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Iteratively Reweighted �1 Approaches to Sparse
Composite Regularization

Rizwan Ahmad and Philip Schniter, Fellow, IEEE

Abstract—Motivated by the observation that a given signal x
admits sparse representations in multiple dictionaries Ψd but
with varying levels of sparsity across dictionaries, we propose
two new algorithms for the reconstruction of (approximately)
sparse signals from noisy linear measurements. Our first algo-
rithm, Co-L1, extends the well-known lasso algorithm from the
L1 regularizer ‖Ψx‖1 to composite regularizers of the form∑

d λd‖Ψdx‖1 while self-adjusting the regularization weights
λd. Our second algorithm, Co-IRW-L1, extends the well-known
iteratively reweighted L1 algorithm to the same family of com-
posite regularizers. We provide several interpretations of both
algorithms: 1) majorization-minimization (MM) applied to a non-
convex log-sum-type penalty; 2) MM applied to an approximate
�0-type penalty; 3) MM applied to Bayesian MAP inference under
a particular hierarchical prior; and 4) variational expectation
maximization (VEM) under a particular prior with determin-
istic unknown parameters. A detailed numerical study suggests
that our proposed algorithms yield significantly improved recov-
ery SNR when compared to their noncomposite L1 and IRW-L1
counterparts.

Index Terms—Bayesian methods, composite regularization,
iterative reweighting algorithms, majorization minimization,
sparse optimization, variational inference.

I. INTRODUCTION

W E CONSIDER the problem of recovering the signal (or
image) x ∈ C

N from noisy linear measurements of the
form

y = Φx+w ∈ C
M , (1)

where Φ ∈ C
M×N is a known measurement operator and w ∈

C
M is additive noise. Such problems arise in imaging, machine

learning, radar, communications, speech, and many other appli-
cations. We are particularly interested in the case that M � N ,
where x cannot be uniquely determined from the measurements
y, even in the absence of noise. This latter situation arises in
many of the aforementioned applications, as well as in broad
area of signal recovery methods associated with compressive
sensing (CS) [1].
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A. Regularized �2 Minimization

By incorporating (partial) prior knowledge about the sig-
nal and noise power, it may be possible to accurately recover
x from M � N measurements y. In this work, we consider
signal recovery based on optimization problems of the form

arg min
x

γ‖y −Φx‖22 +R(x) (2)

where γ is a tuning parameter that reflects knowledge of the
noise level and R(x) is a penalty, or regularization, that reflects
prior knowledge about the signal x [2]. We briefly summarize
several common instances of R(x) below.

1) If x is known to be sparse (i.e., contains sufficiently few
non-zero coefficients) or approximately sparse, then one
would ideally like to use the �0 penalty (i.e., counting
“norm”) R(x) = ‖x‖0 �

∑N
n=1 1|xn|>0, where 1{·} is

the indicator function. However, since this choice makes
(2) NP-hard, it is not often used in practice.

2) The �1 penalty, R(x)=‖x‖1=
∑N

n=1 |xn|, is a well-
known surrogate to the �0 penalty that renders (2) convex,
and thus amenable to polynomial-time solution. In this
case, (2) is known as the basis pursuit denoising [3] or
lasso [4] problem, which is commonly used in synthesis-
based CS [1].

3) Various non-convex surrogates for the �0 penalty
have also been considered, such as the �p penalty
R(x)=‖x‖pp=

∑N
n=1 |xn|p with p ∈ (0, 1) and the log-

sum penalty R(x)=
∑N

n=1 log(ε+ |xn|) with ε ≥ 0.
Although (2) becomes difficult to solve, it can be tractably
approximated. See [2] for a more complete discussion.

4) The choice R(x) = ‖Ψx‖1, with known matrix Ψ ∈
C

L×N , leads to analysis-based CS [5] and the general-
ized lasso [6]. Penalties of this form are appropriate when
prior knowledge suggests that the transform coefficients
Ψx are (approximately) sparse, as opposed to the signalx
itself being sparse. When Ψ is a finite-difference operator,
‖Ψx‖1 yields anisotropic total variation regularization
[7].

5) Non-convex penalties can also be placed on the trans-
form coefficients Ψx, leading to, e.g., R(x)=‖Ψx‖pp=∑L

l=1 |ψT
l x|p with p ∈ (0, 1) or R(x)=

∑L
l=1 log(ε+

|ψT
l x|) with ε ≥ 0.

A popular approach to solve (2) with a non-convex penalty
R(x) is through iteratively reweighted �1 (IRW-L1)1 [9]. There,
(2) with fixed non-convex R(x) is approximated by solving a
sequence of convex problems

1Iteratively reweighted �2 is a popular alternative, e.g., [8]–[12].
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x(t) = arg min
x

γ‖y −Φx‖22 +R(t)(x), (3)

where, at iteration t, the penalty R(t)(x) =
∑N

n=1 w
(t)
n |xn|

with each weight w
(t)
n set based on the previous estimate

x
(t−1)
n . Constrained formulations of IRW-L1 based on “x(t) =

argminxR
(t)(x) s.t. ‖y −Φx‖2 ≤ δ,” have also been consid-

ered, such as in [12]–[14]. Many of the papers cited above show
empirical results where the performance of IRW-L1 surpasses
that of standard �1.

B. Sparsity-Inducing Composite Regularizers

In this work, we focus on sparsity-inducing composite regu-
larizers of the form

RD
1 (x;λ) �

D∑
d=1

λd‖Ψdx‖1, (4)

where each Ψd ∈ C
Ld×N is a known analysis operator and

λd ≥ 0 is a corresponding regularization weight. Our goal is to
recover the signal x from measurements (1) by optimizing (2)
with the composite regularizer (4). Doing so requires an opti-
mization of the weights λ = [λ1, . . . , λD]T in (4). We are also
interested in iteratively re-weighted extensions of this problem
that, at iteration t, use composite regularizers of the form2

R(t)(x) =

D∑
d=1

λ
(t)
d ‖W (t)

d Ψdx‖1, (5)

where W
(t)
d are diagonal matrices. This latter approach

requires the optimization of both λ
(t)
d andW (t)

d for all d.
As a motivating example, suppose that {Ψd} is a collec-

tion of orthonormal bases that includes, e.g., spikes, sines,
and various wavelet bases. The signal x may be sparse in
some of these bases, but not all. Thus, we would like to
adjust each λd in (4) to appropriately weight the contribution
from each basis. But it is not clear how to do this, espe-
cially since x is unknown. As another example, suppose that
x contains a (rasterized) sequence of images and that ‖Ψ1x‖1
measures temporal total-variation while ‖Ψ2x‖1 measures spa-
tial total-variation. Intuitively, we would like to weight these
two regularizations differently, depending on whether the image
pixels vary more in the temporal or spatial dimensions. But it is
not clear how to do this, especially since x is unknown.

C. Contributions

In this work, we propose novel iteratively reweighted
approaches to sparse reconstruction based on composite reg-
ularizations of the form (4)–(5) with automatic tuning of the
regularization weights λ and Wd. For each of our proposed
algorithms, we will provide four interpretations:

1) MM applied to a non-convex log-sum-type penalty,
2) MM applied to an approximate �0-type penalty,
3) MM applied to Bayesian MAP inference based on

Gamma and Jeffrey’s hyperpriors [15], [16], and

2Although (5) is over-parameterized, the form of (5) is convenient for
algorithm development.

4) variational expectation maximization (VEM) [17], [18]
applied to a Laplacian or generalized-Pareto prior with
deterministic unknown parameters.

We show that the MM interpretation guarantees convergence in
the sense of satisfying an asymptotic stationary point condition
[19]. Moreover, we establish connections between our proposed
approaches and existing IRW-L1 algorithms, and we provide
novel VEM-based and Bayesian MAP interpretations of those
existing algorithms.

Finally, through the detailed numerical study in Sec. IV, we
establish that our proposed algorithms yield significant gains in
recovery accuracy relative to existing methods with only mod-
est increases in runtime. In particular, when {Ψd} are chosen
so that the sparsity of Ψdx varies with d, this structure can
be exploited for improved recovery. The more disparate the
sparsity, the greater the improvement.

D. Related Work

As discussed above, the generalized lasso [6] is one of
the most common approaches to L1-regularized analysis-CS
[5], i.e., the optimization (2) under the regularizer R(x) =
‖Ψx‖1. The Co-L1 algorithm that we present in Sec. II can
be interpreted as a generalization of this L1 method to com-
posite regularizers of the form (4). Meanwhile, the iteratively
reweighted extension of the generalized lasso, IRW-L1 [9],
often yields significantly better reconstruction accuracy with a
modest increase in complexity (e.g., [13], [14]). The Co-IRW-
L1 algorithm that we present in Sec. III can be interpreted as
a generalization of this IRW-L1 method to composite regulariz-
ers of the form (5). The existing non-composite L1 and IRW-L1
approaches essentially place an identical weight λd = 1 on
every term in (4)–(5), and thus make no attempt to leverage dif-
ferences in the sparsity of the transform coefficients Ψdx across
the sub-dictionary index d. However, the numerical results
that we present in Sec. IV suggest that there can be signifi-
cant advantages to optimizing λd, which is precisely what our
methods do.

The problem of optimizing the weights λd of composite reg-
ularizers R(x;λ) =

∑
d λdRd(x) is a long-standing problem

with a rich literature (see, e.g., the recent book [20]). However,
the vast majority of that literature focuses on the Tikhonov case
where Rd(x) are quadratic (see, e.g., [21]–[24]). One notable
exception is [25], which assumes continuously differentiable
Rd(x) and thus does not cover our composite �1 prior (4).
Another notable exception is [26], which assumes i) the avail-
ability of a noiseless training example of x to help tune the
L1 regularization weights λ in (4), and ii) the trivial mea-
surement matrix Φ = I . In contrast, our proposed methods
operate without any training and support generic measurement
matrices Φ.

In the special case that each Ψd is composed of a sub-
set of rows from the N ×N identity matrix, the regularizers
(4)–(5) can induce group sparsity in the recovery of x, in
that certain sub-vectors xd � Ψdx of x are driven to zero
while others are not. The paper [27] develops an IRW-L1-based
approach to group-sparse signal recovery for equal-sized non-
overlapping groups that can be considered as a special case of
the Co-L1 algorithm that we develop in Sec. II. However, our
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approach is more general in that it handles possibly non-equal
and/or overlapping groups, not to mention sparsity in a generic
set of sub-dictionaries Ψd. Recently, Bayesian MAP group-
sparse recovery was considered in [28]. However, the technique
described there uses Gaussian scale mixtures or, equivalently,
weighted-L2 regularizers R(x;λ) =

∑
d λd‖xd‖2, while our

methods use weighted-�1 regularizers (4)–(5).

E. Notation

We use boldface capital letters like Ψ for matrices, bold-
face small letters like x for vectors, and (·)T for transposition.
We use ‖x‖p = (

∑
n |xn|p)1/p for the �p norm of x, with

xn representing the nth coefficient in x and p > 0. We then
use ‖x‖0 = limp→0

∑
n |xn|p [12] when referring to the �0

quasi-norm, which counts the number of nonzero coefficients
in x. We define the “mixed �p,0 quasi-norm” with p > 0 as3

limq→0

∑
d(
∑

l |xd,l|p)q , and the “mixed �0,0 quasi-norm” as
limp,q→0

∑
d(
∑

l |xd,l|p)q . We use ∇g(x) for the gradient of
a functional g(x) with respect to x, and 1A for the indicator
function that returns the value 1 when A is true and 0 when A
is false. We use p(x;λ) for the pdf of random vector x under
deterministic parameters λ, and p(x|λ) for the pdf of x condi-
tioned on the random vector λ. We use DKL(q‖p) to denote the
Kullback-Leibler (KL) divergence of pdf p from pdf q, and we
use R and C to denote the real and complex fields, respectively.

II. THE CO-L1 ALGORITHM

We first propose the Composite-L1 (Co-L1) algorithm,
which is summarized in Algorithm 1. There, Ld denotes the
number of rows in Ψd.

Algorithm 1. The Co-L1 Algorithm

1: input : {Ψd}Dd=1, Φ, y, γ > 0, ε ≥ 0
2: if Ψdx ∈ R

Ld , use Cd = 1; if Ψdx ∈ C
Ld , use Cd = 2.

3: initialization : λ(1)
d = 1 ∀d

4: for t = 1, 2, 3, . . .

5: x(t) ← arg min
x

γ‖y −Φx‖22 +
D∑

d=1

λ
(t)
d ‖Ψdx‖1

6: λ
(t+1)
d ← CdLd

ε+ ‖Ψdx(t)‖1 , d = 1, . . . , D

7: end
8: output : x(t)

The main computational step of Co-L1 is the L2+L1 min-
imization in line 5, which can be recognized as (2) under
the composite regularizer RD

1 from (4). This is a convex
optimization problem that can be readily solved by existing
techniques (e.g., ADMM [30], [31], Douglas-Rachford split-
ting [32], MFISTA [33], NESTA-UP [34], GAMP [35], etc.),
the specific choice of which is immaterial to this paper.

Note that Co-L1 requires the user to set a small regulariza-
tion term ε ≥ 0 whose role is to prevent the denominator in line

3Our �p,0 and �0,0 definitions are motivated by the standard �p,q mixed
norm definition (for p, q > 0), which is (

∑
d(
∑

l |xd,l|p)q/p)1/q [29].

6 from reaching zero. For typical choices of Ψd and γ, the vec-
tor Ψdx

(t) will almost never be exactly zero, in which case it
suffices to set ε = 0. Also, Co-L1 requires the user to set the
measurement fidelity weight γ. With additive white Gaussian
noise (AWGN) of variance σ2 > 0, the Bayesian MAP inter-
pretation discussed in Sec. II-D suggests setting γ = 1

2σ2 for
real-valued AWGN or γ = 1

σ2 for circular complex-valued
AWGN. These are, in fact, the settings that we used for all
numerical results in Sec. IV.

Note line 5 of Algorithm 1 can be equivalently restated as

x(t) ← arg min
x

D∑
d=1

λ
(t)
d ‖Ψdx‖1 s.t. ‖y −Φx‖2 ≤ δ. (6)

By equivalent, we mean that, for any δ > 0, there exists a γ
for which the solutions of line 5 and (6) are identical [36]. A
version of this manuscript that focuses on the constrained case
can be found at [37]. Numerical experiments therein show that
the performance of Co-L1 using (6) with the hand-tuned value
δ = 0.8

√
Mσ2 is very similar to that of Algorithm 1 with γ

chosen as described above.
Co-L1’s update of the weights λ, defined by line 6 of

Algorithm 1, can be interpreted in various ways, as we detail
below. For ease of explanation, we first consider the case where
Ψdx is real-valued ∀d, and later discuss the complex-valued
case in Sec. II-F.

Theorem 1 (Co-L1): The Co-L1 algorithm in Algorithm 1
has the following interpretations:

1) MM applied to (2) under the log-sum penalty

RD
ls (x; ε) �

D∑
d=1

Ld log(ε+ ‖Ψdx‖1), (7)

2) as ε→ 0, MM applied to (2) under the weighted �1,0 [29]
penalty

RD
10(x) �

D∑
d=1

Ld 1‖Ψdx‖1>0, (8)

3) MM applied to Bayesian MAP estimation under an addi-
tive white Gaussian noise (AWGN) likelihood and the
hierarchical prior

p(x|λ) =
D∏

d=1

(
λd

2

)Ld

exp (−λd‖Ψdx‖1) (9)

λ ∼ i.i.d. Γ(0, ε−1) (10)

where zd�Ψdx ∈ R
Ld is i.i.d. Laplacian given λd, and

λd is Gamma distributed with scale parameter ε−1 and
shape parameter zero, which becomes Jeffrey’s non-
informative hyperprior p(λd) ∝ 1λd>0/λd when ε = 0,

4) variational EM under an AWGN likelihood and the prior

p(x;λ) ∝
D∏

d=1

(
λd

2

)Ld

exp (−λd(‖Ψdx‖1 + ε)) , (11)

which, when ε = 0, is i.i.d. Laplacian on zd=Ψdx ∈
R

Ld with deterministic scale parameter λd > 0.



AHMAD AND SCHNITER: ITERATIVELY REWEIGHTED �1 APPROACHES TO SPARSE COMPOSITE REGULARIZATION 223

Proof: See Sections II-A to II-E below. �
Importantly, the MM interpretation implies convergence (in

the sense of an asymptotic stationary point condition) when ε >
0, as detailed in Sec. II-B.

A. Log-Sum MM Interpretation of Co-L1

Consider the optimization problem

argmin
x

γ‖y −Φx‖22 +RD
ls (x; ε) (12)

with RD
ls from (7). Inspired by [13, § 2.3], we write (12) as

argmin
x,u

γ‖y −Φx‖2 +
D∑

d=1

Ld log

(
ε+

Ld∑
l=1

ud,l

)

s.t. |ψT
d,lx| ≤ ud,l ∀d, l, (13)

where ψT
d,l is the lth row of Ψd. Problem (13) is of the form

argmin
v

g(v) s.t. v ∈ C, (14)

where v = [uT,xT]T, C is a convex set,

g(v) = γ‖y − [0 Φ]v‖22 +
D∑

d=1

Ld log

(
ε+

∑
k∈Kd

vk

)
(15)

is a non-convex penalty, and the setKd � {k :
∑d−1

i=1 Li < k ≤∑d
i=1 Li} contains the indices k such that vk ∈ {ud,l}Ld

l=1.
Since g(v) is the sum of convex and concave terms, i.e.,

a “difference of convex” (DC) functions, (14) can be recog-
nized as a DC program [38]. Majorization-minimization (MM)
[19], [39] is a popular method to attack non-convex problems
of this form. In particular, MM iterates the following two steps:
(i) construct a surrogate g(v;v(t)) that majorizes g(v) at v(t),
and (ii) update v(t+1) = argminv∈C g(v;v

(t)). By “majorize,”
we mean that g(v;v(t)) ≥ g(v) for all v with equality when
v = v(t).

Due to the DC form of g(v) in (15), a majorizing surrogate
can be constructed by linearizing the concave term about its
tangent at v(t). In particular, say g(v) = g1(v) + g2(v), where
g1 is the convex (quadratic) term and g2 is the concave (log-
sum) term, and say∇g2 is the gradient of g2 w.r.t. v. Then

g(v;v(t)) � g1(v) + g2(v
(t)) +∇g2(v(t))T[v − v(t)] (16)

majorizes g(v) at v(t), and so the MM iterations become

v(t+1) = argmin
v∈C

g1(v) +∇g2(v(t))Tv (17)

after neglecting the v-invariant terms.
Examining the log-sum term in (15), we see that

[∇g2(v(t))]k =

⎧⎪⎨
⎪⎩

Ld(k)

ε+
∑

i∈Kd(k)
v
(t)
i

if d(k) �= 0

0 else,

(18)

where d(k) is the index d ∈ {1, . . . , D} of the set Kd contain-
ing k, or 0 if no such set exists. Thus MM prescribes

v(t+1) = argmin
v∈C

γ‖y − [0 Φ]v‖22 +
D∑

d=1

∑
k∈Kd

Ldvk

ε+
∑

i∈Kd
v
(t)
i

,

(19)

or equivalently

x(t+1) = argmin
x

γ‖y −Φx‖22 +
D∑

d=1

Ld

∑Ld

l=1 |ψT
d,lx|

ε+
∑Ld

l=1 |ψT
d,lx

(t)|
(20)

= argmin
x

γ‖y −Φx‖22 +
D∑

d=1

λ
(t+1)
d ‖Ψdx‖1 (21)

for

λ
(t+1)
d =

Ld

ε+ ‖Ψdx(t)‖1 , (22)

which coincides with Algorithm 1. This establishes Part 1 of
Theorem 1.

B. Convergence of Co-L1

The paper [19] studies the convergence of MM, and includes
a special discussion of the application of MM to DC program-
ming. In the language of our Sec. II-A, [19] establishes that,
when g2 is differentiable with a Lipschitz continuous gradient,
the MM sequence {v(t)}t≥1 satisfies an asymptotic stationary
point (ASP) condition. Although this falls short of establishing
convergence to a local minimum (which is difficult for generic
non-convex problems), the ASP condition is based on a clas-
sical necessary condition for a local minimum. In particular,
using ∇g(v;d) to denote the directional derivative of g at v in
the direction d, it is known [40] that v� locally minimizes g
over C only if∇g(v�;v − v�) ≥ 0 for all v ∈ C. Thus, in [19],
it is said that {v(t)}t≥1 satisfies an ASC condition if

lim inf
t→+∞ inf

v∈C
∇g(v(t);v − v(t))
‖v − v(t)‖2 ≥ 0. (23)

In our case, g2 from (15) is indeed differentiable, with gra-
dient ∇g2 given by (18). Moreover, Appendix A shows that
this gradient is Lipschitz continuous when ε > 0. Thus, the
sequence of estimates produced by Algorithm 1 satisfies the
ASP condition (23).

C. Approximate �1,0 Interpretation of Co-L1

In the limit of ε→ 0, the log-sum minimization

argmin
x

γ‖y −Φx‖22 +
N∑

n=1

log(ε+ |xn|) (24)

for γ > 0 is known [12] to be equivalent to �0 minimization

argmin
x

γ′‖y −Φx‖22 + ‖x‖0 (25)



224 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 4, DECEMBER 2015

for some γ′ > 0. (See Appendix B for a proof.) This equiva-
lence can be seen intuitively as follows. As ε→ 0, the contri-
bution to the regularization term

∑N
n=1 log(ε+ |xn|) from each

non-zero xn remains finite, while that from each zero-valued xn

approaches−∞. Since we are interested in minimizing the reg-
ularization term, we get a huge reward for each zero-valued xn,
or—equivalently—a huge penalty for each non-zero xn.

To arrive at an �0 interpretation of the Co-L1 algorithm,
we consider the corresponding optimization problem (12) in
the limit that ε→ 0. There we see that the regularization term
RD

ls (x; 0) from (7) yields Ld huge rewards when ‖Ψdx‖1=0,
or equivalently Ld huge penalties when ‖Ψdx‖1 �= 0, for each
d ∈ {1, . . . , D}. Thus, we can interpret Co-L1 as attempting to
solve the optimization problem (8), which is a weighted ver-
sion of the “�p,q mixed norm” problem from [29] for p=1 and
q → 0. This establishes Part 2 of Theorem 1.

D. Bayesian MAP Interpretation of Co-L1

The MAP estimate [41] of x from y is

xMAP � arg max
x

p(x|y) = arg min
x

{− log p(x|y)} (26)

= arg min
x

{− log p(x)− log p(y|x)} (27)

= arg min
x

{− log p(x) + γ‖y −Φx‖22
}
, (28)

where (26) used the monotonicity of log, (27) used Bayes rule,
and (28) used the AWGN likelihood. Note that, for real-valued
AWGN with σ2 variance, γ = 1

2σ2 , while for circular complex-
valued AWGN with σ2 variance, γ = 1

σ2 .
Next, we derive the − log p(x) term in (28) that results

from the hierarchical prior (9)–(10). Recall that, with
shape parameter κ and scale parameter θ, the Gamma pdf
[42] is Γ(λd;κ, θ) = 1λd>0λ

κ−1
d θ−κ exp(−λd/θ)/Γ(κ),

where Γ(κ) is the Gamma function. Since Γ(λd;κ, θ) ∝
1λd>0λ

κ−1
d exp(−λd/θ), we note that Γ(λd; 0,∞) ∝

1λd>0/λd, which is Jeffrey’s non-informative hyperprior
[15], [42] for the Laplace scale parameter λd. Then, according
to (9)–(10), the prior equals

p(x) =

∫
RD

p(x|λ)p(λ) dλ (29)

∝
D∏

d=1

∫ ∞

0

(
λd

2

)Ld

exp(−λd‖Ψdx‖1)exp(−λdε)

λd
dλd

(30)

=

D∏
d=1

(Ld − 1)!

(2(‖Ψdx‖1 + ε))
Ld

(31)

which implies that

− log p(x) = const +
D∑

d=1

Ld log (‖Ψdx‖1 + ε) . (32)

Equations (28), (32), and (7) imply

xMAP = arg min
x

γ‖y −Φx‖22 +RD
ls (x; 0). (33)

Finally, applying the MM algorithm to this optimization prob-
lem (as detailed in Sec. II-A), we arrive at Algorithm 1. We
note that [16] proposed to use Gamma and Jeffrey’s hyperpriors
with MM for total-variation image deblurring, although their
algorithm is not of the IRW-L1 form. This establishes Part 3 of
Theorem 1.

E. Variational EM Interpretation of Co-L1

The variational expectation-maximization (VEM) algorithm
[17], [18] is an iterative approach to maximum-likelihood (ML)
estimation that generalizes the EM algorithm from [43]. We
now provide a brief review of the VEM algorithm and describe
how it can be applied to estimate λ in (11).

First, note that the log-likelihood can be written as

log p(y;λ) =

∫
q(x) log p(y;λ) dx (34)

=

∫
q(x) log

[
p(x,y;λ)

q(x)

q(x)

p(x|y;λ)
]

dx (35)

=

∫
q(x) log

p(x,y;λ)

q(x)
dx︸ ︷︷ ︸

� F (q(x);λ)

+

∫
q(x) log

q(x)

p(x|y;λ) dx︸ ︷︷ ︸
� DKL (q(x)‖p(x|y;λ))

,

(36)

for an arbitrary pdf q(x), where DKL(q‖p) denotes the KL
divergence of p from q. Because DKL(q‖p) ≥ 0 for any q and
p, we see that F (q(x);λ) is a lower bound on log p(y;λ). The
EM algorithm performs ML estimation by iterating

q(t)(x) = argmin
q

DKL

(
q(x)

∥∥∥p(x|y;λ(t))
)

(37)

λ(t+1) = argmax
λ

F (q(t)(x);λ), (38)

where the “E” step (37) tightens the lower bound and the “M”
step (38) maximizes the lower bound.

The EM algorithm places no constraints on q(x), in which
case the solution to (37) is simply q(t)(x) = p(x|y;λ(t)), i.e.,
the posterior pdf of x under λ = λ(t). In many applications,
however, this posterior is too difficult to compute and/or use
in (38). To circumvent this problem, the VEM algorithm con-
strains q(x) to some family of distributions Q that makes
(37)–(38) tractable.

For our application of the VEM algorithm, we constrain to
distributions of the form

q(x) ∝ lim
T→0

exp
(
1
T log p(x|y;λ)) , (39)

which has the effect of concentrating the mass in q(x) at its
mode. Plugging this q(x) and p(x,y;λ) = p(y|x)p(x;λ) into
(36), we see that the M step (38) reduces to

λ(t+1) = argmax
λ

log p(x;λ)
∣∣∣x=x(t)

MAP

(40)

for x(t)
MAP � argmax

x
p
(
x
∣∣∣y;λ(t)

)
, (41)



AHMAD AND SCHNITER: ITERATIVELY REWEIGHTED �1 APPROACHES TO SPARSE COMPOSITE REGULARIZATION 225

where (41) be interpreted as the E step. For the particular
p(x;λ) in (11), we have that

log p(x;λ) = const +
D∑

d=1

[Ld log(λd)− λd(‖Ψdx‖1 + ε)] ,

(42)

and by zeroing the gradient w.r.t. λ, we find that (40) becomes

λ
(t+1)
d =

Ld

‖Ψdx
(t)
MAP‖1 + ε

, d = 1, . . . , D. (43)

Meanwhile, from (28) and (11), we find that (41) becomes

x
(t)
MAP = arg min

x
γ‖y −Φx‖22 +

D∑
d=1

λ
(t)
d ‖Ψdx‖1. (44)

In conclusion, our VEM algorithm iterates the steps (43)–
(44), which match the steps in Algorithm 1. This establishes
Part 4 of Theorem 1.

F. Co-L1 for Complex-Valued Ψdx

In Theorem 1 and Sections II-A-II-E, real-valued analysis
outputs Ψdx were assumed for ease of explanation. We now
extend the previous results to the case of complex-valued Ψdx.
For this, we focus on the VEM interpretation (recall Part 4
of Theorem 1), noting that a similar justification can be made
based on the Bayesian MAP interpretation. In particular, we
assume an AWGN likelihood and a complex-valued extension
of the prior (11):

p(x;λ) ∝
D∏

d=1

(
λd

2π

)2Ld

exp (−λd(‖Ψdx‖1 + ε)) , (45)

which, when ε = 0, is i.i.d. complex-valued Laplacian on zd=
Ψdx ∈ C

Ld with deterministic scale parameter λd > 0. To
show this, we follow the steps in Sec. II-E up to the log-prior in
(42), which now becomes

log p(x;λ) = const +
D∑

d=1

[2Ld log(λd)− λd(‖Ψdx‖1 + ε)] .

(46)

Zeroing the gradient w.r.t. λ, we find that the VEM update in
(40) becomes

λ
(t+1)
d =

2Ld

‖Ψdx
(t)
MAP‖1 + ε

, d = 1, . . . , D, (47)

which is twice as large as the real-valued case in (43).

G. New Interpretations of the IRW-L1 Algorithm

The proposed Co-L1 algorithm is related to the analysis-
CS formulation of the well-known IRW-L1 algorithm [9]. For
clarity, and for later use in Sec. III, we summarize this lat-
ter algorithm in Algorithm 2, and note that the synthesis-CS
formulation follows from the special case that Ψ = I .

Algorithm 2. The IRW-L1 Algorithm

1: input : Ψ = [ψ1, . . . ,ψL]
T, Φ, y, γ ≥ 0, ε ≥ 0

2: initialization : W (1) = I
3: for t = 1, 2, 3, . . .
4: x(t) ← arg min

x
γ‖y −Φx‖22 + ‖W (t)Ψx‖1

5: W (t+1) ← diag

{
1

ε+ |ψT
1 x

(t)| , · · · ,
1

ε+ |ψT
Lx

(t)|
}

6: end
7: output : x(t)

Comparing Algorithm 2 to Algorithm 1, we see that IRW-
L1 coincides with real-valued Co-L1 in the case that every
sub-dictionary Ψd has dimension one, i.e., Cd=1=Ld ∀d
and D=L, where L �

∑D
d=1 Ld denotes the total number

of analysis coefficients. Thus, the Co-L1 interpretations from
Theorem 1 can be directly translated to IRW-L1 as follows.

Corollary 2 (IRW-L1): The IRW-L1 algorithm from
Algorithm 2 has the following interpretations:

1) MM applied to (2) under the log-sum penalty

RL
ls (x; ε) =

L∑
l=1

log(ε+ |ψT
l x|), (48)

recalling the definition of RL
ls from (7),

2) as ε→ 0, MM applied to (2) under the �0 penalty

RL
0 (x) �

L∑
l=1

1|ψT
l x|>0, (49)

3) MM applied to Bayesian MAP estimation under an
AWGN likelihood and the hierarchical prior

p(x|λ) =
L∏

l=1

λl

2
exp

(−λl|ψT
l x|
)

(50)

λ ∼ i.i.d. Γ(0, ε−1) (51)

where zl=ψ
T
l x is Laplacian given λl, and λl is Gamma

distributed with scale parameter ε−1 and shape parameter
zero, which becomes Jeffrey’s non-informative hyper-
prior p(λl) ∝ 1λl>0/λl when ε = 0.

4) variational EM under an AWGN likelihood and the prior

p(x;λ) ∝
L∏

l=1

λl

2
exp

(−λl(|ψT
l x|+ ε)

)
. (52)

which, when ε = 0, is independent Laplacian on z=
Ψx ∈ R

L under the positive deterministic scale param-
eters in λ.

While Part 1 and Part 2 of Corollary 2 were established for
the �2-constrained synthesis-CS formulation of IRW-L1 in [13],
we believe that Part 3 and Part 4 are novel interpretations of
IRW-L1.

III. THE CO-IRW-L1 ALGORITHM

We now propose the Co-IRW-L1-ε algorithm, which is
summarized in Algorithm 3. Co-IRW-L1-ε can be thought



226 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 4, DECEMBER 2015

of as a hybrid of the Co-L1 and IRW-L1 approaches from
Algorithms 1 and 2, respectively. Like with Co-L1, the Co-
IRW-L1-ε algorithm uses sub-dictionary dependent weights λd

that are updated at each iteration t using a sparsity metric on
Ψdx

(t). But, like with IRW-L1, the Co-IRW-L1-ε algorithm
also uses diagonal weight matrices W (t)

d that are updated at
each iteration. As with both Co-L1 and IRW-L1, the compu-
tational burden of Co-IRW-L1-ε is dominated by the L2+L1
minimization problem in line 4 of Algorithm 3, which is readily
solved by existing techniques like MFISTA.

Algorithm 3. The Real-Valued Co-IRW-L1-ε Algorithm

1: input : {Ψd}Dd=1, Φ, y, γ > 0, εd > 0 ∀d, ε ≥ 0,

2: initialization : λ
(1)
d = 1 ∀d,W (1)

d = I ∀d
3: for t = 1, 2, 3, . . .

4: x(t) ← arg min
x

γ‖y−Φx‖22 +
D∑

d=1

λ
(t)
d ‖W (t)

d Ψdx‖1

5: λ
(t+1)
d ←

[
1

Ld

Ld∑
l=1

log

(
1 + ε+

|ψT
d,lx

(t)|
εd

)]−1

+ 1,

∀d = 1, . . . , D

6: W
(t+1)
d ← diag

{
1

εd(1 + ε) + |ψT
d,1x

(t)| , · · · ,

1

εd(1 + ε) + |ψT
d,Ld

x(t)|

}
, ∀d

7: end
8: output : x(t)

The Co-IRW-L1-ε algorithm can be interpreted in various
ways, as we detail below. For clarity, we first consider fixed reg-
ularization parameters ε � [ε1, . . . , εD]T and later, in Sec. III-F,
we describe how they can be adapted at each iteration, leading
to the Co-IRW-L1 algorithm. Also, to simplify the develop-
ment, we first consider the real-valued case and discuss the
complex-valued case later, in Sec. III-G.

Theorem 3 (Co-IRW-L1-ε): The real-valued Co-IRW-L1-ε
algorithm in Algorithm 3 has the following interpretations:

1) MM applied to (2) under the log-sum-log penalty

Rlsl(x; ε, ε) �
D∑

d=1

Ld∑
l=1

log

[ (
εd(1 + ε) + |ψT

d,lx|
)

×
Ld∑
i=1

log

(
1 + ε+

|ψT
d,ix|
εd

)]
, (53)

2) as ε→ 0 and εd → 0 ∀d, MM applied to (2) under the
�0 + �0,0 penalty

RD
0,00(x) � ‖Ψx‖0 +

D∑
d=1

Ld 1‖Ψdx‖0>0, (54)

3) MM applied to Bayesian MAP estimation under an
AWGN likelihood and the hierarchical prior

p(x|λ; ε) ∝
D∏

d=1

Ld∏
l=1

λd

2εd

(
1 + ε+

|ψT
d,lx|
εd

)−(λd+1)

(55)

p(λ) =

D∏
d=1

p(λd), p(λd) ∝
{

1
λd

λd > 0

0 else
, (56)

where, when ε = 0, the variables zd=Ψdx ∈ R
Ld are i.i.d.

generalized-Pareto [44] given λd, and p(λd) is Jeffrey’s non-
informative hyperprior [15], [42] for the random shape param-
eter λd.

4) variational EM under an AWGN likelihood and the prior

p(x;λ, ε) ∝
D∏

d=1

Ld∏
l=1

λd − 1

2εd

(
1 + ε+

|ψT
d,lx|
εd

)−λd

(57)

where, when ε = 0, the variables zd=Ψdx ∈ R
Ld are i.i.d.

generalized-Pareto with deterministic shape parameter λd > 1
and scale parameter εd > 0.

Proof: See Sections III-A to III-E below. �
As with Co-L1, the MM interpretation implies convergence

(in the sense of an asymptotic stationary point condition) when
ε > 0, as detailed in Sec. III-B.

A. Log-Sum-Log MM Interpretation of Co-IRW-L1-ε

Consider the optimization problem

arg min
x

γ‖y −Φx|22 +Rlsl(x; ε, ε) (58)

with Rlsl defined in (53). We attack this optimization problem
using the MM approach detailed in Sec. II-A. The difference is
that now the function g2 is defined as

g2(v)

=

D∑
d=1

∑
k∈Kd

log

[
(εd(1 + ε) + vk)

∑
i∈Kd

log

(
1 + ε+

vi
εd

)]
(59)

=

D∑
d=1

[
Ld log

∑
i∈Kd

log

(
1 + ε+

vi
εd

)

+
∑
k∈Kd

log (εd(1 + ε) + vk)

]
, (60)

which has a gradient of

[∇g2(v(t))]k (61)

=

⎛
⎜⎜⎜⎝ Ld(k)∑

i∈Kd(k)

log

(
1 + ε+

v
(t)
i

εd(k)

) + 1

⎞
⎟⎟⎟⎠ 1

εd(k)(1 + ε) + v
(t)
k

(62)
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when d(k) �= 0 and otherwise [∇g2(v(t))]k = 0. Thus, recall-
ing (17), MM prescribes

v(t+1) =argmin
v∈C

D∑
d=1

∑
k∈Kd

⎛
⎜⎜⎜⎝ Ld∑

i∈Kd

log

(
1 + ε+

v
(t)
i

εd

) + 1

⎞
⎟⎟⎟⎠

×
(

vk

εd(1 + ε) + v
(t)
k

)
+ γ‖y − [0 Φ]v‖22, (63)

or equivalently

x(t+1) = argmin
x

D∑
d=1

Ld∑
l=1

λ
(t+1)
d

(
|ψT

d,lx|
εd(1 + ε) + |ψT

d,lx
(t)|

)

+ γ‖y −Φx‖22 (64)

for

λ
(t+1)
d =

[
1

Ld

Ld∑
l=1

log

(
1 + ε+

|ψT
d,lx

(t)|
εd

)]−1

+ 1, (65)

which coincides with Algorithm 3. This establishes Part 1 of
Theorem 3.

B. Convergence of Co-IRW-L1-ε

The convergence of Co-IRW-L1-ε (in the sense of an asymp-
totic stationary point condition) for ε > 0 can be shown using
the same procedure as in Sec. II-B. To do this, we only need
to verify that the gradient ∇g2 in (61) is Lipschitz continuous
when ε > 0, which we do in Appendix C.

C. Approximate �0 + �0,0 Interpretation of Co-IRW-L1-ε

Recalling the discussion in Sec. II-C, we now consider the
behavior of the Rlsl(x; ε, ε) regularizer in (53) as ε→ 0 and
εd → 0 ∀d. For this, it helps to decouple (53) into two terms:

Rlsl(x; ε, ε) =

D∑
d=1

Ld∑
l=1

log
(
εd(1 + ε) + |ψT

d,lx|
)

+
D∑

d=1

Ld∑
l=1

log

[
Ld∑
i=1

log

(
1 + ε+

|ψT
d,ix|
εd

)]
.

(66)

As εd → 0 ∀d, the first term in (66) contributes an infinite
valued “reward” for each pair (d, l) such that |ψT

d,lx| = 0,
or a finite valued cost otherwise. As for the second term,
we see that limε→0,εd→0

∑Ld

i=1 log
(
1 + ε+ |ψT

d,ix|/εd
)
= 0

if and only if |ψT
d,ix| = 0 ∀i ∈ {1, . . . , Ld}, i.e., if and only

if ‖Ψdx‖0 = 0. And when ‖Ψdx‖0 = 0, the second term in
(66) contributes Ld infinite valued rewards. In summary, as
ε→ 0 and εd → 0 ∀d, the first term in (66) behaves like
‖Ψx‖0 and the second term like the weighted �0,0 quasi-norm∑D

d=1 Ld1‖Ψdx‖0>0, as stated in (54). This establishes Part 2
of Theorem 3.

D. Bayesian MAP Interpretation of Co-IRW-L1-ε

To show that Co-IRW-L1-ε can be interpreted as Bayesian
MAP estimation under the hierarchical prior (55)–(56), we first
compute the prior p(x). To start,

p(x) =

∫
RD

p(λ)p(x|λ) dλ (67)

∝
D∏

d=1

∫ ∞

0

1

λd

Ld∏
l=1

λd

2εd

(
1 + ε+

|ψT
d,lx|
εd

)−(λd+1)

dλd.

(68)

Writing (1 + ε+ |ψT
d,lx|/εd)−(λd+1) = exp(−(λd + 1)Qd,l)

for Qd,l � log(1 + ε+ |ψT
d,lx|/εd), we get

p(x) ∝
D∏

d=1

1

(2εd)Ld

∫ ∞

0

λLd−1
d e−(λd+1)

∑Ld
l=1 Qd,l dλd.

(69)

Defining Qd �
∑Ld

l=1 Qd,l and changing the variable of inte-
gration to τd � λdQd, we find

p(x) ∝
D∏

d=1

e−Qd

(2εdQd)Ld

∫ ∞

0

τLd−1
d e−τd d τd︸ ︷︷ ︸
(Ld − 1)!

(70)

∝
D∏

d=1

⎡
⎣ 1

εd
∑Ld

i=1 log(1 + ε+
|ψT

d,ix|
εd

)

⎤
⎦Ld

×
Ld∏
l=1

1

1 + ε+
|ψT

d,lx|
εd

(71)

=

D∏
d=1

Ld∏
l=1

[(
εd(1 + ε) + |ψT

d,lx|
)

×
Ld∑
i=1

log

(
1 + ε+

|ψT
d,ix|
εd

)]−1

, (72)

which implies that

− log p(x) = const +Rlsl(x; ε, ε) (73)

for Rlsl(x; ε, ε) defined in (53).
Plugging (73) into (28), we see that

xMAP = arg min
x

γ‖y −Φx‖22 +Rlsl(x; ε, ε), (74)

which is equivalent to the optimization problem in (58). We
showed in Sec. III-A that, by applying the MM algorithm
to (58), we arrive at Algorithm 3. This establishes Part 3 of
Theorem 3.

E. Variational EM Interpretation of Co-IRW-L1-ε

To justify the variational EM (VEM) interpretation of Co-
IRW-L1-ε, we closely follow the approach used for Co-L1 in
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Sec. II-E. The main difference is that now the prior takes the
form of p(x;λ, ε) from (57). Thus, (42) becomes

log p(x;λ, ε)

=

D∑
d=1

Ld∑
l=1

[
log

(
λd − 1

εd

)
− λd log

(
1 + ε+

|ψT
d,lx|
εd

)]

+ const (75)

and by zeroing the gradient w.r.t. λ we see that the M step (43)
becomes

1

λ
(t+1)
d − 1

=
1

Ld
log

(
1 + ε+

|ψT
d,lx

(t)
MAP|

εd

)
, d = 1, . . . , D,

(76)

where again x(t)
MAP denotes the MAP estimate of x under λ =

λ(t). From (28) and (57), we see that

x
(t)
MAP = arg min

x

D∑
d=1

λ
(t)
d

Ld∑
l=1

log
(|ψT

d,lx|+ εd(1 + ε)
)

+ γ‖y −Φx‖22, (77)

which (for ε = 0) is a λ(t)-weighted version of the IRW-L1
log-sum optimization problem (recall Part 1 of Corollary 2).
To solve (77), we apply MM. With a small modification of the
MM derivation from Sec. II-A, we obtain the 2-step iteration

x
(i)
MAP = arg min

x
γ‖y −Φx‖22 +

D∑
d=1

λ
(t)
d ‖W (i)

d Ψdx‖1
(78)

W
(i+1)
d = diag

{
1

εd(1 + ε) + |ψT
d,1x

(i)| , · · · ,

1

εd(1 + ε) + |ψT
d,Ld

x(i)|

}
. (79)

By using only a single MM iteration per VEM iteration, the
MM index “i” can be rewritten as the VEM index “t,” in which
case the VEM algorithm becomes

x(t) = arg min
x

γ‖y −Φx‖22 +
D∑

d=1

λ
(t)
d ‖W (t)

d Ψdx‖1
(80)

W
(t+1)
d = diag

{
1

εd(1 + ε) + |ψT
d,1x

(t)| , . . . ,

1

εd(1 + ε) + |ψT
d,Ld

x(t)|

}
, ∀d (81)

λ
(t+1)
d =

[
1

Ld
log

(
1 + ε+

|ψT
d,lx

(t)|
εd

)]−1

+ 1, ∀d,

(82)

which matches the steps in Algorithm 3. This establishes Part 4
of Theorem 3.

F. Co-IRW-L1

Until now, we have considered the Co-IRW-L1-ε parameters
ε = [ε1, . . . , εD]T to be fixed and known. But it is not clear how
to set these parameters in practice. Thus, in this section, we
describe an extension of Co-IRW-L1-ε that adapts the ε vector
at every iteration. The resulting procedure, which we will refer
to as Co-IRW-L1, is summarized in Algorithm 4.

Algorithm 4. The Co-IRW-L1 Algorithm

1: input : {Ψd}Dd=1, Φ, y, γ > 0, ε ≥ 0
2: if Ψx ∈ R

L, useΛ = (1,∞) and log p(x;λ, ε) from (75);
if Ψx ∈ C

L, useΛ = (2,∞) and log p(x;λ, ε) from (84).
3: initialization : λ

(1)
d = 1 ∀d,W (1)

d = I ∀d
4: for t = 1, 2, 3, . . .

5: x(t) ← arg min
x

γ‖y −Φx‖22 +
D∑

d=1

λ
(t)
d ‖W (t)

d Ψdx‖1

6: (λ
(t+1)
d , ε

(t+1)
d )← arg max

λd∈Λ,εd>0
log p(x(t);λ, ε),

d = 1, . . . , D

7: W
(t+1)
d ← diag

{
1

ε
(t+1)
d (1 + ε) + |ψT

d,1x
(t)|

, · · · ,

1

ε
(t+1)
d (1 + ε) + |ψT

d,Ld
x(t)|

}
, ∀d

8: end
9: output : x(t)

Although there does not appear to be a closed-form solution
to the joint maximization problem in line 6 of Algorithm 4, it
is over two real parameters and thus can be solved numerically
without a significant computational burden.

Algorithm 4 can be interpreted as a generalization of the
VEM approach to Co-IRW-L1-ε that is summarized in Part 4
of Theorem 3 and detailed in Sec. III-E. Whereas Co-IRW-L1-
ε used VEM to estimate the λ parameters in the prior (57) for
a fixed value of ε, Co-IRW-L1 uses VEM to jointly estimate
(λ, ε) in (57). Thus, Co-IRW-L1 can be derived by repeat-
ing the steps in Sec. III-E, except that now the maximization
of log p(x;λ, ε) in (75) is performed jointly over (λ, ε), as
reflected by line 6 of Algorithm 4.

G. Co-IRW-L1 for Complex-Valued Ψdx

In Sections III-A-III-F, the analysis outputs Ψdx were
assumed to be real-valued. We now extend the previous results
to the case of complex-valued Ψdx. For this, we focus on
the Co-IRW-L1 algorithm, since Co-IRW-L1-ε follows as the
special case where ε is fixed at a user-supplied value.

Recalling that Co-IRW-L1 was constructed by generalizing
the VEM interpretation of Co-IRW-L1-ε, we reconsider this
VEM interpretation for the case of complex-valued Ψdx. In
particular, we assume an AWGN likelihood and the following
complex-valued extension of the prior (57):

p(x;λ, ε) ∝
D∏

d=1

Ld∏
l=1

(λd − 1)(λd − 2)

2πε2d

(
1 + ε+

|ψT
d,lx|
εd

)−λd

(83)
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which (for ε = 0) is i.i.d. generalized-Pareto on zd = Ψdx ∈
C

Ld with deterministic shape parameter λd > 2 and determin-
istic scale parameter εd > 0. In this case, the log-prior (75)
changes to

log p(x;λ, ε) = const +
D∑

d=1

Ld∑
l=1

[
log

(
(λd − 1)(λd − 2)

ε2d

)

−λd log

(
1 + ε+

|ψT
d,lx|
εd

)]
(84)

which is then maximized over (λ, ε) in line 6 of Algorithm 4.

IV. NUMERICAL RESULTS

We now present results from a numerical study into the per-
formance of the proposed Co-L1 and Co-IRW-L1 methods,
given as Algorithm 1 and Algorithm 4, respectively. Three
experiments are discussed below, all of which focus on the
problem of recovering an N -pixel image (or image sequence)
x from M -sample noisy compressed measurements y = Φx+
w, with M � N . In the first experiment, we recover syn-
thetic 2D finite-difference signals; in the second experiment,
we recover the Shepp-Logan phantom and the Cameraman
image; and in the third experiment, we recover dynamic MRI
sequences, also known as “cines.”

As discussed in Sec. I-D, Co-L1 can be considered as the
composite extension of the standard L1-regularized approach
to analysis CS, i.e., (2) under the non-composite L1 regular-
izer R(x) = ‖Ψx‖1. Similarly, Co-IRW-L1 can be considered
as the composite extension of the standard IRW approach to
the same problem. Thus, we compare our proposed composite
methods against these two non-composite methods, referring to
them simply as “L1” and “IRW-L1” in the sequel.

A. Experimental Setup

For the dynamic MRI experiment, we constructed Φ using
randomly sub-sampled Fourier measurements at each time
instant with a varying sampling pattern across time. More
details are given in Sec. IV-D. For the other experiments,
we used a “spread spectrum” operator [45] of the form
Φ =DFC, where C ∈ R

N×N is diagonal matrix with i.i.d
equiprobable ±1 entries, F ∈ C

N×N is the discrete Fourier
transform (DFT), and d ∈ R

M×N is a row-selection operator
that selects M rows of FC ∈ C

N×N uniformly at random.
In all cases, the noise w was zero-mean, white, and circular

Gaussian (i.e., independent real and imaginary components of
equal variance). Denoting the noise variance by σ2, we define
the measurement signal-to-noise ratio (SNR) as ‖y‖22/(Mσ2)
and the recovery SNR of signal estimate x̂ as ‖x‖22/‖x− x̂‖22.

Note that, when x is real-valued, the measurements y will
be complex-valued due to the construction of Φ. Thus, to allow
the use of real-valued L1 solvers, we split each complex-valued
element of y (and the corresponding rows of Φ and w) into
real and imaginary components, resulting in a real-only model.
However, to avoid possible redundancy issues caused by the
conjugate symmetry of the noiseless Fourier measurements

Fig. 1. Examples of the 2D finite-difference signal X used in the first exper-
iment. On the left is a realization generated under a transition ratio of α =
14/14 = 1, and on the right is a realization generated under α = 27/1 = 27.

FCx, we ensured that D selected at most one sample from
each complex-conjugate pair.

We used MFISTA [33] to implement the L2+L1 optimiza-
tion needed for all methods. The maximum number of outer,
reweighting iterations for Co-L1 and Co-IRW-L1 was set to 16,
while the maximum number of inner MFISTA iterations was
set at 60, with early termination if ‖x(t) − x(t−1)‖2/‖x(t)‖2 <
1× 10−6. In all experiments, we used γ = 1/σ2 (as motivated
before (6)) and ε = 0 = ε.

B. Synthetic 2D Finite-Difference Signals

Our first experiment aims to answer the following question.
If we know that the sparsity of Ψ1x differs from the sparsity of
Ψ2x, then can we exploit this knowledge for signal recovery,
even if we don’t know how the sparsities are different? This is
precisely the goal of composite regularizations like (4).

To investigate this question, we constructed 2D signals with
finite-difference structure in both the vertical and horizon-
tal domains. In particular, we constructed x = x11

T + 1xT
2 ,

where both x1 ∈ R
48 and x2 ∈ R

48 are finite-difference sig-
nals and 1 ∈ R

48 contains only ones. The locations of the
transitions in x1 and x2 were selected uniformly at random and
the amplitudes of the transitions were drawn i.i.d. zero-mean
Gaussian. The total number of transitions in x1 and x2 was
fixed at 28, but the ratio of the number of transitions in x1 to the
number in x2, denoted by α, was varied from 1 to 27. The case
α = 1 corresponds to x having 14 vertical transitions and 14
horizontal transitions, while the case α = 27 corresponds to x
having 27 vertical transitions and a single horizontal transition.
(See Fig. 1 for examples.) Finally, the signal x ∈ R

N appearing
in our model (1) was created by vectorizing x, yielding a total
of N = 482 = 2304 pixels.

Given x, noisy observations y = Φx+w were generated
using the random “spread spectrum” measurement operator Φ
described earlier at a sampling ratio of M/N = 0.25, with
additive white Gaussian noise (AWGN) w scaled to achieve
a measurement SNR of 40 dB. All recovery algorithms used
vertical and horizontal finite-difference operators Ψ1 and Ψ2,
respectively, with Ψ = [ΨT

1 ,Ψ
T
2 ]

T in the non-composite case.
Figure 2 shows recovery SNR versus α for the non-

composite L1 and IRW-L1 techniques and our proposed Co-L1
and Co-IRW-L1 techniques. Each SNR in the figure represents
the median value from 25 trials, each using an independent
realization of the triple (Φ,x,w). The figure shows that the
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Fig. 2. Recovery SNR versus transition ratio α for the first experiment, which
used 2D finite-difference signals, spread-spectrum measurements at M/N =
0.25, AWGN at 40 dB, and finite-difference operators for Ψd. Each recovery
SNR represents the median value from 25 independent trials.

Fig. 3. Left: the real-valued cropped Cameraman image of size N = 96×
104. Right: the complex-valued Shepp-Logan phantom of size N = 96× 96.
For the Shepp-Logan phantom, the real and imaginary parts of x were identical,
and only the real part is shown here.

recovery SNR of both L1 and IRW-L1 is roughly invariant to
the transition ratio α, which makes sense because the overall
sparsity of Ψx is fixed at 28 transitions by construction. In con-
trast, the recovery SNRs of Co-L1 and Co-IRW-L1 vary with
α, with higher values of α yielding a more structured signal
and thus higher recovery SNR when this structure is properly
exploited.

C. Cameraman and Shepp-Logan Recovery

For our second experiment, we investigate algorithm per-
formance versus sampling ratio M/N when recovering the
well-known Shepp-Logan phantom and Cameraman images.
In particular, we used the N = 96× 104 cropped real-valued
Cameraman image and the N = 96× 96 complex-valued
Shepp-Logan phantom shown in Fig. 3, and we constructed
compressed noisy measurements y using spread-spectrum Φ
and AWGN w at a measurement SNR of 30 dB in the
Cameraman case and 40 dB in the Shepp-Logan case.

For the Cameraman image, we constructed the analy-
sis operator Ψ ∈ R

8N×N by concatenating undecimated db1
and db2 2D wavelet transforms (UWT-db1-db2) with one
level of decomposition. For the Shepp-Logan phantom image,

Fig. 4. Recovery SNR versus sampling ratio M/N for the cropped Cameraman
image. Measurements were constructed using a spread-spectrum operator and
AWGN at 30 dB SNR, and recovery used UWT-db1-db2 at one level of decom-
position. Each SNR value represents the median value from 7 independent
trials.

Fig. 5. Recovery SNR versus sampling ratio M/N for the Shepp-Logan phan-
tom. Measurements were constructed using a spread-spectrum operator and
AWGN at 40 dB SNR, and recovery used UWT-db1 at one level of decom-
position. Each recovery SNR represents the median value from 7 independent
trials.

we constructed the analysis operator Ψ ∈ R
4N×N from the

undecimated db1 2D wavelet transform (UWT-db1) with one
level of decomposition. The Co-L1 and Co-IRW-L1 algo-
rithms treated each of the sub-bands of the wavelet trans-
form as a separate sub-dictionary Ψd in their composite
regularizers.

Fig. 4 shows recovery SNR versus sampling ratio M/N
for the Cameraman image, while Fig. 5 shows the same for
the Shepp-Logan phantom. Each recovery SNR represents the
median value from 7 independent realizations of (Φ,w). Both
figures show that Co-L1 and Co-IRW-L1 outperform their non-
composite counterparts, especially at low sampling ratios; the
gap between Co-IRW-L1 and and IRW-L1 closes at M/N ≥
0.35 for the Shepp-Logan phantom.



AHMAD AND SCHNITER: ITERATIVELY REWEIGHTED �1 APPROACHES TO SPARSE COMPOSITE REGULARIZATION 231

Fig. 6. Left: A 144× 85 spatial slice from the 144× 85× 48 dMRI dataset.
Middle: The 144× 48 spatio-temporal slice used for the dMRI experiment.
Right: a realization of the variable-density k-space sampling pattern, versus
time, at M/N = 0.30.

D. Dynamic MRI

For our third experiment, we investigate a simplified version
of the “dynamic MRI” (dMRI) problem. In dMRI, one attempts
to recover a sequence of MRI images, known as an MRI
cine, from highly under-sampled “k-t-domain” measurements
{yt}Tt=1 constructed as

yt = Φtxt +wt, (85)

where xt ∈ R
N1N2 is a vectorized (N1 ×N2)-pixel image at

time t, Φt ∈ R
M1×N1N2 is a sub-sampled Fourier operator

at time t, and wt ∈ R
M1 is AWGN. This real-valued Φt is

constructed from the complex-valued N1N2 ×N1N2 2D DFT
matrix by randomly selecting 0.5M1 rows and then splitting
each of those rows into its real and imaginary components.
Here, it is usually advantageous to vary the sampling pattern
with time and to sample more densely at low frequencies, where
most of the signal energy lies (e.g., [46]). Putting (85) into the
form of our measurement model (1), we get⎡

⎢⎣y1...
yT

⎤
⎥⎦

︸ ︷︷ ︸
y

=

⎡
⎢⎣Φ1

. . .
ΦT

⎤
⎥⎦

︸ ︷︷ ︸
Φ

⎡
⎢⎣x1

...
xT

⎤
⎥⎦

︸ ︷︷ ︸
x

+

⎡
⎢⎣w1

...
wT

⎤
⎥⎦

︸ ︷︷ ︸
w

, (86)

with total measurement dimension M = M1T and total signal
dimension N = N1N2T .

As ground truth, we used a high-quality dMRI cardiac cine
x of dimensions N1 = 144, N2 = 85, and T = 48. The left
pane in Fig. 6 shows a 144× 85 image from this cine extracted
at a single time t, while the middle pane shows a 144× 48
spatio-temporal profile from this cine extracted at a single hor-
izontal location. This middle pane shows that the temporal
dimension is much more structured than the spatial dimen-
sion, suggesting that there may be an advantage to weighting
the spatial and temporal dimensions differently in a composite
regularizer.

To test this hypothesis, we constructed an experiment where
the goal was to recover the 144× 48 spatio-temporal profile

Fig. 7. Recovery SNR versus sampling ratio M/N for the dMRI exper-
iment. Each SNR value represents the median value from 7 independent
trials. Measurements were constructed using variable-density sub-sampled
Fourier operator and AWGN at 30 dB measurement SNR, and recovery used
a concatenation of db1-db3 orthogonal 2D wavelet bases at two levels of
decomposition.

shown in the middle pane of Fig. 6, as opposed to the full 3D
cine, from subsampled k-t-domain measurements. For this pur-
pose, we constructed measurements {y}Tt=1 as described above,
but with N2 = 1 (and thus a 1D DFT), and used a variable den-
sity random sampling method. The right pane of Fig. 6 shows a
typical realization of the sampling pattern versus time. Finally,
we selected the AWGN variance that yielded measurement
SNR = 30 dB.

For the non-composite L1 and IRW-L1 algorithms, we con-
structed the analysis operator Ψ ∈ R

3N×N from a vertical
concatenation of the db1-db3 orthogonal 2D discrete wavelet
bases, each with two levels of decomposition. For the Co-
L1 and Co-IRW-L1 algorithms, we assigned each of the 21
sub-bands in Ψ to a separate sub-dictionary Ψd ∈ R

Ld×N .
Note that the sub-dictionary size Ld decreases with the level
in the decomposition. By weighting certain sub-dictionaries
differently than others, the composite regularizers can exploit
differences in spatial versus temporal structure.

Fig. 7 shows recovery SNR versus sampling ratio M/N
for the four algorithms under test. Each reported SNR rep-
resents the median SNR from 7 independent realizations of
(Φ,w). The figure shows that Co-L1 outperforms its non-
composite counterparts at all tested values of M/N , while Co-
IRW-L1 outperforms its noncomposite counterpart for M/N ≤
0.4. Although not shown here, we obtained similar results
with other cine datasets and with an UWT-db1-based analysis
operator.

For qualitative comparison, Fig. 8 shows the spatio-temporal
profile recovered by each of the four algorithms under test at
M/N = 0.3 for a typical realization of (Φ,w). Compared to
the ground-truth profile shown in the middle pane of Fig. 6, the
profiles recovered by L1 and IRW-L1 show visible artifacts that
appear as vertical streaks. In contrast, the profiles recovered by
Co-L1 and Co-IRW-L1 preserve most of the features present in
the ground-truth profile.
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Fig. 8. Recovered dMRI spatio-temporal profiles at M/N = 0.30.

TABLE I
COMPUTATION TIMES (IN SECONDS) FOR THE PRESENTED EXPERIMENTAL

STUDIES. THE TIMES ARE AVERAGED OVER TRIAL RUNS AND DIFFERENT

SAMPLING RATIOS

E. Algorithm Runtime

Table I reports the average runtimes of the L1, Co-L1,
IRW-L1, and Co-IRW-L1 algorithms for the experiments in
Sections IV-C and IV-D. There we see that the runtime of Co-
L1 was 1.29× that of L1 for the worst case, and the runtime of
Co-IRW-L1 was 1.33× that of IRW-L1 for the worst case.

F. Choice of Dictionary

In our last experiment, we investigate the performance of
Co-IRW-L1 versus choice of {Ψd}. For this, we constructed
{Ψd} using a concatenation of either undecimated or orthogo-
nal 2D Daubechies wavelet transforms, and we varied both the
number of transforms in the concatenation as well as the num-
ber of levels in the wavelet decomposition. We then attempted
to recover the Cameraman image from spread-spectrum mea-
surements at M/N = 0.4 in AWGN at 30 dB SNR. As usual,
the Co-IRW-L1 algorithm treated each wavelet sub-band as a
separate sub-dictionary.

The recovery SNR for various choices of Ψ is shown in
Fig. 9. For the case of orthogonal wavelet transforms (OWT),
a significant performance improvement was observed in going
from one to two transforms, regardless of the wavelet decom-
position level. However, a slight performance degradation was
observed when concatenating more than two OTWs. Moreover,
the effect of varying the level of decomposition was mild
unless no concatenation (i.e., db1) was used. For the undeci-
mated wavelet transform (UWT) case, the recovery SNR was
essentially invariant to both the level of decomposition and the

Fig. 9. Co-IRW-L1 recovery SNR for different choices of Ψd. Measurements
were constructed from the cropped cameraman image using a spread-spectrum
operator, AWGN at 30 dB SNR, and sampling ratio M/N = 0.40. Here, OWT
represents a concatenation of 2D orthogonal Daubechies wavelet transforms,
UWT represents a concatenation of 2D undecimated Daubechies wavelet trans-
forms, and “lvl” denotes the level of decomposition. Each SNR value represents
the median value from 3 independent trials.

number of concatenated transforms, with only a slight degra-
dation when five transforms were concatenated. Overall, the
UWT performed significantly better than the OWT. Similar
trends were observed for the Co-L1 algorithm in experiments
not shown here.

V. CONCLUSIONS

Motivated by the observation that a given signal x admits
sparse representations in multiple dictionaries Ψd but with
varying levels of sparsity across dictionaries, we proposed two
new algorithms for the reconstruction of (approximately) sparse
signals from noisy linear measurements. Our first algorithm,
Co-L1, extends the well-known lasso algorithm [3], [4], [6]
from the L1 penalty ‖Ψx‖1 to composite L1 penalties of the
form (4) while self-adjusting the regularization weights λd. Our
second algorithm, Co-IRW-L1, extends the well-known IRW-
L1 algorithm [9], [12], [13] to the same family of composite
penalties while self-adjusting the regularization weights λd and
the regularization parameters εd.

We provided several interpretations of both algorithms:
i) majorization-minimization (MM) applied to a non-convex
log-sum-type penalty, ii) MM applied to an approximate �0-
type penalty, iii) MM applied to Bayesian MAP inference under
a particular hierarchical prior, and iv) variational expectation-
maximization (VEM) under a particular prior with determin-
istic unknown parameters. Also, we leveraged the MM inter-
pretation to establish convergence in the form of an asymptotic
stationary point condition [19]. Furthermore, we noted that the
Bayesian MAP and VEM viewpoints yield novel interpretations
of the original IRW-L1 algorithm. Finally, we present a detailed
numerical study that suggests that our proposed algorithms
yield significantly improved recovery SNR when compared to
their non-composite L1 and IRW-L1 counterparts with a modest
(e.g., 1.3×) increase in runtime.
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APPENDIX A
LIPSCHITZ CONTINUITY OF CO-L1 GRADIENT

In this appendix, we establish the Lipschitz continuity of∇g2
from (18) in the case that ε > 0. We first recall that, for ∇g2
to be Lipschitz continuous over the domain v ∈ C, there must
exist some constant β such that, for all v,v′ ∈ C,

‖∇g2(v)−∇g2(v′)‖22 ≤ β‖v − v′‖22 (87)

From (18), we have

‖∇g2(v)−∇g2(v′)‖22

=

L∑
k=1

(
Ld(k)

ε+
∑

i∈Kd(k)
vi
− Ld(k)

ε+
∑

i∈Kd(k)
v′i

)2

(88)

=

L∑
k=1

L2
d(k)

[∑
i∈Kd(k)

(v′i − vi)
]2

(
ε+

∑
i∈Kd(k)

vi

)2 (
ε+

∑
i∈Kd(k)

v′i
)2 (89)

=

D∑
d=1

Ld∑
l=1

L2
d

[∑Ld

i=1(u
′
d,i − ud,i)

]2
(
ε+

∑
i∈Kd(k)

vi

)2 (
ε+

∑
i∈Kd(k)

v′i
)2 . (90)

We can then upper bound the latter as follows.

‖∇g2(v)−∇g2(v′)‖22 ≤
D∑

d=1

Ld∑
l=1

L2
d

ε4

[
Ld∑
i=1

(u′
d,i − ud,i)

]2
(91)

≤
D∑

d=1

L3
d

ε4

[
Ld∑
i=1

|u′
d,i − ud,i|

]2
(92)

≤
D∑

d=1

L4
d

ε4

Ld∑
i=1

(u′
d,i − ud,i)

2 (93)

≤ L4
max

ε4

L∑
k=1

(v′k − vk)
2 (94)

≤ L4
max

ε4

L+N∑
k=1

(v′k − vk)
2 (95)

=
L4
max

ε4
‖v − v′‖22, (96)

where (91) follows from the fact that ud,l ≥ 0 ∀d, l (accord-
ing to (13)), (93) follows from the fact that ‖x‖1 ≤

√
N‖x‖2

for x ∈ C
N , and (94) uses Lmax � maxd Ld. Comparing (96)

to (87), we see that ∇g2 from (18) is Lipschitz continuous.

APPENDIX B
EQUIVALENCE OF LOG-SUM AND �0 MINIMIZATION

In this appendix, we establish that the log-sum optimization
(24) becomes equivalent to the �0 optimization (25) as ε→ 0.
We first note that, for any ε > 0,

1

log(1/ε)

N∑
n=1

log(ε+ |xn|) (97)

=
1

log(1/ε)

⎡
⎣ ∑
n: xn=0

log(ε) +
∑

n: xn �=0

log(ε+ |xn|)
⎤
⎦
(98)

= ‖x‖0 −N +

∑
n: xn �=0 log(ε+ |xn|)

log(1/ε)
, (99)

where ‖x‖0 is defined as the counting norm, i.e., ‖x‖0 � |{xn :
xn �= 0}|. Applying this result to the objective function in (24),
we have

γ‖y −Φx‖22 +
N∑

n=1

log(ε+ |xn|)

∝ γ

log(1/ε)︸ ︷︷ ︸
� γ′

‖y −Φx‖22 + ‖x‖0 −N +

∑
n: xn �=0

log(ε+ |xn|)

log(1/ε)
.

(100)

Clearly the global scaling and offset by N in (100) are incon-
sequential to the minimization in (24). Furthermore, by making
ε > 0 arbitrarily small, we can make the last term in (100) arbi-
trarily small4 and thus negligible compared to the other terms.
It is in this sense that we say that (24) is equivalent to (25) as
ε→ 0.

APPENDIX C
LIPSCHITZ CONTINUITY OF CO-IRW-L1-ε GRADIENT

In this appendix, we establish the Lipschitz continuity of
∇g2 from (61) in the case that ε > 0, recalling the Lipschitz
definition (87). To ease the exposition, we focus on the L = 1
case, noting that a similar (but more tedious) technique can be
applied to the general case.

From the L = 1 case of (61), we have

|∇g2(v)−∇g2(v′)|2

=

[(
1

log(1 + ε+ v
ε1
)
+ 1

)
1

ε1(1 + ε) + v

−
(

1

log(1 + ε+ v′
ε1
)
+ 1

)
1

ε1(1 + ε) + v′

]2
(101)

= [A+B]
2 (102)

≤ [|A|+ |B|]2 ≤ 2
[
A2 +B2

]
, (103)

since ‖x‖1 ≤
√
N‖x‖2 for x ∈ C

N , and where

4Note that, as ε → 0, the numerator of the last term in (100) converges to the
finite value

∑
n: xn �=0 log(|xn|) while the denominator grows to +∞.



234 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 1, NO. 4, DECEMBER 2015

A � 1

ε1(1 + ε) + v
− 1

ε1(1 + ε) + v′
(104)

B � 1

(ε1(1 + ε) + v) log(1 + ε+ v
ε1
)

− 1

(ε1(1 + ε) + v′) log(1 + ε+ v′
ε1
)
. (105)

Examining A2, we find that

A2 =

(
1

ε1(1 + ε) + v
− 1

ε1(1 + ε) + v′

)2

(106)

=

(
ε1(1 + ε) + v′ − [ε1(1 + ε) + v]

[ε1(1 + ε) + v][ε1(1 + ε) + v′]

)2

(107)

≤ (v′ − v)2/ε41 (108)

since ε1, ε > 0 and v, v′ ≥ 0. Next, we write B2 as

B2 =
1

ε21

(
1

α log(α)
− 1

α′ log(α′)

)2

(109)

=
1

ε21

(
α′ log(α′)− α log(α)

α log(α)α′ log(α′)

)2

(110)

with α � 1 + ε+ v
ε1

and α′ � 1 + ε+ v′
ε1

, and realize

α′ log(α′)− α log(α)

= (α+
v′ − v

ε1
) log(α′)− α log(α) (111)

= α log(α′)− α log(α) +
v′ − v

ε1
log(α′) (112)

which implies that

B2 =
1

ε21

⎛
⎜⎜⎜⎜⎝

1

α′ log(α)
− 1

α′ log(α′)︸ ︷︷ ︸
� B1

+
(v′ − v)/ε1
αα′ log(α)︸ ︷︷ ︸

� B2

⎞
⎟⎟⎟⎟⎠

2

(113)

≤ [|B1|+ |B2|]2
ε21

≤ 2
[
B2

1 +B2
2

]
ε21

. (114)

Examining B2
1 we find

B2
1 =

1

α′2

(
1

log(α)
− 1

log(α′)

)2

(115)

=
1

α′2

(
log(α′)− log(α)

log(α) log(α′)

)2

(116)

=
1

α′2
log(α′/α)2

log(α)2 log(α′)2
. (117)

Because ε1, ε > 0 and v, v′ ≥ 0, we have that α, α′ > 1 and
log(α)2 ≥ log(1 + ε) and log(α′)2 ≥ log(1 + ε), so that

B2
1 ≤

log(α′/α)2

log(1 + ε)4
. (118)

Moreover,

log(α′/α)2 = log

(
α+ v′−v

ε1

α

)2

(119)

= log

(
1 +

v′ − v

ε1α

)2

(120)

≤ max

{(
v′ − v

ε1α

)2

,

(
v′ − v

ε1α+ v′ − v

)2
}
(121)

=
(v′ − v)2

ε21
max

{
1

α2
,

1

(α′)2

}
(122)

≤ (v′ − v)2

ε21
, (123)

where (121) used the property that x
1+x ≤ log(1 + x) ≤ x for

x > −1, and (123) used α, α′ > 1. Finally, we have

B2
2 =

(v′ − v)2

ε21(αα
′)2 log(1 + ε+ v/ε1)2

(124)

≤ (v′ − v)2

ε21 log(1 + ε)2
(125)

where the latter step used α, α′ > 1 and 1 + ε > 0 and v/ε1 ≥
0. Putting together (103), (108), (114), (118), (123) and (125),
we see that there exists β > 0 such that

|∇g2(v)−∇g2(v′)|2 ≤ β(v′ − v)2 ∀(v′, v) ∈ C, (126)

implying that ∇g2 is Lipschitz continuous.
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