AMP-inspired Deep Networks, with Comms Applications J

Phil Schniter

THE OHIO STATE UNIVERSITY

Collaborators: Sundeep Rangan (NYU), Alyson Fletcher (UCLA),
Mark Borgerding (OSU)

Supported in part by NSF grants 11P-1539960, CCF-1527162, and CCF-1716388.

Intl. Conf. on Signal Processing and Communications — July 2018



Deep Neural Networks

Typical feedforward setup:
m Many layers, consisting of (affine) linear stages and scalar nonlinearities.
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m Linear stages often constrained (e.g., small convolution kernels).
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m Parameters learned by minimizing training error using backpropagation.

Open questions:
How should we interpret the learned parameters?
Can we speed up training?

Can we design a better network structure?
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Focus of this talk: Standard Linear Regression

m Consider recovering a vector  from noisy linear observations
y=Ax +w,

where x is drawn from an iid prior (e.g., sparse!)

m For this application, we propose a deep network that is
1) asymptotically optimal for a large class of A,
2) interpretable, and
3) easy to train.
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! Gregor/LeCun, Sprechmann/Bronstein/Sapiro, Kamilov/Mansour, Wang/Ling/Huang,
Mousavi/Baraniuk, Xin/Wang/Gao/Wipf, Borgerding/Schniter/Rangan, etc.
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Understanding Deep Networks via Algorithms

m Many algorithms have been proposed for linear regression.

m Often, such algorithms are iterative, where each iteration consists of a
linear operation followed by scalar nonlinearities.

m By “unfolding” such algorithms, we get deep networks.?
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m Can such algorithms help us design/interpret/train deep nets?

2Gregor/LeCun, ICML 10.
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-]
Algorithmic Approaches to Standard Linear Regression

m Recall goal: recovering/fitting @ from noisy linear observations

y=Ax + w.

m A popular approach is regularized loss minimization:

argmin 5|y — Az|* + 0% f(x),
xT

where, e.g., f(x) = ||||1 for the lasso.

m Can also be interpreted as MAP estimation of & under priors

x ~exp(—f(z)) & w~N(0 ).

m But often the goal is minimizing MSE or inferring marginal posteriors.
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High-dimensional MMSE Inference

m High dimensional MMSE inference is difficult in general.

To simplify things, suppose that 1) x is iid
2) A is large and random.

m The case of iid Gaussian A is well studied, but very restrictive.

Instead, consider right-rotationally invariant (RRI) A:
A =USVT with V ~Haar and indep of x.

m For this case, the MMSE is34
E(y) =var{z|r}, r=a+N(0,1/7), 7v=Rur4,,2(=E(7))

*Tulino/Caire/Verdu/Shamai, IEEE-TIT'13, “*Reeves, Allerton’'17:
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Achieving MMSE in standard linear regression

m Recently a “vector approximate message passing (VAMP)" algorithm
has been proposed that iterates linear vector estimation with nonlinear
scalar denoising. (Closely related to expectation propagation.®)

m Under large RRI A and Lipschitz denoisers, VAMP is rigorously
characterized by a scalar state-evolution.®

m When the state-evolution has a unique fixed point, the VAMP solutions
are MMSE!

®Opper/Winther, JMLR'05, ® Rangan/Schniter/Fletcher, arXiv:1610.03082.
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VAMP for linear regression

initialize r1, 1

fort=0,1,2,...
T — (ATA/O'2 + 711)71 (ATy/U2 + fylrl)
a1 FTr[(ATA/0? + )|
Ty — ﬁ(ﬁl —aqry)

Yo = i

LMMSE
divergence

Onsager correction

precision of 7o

Xy 9(7’2;72)
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end

(scalar) denoising
divergence
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MMSE-VAMP interpreted

initialize 71,1
fort =0,1,2,...
Z1 < MMSE estimate of x under
pseudo-prior N'(r1,I/v1) & measurement y = Ax + N (0, 0*1)

79 <linear cancellation of r{ from z;

T <+ MMSE estimate of x under
prior p(x) and pseudo-measurement ro = x + N (0, I /v2)

71 <linear cancellation of r from Z»

end

Linear cancellation “decouples” the iterations, so that global MMSE
problem can be tackled by solving simpler local MMSE problems.
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Unfolding VAMP

Unfolding the VAMP algorithm gives the network’

77777777777 , o :
—L L ; —L o aot— —L a0 an
] £ £l T < £l ] £ £
! B B 5 B i 5 3
—> LIN 2 E LIN 2 2= —> LIN 2 2
o o N I o o N I o o
—Ls < Ll 5 S— —Ls < <

non-linear

Notice the two decoupling stages in each layer.

"Borgerding/Schniter, IEEE-TSP’17
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Learning the network parameters

After unfolding an algorithm, one can use backpropagation (or similar) to
“learn” the optimal network parameters.®

m Linear stage: 1 = Br; + Cy
— learn (B, C) for each layer.

m Nonlinear stage: Z2; = g(12,;) Vi
— learn a scalar function g(-) for each layer.
e.g., spline, piecewise linear, etc.

8Gregor/LeCun, ICML'10.
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Result of learning

Suppose that the training data {y(d),a:(d)}c?:1 were constructed using
1) iid &\¥ ~ p

2) y@ = Az® + N(0,021)

3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B, C, g) originally
prescribed by the VAMP algorithm!
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Result of learning

Suppose that the training data {y(d),cc(d)}c?:1 were constructed using
1) iid &\¥ ~ p

2) y@ = Az® + N(0,021)

3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B, C, g) originally
prescribed by the VAMP algorithm!

m The learned linear stages are MMSE under

pseudo-prior & ~ N'(r1,I/v;) & measurement y = Ax + N(0,0°1I)
m The learned scalar nonlinearities are MMSE under

prior z; ~ p and pseudo-measurements 73 ; = x; + N (0,1/72)

~» This deep network is interpretable!
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Implications for training

Due to the decoupling stages...

m each linear stage is locally MSE optimal, so

~» the linear params (B, C') can be learned locally in each layer!

m each non-linear stage is locally MSE optimal, so

~» the nonlinear function g(-) can be learned locally in each layer!

This deep network is easy to train!

Phil Schniter (Ohio State) AMP-inspired Deep Networks SPCOM'18 13 /19



-]
Example with iid Gaussian A

iid Gaussian
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n = 1024

m/n = 0.5

A ~iid N(0,1)

x ~ Bernoulli-Gaussian
Pr{z #0} =0.1
SNR =40 dB
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Example with non-iid Gaussian A

condition number = 15

-10 - —+—LISTA
—©— LVAMP-pwlin
.15 | — % matched VAMP
=-=-MMSE
-20

NMSE (dB)
B

Phil Schniter (Ohio State) AMP-inspired Deep Networks

n = 1024
m/n = 0.5

A=USVT
U,V ~ Haar
Sn/Sn—1 = ¢ Vn

x ~ Bernoulli-Gaussian
Pr{z #0} = 0.1

SNR =40 dB
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Deep nets vs algorithms
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Application: Compressive random access
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“Internet of Things”

Phil Schniter (Ohio State)

m 512 users, 1% active

m single antenna BS
m Pilots: i.i.d. QPSK, length 64
m flat Ricean fading
= SNR: 10dB
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Application: Massive-MIMO channel estimation

m Massive-array BS communicates ‘ ‘ ‘ ‘
with single-antenna mobiles. s
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m Pilot reuse contaminates channel
estimates. Random pilots can
alleviate this problem.

m We use deep networks to
simultaneously estimate channels

in-cell NMSE (dB)

of in-cell and out-of-cell users. 4t
‘ ‘ 3Layers4 ) '
W o/ 00 Experiment:
e . m BS: 64-element ULA
J"}';'f'”sel . m 64 in-cell users, 448 total users
gtatiop ' . . m Pilots: i.i.d. QPSK, length 64
"o \° ¢ m flat Ricean fading
m SNR: 20dB
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Conclusions

m Our goal is to understand the design and interpretation of deep nets.
m For this talk, we focused on the task of sparse linear regression.
m We proposed a deep net that is

1) asymptotically MSE-optimal (for iid & and RRI A)

2) interpretable: ... LMMSE/decoupling/NL-MMSE /decoupling . ..

3) locally trainable.

m The proposed network is obtained by “unfolding” the VAMP algorithm
and learning its parameters.

m We demonstrated the approach in wireless comms applications.
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Thanks!

TensorFlow code at
https://github.com/mborgerding/onsager_deep_learning
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