Efficient Multi-Carrier Communication over Doubly Spread Channels

Phil Schniter

June 2009

(Joint work with Mr. Sungjun Hwang and Dr. Sib Das)

Outline:

This talk focuses on multicarrier communication over doubly spread channels:

- Modulation/demodulation for ICI shaping:
 - motivation,
 - max-SINR design,
 - performance.
- Receiver architectures for doubly spread channels:
 - turbo reception,
 - noncoherent equalization,
 - tree search,
 - sparsity.

CP-OFDM:

Principal advantage:

• Low-complexity demod with delay-spreading (i.e., freq selective) chans.

Some disadvantages:

- Sensitive to Doppler-spreading (i.e., time selective) channels.
- Loss of spectral efficiency due to the insertion of guards. What if we increased N relative to L (i.e., $P \triangleq \frac{N}{L} \gg 4$)?
 - Complexity increases to $1 + \log_2 P + \log_2 L$ $\frac{\text{mults}}{\text{QAM symbol}}...$ not bad.
 - Reduced subcarrier spacing \Rightarrow more sensitive to Doppler spread!
- Slow spectral roll-off causes interference to adjacent-band systems. Improves with raised-cosine pulse, but at further loss in efficiency:

• High peak-to-average power ratio (PAPR).

Question:

Can we fix CP-OFDM's

- sensitivity to Doppler spread
- loss in spectral efficiency, and
- slow spectral roll-off,

without spoiling its $\mathcal{O}(\log_2 L)$ $\frac{\text{mults}}{\text{QAM symbol}}$ complexity scaling?

Question:

Can we fix CP-OFDM's

- sensitivity to Doppler spread
- loss in spectral efficiency, and
- slow spectral roll-off,

without spoiling its $\mathcal{O}(\log_2 L)$ $\frac{\text{mults}}{\text{QAM symbol}}$ complexity scaling?

Yes!

Re-think the role of "pulse shaping" in multi-carrier modulation...

Rectangular Pulses:

A standard CP-OFDM symbol can be recognized as a sum of N infinite-length complex exponentials windowed by a rectangular pulse of width $N\!+\!L\!-\!1$.

⇒ *Dirichlet sinc* in DTFT domain, whose slow side-lobe decay causes high sensitivity to Doppler spreading:

Smooth Overlapping Pulses:

What if we applied a *smooth* window instead?

The main-lobe may be wider but the sidelobes decay more quickly.

Thus, possibly stronger interference from adjacent subcarriers, but much less interference from all other subcarriers, even under large Doppler spreads:

Non-(Bi)Orthogonal FDM:

The benefits of (Bi)Orthogonal FDM are realized only when

- the channel varys slowly enough, and
- spectral efficiency is appropriately reduced.

With a properly-designed Non-Orthogonal FDM, we can

- tolerate large delay and Doppler spreads, and
- communicate at Nyquist rate (or above),

by allowing

a short span of ISI/ICI,

which can be handled by near-optimal, yet low-complexity, equalization.

Thus, we advocate ISI/ICI shaping rather than ISI/ICI suppression.

Visualizing the Frequency-Domain Channel Matrix:

A toy example under large Doppler spread:

rectangular pulses

smooth pulses

Dot size proportional to log-magnitude of ICI coefficient.

Smooth Overlapping Pulses:

Challenge: The use of smooth overlapping pulses potentially causes both inter-carrier interference (ICI) and inter-symbol interference (ISI):

$$m{x}(i) = \sum_{q=-\infty}^{\infty} m{H}(i,q) \ m{s}(i-q) + m{z}(i).$$
 Difficult to equalize!

One solution: Design the pulse shapes with the goal of...

- 1. Completely suppressing ISI: $\mathbf{H}(i,q)|_{q\neq 0} = \mathbf{0}$.
- 2. Allowing ICI only within a radius of $D \ll N$ subcarriers. (Often D = 1.)

$$oldsymbol{x}(i) = oldsymbol{R} + oldsymbol{Not difficult to equalize}.$$

Receiver Pulse-Shaping:

Though so far we've considered a non-rectangular transmission pulse $\{a_n\}$,

$$t_n = \sum_{i=-\infty}^{\infty} a_{n-iN_s} \sum_{k=0}^{N-1} s_k(i) e^{j\frac{2\pi}{N}kn}, \qquad n = -\infty \dots \infty,$$

we can use, in addition, a non-rectangular reception pulse $\{b_n\}$:

$$x_k(i) = \sum_{n=-\infty}^{\infty} r_{n-iN_s} b_n e^{-j\frac{2\pi}{N}kn}, \qquad k = 0...N-1.$$

Above, N_s specifies the OFDM symbol period.

- Modulation efficiency $\eta \triangleq \frac{N}{N_s} \frac{\text{QAM symbols}}{\text{sec Hz}}$
- For OFDM, $N_s = N + L 1$, but now there is no constraint on $N_s!$

We focus on $N_s = N \Leftrightarrow \text{no guard interval} \Leftrightarrow \eta = 1$.

Pulse Design to Maximize SINR:

Writing the received signal energy components due to

$$\mathcal{E}_s = \sum_{(q,k,l)\in\blacksquare} \mathrm{E}\{|H_{k,l}(\cdot,q)|^2\}$$
 "signal" and
$$\mathcal{E}_i = \sum_{(q,k,l)\in\blacksquare} \mathrm{E}\{|H_{k,l}(\cdot,q)|^2\}$$
 "interference" (ISI+

$$\mathcal{E}_i = \sum_{(q,k,l)\in\blacksquare} \mathrm{E}\{|H_{k,l}(\cdot,q)|^2\}$$
 "interference" (ISI+ICI)

where
$$\{ {\pmb H}(\cdot,q) \} =$$
 ... don't care signal

we can write
$$SINR = \frac{\mathcal{E}_s}{\mathcal{E}_i + \mathcal{E}_n} = \frac{\boldsymbol{a}^H \boldsymbol{P}_1(\boldsymbol{b}) \boldsymbol{a}}{\boldsymbol{a}^H \boldsymbol{P}_2(\boldsymbol{b}) \boldsymbol{a}} = \frac{\boldsymbol{b}^H \boldsymbol{P}_3(\boldsymbol{a}) \boldsymbol{b}}{\boldsymbol{b}^H \boldsymbol{P}_4(\boldsymbol{a}) \boldsymbol{b}}$$

where

a= transmission pulse coefficients

b = reception pulse coefficients

 $P_1(\cdot)$, $P_2(\cdot)$, $P_3(\cdot)$, $P_4(\cdot)$ = matrices dependent on scattering fxns & SNR.

⇒ SINR-maximizing pulses are generalized eigenvectors.

Max-SINR Pulse Examples:

ISI/ICI Energy Profiles:

 $D=1,~{\rm SNR}=15{\rm dB},~L=64,~f_{\rm D}T_c=7.6\times 10^{-4},~N=256,~{\rm Jakes.}$ (For example, RF: $f_c=20{\rm GHz},~{\rm BW=3MHz},~T_h=5.4\mu{\rm s},~v=120{\rm km/hr.})$

ISI/ICI Energy Profiles:

 $D=1, \ {\sf SNR}=30 {\sf dB}, \ L=128, \ f_{\sf D}T_c=7.6\times 10^{-4}, \ N=512, \ {\sf Jakes}.$ (For example, UW: $f_c=13 {\sf kHz}, \ {\sf BW}{=}10 {\sf kHz}, \ T_h=7 {\sf ms}, \ f_d=15 {\sf Hz}.$)

Outage Capacity vs $Nf_{\rm D}T_s$ for various ICI-radii D:

- The outage-capacity optimal D obeys $D \approx \lfloor N f_{\rm D} T_s \rceil !$
- ICI shaping is better than ICI suppression when $2f_{\rm D}T_s \geq \frac{1}{N}$.

Equalization of ICI:

Coherent approaches (i.e., known channel):	mults QAM symbol
1. Viterbi MLSE [Matheus/Kammeyer GLOBE 97]	$\mathcal{O}(\mathcal{S} ^DD)$
2. Soft Iterative [Das/Schniter Asilomar 04]	$\mathcal{O}(D^2)$
3. Linear MMSE [Rugini/Banelli/Leus SPL 05]	$\mathcal{O}(D^2)$
4. MMSE DFE [Rugini/Banelli/Leus SPAWC 05]	$\mathcal{O}(D^2)$
5. Tree Search MLSD [Hwang/Schniter SPAWC 06]	$\mathcal{O}(D^2)$
Non-coherent approaches (i.e., unknown channel):	
1. MLSD [Hwang/Schniter WUWNet 07]	$\mathcal{O}(D^2L^2)$
2. Soft MAP-Inspired [Hwang/Schniter Asilomar 07]	$\mathcal{O}(D^2L^2)$
3. Soft EM-Inspired [Hwang/Schniter SPAWC 09]	$\mathcal{O}(D\log L)$

Noncoherent Turbo Equalization:

- Large performance gains are possible through the use of sophisticated coding schemes (e.g., LDPC).
- For complexity reasons, noncoherent decoding is split into
 - 1. noncoherent equalization, which leverages channel structure,
 - 2. decoding, which leverages the code structure.
- By *iterating* the two steps ("turbo equalization"), we hope to get near-optimal noncoherent decoding with practical complexity.

Note: Doing so requires soft equalization (and soft decoding).

Soft Noncoherent Equalization:

By "soft noncoherent equalization" we mean computing coded-bit LLRs in the presence of an unknown channel.

Several approaches:

- 1. Joint equalization/chan-est (MAP inspired)
- 2. Iterative equalization & chan-est (EM inspired)
- 3. Iterative equalization & chan-est (ad hoc)
- 4. Non-iterative equalization (with pilot-aided channel estimation)

1) MAP-Inspired Soft Noncoherent Equalization:

The soft equalizer needs to calculate

$$L_{e}(b_{k}|\boldsymbol{x}) = \ln \frac{\sum_{\boldsymbol{b}: b_{k}=1} \exp \mu_{\mathsf{MAP}}(\boldsymbol{b})}{\sum_{\boldsymbol{b}: b_{k}=0} \exp \mu_{\mathsf{MAP}}(\boldsymbol{b})} - L_{a}(b_{k}) \qquad \text{"extrinsic LLR"}$$

$$\approx \max_{\boldsymbol{b} \in \mathcal{B}|b_{k}=1} \mu_{\mathsf{MAP}}(\boldsymbol{b}) - \max_{\boldsymbol{b} \in \mathcal{B}|b_{k}=0} \mu_{\mathsf{MAP}}(\boldsymbol{b}) - L_{a}(b_{k}) \qquad \text{"max-log"}$$

with $\mathcal{B} \triangleq$ set of M most probable coded-bit vectors \boldsymbol{b} .

Can find \mathcal{B} via tree search, by recursively updating MAP metric $\mu_{\text{MAP}}(\boldsymbol{b})$:

$$-\mu_{\text{MAP}}(\boldsymbol{b}) = \frac{1}{\sigma^2} \|\boldsymbol{x} - \boldsymbol{B} \boldsymbol{F} \hat{\boldsymbol{\theta}}_{\boldsymbol{b}} \|^2 + \hat{\boldsymbol{\theta}}_{\boldsymbol{b}}^H \boldsymbol{R}_{\theta}^{-1} \hat{\boldsymbol{\theta}}_{\boldsymbol{b}} + \ln(\pi^N |\boldsymbol{\Phi}_{\boldsymbol{b}}|) - \sum_{k: b_k = 1} L_a(b_k)$$

where $\hat{\theta}_b \triangleq$ per-survivor MMSE estimate of basis expansion coefficients θ .

Basis expansion F constructed to exploit sparsity.

Complexity = $2NN_{\theta}^{2}|\mathcal{S}|M$ mults per OFDM symbol.

Sparsity Tracking & Pilots:

Pilots are used for

- 1. channel estimation (along with surviving/soft symbol hypotheses)
- 2. tracking the sparse delay-power profile (DPP).

MMSE channel estimation:

ullet uses pilots from P MCM symbols

DPP tracking:

• simple: threshold MMSE chan-est

• better: sparse reconstruction

$$P = 4, K = 2$$

Underwater Acoustic Channel — Impulse Response:

Underwater Acoustic Channel — Scattering Function:

Doppler spread positive for this time span (but not in general).

Numerical Simulations:

Motivated by "surf zone" channel from

J. C. Preisig and G. Deane, "Surface wave focusing and acoustic communications in the surf zone," *J. Acoust. Soc. Am.*, vol. 116, pp. 2067-2080, Oct. 2004

- delay/Doppler spread: 7ms/30Hz (N_h =50, f_DT_c =0.002)
- 5 large taps, 45 small taps (with 2% of total energy)

Transmitter:

- (12288, 6144) LDPC code (rate- $\frac{1}{2}$)
- 128 QPSK subcarriers over 7.5 kHz BW
- 25% pilots (P=4 and K =1)

Receiver:

- assumes 3-tap ICI channel & 10 sparse delay taps (out of 50)
- MAP-inspired, breadth-first tree-search with M=32

Numerical Simulations:

 $\hbox{``NC"} = \mathsf{MAP}\hbox{-inspired noncoherent scheme}$

"Coh Genie" = uses 100% pilots

"est-L" = estimated sparse locs

"known-L" = known sparse locs

2) EM-Inspired Soft Noncoherent Equalization:

The i^{th} iteration of the Bayesian EM alg specifies

$$\hat{\boldsymbol{\theta}}[i+1] = \arg\min_{\hat{\boldsymbol{\theta}}} \mathrm{E}\left\{ \ln p(\boldsymbol{y}, \boldsymbol{s}|\hat{\boldsymbol{\theta}}) \, \middle| \, \boldsymbol{y}, \hat{\boldsymbol{\theta}}[i] \right\} + \ln p(\hat{\boldsymbol{\theta}})$$

Under Gaussian θ , this reduces to

MMSE estimation of θ using the soft symbol estimates computed via the previous channel estimate $\hat{\theta}[i]$.

Thus we iterate the following two steps:

- 1. Soft channel estimation (using pilots & symbol means/variances)
- 2. Soft coherent equalization:
 - ullet Compute LLRs using channel estimate $\hat{oldsymbol{ heta}}[i]$,
 - Compute symbol means/variances from bit LLRs.

Using conjugate gradient for matrix inversion, complexity = $2DN \log_2 N$.

2a) Iterative Soft ICI Cancellation:

$$ig|oldsymbol{x}_k \ = \ oldsymbol{H}_k oldsymbol{s}_k + oldsymbol{z}_k$$

- Soft interference cancellation using mean of s_k .
- Assuming Gaussian residual interference and using the covariance of s_k , compute LLRs (s_k) .
- Using LLRs(s_k), update mean/covariance of s_k .
- $k \to \langle k+1 \rangle_N$.

Iterative Soft ICI Cancellation (BPSK example):

$$\bar{s}_k^{(i)} \triangleq \widehat{\mathrm{E}\{s_k|\hat{s}_k\}} = \tanh(\mathsf{LLR}_k^{(i)}/2)$$

$$v_k^{(i)} \triangleq \widehat{\mathrm{var}(s_k|\hat{s}_k)} = 1 - (\bar{s}_k^{(i)})^2$$

$$egin{align} oldsymbol{y}_k^{(i)} &= oldsymbol{x}_k - oldsymbol{H}_k ar{oldsymbol{s}}_k^{(i)} \ g_k^{(i)} &= oldsymbol{y}_k^{(i)H} ig(oldsymbol{R}_z + oldsymbol{H}_k \, \mathcal{D}(oldsymbol{v}_k^{(i)}) oldsymbol{H}_k^H ig)^{-1} oldsymbol{h}_k \ \end{align}$$

$$\mathsf{LLR}_k^{(i+1)} = \mathsf{LLR}_k^{(i)} + 2\operatorname{Re}(g_k^{(i)})$$

Complexity: $M \times \mathcal{O}(D^2)$ per BPSK symbol. iters \max inv

Coherent Turbo Iterative Soft-ICI Cancellation:

 $\begin{array}{c} \mathsf{rate}\text{-}\frac{1}{2} \ \mathsf{conv} \ \mathsf{code} \\ \mathsf{QPSK} \end{array}$

$$N = 64$$

$$D=2$$

$$L = 16$$

$$f_{\mathsf{D}}T_c = 0.003$$

for example:

$$f_c = 20 \mathrm{GHz}$$

$$BW = 3MHz$$

$$T_h = 5.4 \mu \mathrm{s}$$

$$v = 3 \times 160 \text{km/hr}$$

2b) Coherent Tree Search:

Two-step procedure:

1. MMSE-GDFE pre-processing [Damen/ElGamal/Caire TIT 03]:

 $\rightsquigarrow \mathcal{O}(D^2N)$ algorithm [Hwang/Schniter SPAWC 06].

- 2. Near-optimal yet efficient tree search. Options include:
 - Depth-first search (e.g., Schnor-Euchner sphere decoder),
 - Best-first search (e.g., Fano alg, stack alg),
 - Breadth-first search (e.g., M-alg, T-alg, Pohst sphere decoder).

Coherent Tree-Search (Hard) Performance:

Suboptimal tree search is almost indistinguishable from MLSD!

Average Complexity (MACs/frame):

Breadth-first & DFE stay cheap, while depth-first & Fano explode!

Error Masking due to V-shaped Channel Matrix:

After MMSE-GDFE pre-processing, we get the following system:

Key point: The blue symbol does not affect any of the red observations.

Error-masking explains the complexity explosion of the depth-first and Fano searches!

Related Work:

- Single-carrier frequency-domain equalization.
- Pilot pattern designs:
 - MMSE optimal (under CE-BEM assumption).
 - Achievable-rate optimal (under CE-BEM assumption).
- Theoretical analysis of pulse-shaped multicarrier modulation:
 - Achievable-rate characterized.
- Theoretical analysis of doubly selective channel:
 - Noncoherent capacity characterized (under CE-BEM assumption).

(See http://www.ece.osu.edu/~schniter/pubs_by_topic.html)

Conclusions:

(Bi)Orthogonal FDM:

- $\mathcal{O}(\log_2 L)$ $\frac{\text{mults}}{\text{QAM symbol}}$ equalization of delay-spread channels.
- Loss in spectral efficiency due to guard interval.
- Sensitive to Doppler spread.

Non-(Bi)Orthogonal FDM:

- No need for a guard interval; high spectral efficiency.
- Large simultaneous delay & Doppler spreads \Rightarrow no ISI and short ICI.

Conclusions:

Equalization of Short ICI Span:

• Uncoded Coherent:

Tree search gives ML-like performance with DFE-like complexity.

• Turbo Coherent:

Iterative soft ICI cancellation in turbo configuration performs close to perfect-interference-cancellation bound.

• Uncoded Non-Coherent:

Tree-search with fast metric update gives ML-like performance with $\mathcal{O}(D^2L^2)$ complexity.

• Turbo Non-Coherent:

Tree-search with fast metric update performs close to genie-aided bound with $\mathcal{O}(D^2L^2)$ complexity, but EM may do almost as well with $\mathcal{O}(D\log L)$ complexity.