Hyperspectral image unmixing via bilinear generalized approximate message passing

Jeremy Vila, Philip Schniter, and Joseph Meola

Supported in part by NSF-I/UCRC grant IIP-0968910 and NSF grant CCF-1218754

SPIE Defense, Security and Sensing @ Baltimore - 4/30/13

Hyperspectral Image Unmixing

- ullet Goal: Estimate the N material spectra, i.e., endmembers, and the corresponding fractional abundances from a hyperspectral image (HSI) dataset $oldsymbol{Y}$ of M spectral measurements taken across $T=T_1\times T_2$ pixels.
- We write the received radiance data as the bilinear model

$$Y = SA + W \in \mathbb{R}^{M \times T},$$

where the columns of $S \in \mathbb{R}_+^{M \times N}$ are the non-negative (NN) endmembers, the rows of $A \in \mathbb{R}_+^{N \times T}$ are the NN abundance maps, and W is noise.

• To satisfy sum-to-one constraints on the abundances, i.e., $\sum_n a_{nt} = 1 \ \forall t$, we augment the system model as

$$\underbrace{\begin{bmatrix} Y \\ \mathbf{1}^\mathsf{T} \end{bmatrix}}_{\bar{Y}} = \underbrace{\begin{bmatrix} S \\ \mathbf{1}^\mathsf{T} \end{bmatrix}}_{\bar{S}} A + \begin{bmatrix} W \\ \mathbf{0}^\mathsf{T} \end{bmatrix},$$

where $\mathbf{1}^{\mathsf{T}}$ and $\mathbf{0}^{\mathsf{T}}$ are rows of ones and zeros, respectively.

Spectral and Spatial Coherence

- In practice, there exists additional structure beyond NN constraints on S and NN & sum-to-one (i.e., simplex) constraints on A.
- The amplitudes of each endmember are usually correlated, an aspect we call spectral coherence.

- ullet Also, since each material typically inhabits a fraction of the T pixels in the scene, the abundances are sparse.
- When a material inhabits a given pixel, it is more likely to inhabit a nehigboring pixel, a property we call spatial coherence, i.e., structured sparsity.
- If we can account for these structures in our model, we can improve estimation of the endmembers and abundances.

Example HSI unmixing approaches

- Endmember extraction algorithms such as vertex component analysis (VCA)
 [Nascimento '05] and fast separable NN matrix factorization (FSNMF) [Gillis '12]
 rely on the pure-pixel assumption, which may not hold in real-world data.
 - Abundances are then estimated separately, typically via fully constrained least squares (FCLS) [Heinz '01] to enforce simplex constraints.
 - This approach does not leverage spectral or spatial coherence.
- The Bayesian Linear Unmixing (BLU) [Dobigeon '09] algorithm jointly estimate the endmembers and abundances via Gibbs sampling techniques.
 - Spatially Constrained Unmixing (SCU) [Mittelman '12] expands upon BLU by employing a sticky hierarchical Dirichlet process prior to exploit spatial coherence.
 - Both BLU and SCU exhibit runtimes orders-of-magnitude larger than the "pure-pixel" approaches (with FCLS).
- We propose a Bayesian approach to HSI, called HSI-AMP, that jointly estimates the endmembers and abundances using the framework of loopy belief propagation.
 - We model each material's spectral amplitudes as a Markov chain, and abundances as structured-sparse with support governed by a Markov random field (MRF).
 - HSI-AMP exhibits complexities on par with "pure-pixel" approaches, with performance that exceeds them.

Proposed Approach: HSI-AMP

- The factor graph for the model assumed by HSI-AMP can be separated into three sub-graphs: spectral coherence, spatial coherence, and bilinear structure.
- Inference on the bilinear structure sub-graph is tackled using the Bilinear Generalized Approximate Message Passing (BiG-AMP) algorithm.
- We merge the three separate inference tasks using the "turbo-AMP" approach,
 [Schniter '12] where beliefs are exchanged between sub-graphs until they agree.

Signal Model

- We define binary support variables $d_{nt} \in \{0,1\}$, indicating whether material n is present in pixel t.
- \bullet We assume that the abundances $\{a_{nt}\}$ are i.i.d conditional on $\{d_{nt}\}$ according to the sparse pdf

$$p_{A|D}(a_{nt}|d_{nt}) = (1 - d_{nt})\delta(a_{nt}) + d_{nt}h_A(a_{nt}),$$

where $h_A(\cdot)$ is the pdf on a_{nt} when active.

- lacktriangle For each n, we model the support pattern $\{d_{nt}\}_{t=1}^T$ as a MRF.
- \bullet To model correlation in spectral amplitudes $\{s_{mn}\}_{m=1}^M$, we introduce auxiliary variables $\{e_{mn}\}_{m=1}^M$ for each n, and model each using a Gauss-Markov chain, i.e.,

$$p(e_{mn}|e_{(m-1)n}) = \mathcal{N}(e_{mn}; (1 - \eta_n)e_{(m-1)n} + \eta_n \kappa_n, \eta_n^2 \sigma_n^2 \frac{2 - \eta_n}{\eta_n}),$$

where $\kappa_n \in \mathbb{R}$ is mean of the process, σ_n^2 is the variance, and $\eta_n \in [0,1]$ is the correlation.

 Inference on the MRF and Gauss-Markov sub-graphs can be efficiently implemented using loopy BP [Li '09] and the backward-forward algorithm, respectively.

Turbo BiG-AMP and Expectation Maximization (EM)

- On its own, BiG-AMP is limited by two major assumptions:
 - 1 The priors are separable, e.g., $p(S) = \prod_{m,n} p_S(s_{mn}), p(A) = \prod_{n,t} p_A(a_{nt}).$
 - 2 The priors are perfectly-matched to the data.
- The "turbo" extension allows us to use BiG-AMP with non-separable priors
- The EM extension allowed us to tune the distributional parameters on the local priors and the Gauss-Markov and MRF priors.

BiG-AMP local priors

- We want the (EM-tuned) local priors to closely-match the true marginal distributions while yielding tractible BiG-AMP computations.
- ullet We assign the local prior on s_{mn} as

$$p_{S_{mn}}(s) = \mathcal{N}_{+}(s; \theta_{mn}^{s}, \phi_{mn}^{s}),$$

where $\mathcal{N}_+(s;\theta,\phi)$ is a $\mathcal{N}(s;\theta,\phi)$ distribution truncated on $[0,\infty)$ and scaled appropriately.

ullet We assign the local prior on a_{nt} as a Bernoulli non-negative Gaussian mixture pdf

$$p_{A_{nt}}(a) = (1 - \lambda_{nt}^a)\delta(a) + \lambda_{nt}^a \sum_{\ell=1}^L \omega_{n\ell}^a \mathcal{N}_+(a; \theta_{n\ell}^a, \phi_{n\ell}^a),$$

where λ_{nt}^a is set from the most recent message from the d_{nt} node.

- ullet We assume that the coefficients of the noise $oldsymbol{W}$ are i.i.d. Gaussian with variance $\psi.$
 - The parameters $\{\{\omega_{n\ell}^a, \theta_{n\ell}^a, \phi_{n\ell}^a\}_{\forall n,\ell}, \psi\}$ are all tuned via EM.

Initializations

- Since the EM algorithm may converge to a local, rather than global, maximum of the likelihood, proper initialization is critical.
- ullet We initialize the endmembers (i.e., $(\hat{S})^0$) at the solutions provided by VCA.
- ullet Using $(\hat{m{S}})^0$, we apply UCLS to initialize the abundance maps (i.e., $(\hat{m{A}})^0$)
- ullet For the endmembers' NNG distributions, we set $(m{ heta}^a)^0=(m{\hat{S}})^0$ and $(m{\phi}^a)^0=1.$
- For the abundances' BNNGM parameters, we set $(\lambda^a)^0=\frac{1}{2}$ and L=3. $\{\omega_{n\ell}^a\},$ $\{\theta_{n\ell}^a\}$, and $\{\phi_{n\ell}^a\}$ were set to best fit the uniform pdf on [0,1].

- Set noise variance as $\psi^0 = \|Y\|_F^2/(MT(\mathsf{SNR}^0+1))$, where without user input, we assume $\mathsf{SNR}^0=100$.
- ullet Automatic selection of the model order N is an important topic for future research.

Results: Pure-Pixel Synthetic Data

- ullet Pure pixel abundance maps of size $T=50\times 50$ were generated with N=5 materials residing in equal sized strips and the SNR was set to $30~{\rm dB}.$
- The endmember spectra were taken from a reflectance library.
- In one realization, shown below, HSI-AMP's estimates match the true endmembers.
- FSNMF estimates appear noisy, and all competing algorithms fail to recover silver paint and light gray shingle endmembers.

Results: Pure-Pixel Synthetic Data

- ullet Averaging over R=10 iterations, we reported the runtime and NMSE recovery.
- HSI-AMP outperformed the best competing technique (VCA+FCLS) by more than 16 dB in NMSE $_S$ and about 7 dB in NMSE $_A$.
- HSI-AMP's runtime is comparable VCA+FCLS and FSNMF+FCLS, and 2-3 orders of magnitude faster than SCU.
- ullet HSI-AMP is 2-3 orders slower than VCA+UCLS and FSNMF+UCLS, but their use of UCLS comes at the cost of 25 dB less accuracy in $m{A}$.

	$oldsymbol{S}$ Runtime	$oldsymbol{A}$ Runtime	Total Runtime	$NMSE_S$	$NMSE_{A}$
HSI-AMP	-	-	5.35 sec	- 57.1 dB	-37.3 dB
SCU	-	-	2808 sec	-30.6 dB	-20.5 dB
VCA + FCLS	0.05 sec	4.08	4.13 sec	-39.6 dB	-30.5 dB
VCA + UCLS	0.05 sec	0.0007 sec	0.05 sec	-39.6 dB	-12.0 dB
FSNMF + FCLS	0.002 sec	3.97 sec	3.97 sec	-25.3 dB	-12.5 dB
FSNMF + UCLS	0.002 sec	0.0008 sec	0.002 sec	-23.4 dB	-6.8 dB

Results: SHARE 2012 dataset

- Data consisted of M=360 spectral bands, ranging from 400-2450 nm, taken over scene of $T=150\times100$ pixels.
- HSI-AMP appears to do a better job distinguishing among materials than these state-of-the-art unmixing algorithms.
- We're currently waiting on ground-truth data to enable a quantifiable comparison.

Conclusions

- VCA and FSNMF assume the presence of pure pixels, which may not exist in real data, and do not exploit the spatial and spectral coherence that usually do exist.
 - Abundance estimation is usually done separately via FCLS.
- SCU exploits spectral and spatial coherence and jointly estimates S and A, but runtimes are orders-of-magnitude slower than competing approaches, and its Gibbs sampling appears to be finicky.
- HSI-AMP showed state-of-the-art joint estimation of S and A in two experiments, while exhibiting complexities on par with VCA+FCLS and FSNMF+FCLS.
- We attribute HSI-AMP's success to its ability to leverage known spectral and spatial coherence properties, while learning the prior parameters via EM.
- ullet Automatic selection of the model order N is an important topic for future research.
- Detection of known materials is another potential area for future research.

Thanks to:

- Nina Raqueno et al. at the Rochester Institute of Technology for providing the SHARE 2012 dataset
- 2 Jason Parker for his assistance with BiG-AMP

References

- Nascimento, J. and Bioucas Dias, J., Vertex component analysis: A fast algorithm to unmix hyperspectral data, Geoscience and Remote Sensing, IEEE Transactions on 43(4), 898910 (2005).
- Gillis, N. and Vavasis, S. A., Fast and robust recursive algorithms for separable nonnegative matrix factorization, arXiv:1208.1237v2 (2012).
- Dobigeon, N., Moussaoui, S., Coulon, M., Tourneret, J. Y., and Hero, A., Joint bayesian endmember extraction and linear unmixing for hyperspectral imagery, Signal Processing, IEEE Transactions on 57(11), 43554368 (2009).
- Mittelman, R., Dobigeon, N., and Hero, A., Hyperspectral image unmixing using a multiresolution sticky HDP, Signal Processing, IEEE Transactions on 60(4), 16561671 (2012).
- Heinz, D. and Chang, C.-I., Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, Geoscience and Remote Sensing, IEEE Transactions on 39(3), 529545 (2001).
- Frey, B. J. and MacKay, D. J. C., A revolution: Belief propagation in graphs with cycles, Proc. Neural Inform. Process. Syst. Conf., 479485 (1997).
- 🚺 Li, S. Z., [Markov Random Field Modeling in Image Analysis], Springer, London, 3rd ed. (2009).
- Bonoho, D. L., Maleki, A., and Montanari, A., Message passing algorithms for compressed sensing: I. Motivation and construction, *Proc. Inform. Theory Workshop*, 15 (Jan. 2010).
- Rangan, S., Generalized approximate message passing for estimation with random linear mixing, Proc. IEEE Int. Symp. Inform. Thy., (Aug. 2011). (See also arXiv:1010.5141).
- Schniter, P., Turbo reconstruction of structured sparse signals, Proc. Conf. Inform. Science & Syst., 16 (Mar. 2010).
- Dempster, A., Laird, N. M., and Rubin, D. B., Maximum-likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. 39, 117 (1977).
- Giannandrea, A., Raqueno, N., Messinger, D. W., Faulring, J., Kerekes, J. P., van Aardt, J., Canham, K., Hagstrom, S., Ontiveros, E., Gerace, A., Kaufman, J., Vongsy, K. M., Griffith, H., and Bartlett, B. D., The SHARE 2012 data collection campaign, (April 2013).