# A Message-Passing Receiver For BICM-OFDM Over Unknown Clustered-Sparse Channels

Phil Schniter



(With support from NSF grant CCF-1018368 and DARPA/ONR grant N66001-10-1-4090)

**SPAWC 2011** 

## **Motivation:**

- At large communication bandwidths, communication channels are not only frequency selective but *sparse*.
- ullet For example, consider channel taps  $oldsymbol{x} = [x_0, \dots, x_{L-1}]$ , where
  - $-x_n=x(nT)$  for bandwidth  $T^{-1}=256$  MHz,
  - $-x(t)=h(t)*p_{\mathrm{RC}}(t)$ , and
  - -h(t) is generated randomly using 802.15.4a outdoor NLOS specs.



# Lag-dependent statistics:

• Note that the tap energy, sparsity rate, and clustering are *lag-dependent*:



(Empirically estimated using 10000 realizations 802.15.4a outdoor NLOS.)

## **Proposed channel model:**

- Saleh-Valenzuela (e.g., 802.15.4a) models are accurate but difficult to exploit in receiver design.
- We propose a structured-sparse channel model based on a *2-state Gaussian Mixture* model with *Markov-chain* structure on the state:

$$p(x_j \mid d_j) \ = \begin{cases} \mathcal{CN}(x_j; 0, \mu_j^0) & \text{if } d_j = 0 \text{ "small"} \\ \mathcal{CN}(x_j; 0, \mu_j^1) & \text{if } d_j = 1 \text{ "big"} \end{cases}$$

$$\Pr\{d_{j+1} = 1\} \ = \ p_j^{10} \Pr\{d_j = 0\} + (1 - p_j^{01}) \Pr\{d_j = 1\}$$

Our model is parameterized by the lag-dependent quantities:

 $\{\mu_j^1\}$ : big-state power-delay profile  $\{\mu_j^0\}$ : small-state power-delay profile  $\{p_j^{01}\}$ : big-to-small transition probabilities  $\{p_j^{10}\}$ : small-to-big transition probabilities

• Can learn these statistical params from observed realizations via the EM alg.

# Optimal communication over unknown sparse channels:

For the unknown N-block-fading, L-length, S-sparse channel, Kannu & Schniter [1] established that

1. In the high-SNR regime, the ergodic capacity obeys

$$C_{\text{sparse}}(\text{SNR}) = \frac{N-S}{N} \log(\text{SNR}) + \mathcal{O}(1).$$

- 2. To achieve the prelog factor  $R_{\text{sparse}} = \frac{N-S}{N}$ , it suffices to use
  - ullet pilot-aided OFDM (with N subcarriers, of which S are pilots)
  - with (necessarily) joint channel estimation and data decoding.

### Key points:

- The effect of unknown channel support manifests only in the  $\mathcal{O}(1)$  offset.
- While [1] uses constructive proofs, the scheme proposed there is impractical.

[1] A. P. Kannu and P. Schniter, "On communication over unknown sparse frequency selective block-fading channels," *IEEE Trans. Info. Thy.*, to appear [arXiv 1006.1548].

## Practical communication over unknown clustered-sparse channels:

#### Transmitter:

- BICM OFDM
- carefully placed training bits

#### Receiver:

- joint data decoding / clustered-sparse channel estimation / cluster detection
- based on loopy belief propagation (BP)
- key enablers:
  - 1. "generalized AMP" algorithm [Rangan 10]
    - builds on AMP [Donoho/Maleki/Montanari 09]
    - near-optimal in large-system limit [Bayati/Montanari 10]
    - extremely low complexity:  $\mathcal{O}(N \log N)$  per iteration
  - 2. "turbo" message scheduling [Schniter 10]

## Factor graph for pilot-aided BICM-OFDM:



To jointly infer all random variables, we perform loopy-BP via the sum-product algorithm, using carefully chosen message approximations in each dashed box.

(See SPAWC paper for details, or longer version in arXiv:1101.4724.)

#### **Numerical results:**

#### Transmitter:

- OFDM with N=1024 subcarriers.
- 16-QAM with multi-level Gray mapping
- $\bullet$  LDPC codewords with length  $\sim 10000$  yielding spectral efficiency of 2 bpcu.
- P "pilot subcarriers" and T "training MSBs."

#### Channel:

- 802.15.4a outdoor-NLOS (not our Gaussian-mixture model!)
- Length L = 256 = N/4.

## Reference Channel Estimation / Equalization Schemes:

- soft-input soft-output (SISO) versions of LMMSE and LASSO.
- perfect-CSI genie.

# BER versus $E_b/N_o$ for P=224 pilots and T=0 training bits:



Our scheme shows 4dB improvement over (turbo) LASSO. Our scheme only 0.5dB from perfect-CSI genie!

# BER versus $E_b/N_o$ for P=0 pilots and T=448 training bits:



Use of training bits gives 1dB improvement over use of pilot subcarriers!

# BER versus P pilot subcarriers for T=0 training bits:



Too few pilots compromises channel estimation; too many compromises decoding.

# BER versus T training bits for P=0 pilot subcarriers:



Too few training bits compromises chan est; too many compromises decoding.



#### **Conclusions:**

- At larger communication bandwidths, channels become clustered-sparse, as seen by the 802.15.4a realizations.
- To exploit clustered-sparsity in receiver design, we proposed a channel model based on a 2-state Gaussian-mixture with Markov-chain state structure.
- Information theoretic analysis of sparse channels motivates OFDM transmission and joint channel-estimation/decoding.
- We proposed a factor-graph based OFDM receiver that accomplishes joint decoding / clustered-sparse channel estimation / cluster detection.
- Our receiver leverages Rangan's "generalized AMP" algorithm and our earlier work on "turbo sparse reconstruction"
- Our performance is 0.5dB from perfect-CSI bound 4dB beyond LASSO.
- ullet Our complexity is only  $\mathcal{O}(\log_2 N + |\mathbb{S}|)$  per symbol.