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ABSTRACT on orthogonal frequency-division multiplexing (OFDM) with bit-
interleaved coded modulation (BICM), and propose a novel factor-
We propose a factor-graph-based approach to joint channel-estmatipaph-based receiver that leverages recent results in “generalize
and-decoding of bit-interleaved coded orthogonal frequency diviapproximate message passing” (GAMP) [4], soft-input/soft-output
sion multiplexing (BICM-OFDM). In contrast to existing designs, (S|SO) decoding [5], and structured-sparse estimation [6]. Our re-
ours is capable of exploiting not only sparsity in sampled channetejver assumes a clustered-sparse channel-tap prior constrseted u
taps but also clustering among the large taps, behaviors which ajgg a two-state Gaussian mixture with a Markov model on the hid-
known to manifest at larger communication bandwidths. In ordeijen tap state. The scheme that we propose has®@q log, N +
to exploit these channel-tap structures, we adopt a two-state Gaupng) complexity, whereV denotes the number of subcarriers and
sian mixture prior in conjunction with a Markov model on the hid- 37 denotes the number of bits per subcarrier, facilitating large values
den state. For loopy belief propagation, we exploit a “generalizehf v and channel length < N (e.g., we useV = 1024 and L =256
approximate message passing” algorithm recently developed in thgr our numerical results). For rich non-line-of-sight (NLOS) chan
context of compressed sensing, and show that it can be succesfels generated according to the 802.15.4a standard [7], our numer-
fully coupled with soft-input soft-output decoding, as well as hiddenical experiments show bit error rat@gR) performance withinl
Markov inference. FOIV subcarriers and/ bits per subcarrier (and  dB of the known-channel bound and 4 dB better than decoupled
any channel lengtii, < V), our scheme has a computational com- channel-estimation-and-decoding via LASSO.
plexity of only O(N log, N+N2*). Numerical experiments using Our work differs from existing factor-graph approaches to joint
IEEE 802.15.4a channels show that our scheme yields BER perfoghannel-estimation and decoding (JCED) for OFDM (e.g., [8-11])
mance within 1 dB of the known-channel bound and 4 dB better thafy that we use i) a sparse (i.e., non-Gaussian) channel-tap prior,
decoupled channel-estimation-and-decoding via LASSO. ii) a clustered (i.e., non-independent) channel-tap prior, and iii) the
GAMP algorithm, which was proposed and rigorously analyzed as
N,L — oo in [4]. Although we focus on the case of clustered-
sparse channels, our approach could be applied to non-sparse (i.e.

Gaussian) or non-clustered (i.e., independent) channel-tapgor, e.

When designing a digital _communications r_ecei_ver, it is_comm(_)n tchon-sparse channels with unknown lengtf8], with minor modifi-
model the effects of multipath propagation in discrete time using Rations of our assumed channel prior. Finally, we mention that this

convolutive linear channel that, in the slow-fading scenario, can bg . .« -1 avolution of [11], which applied &A(N L.)-complexity

i : ’ L-1

chaacterized by a red Ipule espofSe) - ovr 1o s L actont o 10 unclusterdd vty pare
) . . o thannels, and an abbreviated version of [12].

the channel taps tend to be heavy-tailed or “sparse” in that only a
few values in{z; }f;ol have significant amplitude [1]. Moreover,
groups of large taps are often clustered together injlagurther- 2. SYSTEM MODEL
more, both sparsity and clustering can be lag-dependent, such as

when the receiver’s timing-synchronization mechanism aligns thé-1- TheBICM-OFDM model

first strong multipath arrivals with a particular reference jag We consider an OFDM system with subcarriers, each modulated
Recently, there have been many attempts to apply breakthroug§y a QAM symbol from &2 -ary unit-energy constellatiof. Of

non-linear estimation techniques from the field of “compressive senshe N subcarriers,N, are dedicated as pilots, and the remaining

ing” (e.g., LASSO [2]) to the wireless channel estimation problemNd s N — N, are used to transmit a total dff; training bits and

[3]. These works take decouplecapproach to the problem of chan- Mgy = NyM — M; coded/interleaved data bits. The data bits are gen-

nel estimation and data decoding, in that pilot-symbol knowledge i%rated by encoding/; information bits using a raté coder, inter-

first exploited for sparse-channel estimation, after which the Chann?éaving them, and partitioning the resulting, £ M;/R bits among
il - 1

estimate is used for data decoding. However, this decoupled ap-_. N
proach is known to be sub-optimal when the taps are non-Gaussia%.n integer numbep = Mc /Mg of OFDM symbols. We note that the

The considerations above motivatet approach to structured- rgsug!ng schehme h"’lls a sp;)ectral efficiency) 6f Ma /N informa-
sparse-channel-estimation and decoding that offers both near-bptirﬁlgn its per channel use (bpcu).
decoding performance and low implementation complexity. In this  1|n the sequel, we us®e(-) to extract the real partj(r) to denote
paper, we propose exactly such a scheme. In particular, we foculse Dirac impulse, and,, to denote the Kronecker impulse. Furthermore,
D(b) constructs a diagonal matrix from the vectgrandCN (z; &, u®) 2
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DARPA/ONR grant N66001-10-1-4090, and an allocation of cotimg time & and variancg.”. We often usg(9;, 11 when referring to the mean and
from the Ohio Supercomputer Center. variance of random variablg;.
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In the Sequel, we uSék> e S for k [ {1, ey 21\/1} to denote the prior bits interlv training bits ~ mapping symbs  observ taps prior states  prior

k" element of the QAM constellation, amd®) £ [¢{*) ... )T 7o ! A 7 R
to denote the corresponding bits as defined by the symbol maﬁ)- O
ping. Likewise, we use;[g] € S for the QAM symbol transmit- |
ted on thei*" subcarrier of the;'” OFDM symbol ande;[q] £
[ciilg),- .., cing]]" for the coded/interleaved bits corresponding
to that symbol. We denote the coded/interleaved bits ingtfe
OFDM symbol byc[q] £ [co[q], - - -, en—1]q]]" and those in the en- :
tire (interleaved) codeword by 2 [c[1],...,¢c[Q]]". The elements | _sisodecodng O " T T ewe  llwe T \
of cthat are apriqri known_ as pilot or training bits v_viII be re_ferreql to Fig. 4. Factor graph of the JCED problem for a toy example i 3
ascpr. The remainder o€ is determined from the information bits information bits, N, = 1 pilot subcarrier (at subcarrier indéx= 3), M =
b2[b1,...,ba]" by coding/interleaving. 2 training bits, M = 2 bits per QAM symbol,N = 4 OFDM subcarriers,
To modulate the;'" OFDM symbol, anN-point inverse dis- and channel impulse response lengtk= 3.
crete Fourier transform (DFT@" is applied to the QAM sequence
slg] = [sold], ..., sn—1[q]]", yielding the time-domain sequence Markov chain (MC) with switching probabilities]" = Pr{d; . =
®"s(q] = alg] = [aolq],...,an—1[q]]". The OFDM waveform 0|d; =1} andp}’ £ Pr{d;;1 =1|d; =0}. Here,p}" < 0.5 im-
a(t) is then constructed usink-cyclic-prefixed versions ofa;[q]} plies that the neighbors of a big; tend to be big, ang}° < 0.5
and the transmission pulgg(T) using the standard procedure, i.e., implies that the neighbors of a small tend to be small. The
a(t) = Z(?:l ZNilL a<j>N[q] gt (t — T — q(N + L)T), whereT MC Implles that)\‘7'+1 = )\j(l — p?l) + (1 — )\]‘ )p]m must hold

j=—

denotes the baud interval (in seconds) @nd N. for all j. Although we allow correlation among the tap states, we
The waveformu(t) propagates through a noisy channel with anassume that the tapmplitudesare conditionally independent, i.e.,

impulse responsk() that is supported on the interadnin, Tmax|,  P(@j+1, %5 | dj+1,d;) =p(x; | dj)p(xjs1 | djv1). Our experiences

resulting in the received wavefornft) = v(t) + f::'z* h(t)a(t —  with IEEE 802.15.4a channels suggest that this is a valid assumption.

7)dT, wherev(t) is a Gaussian noise process with flat power spectral

densityN,. Using the reception pulsg(r), The receiver obtainsthe 2.3. Anillustrative example: |EEE 802.15.4a channels
samples;[q] = [7(t) gr(jT + q(N + L)T — t)dt, and applies an
N-DFT & to the sequence[q] = [ro[q], ..., ~n—-1]q]]", yielding
ylal=[yolal, . .,yn-1[g]]"=Pr[g]forg =1...Q.

As an example of lag-dependent clustered sparsity, we examine tap
vectorse £ [z, ...,zr—1]" created from square-root raised-cosine
. (SRRC) pulseqgr(7), g:(7) } with parametef.5, and channel im-
~ Forthe pulse-shaped channel respanise = (gr x o gt) (1), it pulse responsgéls((T))gerge)rgted as specified for the “outdoor non-
is well known (e.g., [13]) that, when the supportdr) is contained jing o sight” case of the 802.15.4a standard [7]. We assumed the
in [0, LT), the observation on th&" subcarrier can be written as bandwidthT—! = 256 MHz, for which L = 256 taps capture all sig-

Tal — (s _ nificant energy im(7), and timing synchronization so that the first

yila] = silalzla] + vilal, @ significant multipath arrival falls in the vicinity of= Lyre =21.

wherez;[g] € C is thei'" subcarrier's gain andv;[q]} are Gaus- We now describe an experiment conducted usio@)o realiza-
sian noise samples. Furthermore, defining the uniformly sampletions of the random tap vectar. To start, Fig. 1 shows histograms
channel “taps’z;[q] £ z(§T+q(N + L)T), the subcarrier gains are of Re(x;) for lags;j € {5, 23,128,230}. There it can be seen that
related to these taps through the DETlg] = thol ®[g). In the distribuFion offig(az_j) changes.significantly with lagr ‘for pre-
addition, when(g, x ¢¢)(7) is a Nyquist pulse{v; [q] }vi o are statis-  CUrSOr lagsg/ < Lpre, it looks Gaussian; for near-cursor lais Lyre,

tically independent with variange® = N, . it looks Laplacian; and, for post-cursor lags> Lyre, it looks ex-
To simplify the development, we assume that= 1 in the se- tremely_heavy-tail_ed. In Fig. 2, we plot a typical reali_zationaof
quel (but not in the simulations), and drop the indgxor brevity. and notice clustering among the big taps. For comparison, we also

plot the empirical power-delay profile (PDB)2 [po, ..., pr—1]",
where p; £ E{|z;|*}. Using the EM algorithm to fit the GM2
parameters{\;, 15, 1} =) [14, p. 435], we get the big-variance
For our message-passing-based receiver, we seek a prior dretire c profile pu' 2 [, . .. ,'ulLfl]T and small-variance profile® shown

nel taps{z; } that is capable of representing the lag-dependent clusg, Fig. 2, and the sparsity profild 2 [\o, ..., Az_1]T shown in
tered sparsity dgscrib_ed in Section 1. For this purpose, we use tr]_qg. 3. We observe that the resulting GM2 parameters show a peak
two-state Gaussian mixture (GM2) prior in \; near;j = Lye and sparsity increasing with. The switch-

2.2. A clustered-sparsetap prior

H HHESH 01 & 01 01 T 10 H H
z;) = (1= X\)CN(2;;0,10) + X\,CN(z:0, 1), (2 ing probabilitiesp™ = [pg*,...,p;]" andp™” shown in Fig. 3
ples) ( §)CN(@530.113) sCN (@530 1), (2) were then estimated from realizations of the MAP-detected state
wherey! >0 denotes the variance while in the “small” staié,> 1) vectord = [do, . ..,dr—1]", where Fig. 2 shows the MAP detection

denotes the variance while in the “big” state, and2 Pr{d; = 1} threshold. Finally, normalized estimates of the conditional correla-
denotes the prior probability of; being in the “big” state. Here, we tion E{z; 12} |d;+1 = 1,d; = 1} were found to have magnitude
used; € {0,1} to denote the hidden state. For exampley,ifvas ~ <0.1, validating our conditional-independence assumption.
presumed to be a “sparse” tap, then we would chogse& 1 and
pi > pg in (2). If, on the other handy; is presumed to be (non- 3. JOINT CHANNEL ESTIMATION AND DECODING
sparse) Rayleigh-fading, we would choose=1 and setu; equal
to the tap variance. Our goal is to infer the information bits from the OFDM obser-

To capture the big-tap clustering behavior, we employ a hiddewationsy and the pilot/training bitg,, without knowing the chan-
Markov model (HMM), i.e., we model the tap statﬁﬁj}fgol asa nel statex. In particular, we aim to maximize the posterior pmf
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Fig. 1. Histograms ofRe(z;) for lags j € Fig. 2. A realization of{z,} generated from the Fig. 3. Empirically estimated statistics on the tap-

{5,23, 128, 230}, with “tight” axes. IEEE 802.15.4a model with SRRC pulse shapingstates{d; }. Top: A;, middle:p9', bottom:p}°.
p(bm | y, cpr) Of each info bit. To exploit prior knowledge thatis definitions:
clustered-sparse, we employ the GM2-HMM prior described in Sect » (Z|'y. 50 = Py, |z, (W|2) CN (z:2,n%) (1)
tion 2.2, yielding thefactor graphin Fig. 4, where the round nodes | = Z¢"i"1% ™ . Jer pyi 12, WI=h CN(32,0%)
represent random variables and the square nodes represerttihe pr gout,i(y, 2, 0%) = = (Bz v, {zlv; b Z} -2) (D2)
abilistic relationships between them. G 02 27) = = V“Z\Y:# . 1) (D3)
PO px () CN (z57,u")
3.1. Background on belief propagation and GAMP XTI = T G eN ) (D4)
Although exact evaluation of the posterids(b.., | ¥, cpt) } is com- g‘,”’jéf’“T; B fizprf(fT_"L_()A N2 px (a7 ") Egg
putationally impractical for the problem sizes of interest, these pos'initialize?in’j TR = Ja 1T Gingg (T )1 PGS TS
teriors can be approximately evaluated udietief propagatior{BP) 'vj c25(1) = [ wpx,(z) (1)
on the loopy factor graph in Fig. 4. In textbook BP, beliefs take the vi R G AN
7:u5(1) = [ |z —2;(Dpx, () (12)

form of pdfs/pmfs that are propagated among nodes of the factar Vi:dy(0) = 0 (13)
graph via thesum/product algorithn{SPA) [14]. When the factor |forpn =1,2,3,...
graph contains no loops, SPA-BP yields exact posteriors after twp Vi:zi(n) = S ®i5(n) (R1)
rounds of message passing (i.e., forward and backward). Butgin th Vi:pi(n) = 2111 @212 (n) (R2)
presence of loops, convergence to the exact posteriors is not guar- Vi - ;ﬁli(n) — gi(Jn:)O, #;(n) fli(n 1) (R3)
anteed. Even so, there exist many problems to which loopy BP has Vi:ai(n) = gout:i(wi,pi(n), 1 (n)) (R4)
been successfully applied, including LDPC decoding [5], Markov Vi:pd(n) = —gou.i(Yir bi(n), ui (n)) (R5)
field inference [14], and compressed sensing [4, 6, 15]. Vi pi(n) = (SN |¢ij‘2M?("))71 (R6)

An important sub-problem within our larger bit-inference prob- Vi ii(n) = @5(n) + put(n) SN @ i (n) (R7)
lem is the estimation of a vector of independent non-Gaussian varl- v . = (n+1) = % (n)gl, (#;(n), " (n)) (R8)
ablesz that are linearly mixed vi@ ¢ CV** to form z = ®x = Vj: EJJ (n+1) = g j(fj?;f), u(n)’ (R9)
[20,...,2n-1]", and subsequently observed as noisy measurementgng ' ’
y through possibly non-Gaussian pdfsy; |z, (.|.)}. In our case, Table 1. The GAMP Algorithm

(2) specifies the non-Gaussian prioronand (1)—given the finite-
alphabet uncertainty in;—yields the non-Gaussian measurement
pdf py,|z,. This “linear mixing” sub-problem is described by the
factor graph shown within the middle dashed box in Fig. 4, wher
each node ;" represents the measurement pgf 2, and the node
to the right of each nodex;” represents the GM2 prior om;.
Building on recent work on message passing algorithms for com
pressed sensing [15], Rangan recently proposed a so-gelhextal-
ized approximate message pasqi6@MP) scheme that, for the sub-
problem described above, admits rigorous analysis,as— oo [4].

The GAMP algorithrA is summarized in Table 1.

to pass messages from the left to the right of Fig. 4 and back again,
eseveral times, stopping as soon as the messages converge. Each of
these full cycles of message passing will be referred to as a “turbo
iteration.” However, during a single turbo iteration, there may be
multiple iterations of message passimetweerthe GAMP and MC
sub-graphs, which will be referred to as “equalizer” iterations. Fur-
thermore, during a single equalizer iteration, there may be multiple
iterations of message passimgthin the GAMP sub-graph, while
there is at most one forward-backward iteratwithin the MC sub-
graph. The message passing details are discussed below.

At the start of the first turbo iteration, there is total uncertainty
about the information bits, so thBt{b,, =1} = % Thus, the initial
We now detail our application of GAMP to joint channel-estimation bit beliefs flowing rightward out of the coding/interleaving block are
and decoding (JCED) under the GM2-HMM tap prior, frequently uniformly distributed. Meanwhile, the pilot/training bits are known
referring to the factor graph in Fig. 4. with certainty, and thus taker{b,, =1} € {0, 1}.

Because our factor graph is loopy, there exists considerable free-  coded-bit beliefs are then propagated rightward into the sym-
dom in the message passing schedule. Roughly speaking, we chogs§ mapping nodes. Since the symbol mapping is deterministic, the

2To be precise, the GAMP algorithm in Table 1 is an extensiothaf correSpondl.ng pdf factors take the f0m<k) | C(f)) = k1. The
proposed in [4]. Table 1 handles circutesmplex-valuediistributions and ~ SPA then dictates that the message passed rightward from symbol
non-identicallydistributed signals and measurements. mapping node M;” is pa, s, (s™)) = Hﬁf:l Peim—M; (cﬁ,’f)),

3.2. Joint estimation and decoding using GAMP




which is then copied forward as the message passed rightward fro@AMP, where they are treated as tap-state prhoirsthe next equal-

nodes; (i.e.,pat, s, (s%) = ps; sy, (s5)). izer iteration. This interaction between the GAMP and MC blocks is
Recall, from Section 3.1, that the symbol-belief passed rightessentially the structured-sparse reconstruction scheme in [6].
ward into the measurement nodg"determines the pdfy, |z, used When the tap-state likelihoods passed between GAMP and MC
in GAMP. Writing this symbol belief a@, 2 [ﬂi(l)a . 552M)]T have converged, the equalizer iterations are termi_nated anql messages
k) & (k) . . . are passed leftward from the GAMP block. For this, SPA dictates
for 8, = ps,—y, (s'")), equation (1) implies the measurement pdf
M , v - ~ z v
vz, (Wl2) = Sy B CN (y; sz ). Then, defining Poieyi (5) = CN (yis s, s i + 1), (12)
ggk)(y 5u%) 2 Bfk)(/if\/’(y;s(’“)i,\s(’“)\2uz+u“) @) where(Z;, ui) play the role of soft channel estimates. Furthermore,
N S B CN (s (KD 2,18 2 ) the SPA implies thapai, s, () = ps;y, (5).
C(k)(/f) a |2y @ Next, beliefs are passe_d Ieftward from each symbol-mapping
Is(R)[2puz 4 pv node M; to the corresponding bit nodes,,,. They take the form
Wy, 2 07) 2 (= 2)CP () B)  Peimemi (=5 Lot PMsesi (80P atis ()
sl s 2y A 2M k)Y sy k) s for pairs(z, m) that do not correspond to pilot/training bits.
iy, 2, 1°) k=1 &y, 2, 17) e (y, 2, p1%) ®) Finally, messages are passed leftward into the coding/interleaving
sy, 2,0%) 2 02 €My, 2,0%) (16®(y, 2, 17) block. Doing so is equivalent to feeding extrinsic soft bit estimates to
X vz wte® (T a soft-input/soft-output (SISO) decoder/deinterleaver, which treats
— &y, 2,1°)° + i), (7)  them as priors. Since SISO decoding is a well-studied topic [5], we
o will not give details here. It suffices to say that, once the extrin-
whereg, £ [.51(1)7 e ,.552 )}T characterizes the posterior pmf en  sic outputs of the SISO decoder have been computed, they are re-
under the channel mode] ~ CN/ (2, 1*), it can be shown that the interleaved and passed rightward from the coding/interleaving block
guantities in (D2)-(D3) of Table 1 become to begin another turbo iteration. These turbo iterations continue un-
. L o til either the decoder detects no bit errors, the soft bit estimates have
Gouri(y; 2, 10°) = z€i(y, 2, 1%) (8)  converged, or a maximum number of iterations has elapsed.
Goui (0, 2, p7) = L (ML) ), )

4. NUMERICAL RESULTS
Likewise, definingy? (u”) £ (1 + p"/u9)~" and~yj (u") £ (1 +
" /)t anday (7, u) £ 1/(1 4 (£ £9%F, u7)) "), where We now present numerical results comparing our GAMP-based JCED
i s N isth iori likelihood ratic“4=" on the hidd sche_met(_) decqupled channel-estimation and deco_dlng (DCED) based
£; =%, IS the apriori likelihood ratios "5y on the hidden 1 pijot-ajded linear MMSE (LMMSE) channel estimates, LASSO
State’[?xl(f“ur) A CN({NSO»#_(};W?) is GAMP’s extrinsic likelihood  channel estimates [2], and perfect_channel state informatic_)n (csi.

) . CN (750,55 +17) ) Setup: For all results, we used irregular LDPC codes with code-
ratio, anda; (7, u") is the posterioi’r{d; = 1}, it can be shown \yorq length~ 10000 and average column weight generated (and
from (2) that the quantities in (D5)-(D6) of Table 1 become decoded) using the publicly available software [16], with random

o (Foi”) = (a7t + (1= a5)72)7 (10) interleaving. We focus on the case ¥f= 1024 subcarriers and6-
Gin,g \T's B 375 )75 QAM (i.e., M =4) operating at a spectral efficiency gt 2 bpcu.
G (Foi") = aj(1 = ay) (v — D)2 712 /u” For bit-to-symbol mapping, we used multilevel Gray-mapping. In
! A0 some simulations, we use{, > 0 pilot-only subcarriers and/; =0
+agy; + (1 - )y, (1) interspersed training bitsef%whereas in others we usgd= 0 and
Using (3)-(11), the GAMP algorithm in Table 1 is iterated until it Mt > 0. WhenN, > 0, the pilot subcarriers were placed randomly
converges. In doing so, GAMP generates (a close approximation t&nd modulated with (known) QAM symbols chosen uniformly at

both the conditional means and varianceg” 2 (15, ..., u%_]" random. WhenV/; > 0, unit-valued training bits were placed at the
given the observationg, the soft symbol prior82 [3,,...,8,_,]T  Most significant bits (MSBs) of uniformly spaced data-subcarriers.
and the sparsity priok. Conveniently, GAMP also returns both the ~ Realizations of the tap vectariq] were generated from 802.15.4a
conditional meang and varianceg® of the subchannel gains outdoor-NLOS impulse responses and SRRC pulses, as described in

It should be noted that, due to unit-modulus property of the DFTSEction 2.3. Al reported results are averaged over000 channel
elementsb;;, step (R2) in Table 1 simplifies {07 (n) =Y, 115 (n) ~ realizations (i.e.2 10" info bits). _
and (R6) simplifies tqu](n) = (3, u(n))~*. The complexity The GM2-HMM prior parameters _used by GAMP were fit from
of GAMP is then dominated by either the matrix-vector products_10000 r_eallzatlons of the tap-vectar using the pr_ocedure described
52, ®iyit;(n) in (RL) andy>, 7 (n) in (R7), which can be im- 1 Section 2.3. For JCED-GAMP, we usedriximumof 20 turbo

: K iterations 5 equalizer iterations,5 GAMP iterations, an@5 LDPC

decoder iterations, although these maxima were seldom reached.

The following procedure was used to implement DCED from a

plemented using & log, N-multiply FFT whenN is a power-of-
two, or by the calculation ofé;, ,uf}f.\]:gl in (6)-(7), which requires
O(N2M) multiplies. Thus, GAMP requires onl(N log, N . ! ; . .
N(QJW) m)ultipliez per iteration. a P(Nlog, N + given set of tap estlmate{s?:[q}}qul. First, the subcarrier estimates
After the messages within the GAMP sub-graph have converged",[Q] = @2[q] )/\:ereAcorAnputed, fror;n which the (genie-aided empiri-
tap-state beliefs are passed rightward to the MC sub-graph. In pa_?ﬁ') varianceii®[q] = Hz[qJ - z[({”b/{v WaSQ calculated. Then, us-
ticular, the SPA dictates that GAMP pass the extrinsic likelihooding the soft channel estimatdg|q], /i”[q]},_,, leftward SPA-BP
ratios £, Since the MC sub-graph is non-loopy, only one iterationon the factor graph in Fig. 4 was performed exactly as described in
of forward-backward message passing (see [14]) is sufficieter; af Section 3.2. LMMSE tap estimates were computediigse[q] =
which the resulting tap-state likelihoods are passed leftward back ta"[g] (A[q] D(p) A" [q] + 1" T) _1ypt[q], wheresp[q] € S™* are the
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n=2 bpcu, andl6-QAM. 16-QAM.

pilot symbolsy,[q] € C™r are the pilot subcarrier observatiopsis

the PDPA[q] £ D(spt[q]) ®pt, and®y € C¥P <~ is constructed from
the pilot rows and the first columns of theV-DFT matrix. LASSO
tap estimatesiasso [g] Were computed by the celebrated SPGL1 al-
gorithm [17] usingA[g] and a genie-optimized tuning parameter. 2]

Figure 5 shows bit error rat@ER) versus the number of pilot
subcarriersV, at E, /N, = 11 dB and a fixed spectral efficiency
of n = 2 bpcu. In this and other figuresGAMP-# MC-5," refers
to JCED-GAMP with # turbo iterations and 5 equalizer iterations,
whereas GAMP-#" alone indicates that the MC block was discon-
nected (i.e., there was no attempt to exploit tap clustering).

The curves in Fig. 5 exhibit a “notched” shape becauseyas
increases, the code ratemust decrease to maintain the fixed spec-
tral efficiencyn = 2 bpcu; while an increase iN, generally makes
channel estimation easier, the reductiondrmakes data decoding
more difficult. For all schemes under comparison, Fig. 5 suggestd’]
that the choiceV, ~ 224 is optimal under the chosen operating con-
ditions. Overall, we see GAMP significantly outperforming both
LMMSE and LASSO even after one turbo iteration. Moreover, we
see a noticeable gain from the use of the MC block during the first
two turbo iterations, and after turbo convergence if too few pilots are
used (i.e. Np < 224).

Figure 6 showsER versusE;, /N, using N, = 224 pilot sub-
carriers (as suggested by Fig. 5) aWd=0. There, we see LASSO
performing aboub dB from perfect-CSl, and LMMSE performing
significantly worse. Remarkably, we see GAMP performing within [10]
1 dB of the perfect-CSI bound (and within5 dB after only2 turbo
iterations). The proximity of the perfect-CSl and GAMER traces
confirms that the proposed GM2-HMM prior does an excellent job
of capturing the lag-dependent clustered-sparse characteristies of Y
true channel taps. Consistent with Fig. 5, we see that GAMP ben-
efits significantly from the use of the MC block during the initial [12]
turbo iterations, and less significantly after turbo convergence.

Although N, > 0 pilot subcarriers are required for DCED chan- [13]
nel estimation, JCED can function witk, = 0 as long as\/; > 0
interspersed training bits are used. To examine the latter case, Fig. 7
showsBER versusM; at E, /N, =10 dB, a fixed spectral efficiency [14]
of n =2 bpcu, andN, = 0. There we see that there is a relatively
wide tolerance onf;, although the valué//; ~ 450 appears best [15]
when convergence speed is taken into account. Moreover, we can
see a small but noticeable BER improvement when the MC block
is used. More importantly, by comparing tBER performance in  [16]
Fig. 7 to that in Fig. 6 af, /N, = 10 dB, we see that thBER is
about6 times lower in Fig. 7. Thus, we conclude that placing train-[17]
ing bits at MSBs is more efficient than placing them at dedicated
pilot subcarriers.

(1

(3]

(4]

(5]

(6]

(8]

9]

subcarriersy =2 bpcu, andl6-QAM.
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