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Hyperspectral Image Unmixing

Goal: Estimate the N material spectra, i.e., endmembers, and the corresponding
fractional abundances from a hyperspectral image (HSI) dataset Y of M spectral
measurements taken across T = T1 × T2 pixels.

We write the received radiance data as the bilinear model

Y = SA + W ∈ R
M×T ,

where the columns of S ∈ R
M×N
+ are the non-negative (NN) endmembers, the

rows of A ∈ R
N×T
+ are the NN abundance maps, and W is noise.

To satisfy sum-to-one constraints on the abundances, i.e.,
P

n ant = 1 ∀t, we
augment the system model as
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where 1
T and 0

T are rows of ones and zeros, respectively.
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Spectral and Spatial Coherence

In practice, there exists additional structure
beyond NN constraints on S and NN &
sum-to-one (i.e., simplex) constraints on A.

The amplitudes of each endmember are usually
correlated, an aspect we call spectral coherence.
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Also, since each material typically inhabits a fraction of the
T pixels in the scene, the abundances are sparse.

When a material inhabits a given pixel, it is more likely to
inhabit a nehigboring pixel, a property we call spatial
coherence, i.e., structured sparsity.

If we can account for these structures in our model, we can
improve estimation of the endmembers and abundances.
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Example HSI unmixing approaches

Endmember extraction algorithms such as vertex component analysis (VCA)

[Nascimento ’05] and fast separable NN matrix factorization (FSNMF) [Gillis ’12]

rely on the pure-pixel assumption, which may not hold in real-world data.
Abundances are then estimated separately, typically via fully constrained least
squares (FCLS) [Heinz ’01] to enforce simplex constraints.
This approach does not leverage spectral or spatial coherence.

The Bayesian Linear Unmixing (BLU) [Dobigeon ’09] algorithm jointly estimate

the endmembers and abundances via Gibbs sampling techniques.
Spatially Constrained Unmixing (SCU) [Mittelman ’12] expands upon BLU by
employing a sticky hierarchical Dirichlet process prior to exploit spatial coherence.
Both BLU and SCU exhibit runtimes orders-of-magnitude larger than the
“pure-pixel” approaches (with FCLS).

We propose a Bayesian approach to HSI, called HSI-AMP, that jointly estimates

the endmembers and abundances using the framework of loopy belief propagation.
We model each material’s spectral amplitudes as a Markov chain, and abundances
as structured-sparse with support governed by a Markov random field (MRF).
HSI-AMP exhibits complexities on par with “pure-pixel” approaches, with
performance that exceeds them.
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Proposed Approach: HSI-AMP
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The factor graph for the model assumed by HSI-AMP can be separated into three
sub-graphs: spectral coherence, spatial coherence, and bilinear structure.

Inference on the bilinear structure sub-graph is tackled using the Bilinear
Generalized Approximate Message Passing (BiG-AMP) algorithm.

We merge the three separate inference tasks using the “turbo-AMP” approach,
[Schniter ’12] where beliefs are exchanged between sub-graphs until they agree.
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Signal Model

dn1 dn2 dn3

dnT

We define binary support variables dnt ∈ {0, 1}, indicating
whether material n is present in pixel t.

We assume that the abundances {ant} are i.i.d conditional on
{dnt} according to the sparse pdf

pA|D(ant|dnt) = (1 − dnt)δ(ant) + dnthA(ant),

where hA(·) is the pdf on ant when active.

For each n, we model the support pattern {dnt}T
t=1 as a MRF.

To model correlation in spectral amplitudes {smn}M
m=1, we introduce auxiliary variables

{emn}M
m=1 for each n, and model each using a Gauss-Markov chain, i.e.,

p(emn|e(m−1)n) = N
`

emn; (1 − ηn)e(m−1)n + ηnκn, η2
nσ2

n
2−ηn

ηn

´

,

where κn ∈ R is mean of the process, σ2
n is the variance, and ηn ∈ [0, 1] is the correlation.

Inference on the MRF and Gauss-Markov sub-graphs can be efficiently implemented using
loopy BP [Li ’09] and the backward-forward algorithm, respectively.
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Turbo BiG-AMP and Expectation Maximization (EM)

On its own, BiG-AMP is limited by two major assumptions:

1 The priors are separable, e.g., p(S) =
Q

m,n pS(smn), p(A) =
Q

n,t pA(ant).
2 The priors are perfectly-matched to the data.

The “turbo” extension allows us to use BiG-AMP with non-separable priors

The EM extension allowed us to tune the distributional parameters on the local
priors and the Gauss-Markov and MRF priors.
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BiG-AMP local priors

We want the (EM-tuned) local priors to closely-match the true marginal
distributions while yielding tractible BiG-AMP computations.

We assign the local prior on smn as

pSmn
(s) = N+(s; θs

mn, φ
s
mn),

where N+(s; θ, φ) is a N (s; θ, φ) distribution
truncated on [0,∞) and scaled appropriately.

θs
mn and φs

mn are set to mean and variance of the
most recent message from the emn node. −0.5 0 0.5 1 1.5
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We assign the local prior on ant as a Bernoulli non-negative Gaussian mixture pdf

pAnt
(a) = (1− λa

nt)δ(a) + λa
nt

L
X

ℓ=1

ωa
nℓN+(a; θa

nℓ, φ
a
nℓ),

where λa
nt is set from the most recent message from the dnt node.

We assume that the coefficients of the noise W are i.i.d. Gaussian with variance ψ.

The parameters {{ωa
nℓ, θ

a
nℓ, φ

a
nℓ}∀n,ℓ, ψ} are all tuned via EM.
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Initializations

Since the EM algorithm may converge to a local, rather than global, maximum of
the likelihood, proper initialization is critical.

We initialize the endmembers (i.e., (Ŝ)0) at the solutions provided by VCA.

Using (Ŝ)0, we apply UCLS to initialize the abundance maps (i.e., (Â)0)

For the endmembers’ NNG distributions, we set (θa)0 = (Ŝ)0 and (φa)0 = 1.

For the abundances’ BNNGM parameters, we set
(λa)0 = 1

2
and L = 3. {ωa

nℓ}, {θ
a
nℓ}, and {φa

nℓ}
were set to best fit the uniform pdf on [0, 1].

Set noise variance as ψ0 = ‖Y ‖2F /(MT (SNR0 +1)),
where without user input, we assume SNR0 = 100.
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Automatic selection of the model order N is an important topic for future research.
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Results: Pure-Pixel Synthetic Data

Pure pixel abundance maps of size T = 50× 50
were generated with N = 5 materials residing in
equal sized strips and the SNR was set to 30 dB.

The endmember spectra were taken from a
reflectance library.

In one realization, shown below, HSI-AMP’s
estimates match the true endmembers.

FSNMF estimates appear noisy, and all competing
algorithms fail to recover silver paint and light gray
shingle endmembers.
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Results: Pure-Pixel Synthetic Data

Averaging over R = 10 iterations, we reported the runtime and NMSE recovery.

HSI-AMP outperformed the best competing technique (VCA+FCLS) by more than
16 dB in NMSES and about 7 dB in NMSEA.

HSI-AMP’s runtime is comparable VCA+FCLS and FSNMF+FCLS, and 2-3 orders
of magnitude faster than SCU.

HSI-AMP is 2-3 orders slower than VCA+UCLS and FSNMF+UCLS, but their use
of UCLS comes at the cost of 25 dB less accuracy in A.

S Runtime A Runtime Total Runtime NMSES NMSEA

HSI-AMP - - 5.35 sec -57.1 dB -37.3 dB

SCU - - 2808 sec -30.6 dB -20.5 dB
VCA + FCLS 0.05 sec 4.08 4.13 sec -39.6 dB -30.5 dB
VCA + UCLS 0.05 sec 0.0007 sec 0.05 sec -39.6 dB -12.0 dB

FSNMF + FCLS 0.002 sec 3.97 sec 3.97 sec -25.3 dB -12.5 dB
FSNMF + UCLS 0.002 sec 0.0008 sec 0.002 sec -23.4 dB -6.8 dB
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Results: SHARE 2012 dataset

RGB

RGB

HSI-AMP

SCU

FSNMF+FCLS

VCA+FCLS

Data consisted of
M = 360 spectral
bands, ranging from
400− 2450 nm, taken
over scene of
T = 150× 100 pixels.

HSI-AMP appears to
do a better job
distinguishing among
materials than these
state-of-the-art
unmixing algorithms.

We’re currently waiting
on ground-truth data
to enable a quantifiable
comparison.
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Conclusions

VCA and FSNMF assume the presence of pure pixels, which may not exist in real

data, and do not exploit the spatial and spectral coherence that usually do exist.

Abundance estimation is usually done separately via FCLS.

SCU exploits spectral and spatial coherence and jointly estimates S and A, but
runtimes are orders-of-magnitude slower than competing approaches, and its Gibbs
sampling appears to be finicky.

HSI-AMP showed state-of-the-art joint estimation of S and A in two experiments,
while exhibiting complexities on par with VCA+FCLS and FSNMF+FCLS.

We attribute HSI-AMP’s success to its ability to leverage known spectral and
spatial coherence properties, while learning the prior parameters via EM.

Automatic selection of the model order N is an important topic for future research.

Detection of known materials is another potential area for future research.
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