENDMEMBERS IN THE SHARE
2012 EXPERIMENT

Fig. 13. Examples of recovered and ground-truth endmembers for the SHARE
2012 experiment.

between each ground-truth endmember sn and the estimate ŝn
produced by each algorithm.

Table II shows median SAD over 50 realizations, using the
original dataset and one with white Gaussian noise added to
achieve SNR = 25 dB. In the noiseless case, the table shows
that HUT-AMP recovered the grass and white TyVek materials
with the highest accuracy and recovered the dry sand and black
felt materials with the second highest accuracy. Meanwhile, in
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Fig. 14. Average runtimes and examples of recovered abundance maps for the
SHARE 2012 experiment. From left to right, the materials are: grass, dry sand,
black felt, and white TyVek.

the noisy case, HUT-AMP recovered the TyVek material with
the highest accuracy (in a tie with SDSNMF) and recovered the
dry sand and black felt materials with the second highest accu-
racy. Looking at the material-averaged SAD scores in the table,
it is evident that the accuracies achieved by HUT-AMP are close

Fig. 15. Mineral classification mapping of the Cuprite Dataset using the
Tricorder 3.3 product [59]. We used the scene cropped by the black rectangle.

TABLE III
MEDIAN SPECTRAL ANGLE DISTANCE (IN DEGREES) FOR THE CUPRITE

EXPERIMENT

to those attained by the most accurate algorithm, SDSNMF, and
significantly better than those attained by any of the compet-
ing algorithms, in both the noiseless and noisy cases. Although
SDSNMF offers slightly more accurate endmember recoveries,
Fig. 14 shows that its runtime is 44 times slower than that of
HUT-AMP. Therefore we conclude that HUT-AMP offers an
excellent combination of endmember recovery accuracy and
runtime.

For visual comparison, Fig. 13 shows an example of the
extracted and ground-truth endmembers in the noiseless case.
The figure shows HUT-AMP’s estimates closely matching the
ground-truth for all materials; by contrast, MVSA is mis-
matched in the case of grass, MVSA and FSNMF are mis-
matched in the case of dry sand, MVSA, VCA, and FSNMF,
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Fig. 16. Examples of recovered abundance maps in the noiseless Cuprite experiment. Each row corresponds to an algorithm and each column corresponds to a
material. Average runtimes (in seconds) are also listed on the left.
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are mismatched in the case of black felt, and MVSA, VCA,
SCU, FSNMF, and MVSA are all mismatched in the case of
white TyVek. Figure 13 reveals that MVSA does not always
yield non-negative endmembers estimates, which may account
for its relatively poor performance in all but our first experiment
from Sec. IV-A.

As another visual comparison, Fig. 14 shows an example of
the recovered abundance maps in the noiseless case. We reason
that the best recoveries are the ones that are the most pure within
the green, tan, black, and white regions of Fig. 12, given that
great care was taken during data collection to keep each region
occupied by a single material. Figure 14 shows that, in the case
of dry sand and black felt, the abundances recovered by HUT-
AMP were the most pure and, in the case of grass and Tyvek,
the abundances recovered by HUT-AMP were among the most
pure. The other Bayesian approach, SCU, yielded abundance
estimates with much less purity, and we conjecture that was due
to its priors being less well-matched to this highly sparse scene.
Meanwhile, SUnSAL-TV (using both EE techniques) failed to
recover the black felt material, which we attribute to its lack of
a sum-to-one constraint.

Average runtimes are also reported next to each algorithm
in Fig. 14. There we see that HUT-AMP’s runtime was 4-9
times slower than the EE-and-inversion techniques but 44 times
faster than SDSNMF and 166 times faster than SCU, the other
Bayesian technique.

We also ran HUT-AMP-MOS on the SHARE 2012 dataset
and found that it correctly estimated the presence of N =
4 materials, thus yielding identical recovery performance to
HUT-AMP. HUT-AMP-MOS’s runtime was 36.54 seconds,
which was 2.5 times slower than HUT-AMP but still 67 times
faster than SCU.

D. AVIRIS Cuprite Dataset

Our final numerical experiment was performed on the well
known AVIRIS Cuprite dataset. Although the original dataset
consisted of M = 224 spectral bands, ranging from 0.4 to
2.5 μm, we aimed to replicate the setup in [26], which removed
bands 1-10, 108-113, 153-168, and 223-224 to avoid water-
absorption effects, resulting in M = 189 spectral measure-
ments per pixel. And, like [26], we considered only the 80× 80
pixel scene identified by the black square in Fig. 15 and we
assumed N = 5 materials. According to the tricorder clas-
sification map in Fig. 15, this scene contains the materials
Montmorillonite, Alunite, well crystallized (wxl) Kaolinite, and
partially crystallized (pxl) Kaolinite. Although [26] conjectured
that this area also contains Sphene, none of the algorithms pro-
duced endmember estimates that were close to Sphene, and
is Sphene is not listed in Fig. 15. Thus, we did not con-
sider Sphene as a ground-truth material. Also, like in [26], we
considered both noiseless and white-Gaussian-noise corrupted
measurements (at SNR = 30 dB).

Table III shows the median SAD achieved during end-
member extraction over 50 realizations. From the table, we
see that, in the noiseless case, HUT-AMP achieved the best
material-averaged SAD as well as the best SAD for two specific

materials. In the noisy case, HUT-AMP achieved the second-
best material-averaged SAD as well as the best SAD for one
material. Meanwhile, the SAD s produced by VCA, FSNMF,
and SDSNMF were of a similar magnitude, while those pro-
duced by SCU and MVSA were noticeably larger. These SAD
values should be interpreted with caution, however, since i) the
ground-truth endmembers are laboratory-measured reflectance
spectra from the 2006 USGS library as ground-truth, whereas
the Cuprite dataset itself uses reflectance units obtained via
atmospheric correction of radiance data,8 and ii) it is not clear
exactly which materials are truly present in the scene. The fact
that the SAD s reported here are so much larger than those
reported in our SHARE experiment suggests that the Cuprite
ground-truth may not be fully accurate.

For visual comparison, we plot examples of the abundance
maps recovered in the noiseless experiment in Fig. 16. The
figure shows that the abundance maps returned by HUT-
AMP, SDSNMF, FSNMF + FCLS, VCA + FCLS, FSNMF +
SUnSAL-TV, and VCA + SUnSAL-TV have the highest con-
trast, suggesting that if certain pixels are truly pure then these
algorithms are accurately estimating those pixels. The maps
produced by SUnSAL-TV appear more “blurred,” probably
as an artifact of TV regularization. The abundances returned
by SCU, MVSA + FCLS, and MVSA + SUnSAL-TV were of
much lower contrast and suggest different material placements
than the maps generated by the other algorithms. For exam-
ple, SCU suggests a significant wxl-Kaolin presence throughout
the lower half of the scene, in contrast to other algorithms.
However, Table III shows that SCU gave the worst SAD for
wxl-Kaolin.

Figure 16 also shows the total runtimes of the various algo-
rithms. There we see that HUT-AMP was 6-8 times slower than
the typical EE-and-inversion approach, but more than 80 times
faster than SCU and more than 200 times faster than SDSNMF.

We also ran HUT-AMP-MOS on the Cuprite data and found
that, in both the noiseless and noisy cases, it estimated the pres-
ence of N = 5 materials, and thus returned identical estimates
to HUT-AMP. Meanwhile, HUT-AMP-MOS gave an average
runtime of 191.49 seconds, which was 30 times faster than SCU
and 75 times faster than SDSNMF.

V. CONCLUSIONS

In this paper, we proposed a novel empirical-Bayesian
hyperspectral-unmixing algorithm that jointly estimates end-
members and abundance maps while exploiting the practical
features of spectral and spatial coherence, as well as abundance
sparsity. Inference is performed using the “turbo” approach
proposed in [34], which breaks up the factor graph into three
subgraphs, performs (loopy) BP individually on each sub-
graph, and then exchanges beliefs between subgraphs. For
the spectral and spatial coherence subgraphs, standard Gauss-
Markov and discrete-Markov methods [28], [29], respectively,
are used, while for the non-negative bilinear-mixing subgraph,
the recently proposed BiG-AMP method from [30] is used,

8The reflectance and radiance versions of the Cuprite dataset can be found at
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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which exploits the approximate message passing framework
from [31], [32]. Furthermore, the statistical parameters of
all distributions are learned using expectation-maximization
[40], and the number of materials in the scene is estimated
using penalized log-likelihood maximization. On the whole, the
proposed HUT-AMP-MOS algorithm performs approximate
MMSE inference that exploits spectral and spatial coherence,
in addition to simplex constraints, while avoiding the need for
the specification of any tuning parameters.

Through a detailed numerical study, we demonstrated that
our proposed HUT-AMP algorithm yields accurate recoveries
of both endmembers and abundances on both synthetic and real-
world datasets. In particular, we found that HUT-AMP gives
recoveries that are close to—if not more accurate than—state-
of-the-art unmixing algorithms like SDSNMF. Meanwhile, the
runtime required for HUT-AMP is much less than sophisti-
cated spatial-coherence exploiting approaches like SDSNMF
and SCU—often by several orders of magnitude—while within
an order of magnitude of the fastest EE-and-inversion approach.
Our experiments also demonstrated that our model-order selec-
tion technique was able to correctly estimate the number of
materials in several synthetic and real-world datasets, without
requiring a very large increase in runtime.

APPENDIX A
MEAN REMOVAL

We can see that S from (7) is approximately zero-mean via
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where (50) follows from the definitions (5)–(6). The under-
braces in (51) show the scaling on each term in the large-system
limit (i.e., as N → ∞). These particular scalings follow from
our assumption that the noise is both zero-mean and white and
the convention [30] that both ymt and the noise variance ψ
scale as O(1). Recalling that

∑N
n=1 μ

a
n = 1 due to the simplex

constraint, expression (52) shows that a weighted average of
elements in S is approximately zero, where the approximation
becomes exact in the large-system limit.
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