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Deep Neural Networks

Typical feedforward setup:

Many layers, consisting of (affine) linear stages and scalar nonlinearities.PSfrag replacements

non-linear

LINLINLIN . . .

Linear stages often constrained (e.g., small convolution kernels).

Parameters learned by minimizing training error using backpropagation.

Open questions:

1 How should we interpret the learned parameters?

2 Can we speed up training?

3 Can we design a better network structure?
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Focus of this talk: Standard Linear Regression

Consider recovering a vector x from noisy linear observations

y = Ax+w,

where x is drawn from an iid prior (e.g., sparse1)

For this application, we propose a deep network that is
1) asymptotically optimal for a large class of A,
2) interpretable, and
3) easy to train.
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1Gregor/LeCun, Sprechmann/Bronstein/Sapiro, Kamilov/Mansour, Wang/Ling/Huang,
Mousavi/Baraniuk, Xin/Wang/Gao/Wipf, Borgerding/Schniter/Rangan, etc.
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Understanding Deep Networks via Algorithms

Many algorithms have been proposed for linear regression.

Often, such algorithms are iterative, where each iteration consists of a
linear operation followed by scalar nonlinearities.

By “unfolding” such algorithms, we get deep networks.2PSfrag replacements

non-linear
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Can such algorithms help us design/interpret/train deep nets?

2Gregor/LeCun, ICML 10.
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Algorithmic Approaches to Standard Linear Regression

Recall goal: recovering/fitting x from noisy linear observations

y = Ax+w.

A popular approach is regularized loss minimization:

argmin
x

1
2‖y −Ax‖2 + σ2f(x),

where, e.g., f(x) = ‖x‖1 for the lasso.

Can also be interpreted as MAP estimation of x under priors

x ∼ exp(−f(x)) & w ∼ N (0, σ2I).

But often the goal is minimizing MSE or inferring marginal posteriors.
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High-dimensional MMSE Inference

High dimensional MMSE inference is difficult in general.

To simplify things, suppose that 1) x is iid
2) A is large and random.

The case of iid Gaussian A is well studied, but very restrictive.

Instead, consider right-rotationally invariant (RRI) A:

A = USV T with V ∼Haar and indep of x.

For this case, the MMSE is34

E(γ) = var{x|r}, r = x+N (0, 1/γ), γ = RATA/σ2(−E(γ))

3Tulino/Caire/Verdu/Shamai, IEEE-TIT’13, 4Reeves, Allerton’17.
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Achieving MMSE in standard linear regression

Recently a “vector approximate message passing (VAMP)” algorithm
has been proposed that iterates linear vector estimation with nonlinear
scalar denoising. (Closely related to expectation propagation.5)

Under large RRI A and Lipschitz denoisers, VAMP is rigorously
characterized by a scalar state-evolution.6

When the state-evolution has a unique fixed point, the VAMP solutions
are MMSE!

5Opper/Winther, JMLR’05, 6 Rangan/Schniter/Fletcher, arXiv:1610.03082.
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VAMP for linear regression

initialize r1, γ1

for t = 0, 1, 2, . . .

x̂1 ←
(
ATA/σ2 + γ1I

)
−1(

ATy/σ2 + γ1r1
)

LMMSE

α1 ←
γ1
N Tr

[(
ATA/σ2 + γ1I

)
−1

]
divergence

r2 ←
1

1−α1

(
x̂1 − α1r1

)
Onsager correction

γ2 ← γ1
1−α1

α1
precision of r2

x̂2 ← g(r2; γ2) (scalar) denoising

α2 ←
1
N Tr

[
∂g
∂r (r2; γ2)

]
divergence

r1 ←
1

1−α2

(
x̂2 − α2r2

)
Onsager correction

γ1 ← γ2
1−α2

α2
precision of r1

end
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MMSE-VAMP interpreted

initialize r1, γ1

for t = 0,1, 2, . . .

x̂1 ←MMSE estimate of x under

pseudo-prior N (r1, I/γ1) & measurement y = Ax+N (0, σ2I)

r2 ←linear cancellation of r1 from x̂1

x̂2 ←MMSE estimate of x under

prior p(x) and pseudo-measurement r2 = x+N (0, I/γ2)

r1 ←linear cancellation of r2 from x̂2

end

Linear cancellation “decouples” the iterations, so that global MMSE
problem can be tackled by solving simpler local MMSE problems.
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Unfolding VAMP

Unfolding the VAMP algorithm gives the network7
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Notice the two decoupling stages in each layer.

7Borgerding/Schniter, IEEE-TSP’17
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Learning the network parameters

After unfolding an algorithm, one can use backpropagation (or similar) to
“learn” the optimal network parameters.8

Linear stage: x̂1 = Br1 +Cy

→ learn (B,C) for each layer.

Nonlinear stage: x̂2,j = g(r2,j) ∀j
→ learn a scalar function g(·) for each layer.

e.g., spline, piecewise linear, etc.

8Gregor/LeCun, ICML’10.
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Result of learning

Suppose that the training data {y(d),x(d)}Dd=1 were constructed using

1) iid x
(d)
j ∼ p

2) y(d) = Ax(d) +N (0, σ2I)
3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B,C, g) originally
prescribed by the VAMP algorithm!
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Result of learning

Suppose that the training data {y(d),x(d)}Dd=1 were constructed using

1) iid x
(d)
j ∼ p

2) y(d) = Ax(d) +N (0, σ2I)
3) right-rotationally invariant A.

Backpropagation recovers the parameter settings (B,C, g) originally
prescribed by the VAMP algorithm!

The learned linear stages are MMSE under
pseudo-prior x ∼ N (r1, I/γ1) & measurement y = Ax+N (0, σ2I)

The learned scalar nonlinearities are MMSE under
prior xj ∼ p and pseudo-measurements r2,j = xj +N (0, 1/γ2)

❀ This deep network is interpretable!
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Implications for training

Due to the decoupling stages...

each linear stage is locally MSE optimal, so

❀ the linear params (B,C) can be learned locally in each layer!

each non-linear stage is locally MSE optimal, so

❀ the nonlinear function g(·) can be learned locally in each layer!

This deep network is easy to train!
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Example with iid Gaussian A
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n = 1024
m/n = 0.5

A ∼ iid N (0, 1)

x∼Bernoulli-Gaussian
Pr{x 6= 0} = 0.1

SNR = 40 dB
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Example with non-iid Gaussian A
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n = 1024
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A = USV T

U ,V ∼ Haar
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x∼Bernoulli-Gaussian
Pr{x 6= 0} = 0.1

SNR = 40 dB
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Deep nets vs algorithms
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Application: Compressive random access

Devices periodically wake up and
broadcast short data bursts.

The BS must simultaneous detect
which devices are active and
estimate their multipath gains.

We use deep networks for this.

“Internet of Things”
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Experiment:

512 users, 1% active
single antenna BS
Pilots: i.i.d. QPSK, length 64
flat Ricean fading
SNR: 10dB
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Application: Massive-MIMO channel estimation

Massive-array BS communicates
with single-antenna mobiles.

Pilot reuse contaminates channel
estimates. Random pilots can
alleviate this problem.

We use deep networks to
simultaneously estimate channels
of in-cell and out-of-cell users.
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Experiment:

BS: 64-element ULA
64 in-cell users, 448 total users
Pilots: i.i.d. QPSK, length 64
flat Ricean fading
SNR: 20dB
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Conclusions

Our goal is to understand the design and interpretation of deep nets.

For this talk, we focused on the task of sparse linear regression.

We proposed a deep net that is
1) asymptotically MSE-optimal (for iid x and RRI A)
2) interpretable: . . . LMMSE/decoupling/NL-MMSE/decoupling . . .

3) locally trainable.

The proposed network is obtained by “unfolding” the VAMP algorithm
and learning its parameters.

We demonstrated the approach in wireless comms applications.
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Thanks!

TensorFlow code at
https://github.com/mborgerding/onsager_deep_learning
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