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Motivation:

• At large communication bandwidths, communication channels are not only

frequency selective but sparse.

• For example, consider channel taps x = [x0, . . . , xL−1], where

– xn = x(nT ) for bandwidth T−1 = 256 MHz,

– x(t) = h(t) ∗ pRC(t), and

– h(t) is generated randomly using 802.15.4a outdoor NLOS specs.
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Lag-dependent statistics:

• Note that the tap energy, sparsity rate, and clustering are lag-dependent:
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(Empirically estimated using 10000 realizations 802.15.4a outdoor NLOS.)
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Proposed channel model:

• Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit

in receiver design.

• We propose a structured-sparse channel model based on a 2-state Gaussian

Mixture model with Markov-chain structure on the state:

p(xj | dj) =







CN (xj ; 0, µ
0
j ) if dj=0 “small”

CN (xj ; 0, µ
1
j ) if dj=1 “big”

Pr{dj+1 = 1} = p10j Pr{dj = 0}+ (1− p01j ) Pr{dj = 1}

• Our model is parameterized by the lag-dependent quantities:

{µ1

j} : big-state power-delay profile

{µ0

j} : small-state power-delay profile

{p01j } : big-to-small transition probabilities

{p10j } : small-to-big transition probabilities

• Can learn these statistical params from observed realizations via the EM alg.

4



Phil Schniter The Ohio State University'

&

$

%

Optimal communication over unknown sparse channels:

For the unknown N -block-fading, L-length, S-sparse channel, Kannu & Schniter

[1] established that

1. In the high-SNR regime, the ergodic capacity obeys

Csparse(SNR) =
N − S

N
log(SNR) +O(1).

2. To achieve the prelog factor Rsparse =
N−S
N

, it suffices to use

• pilot-aided OFDM (with N subcarriers, of which S are pilots)

• with (necessarily) joint channel estimation and data decoding.

Key points:

• The effect of unknown channel support manifests only in the O(1) offset.

• While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. P. Kannu and P. Schniter, “On communication over unknown sparse frequency selective

block-fading channels,” IEEE Trans. Info. Thy., to appear [arXiv 1006.1548].
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Practical communication over unknown clustered-sparse channels:

Transmitter:

• BICM OFDM

• carefully placed training bits

Receiver:

• joint data decoding / clustered-sparse channel estimation / cluster detection

• based on loopy belief propagation (BP)

• key enablers:

1. “generalized AMP” algorithm [Rangan 10]

– builds on AMP [Donoho/Maleki/Montanari 09]

– near-optimal in large-system limit [Bayati/Montanari 10]

– extremely low complexity: O(N logN) per iteration

2. “turbo” message scheduling [Schniter 10]
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Factor graph for pilot-aided BICM-OFDM:
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To jointly infer all random variables, we perform loopy-BP via the sum-product

algorithm, using carefully chosen message approximations in each dashed box.

(See SPAWC paper for details, or longer version in arXiv:1101.4724.)
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Numerical results:

Transmitter:

• OFDM with N = 1024 subcarriers.

• 16-QAM with multi-level Gray mapping

• LDPC codewords with length ∼ 10000 yielding spectral efficiency of 2 bpcu.

• P “pilot subcarriers” and T “training MSBs.”

Channel:

• 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)

• Length L = 256 = N/4.

Reference Channel Estimation / Equalization Schemes:

• soft-input soft-output (SISO) versions of LMMSE and LASSO.

• perfect-CSI genie.
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BER versus Eb/No for P = 224 pilots and T = 0 training bits:
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Our scheme shows 4dB improvement over (turbo) LASSO.

Our scheme only 0.5dB from perfect-CSI genie!
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BER versus Eb/No for P = 0 pilots and T = 448 training bits:
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Use of training bits gives 1dB improvement over use of pilot subcarriers!
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BER versus P pilot subcarriers for T = 0 training bits:
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Too few pilots compromises channel estimation; too many compromises decoding.
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BER versus T training bits for P = 0 pilot subcarriers:
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Too few training bits compromises chan est; too many compromises decoding.
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Convergence speed versus Eb/No for P =224 and T = 0:
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Conclusions:

• At larger communication bandwidths, channels become clustered-sparse, as

seen by the 802.15.4a realizations.

• To exploit clustered-sparsity in receiver design, we proposed a channel model

based on a 2-state Gaussian-mixture with Markov-chain state structure.

• Information theoretic analysis of sparse channels motivates OFDM

transmission and joint channel-estimation/decoding.

• We proposed a factor-graph based OFDM receiver that accomplishes joint

decoding / clustered-sparse channel estimation / cluster detection.

• Our receiver leverages Rangan’s “generalized AMP” algorithm and our earlier

work on “turbo sparse reconstruction”

• Our performance is 0.5dB from perfect-CSI bound 4dB beyond LASSO.

• Our complexity is only O(log2N + |S|) per symbol.
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