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ABSTRACT

Imaging is not itself a system goal, but is rather a means to support inference tasks. For data processing with
linearized signal models, we seek to report all high-probability interpretations of the data and to report confidence
labels in the form of posterior probabilities. A low-complexity recursive procedure is presented for Bayesian
estimation in linear regression models. A Gaussian mixture is chosen as the prior on the unknown parameter
vector. The algorithm returns both a set of high posterior probability mixing parameters and an approximate
minimum mean squared error (MMSE) estimate of the parameter vector. Emphasis is given to the case of a sparse
parameter vector. Numerical simulations demonstrate estimation performance and illustrate the distinctions
between MMSE estimation and maximum a posteriori probability (MAP) model selection. The proposed tree-
search algorithm provides exact ratios of posterior probabilities for a set of high probability solutions to the
sparse reconstruction problem. These relative probabilities serve to reveal potential ambiguity among multiple
candidate solutions that are ambiguous due to low signal-to-noise ratio and/or significant correlation among
columns in the super-resolving regressor matrix.
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1. INTRODUCTION
1.1 High frequency scattering

At high frequencies, the scattering response of an object can be well approximated as a sum of responses from
individual scattering centers.! These scatters provide a concise, yet physically relevant, description of the object.
Additionally, a parametric representation of the sum of reflectors offers a low dimensional manifold for inversion
and compression of phase history data. For example, an approximate physical optics model for a set of canonical
reflectors? 3 parameterizes responses as a functions of frequency, aspect, elevation and polarization. Fitting the
models to phase history data is a nonlinear regression task, with the accompanying challenges of computational
cost, model selection (order selection and reflector type detection), and local minima in the non-convex opti-
mization. Yet, the nonlinear regression can provide a compressed, informative, super-resolved interpretation of
the scattering data. For example, Fig. 1 shows a graphical representation of parameters estimated for vehicle in
the 640 MHz bandwidth Gotcha public release data.* The HH and VV polarization images from eight circular
passes are jointly and coherently processed by automated model fitting. Estimated parameters for 3D position,
orientation, length and polarization (even versus odd bounce) are displayed as icons in the figure. For visualiza-
tion, a CAD model of the actual vehicle is superimposed in the figure.> The eight passes provide only a sparse
sampling across less than 2 degrees elevation, and hence present high side lobes and aliasing in backprojection
or Fourier 3D imaging.

1.2 Sparse linear regression

An alternative to the nonlinear regression is to recast the inverse scattering problem as a linear regression. The
unknown coeflicients are taken as the reflections coefficients at discretely sampled 3D locations, and a regressor
matrix, A, is typically formed by sampling some parametric model (such as an ideal point scattering model).
Thus, the linear model is given by

y = Az +v, (1)
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Figure 1. Nonlinear regression yields a parsimonious interpretation of 8-pass circular SAR data from the Gotcha Public
Release. Icons depict the estimated parameters describing 3D position, orientation, length and polarization (even versus
odd bounce) for individual scattering centers. A CAD model is superimposed for visualization.

with unknown parameter vector @, unit norm columns in the regressor matrix A, and additive noise v. The
high-frequency approximation motivates a preference towards a sparse solution in which few coeflicients in x are
non-zero.

Sparse linear regression is a topic of long standing interest in statistics, geophysics, and signal processing.
Algorithmic approaches have been proposed over several decades. One class of algorithms adopts a greedy search
heuristic. Examples include CLEAN,® projection pursuit,” and orthogonal matched pursuit (OMP).® Tropp and
Gilbert,? for example, provide sufficient conditions on the sparseness of & and correlation among columns of A
such that the greedy OMP provides correct model selection with high probability in the noiseless measurement
case. A second class of recursive algorithms solves a sequence of iteratively re-weighted linear least-squares (IRLS)
problems;!%:11 recent results have likewise established sufficient conditions such that the sequence converges to
the sparsest solution for a given residual energy.!?13

The method of sparse Bayesian learning!* > explicitly adopts a Bayesian framework with z; independent,

zero-mean, Gaussian with unknown variance o2. The unknown variances are given the Gamma conjugate prior,
and an expectation-maximization (EM) iteration computes a MAP estimate of x.

In addition to greedy, IRLS and Bayesian learning approaches, penalized least-squares solutions for x have
likewise been presented in the past four decades.'® In this class of approaches, parameters are found via the
optimization

& = argmin [|Az —yll; + Al (2)

or, equivalently for some € > 0
& = arg min llz|l, st. [|[Az —yl3 <e. (3)
Ridge regression'” (Tikhonov regularization) adopts p = 2, while basis pursuit'® and Lasso!? use p = 1. Equa-
tion (2) has been widely adopted, for example in radar imaging,?° image reconstruction,?!>22 and elsewhere.?%24

The large class of methods adopting (2) may be interpreted as implicitly seeking the Bayesian MAP estimate of
z under a sparsity inducing prior

px) o exp{ -3z} (4)

Elegant recent results by several authors2°~27 have demonstrated sufficient conditions on A, v, and sparsity
of & such that the convex problem in (3) for p = 1 provides the unique solution to the non-convex task

min [|z|lo s.t. ||Az — |5 <e. (5)



These proofs have validated the widespread use of (2)-(3), providing a deeper understanding, spurring a resur-
gent interest, and promoting the interpretation as “compressive sensing.” The sufficient conditions restrict the
sparseness of  and the correlation among the columns in the regressor matrix, A. Example conditions are the
restricted isometry property?” (RIP) and the mutual coherence.?® The low correlation required among columns
of A is incompatible with super-resolution at any SNR.

The constructive design of experiments consistent with RIP (design of A) remains open.?® But the compres-
sive sensing hypotheses are met with high probability by draws from classes of random matrices. In this sense,
compressive sensing trades the NP-hard £, sparsest solution task for an intractable experiment design, then uses
randomization for experiment design. Randomization has been used for over 40 years in array processing for low
side-lobe responses.??>3% Thus, compressive sensing theorems offer an invitation to randomized sampling.

For radar imaging, traditional phase history sampling and point scattering models result in an A matrix that
has high correlation among columns; for example, the maximum correlation between columns of A is 0.38 for
MSTAR image chips. And, the aperture randomization used in magnetic resonance k-space sampling®® would
require random transport of an antenna across the full viewing hemisphere. For temporal sampling, phase jitter
and sample-hold bandwidth limit SNR for randomized sampling. Thus, application of the randomization concept
to radar imaging remains an open opportunity and challenge.

In the sparse reconstruction and compressive sensing literature, primary focus is placed on the detection of
the few significant entries of the sparse x—a task alternatively known as model selection or basis selection. In
addition, an estimate of x is also sought. Further, a single solution is reported, and typically without a report
of uncertainty.

1.3 A third way

For data processing with linearized signal models, we adopt an alternative approach that embraces ambiguity
among competing sparse interpretations of the noisy data. Linearization offers the potential to avoid the model
order and computational difficulties of nonlinear regression. Our approach is motivated by the reality that
reconstruction of x (i.e., imaging) is not itself a system goal, but is rather a means to support inference tasks.
Therefore, we seek to report all high-probability interpretations of the data, and to report confidence labels in
the form of posterior probabilities. An analogy is found in digital communications, where capacity-achieving
codes require soft-decisions on bits; the individual bits are not the goals, but are rather probabilistic evidence for
decoding the message. Thus, we present a detection procedure that provides exact ratios of posterior probabilities
for a set of high probability solutions to the sparse reconstruction problem. These relative probabilities serve to
reveal uncertainty among multiple candidate solutions that are ambiguous due to low signal-to-noise ratio and/or
significant correlation among columns in the (super-resolved) regressor matrix, A. An additional output from
the approach is a minimum mean-squared error (MMSE) estimator for & from the noisy observations, y. The
MMSE estimation approach was likewise adopted in a crisp exposition by Larsson and Selén;?! as they noted, the
Bayesian formulation requires a priori assumptions that are explicitly stated and admit precise interpretation.
(We specifically identify similarities to3! in Section 5.)

The remainder of the paper is organized as follows. In Section 2, we state the signal model and explicitly
identify the assumed priors. In Section 3, we describe our proposed technique, and in Section 4 we investigate
its performance numerically. In Section 5, we discuss our findings, and in Section 6 we conclude.

2. SIGNAL MODEL

Consider observing y € CM, a noisy linear combination of the parameters in € CV:
y = Az +v, (6)

where the noise v is assumed to be white circular Gaussian with variance o2, i.e., v ~ CN(0,021s), and the
columns of A are taken to be unit-norm. Our focus is on the under-determined case (i.e., N > M) with a
suitably sparse parameter vector x (i.e., ||z||o € N).



To model sparseness, we assume that the parameters are generated from a circular Gaussian mixture density:
z|s ~ CN(0,R(s)), (7)

where the covariance R(s) is determined by a discrete random vector 8 = [so, ..., sy—1]? of mixture parameters.
For simplicity, we take R(s) to be diagonal with [R(8)],.» = 02 , implying that {z,|s,}n_o areindependent with
Tn|sn ~ CN(0,02 ). Also for simplicity, we assume that the mixture parameters {8, N2} are* Bernoulli(p;).

To model sparseness in x, we choose o3 = 0 and p; < 1.
From the model assumptions it can be seen that

Yls ~ v (o]par ‘B]): ®)

where

®(s) = AR(s)A" + %1y (9)

3. ESTIMATION OF BASIS AND PARAMETERS

In this section, we propose an efficient search procedure to find the most probable basis configurations along
with their respective posterior probabilities. These posteriors can then be used to compute an MMSE estimate
of sparse parameters x.

3.1 Basis Selection Metric

As a consequence of the model described in Section 2, the locations of the nonzero elements in s specify the set
of “active” basis elements, i.e., columns of A. Thus, basis selection reduces to estimation of s. Because we have
adopted a probabilistic model for {s,y}, we can not only compute which of the basis configurations are most
probable, but also how probable these bases are. The latter is accomplished through the estimation of dominant
posteriors p(s|y).

The posterior can be written, via Bayes rule, as

_ p(y[s)p(s)
p(sly) = S s (Y[ P()’ (10)

where S = {0, 1}V, which shows that the estimation of {p(s|y)}scs reduces to the estimation of {p(y|s)p(s)}scs-
Although the size of S makes it impractical to compute {p(s|y)} or {p(y|s)p(s)} for all s € S, the subset S, C S
that includes the dominant posteriors can be quite small and therefore practical to compute. Working in the log
domain, we find

u(s) = Inp(y|s)p(s) (11)
N—1
= Inp(yls) + 3 Inp(sn) (12)
n=0
= Inp(yls) + [|slloInpr + (N — [|s]lo) In(1 — p1) (13)
= —Nln7 —Indet(®(s)) — yT®(s) 'y
+Islloln £~ + Nln(1 - p1). (14)

We will refer to u(s) as the basis selection metric.

*In other words, s, is binary with Pr{s, =1} = p: and Pr{s, =0} =1 —p1.



3.2 MMSE Parameter Estimation

For applications in which the identification of the most probable basis is the primary objective, the sparse
coefficients & can be regarded as nuisance parameters. In other applications, however, estimation of x is the
primary goal.

The MMSE estimate of @ from y is

Emmse = E{zly} = ) p(sly) E{aly, s} (15)
8€S

where from (8) it is straightforward to obtain
E{zly,s} = R(s)A"®(s)"'y. (16)

Approximating (15) with a summation over only the dominant basis configurations S, yields

Lammse = Z p(sly) E{w|y,s}. (17)
sES,

The posterior probability is a Gaussian mixture, and hence possibly mutli-modal. The second moment is the
conditional covariance Cov{z|y} and can be closely approximated as

Cov{w|y} ~ Z p(sly) {COV {:I:Iy, 3} + (-'f:ammse - -%sy)(ﬁ:ammse - ﬁ:sy)H} (18)
SES,
Cov{z|y,s} = R(s)— R(s)A”®(s)"'AR(s). (19)

Here, &5y = E{x|y, s} from Eqn. 16. Note that, in evaluating (15) and (18), the primary challenge becomes that
of obtaining p(s|y) and ®(s)~! for each s € S,. In the sequel, we propose a fast algorithm to search for the
dominant basis configurations S, that, as a byproduct, also generates E{x|y, s} and Cov{z|y, s} for each of the
configurations s identified by the search.

3.3 Bayesian Matching Pursuit

We next consider the estimation of the set of dominant basis configurations S,. Here we present a prosaic
description of the proposed search heuristic. Later, in Section 3.5, we detail a fast algorithm.

The proposed search starts with s = 0 and first “turns on” one mixture parameter at a time, yielding a set of
N binary vectors s which we refer to as S®). The metrics u(8) for the N vectors in S (1) are then computed, and

the elements of S) with the D largest metrics are collected in Sil). For each candidate in Sil), all locations of a

second active mixture parameter are then considered, yielding (N —1)+ (N —2)+---+(N—D) = ND — w

unique binary vectors to store in S®). The metrics u(s) for all vectors in S@) are then computed, and the
elements of S with the D largest metrics are collected in S,((Q). Then, for each candidate vector in 3,22), all
unique possibilities of a third active mixture parameter are considered, and those with the D largest metrics are

stored in S{*). The process continues until S{ is computed, where P can be chosen so that Pr(||s|lo > P) is

sufficiently small.} The algorithm’s final estimate of S, is then S, = Uf:o S,Ei).

The proposed algorithm, which we refer to as Bayesian matching pursuit (BMP), can be interpreted as an
application of Cotter and Rao’s “MP:K” algorithm®? to maximization of the Bayesian metric u(s).

fOne could also determine the stopping parameter P adaptively.
g y
iNotice that ||s||o is Binomial(N,p;) distribution. When Np; > 5, it is common to use the approximation ||s|jo ~
J\/'(Npl,Npl(l —pl)), in which case Pr(||s|lo > P) = L erfc (%).

V2Np1(1—p1)



3.4 Fast Metric Update

To accelerate the aforementioned BMP algorithm, we propose a fast metric update which computes the change
in p(-) that results from the activation of a single basis element. More precisely, if we denote by s,, the vector
identical to s except for the n** element, which is active in s,, but inactive in s (i.e., [s,], = 1 and [s],, = 0),
then we seek an efficient method of computing A, (s) := u(s,) — u(s). Note that the metric at the root node
(i.e., s=0) is

#(0) = —Nlnw—MIno? — |yl + Nn(l — py) (20)

via (14) and the fact that ®(0) = 021 ;.

To derive the fast metric update, we start with the property that, for any n and s,
®(s,) = ®(s)+olazal, (21)

from which the matrix inversion lemma implies

B(s,)"t = B(s)"' —0?B,bpb (22)
b, = ®(s)'a, (23)
Bn = (1+0%allp,)” (24)
Equations (21)-(24) then imply
y ®(sn)"'y = y"®(s)"'y— o Baly T bul? (25)
Indet(®(s,)) = Indet (®(s)+ojasal) (26)
= In [(1 +olall ®(s) ta,) det (@(s))]
= Indet(®(s)) —Ing, (27)
llsnlloln 2= = (||sllo +1)In ’“,,1 (28)
= lIslloln {55 +1In $£-, (29)
which, in conjunction with (14), yield
w(sn) = u(s)+1InBn+o?Bulyb,)?> +1n juarn (30)

~~

An(s)

In summary, A,(s) in (30) quantifies the change in our basis selection metric u(-) due to the activation of the
nth tap of s.

3.5 Fast Bayesian Matching Pursuit

Notice that the parameters {$,}~=, which are essential for the metric exploration step (30), require O(NM?)
operations to compute using (23)-(24) with standard matrix multiplication. As described next, the structure of
®(s)~! can be exploited to make this complexity in M.

Consider the (i + 1)** stage of the sequential search described in Section 3.3, where the task is to evaluate
the metrics corresponding to all valid single-tap extensions of a surviving hypothesis s(?, where [|s®| = i.
Let us denote the (complete) set of these extensions by {sn+1)}

(corresponding, e. g to re—actlvatlon of already-active taps) may be invalid. Say that, at the i

N, remembering that particular extensions
jith stage, the
quantities {b{¥}V"! and {ﬂ(’)} ! were computed in order to estimate the metrics {u(s (’))}n o via (30), from
which the surv1v1ng configuration s(’) was chosen as

st = sgf*) for n, = argmax pu(s{)).



Then, to generate {b{*V}¥=1 and {5+ N\, from which the metrics {u(s5H1) NI can be evaluated using
(30), equations (21) and (23) suggest

bt = #(sV)a, (31)
= [265 ) - 2600060 a, (32)

b — o206 b (33)

BIY = (1+ofallbitD)7 (34)

which requires O(N M) operations in total.

Going further, if we define BUtD) ;= [b(()i"rl)7 .. .,b%tll)] and notice that BUtY) = &(s())~1 A, then we can
compute the s(9-conditional MMSE estimate, and its covariance, as

E{zly,sV} = R(s?)BUDHy (35)
Cov{zly,s"} = [In— R(s®)B+DHA|R(sD), (36)

using (15), (18), and the fact that ®(s()) is Hermitian. Because R(s())B*+YH has only i nonzero rows

and AR(s()) has only i nonzero columns, (35) and (36) can be computed using only O(iN) and O(i>N
g

multiplications, respectively.

The recursive metric update (30), via recursive computation of {b{™ } -1 from (33), forms the foundation of
the Fast Bayesian Matching Pursuit (FBMP) algorithm detailed in Table 1. From the table, it is straightforward
to verify that the number of multiplications FBMP required to compute the set of dominant basis configurations
3*, as well as the corresponding conditional means and covariances, is O(NMPD).

4. NUMERICAL EXPERIMENTS
4.1 FBMP Behavior

Numerical experiments were conducted to investigate the performance of FBMP from Table 1 for various values
of model and algorithmic parameters, and the results are reported in Figs. 2-4. Unless otherwise noted, the
experiments used N = 256, M = 64, SNR = 15 dB, p; = 0.04, and P = [erfc™"(2Py)/2Np1(1 — p1) + Np1 |

where Py = 0.00005 is the target value of Pr{||s||o > P} as suggested in Section 3.3. Here we use SNR := ’Eﬁ’}é\’, as
motivated by the unit-norm assumption on the columns of A. The plots represent an average of 200 independent
model realizations. For each realization of A, an i.i.d. normal matrix was drawn and then scaled to make each
of its columns unit-norm. Note that the average number of active coefficients E{||z||o} = p1 N is approximately
equal to 10 when p; = 0.04 and N = 256. When referring to the “normalized mean-squared error” (NMSE) of
an estimate &, we mean E{||Z — z||3/||z||3}

Sparse reconstruction with Gaussian ensembles asymptotically requires measurements numbering®?
M >2Klog(N-K)+K+1 (37)

Here, we have K = p; N is the (average) number of active coefficients. We note that the approximate inequality
M > 2K log(N/K) is satisfied for 2p; N/M < —1/log(p1). Our nominal parameters yield 2p; N/M = 0.32 and
—1/log(p1) = 0.31, and below we see threshold behavior consistent with the asymptotic results.

In Fig. 2(a), we plot NMSE versus observation length M for FBMP under several values of the search
parameter D. Recall that D effects a tradeoff between search accuracy and search complexity (the latter of
which is expected to grow linearly in D). There we see that NMSE performance improves as M gets larger, i.e.,
as the average number of unknown parameters per measurement % decreases. For D =1 (i.e., the simplest
possible search), Fig. 2(a) shows a “knee” in the curve at M = 64 (i.e., % = 0.16) below which NMSE degrades
quickly. By increasing search complexity D, the knee shifts so that the FBMP is robust to a wider range of M
(e.g., M = 48 or % = 0.21 when D = 5). The benefits of increased D diminish quickly for D > 5, however.



pOY = —NIn2r — MIno? — Lyl + NIn(1 — p1);
w09 Z ]
forn=0: N -1,

b(l D= 02 Qn;

Bn = (14 o2afp{V)~1

pn = OV +log B, + U%B"|yHb(1 1) |2 + log 2
end
forg=1:D,

ns = n indexing ¢*® largest element in {u,};

N(I’Q) = Mn.;

n(lvq) = Ny;

forn=0:N-1,

bﬁf’q b(l 1) + 2/3n 1 1)b(1 DH

2 .

end
end
fori=2:P,
ford=1:D,

forn=0:N-1,
ﬁdn— (1+0_2aHb(zd))

pran = pli~ 1d)+10gﬂdn+01 +log 122
if n € nt~19 then pg, = —00;
end
end
forq=1:D,

(ds,ny) = (d,n) indexing ¢'" largest unique element in {uq,n }
P = pg, o,
n(iaQ) — [n(ivd*)’n*];
forn=0:N-1,
BT = b + 028y, o, b B g,

end
209 = o Tl S bfﬁIh‘i?T -
. (z,q) o2 ZJ . Zk 1 O[nti), [(5[”(, D, — (D],
zb[('::,tl;q])Ta[n(”Q)]k] 0 [nG.9)],3
end

end

Table 1. Fast Bayesian Matching Pursuit




In Fig. 2(b), we plot the number of active basis elements missing from FBMP’s estimate of the MAP basis
configuration:

bmap = argmaxp(sly). (39)
SES,

In particular, the traces in Fig. 2(b) show number-of-misses versus observation length M for FBMP under several
values of search parameter D. Because the number-of-misses closely parallel the NMSE values, we conjecture
that the sub-optimality of FBMP’s greedy search is to blame for the relatively large NMSE values that occur
when M < 64 (i.e., when % > 0.16). In Fig. 3(a), we plot NMSE versus p; N, the expected number of active
coefficients, for FBMP under several values of search parameter D. There we see that NMSE performance
quickly degrades as p1 N increases above pt N = 10 (i.e., above p}vf] = 0.16), mirroring the results in Fig. 2.

As in Fig. 2, when % > (.16, increasing D from 1 to 10 can yield an NMSE improvement of 3 dB. When

% < 0.16, however, D = 1 appears to suffice. In Fig. 3(b), we plot NMSE versus SNR for FBMP under several
values of search parameter D (where {M, p; } correspond to the aforementioned breakpoints in the NMSE-vs-M
and NMSE-vs-p1 N curves). Fig. 3(b) shows a satisfying linear relationship between NMSE and SNR (in dB).
As expected, the effect of increasing D from 1 to 10 is negligible because ”}VIN = 0.16; a more significant effect

would be expected if p}MN had been larger.

In Fig. 4(a), we plot NMSE versus SNR for two FBMP-derived estimates: the (approximate) MMSE estimate
Zammse from (17) and the quasi-MAP estimate &amap from (39):

éamap = E{w|y7'§map}- (39)

Whereas &ammse is the average of the conditional MMSE estimates E{x|y, s} over s € SA*, the estimate &;map
is MMSE conditioned on (FBMP’s estimate of) the MAP basis-configuration 8m,p. In terms of average NMSE,
Fig. 4(a) demonstrates that Zmmse are about 1 dB better than &map, at SNR < 10 dB and about 0.5 dB better
at SNR > 10 dB. The improvement reflects the advantage of allowing for uncertainty in the estimated basis.

Finally, in Fig. 4(b), we plot average FBMP runtime versus search parameter D. As expected from the
algorithmic description in Table 1, the runtime scales linearly in D.
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Figure 2. (a) Normalized MSE for FBMP versus observation length M. (b) Number of active coefficients in x missing
from FBMP’s estimate of the most probable basis configuration versus observation length M. In each subfigure, from top
to bottom, the traces reflect increasing D. (See the graph title for configuration.)
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Figure 3. (a) Normalized MSE versus average number of active coefficients (i.e., p1N) for FBMP. (b) Normalized MSE
versus SNR for FBMP. In each subfigure, from top to bottom, the traces reflect increasing D. (See the graph title for
configuration.)
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Figure 4. (a) Normalized MSE versus SNR of FBMP-returned MMSE estimate &ammse and quasi-MAP estimate &amap- (b)
Average FBMP runtime versus search parameter D. (See the graph title for configuration.)

4.2 Comparison To Other Algorithms

In Figs. 5-7 we compare FBMP to several other popular sparse estimation algorithms, including SparseBayes,*
OMP,° StOMP,3* GPSR-Basic,?® and BCS.3¢ Unless otherwise noted, the model parameters were set at N = 512,
M =128, p; = 0.04, and ¢ = 0.001 (which corresponds to SNR = 19 dB at the nominal values of N, M, and
p1)- Our plots represent an average of 100 independent model realizations.

For FBMP, we used non-optimized MATLAB code (which we plan to optimize in the near future), and unless
otherwise noted used D = 5 and the same P specified in Section 4.1. For the other algorithms, we used the
publicly available implementations that were found at the web-sites listed in our bibliography. The algorithmic
parameters were chosen largely in accordance with suggested values provided by the authors of the software,
or in accordance with values used in examples that accompanied the algorithms. The SparseBayes algorithm
was tested with the initial hyper-parameter set to a = 1. StOMP was tested using the “False Alarm Control”



thresholding strategy, with the thresholding parameter set to NMQ(I — a7llzllo), where the default number of

iterations, Q = 10, was used. The ¢;-penalty in the GPSR algorithm was chosen as 7 = 0.1|| A7 y||, and the
MSE kept for comparison purposes was the smaller of the MSEs of the un-debiased and debiased estimates. The
BCS algorithm was tested with the “Adaptive CS” option turned off.

In Fig. 5 we plot NMSE versus observation length M (at 02 = 0.001) for the various sparse estimation
algorithms. There we see that FBMP achieved significantly lower NMSE than the other algorithms for M > 64.
In particular, for M > 85 it outperformed BCS by approximately 4 dB and outperformed OMP by 6 dB. In
Fig. 6 we plot NMSE versus SNR (at M = 128) for the various sparse estimation algorithms. Again, the NMSEs
achieved by FBMP were significantly lower than those achieved by the other algorithms. At SNR = 22 dB,
FBMP outperformed BCS by approximately 3 dB and the other algorithms by > 9 dB; at SNR = 15 dB, FBMP
outperformed all other algorithms by > 5 dB; and, at SNR = 3 dB, FBMP outperformed GPSR by approximately
1 dB and the other algorithms by > 5 dB.

Finally, in Fig. 7, we plot average runtime versus observation length M for the various sparse estimation
algorithms. For FBMP, we used D = 1. Fig. 7 shows that FBMP is about an order of magnitude faster than
SparseBayes, on the same order of complexity as BCS, and about an order of magnitude slower than OMP,
StOMP, and GPSR. We anticipate that optimized FBMP code will yield improved runtimes.
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Figure 5. Normalized MSE versus observation length M for several algorithms. (See the graph title for configuration.)

5. DISCUSSION

The Bayesian framework provides a report on the confidence of estimates of both the coefficients x and the
basis configuration s. In particular, the basis selection metric u(s) provides a posterior confidence label for a
candidate basis configuration s, in addition to providing the MMSE estimate Zmmse through (15). Specifically,
from (10), we can write the posterior probability of basis configuration s as

B exp{u(s)} - exp{u(s)}
) = ep )] T Tes, e {u())

where the approximation in (40) includes only the basis configurations S, C S that account for the dominant
values of exp{u(s)}. Likewise, p(x|y) provides an approximate density function describing the uncertainty in

(40)
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Figure 6. Normalized MSE versus SNR for several algorithms. (See the graph title for configuration.)
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Figure 7. Average runtime versus observation length M for several algorithms. (See the graph title for configuration.)

resolving & with the noisy observations, y

plaly) ~ Y p(sly)p(zly, s) (41)
s'€S,

The posterior density function reflects the multi-modal ambiguity inherently present in the sparse inference

problem—an ambiguity especially evident when the SNR is low and/or the correlation among the columns of A
is high.



In contrast, confidence labels for estimated & are largely absent in the compressive sensing and sparse linear
regression literature. Exceptions are found in'® 3¢ which give the error covariance for the simple linear problem
conditioned on perfect knowledge of the active basis elements. As noted by Tibshirani,'® such a measure of
posterior uncertainty has dubious value, because “a difficulty with this formula is that it gives an estimated
variance of 0 for predictors with” s; = 0. The Gaussian confidence intervals in!? 3% are constructed by assuming
that 8amap is the true sequence of active coefficients. However, in our simulations the true s typically does not
rank first in p(s|y), and instead usually ranks between second and tenth (or lower). In this light, we expect
certain advantages for algorithms that consider the active basis as implicitly uncertain.

A Gaussian mixture model similar to that in Section 2 was likewise adopted by Larsson and Selén,3! who also
constructed the MMSE estimate in the manner of (17) but with an S, that contains exactly one sequence s for
each Hamming weight 0 to N. They proposed to find these s via greedy deflation, i.e., starting with an all-active
basis configuration and recursively deactivating one element at a time. Thus, the D = 1 version of the BMP
heuristic from Section 3.3 recalls the heuristic of,3! but in reverse. Note, however, that the fast D = 1 BMP
presented in Section 3.5 has a complexity of only O(NM P), in comparison to O(N3M?) for the technique in.>!
Given the typically large values of N encountered in practice, the complexity of FBMP can be several orders of
magnitude lower than that of.3!

As a caveat, we should emphasize that our greedy FBMP search returns only 3*, an estimate of the dominant
subset S, along with the values of yu(s) for s € S,. Thus, while the values u(s) returned by FBMP can be used
to compute exact ratios between the posterior probabilities of the configurations in S*, the absolute posteriors
of these configurations (as approximated by (40) with S, in place of Sy) will only be accurate when S, indeed
contains S,. For example, if FBMP somehow missed the MAP configuration 8map (i-€.;, map ¢ Si), then we would
expect a large discrepancy between ), s exp{u(s')} and }__ s exp{u(s’)} which would in turn corrupt the
FBMP estimates of p(s|y) and Cov{z|y}. Fortunately, the proposed greedy FBMP basis search seems to perform
quite well, as least for % < —1/log(p1)-

Although the model in Section 2 assumed that each x; is generated according to a binary mixture of zero-mean
Gaussians, one can imagine extending the model to, e.g., a mixture of finitely many Gaussians with non-zero
means. In this case, one would need to generalize the BMP search heuristic of Section 3.3 to handle several types
of active coefficient (e.g., one for each allowed mean).

6. CONCLUSION

At high frequencies, radar imaging can be viewed as sparse reconstruction from noisy observations on a sparse
aperture. On the one hand, nonlinear regression techniques can provide super-resolution and posterior confidence
labels, but such techniques may suffer from model selection, model mismatch, and computational cost. On the
other hand, sparse linear regression techniques are computationally inexpensive and without model selection
difficulties; however, the linear techniques provide neither super-resolution of high SNR reflectors nor posterior
confidence labels.

In this paper, we proposed an algorithm for joint basis selection and sparse parameter estimation which
we call fast Bayesian matching pursuit (FBMP). In brief, FBMP models each unknown coefficient z; as either
inactive or active (with prior probability p;), where an i.i.d. Gaussian distribution (with zero mean and variance
0?) is assigned to the values of active coefficients. The observation ¥ is then modeled as an AWGN-corrupted
version of the unknown coefficients that has been mixed by a known matrix A. FBMP navigates through
the tree of active/inactive configurations S with the goal of finding the configurations with dominant posterior
probability, Sx. The search is controlled by a parameter D which effects a tradeoff between complexity and
accuracy. Numerical experiments suggest that the estimates returned by FBMP outperform (in normalized
MSE) those of other popular algorithms (e.g., SparseBayes, OMP, StOMP, GPSR-Basic, BCS) by several dB in

typical situations.

Thus, we presented a detection procedure that provides exact ratios of posterior probabilities for a set of
high probability solutions to the sparse reconstruction problem. These relative probabilities serve to reveal
potential ambiguity among multiple candidate solutions that are ambiguous due to low signal-to-noise ratio
and/or significant correlation among columns in the (super-resolved) regressor matrix. The explicit management
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of ambiguity and uncertainty is essential for applications in which the estimated detections, 8, and estimated
coefficients, &, are not final products, but rather are statistics for use in making inference from the noisy
observations, y.

We plan, in the near future, to extend FBMP to the case where the active coeflicients have non-zero means
chosen from a finite set according to some prior probabilities. Additionally, we are developing a large-scale version
of FBMP in which M x M matrices are not explicitly maintained and the operator A is only given implicitly. An
example of the non-zero mean sparse signal model can be found in electron paramagnetic resonance imaging,3”
where micro-liter particulate probes are inserted into a tumor and fill less than 0.25% volume in the field of view.
The fabrication of the paramagnetic signal probes results in variable shape, size and electron spin density, giving
rise to a non-zero-mean and nearly Gaussian distribution of signal strength in a very few active voxels.
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