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ABSTRACT

We propose a factor-graph-based approach to joint channel-estimation-
and-decoding of bit-interleaved coded orthogonal frequency divi-
sion multiplexing (BICM-OFDM). In contrast to existing designs,
ours is capable of exploiting not only sparsity in sampled channel
taps but also clustering among the large taps, behaviors which are
known to manifest at larger communication bandwidths. In order
to exploit these channel-tap structures, we adopt a two-state Gaus-
sian mixture prior in conjunction with a Markov model on the hid-
den state. For loopy belief propagation, we exploit a “generalized
approximate message passing” algorithm recently developed in the
context of compressed sensing, and show that it can be success-
fully coupled with soft-input soft-output decoding, as well as hidden
Markov inference. ForN subcarriers andM bits per subcarrier (and
any channel lengthL < N ), our scheme has a computational com-
plexity of onlyO(N log2 N+N2M ). Numerical experiments using
IEEE 802.15.4a channels show that our scheme yields BER perfor-
mance within 1 dB of the known-channel bound and 4 dB better than
decoupled channel-estimation-and-decoding via LASSO.

1. INTRODUCTION

When designing a digital communications receiver, it is common to
model the effects of multipath propagation in discrete time using a
convolutive linear channel that, in the slow-fading scenario, can be
characterized by a fixed impulse response{xj}

L−1
j=0 over the dura-

tion of one codeword. As the communication bandwidth increases,
the channel taps tend to be heavy-tailed or “sparse” in that only a
few values in{xj}

L−1
j=0 have significant amplitude [1]. Moreover,

groups of large taps are often clustered together in lagj. Further-
more, both sparsity and clustering can be lag-dependent, such as
when the receiver’s timing-synchronization mechanism aligns the
first strong multipath arrivals with a particular reference lagj.

Recently, there have been many attempts to apply breakthrough
non-linear estimation techniques from the field of “compressive sens-
ing” (e.g., LASSO [2]) to the wireless channel estimation problem
[3]. These works take adecoupledapproach to the problem of chan-
nel estimation and data decoding, in that pilot-symbol knowledge is
first exploited for sparse-channel estimation, after which the channel
estimate is used for data decoding. However, this decoupled ap-
proach is known to be sub-optimal when the taps are non-Gaussian.

The considerations above motivate ajoint approach to structured-
sparse-channel-estimation and decoding that offers both near-optimal
decoding performance and low implementation complexity. In this
paper, we propose exactly such a scheme. In particular, we focus
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on orthogonal frequency-division multiplexing (OFDM) with bit-
interleaved coded modulation (BICM), and propose a novel factor-
graph-based receiver that leverages recent results in “generalized
approximate message passing” (GAMP) [4], soft-input/soft-output
(SISO) decoding [5], and structured-sparse estimation [6]. Our re-
ceiver assumes a clustered-sparse channel-tap prior constructed us-
ing a two-state Gaussian mixture with a Markov model on the hid-
den tap state. The scheme that we propose has onlyO(N log2 N +
N2M ) complexity, whereN denotes the number of subcarriers and
M denotes the number of bits per subcarrier, facilitating large values
of N and channel lengthL<N (e.g., we useN=1024 andL=256
for our numerical results). For rich non-line-of-sight (NLOS) chan-
nels generated according to the 802.15.4a standard [7], our numer-
ical experiments show bit error rate (BER) performance within1
dB of the known-channel bound and 4 dB better than decoupled
channel-estimation-and-decoding via LASSO.

Our work differs from existing factor-graph approaches to joint
channel-estimation and decoding (JCED) for OFDM (e.g., [8–11])
in that we use i) a sparse (i.e., non-Gaussian) channel-tap prior,
ii) a clustered (i.e., non-independent) channel-tap prior, and iii) the
GAMP algorithm, which was proposed and rigorously analyzed as
N,L → ∞ in [4]. Although we focus on the case of clustered-
sparse channels, our approach could be applied to non-sparse (i.e.,
Gaussian) or non-clustered (i.e., independent) channel-taps or, e.g.,
non-sparse channels with unknown lengthL [8], with minor modifi-
cations of our assumed channel prior. Finally, we mention that this
work is an evolution of [11], which applied anO(NL)-complexity
“relaxed belief propagation” algorithm to unclustered exactly sparse
channels, and an abbreviated version of [12].1

2. SYSTEM MODEL

2.1. The BICM-OFDM model

We consider an OFDM system withN subcarriers, each modulated
by a QAM symbol from a2M -ary unit-energy constellationS. Of
the N subcarriers,Np are dedicated as pilots, and the remaining
Nd , N −Np are used to transmit a total ofMt training bits and
Md ,NdM−Mt coded/interleaved data bits. The data bits are gen-
erated by encodingMi information bits using a rate-R coder, inter-
leaving them, and partitioning the resultingMc ,Mi/R bits among
an integer numberQ,Mc/Md of OFDM symbols. We note that the
resulting scheme has a spectral efficiency ofη,MdR/N informa-
tion bits per channel use (bpcu).

1In the sequel, we useRe(·) to extract the real part,δ(τ) to denote
the Dirac impulse, andδn to denote the Kronecker impulse. Furthermore,
D(b) constructs a diagonal matrix from the vectorb, andCN (x; x̂, µx),
(πµx)−1 exp(−|x− x̂|2/µx) denotes the circular Gaussian pdf with mean
x̂ and varianceµx. We often use(v̂j , µv

j ) when referring to the mean and
variance of random variableVj .



In the sequel, we uses(k)∈S for k∈{1, . . . , 2M} to denote the
kth element of the QAM constellation, andc(k) , [c

(k)
1 , . . . , c

(k)
M ]T

to denote the corresponding bits as defined by the symbol map-
ping. Likewise, we usesi[q] ∈ S for the QAM symbol transmit-
ted on theith subcarrier of theqth OFDM symbol andci[q] ,
[ci,1[q], . . . , ci,M [q]]T for the coded/interleaved bits corresponding
to that symbol. We denote the coded/interleaved bits in theqth

OFDM symbol byc[q], [c0[q], . . . , cN−1[q]]
T and those in the en-

tire (interleaved) codeword byc, [c[1], . . . , c[Q]]T. The elements
of c that are apriori known as pilot or training bits will be referred to
ascpt. The remainder ofc is determined from the information bits
b, [b1, . . . , bMi ]

T by coding/interleaving.
To modulate theqth OFDM symbol, anN -point inverse dis-

crete Fourier transform (DFT)ΦH is applied to the QAM sequence
s[q] = [s0[q], . . . , sN−1[q]]

T, yielding the time-domain sequence
Φ

Hs[q] = a[q] = [a0[q], . . . , aN−1[q]]
T. The OFDM waveform

a(t) is then constructed usingL-cyclic-prefixed versions of{aj [q]}
and the transmission pulsegt(τ) using the standard procedure, i.e.,
a(t) =

∑Q

q=1

∑N−1
j=−L a〈j〉N[q] gt

(

t− jT − q(N +L)T
)

, whereT
denotes the baud interval (in seconds) andL < N .

The waveforma(t) propagates through a noisy channel with an
impulse responseh(τ) that is supported on the interval[τmin, τmax],
resulting in the received waveformr(t) = v(t) +

∫ τmax

τmin
h(τ)a(t−

τ)dτ , wherev(t) is a Gaussian noise process with flat power spectral
densityNo. Using the reception pulsegr(τ), The receiver obtains the
samplesrj [q] =

∫

r(t) gr
(

jT + q(N +L)T − t
)

dt, and applies an
N -DFT Φ to the sequencer[q] = [r0[q], . . . , rN−1[q]]

T, yielding
y[q]=[y0[q], . . . , yN−1[q]]

T=Φr[q] for q = 1 . . . Q.
For the pulse-shaped channel responsex(τ),(gr ⋆h ⋆ gt)(τ), it

is well known (e.g., [13]) that, when the support ofx(τ) is contained
in [0, LT ), the observation on theith subcarrier can be written as

yi[q] = si[q]zi[q] + vi[q], (1)

wherezi[q] ∈ C is theith subcarrier’s gain and{vi[q]} are Gaus-
sian noise samples. Furthermore, defining the uniformly sampled
channel “taps”xj [q],x(jT+q(N+L)T ), the subcarrier gains are
related to these taps through the DFT:zi[q] =

∑L−1
j=0 Φijxj [q]. In

addition, when(gr ⋆ gt)(τ) is a Nyquist pulse,{vi[q]}∀i,q are statis-
tically independent with varianceµv=No.

To simplify the development, we assume thatQ = 1 in the se-
quel (but not in the simulations), and drop the index[q] for brevity.

2.2. A clustered-sparse tap prior

For our message-passing-based receiver, we seek a prior on the chan-
nel taps{xj} that is capable of representing the lag-dependent clus-
tered sparsity described in Section 1. For this purpose, we use the
two-state Gaussian mixture (GM2) prior

p(xj) = (1− λj)CN (xj ; 0, µ
0
j ) + λjCN (xj ; 0, µ

1
j ), (2)

whereµ0
j ≥0 denotes the variance while in the “small” state,µ1

j >µ0
j

denotes the variance while in the “big” state, andλj ,Pr{dj =1}
denotes the prior probability ofxj being in the “big” state. Here, we
usedj ∈ {0, 1} to denote the hidden state. For example, ifxj was
presumed to be a “sparse” tap, then we would chooseλj ≪ 1 and
µ1
j ≫ µ0

j in (2). If, on the other hand,xj is presumed to be (non-
sparse) Rayleigh-fading, we would chooseλj =1 and setµ1

j equal
to the tap variance.

To capture the big-tap clustering behavior, we employ a hidden
Markov model (HMM), i.e., we model the tap states{dj}

L−1
j=0 as a
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Fig. 4. Factor graph of the JCED problem for a toy example withMi = 3
information bits,Np = 1 pilot subcarrier (at subcarrier indexi = 3), Mt =
2 training bits,M = 2 bits per QAM symbol,N = 4 OFDM subcarriers,
and channel impulse response lengthL = 3.

Markov chain (MC) with switching probabilitiesp01j ,Pr{dj+1 =

0 | dj = 1} andp10j ,Pr{dj+1 = 1 | dj = 0}. Here,p01j < 0.5 im-
plies that the neighbors of a bigxj tend to be big, andp10j < 0.5
implies that the neighbors of a smallxj tend to be small. The
MC implies thatλj+1 = λj(1− p01j ) + (1− λj)p

10
j must hold

for all j. Although we allow correlation among the tap states, we
assume that the tapamplitudesare conditionally independent, i.e.,
p(xj+1, xj | dj+1, dj) = p(xj | dj)p(xj+1 | dj+1). Our experiences
with IEEE 802.15.4a channels suggest that this is a valid assumption.

2.3. An illustrative example: IEEE 802.15.4a channels

As an example of lag-dependent clustered sparsity, we examine tap
vectorsx, [x0, . . . , xL−1]

T created from square-root raised-cosine
(SRRC) pulses{gr(τ), gt(τ)} with parameter0.5, and channel im-
pulse responsesh(τ) generated as specified for the “outdoor non-
line-of-sight” case of the 802.15.4a standard [7]. We assumed the
bandwidthT−1=256 MHz, for whichL=256 taps capture all sig-
nificant energy inh(τ), and timing synchronization so that the first
significant multipath arrival falls in the vicinity ofj=Lpre=21.

We now describe an experiment conducted using10000 realiza-
tions of the random tap vectorx. To start, Fig. 1 shows histograms
of Re(xj) for lagsj ∈ {5, 23, 128, 230}. There it can be seen that
the distribution ofRe(xj) changes significantly with lagj: for pre-
cursor lagsj<Lpre, it looks Gaussian; for near-cursor lagsj≈Lpre,
it looks Laplacian; and, for post-cursor lagsj ≫ Lpre, it looks ex-
tremely heavy-tailed. In Fig. 2, we plot a typical realization ofx

and notice clustering among the big taps. For comparison, we also
plot the empirical power-delay profile (PDP)ρ , [ρ0, . . . , ρL−1]

T,
whereρj , E{|xj |

2}. Using the EM algorithm to fit the GM2
parameters{λj , µ

0
j , µ

1
j}

L−1
j=0 [14, p. 435], we get the big-variance

profileµ1 , [µ1
0, . . . , µ

1
L−1]

T and small-variance profileµ0 shown
in Fig. 2, and the sparsity profileλ , [λ0, . . . , λL−1]

T shown in
Fig. 3. We observe that the resulting GM2 parameters show a peak
in λj nearj = Lpre and sparsity increasing withj. The switch-
ing probabilitiesp01 , [p010 , . . . , p01L−1]

T andp10 shown in Fig. 3
were then estimated from realizations of the MAP-detected state
vectord, [d0, . . . , dL−1]

T, where Fig. 2 shows the MAP detection
threshold. Finally, normalized estimates of the conditional correla-
tion E{xj+1x

∗
j | dj+1 = 1, dj = 1} were found to have magnitude

<0.1, validating our conditional-independence assumption.

3. JOINT CHANNEL ESTIMATION AND DECODING

Our goal is to infer the information bitsb from the OFDM obser-
vationsy and the pilot/training bitscpt, without knowing the chan-
nel statex. In particular, we aim to maximize the posterior pmf
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p(bm |y, cpt) of each info bit. To exploit prior knowledge thatx is
clustered-sparse, we employ the GM2-HMM prior described in Sec-
tion 2.2, yielding thefactor graphin Fig. 4, where the round nodes
represent random variables and the square nodes represent the prob-
abilistic relationships between them.

3.1. Background on belief propagation and GAMP

Although exact evaluation of the posteriors{p(bm |y, cpt)} is com-
putationally impractical for the problem sizes of interest, these pos-
teriors can be approximately evaluated usingbelief propagation(BP)
on the loopy factor graph in Fig. 4. In textbook BP, beliefs take the
form of pdfs/pmfs that are propagated among nodes of the factor
graph via thesum/product algorithm(SPA) [14]. When the factor
graph contains no loops, SPA-BP yields exact posteriors after two
rounds of message passing (i.e., forward and backward). But, in the
presence of loops, convergence to the exact posteriors is not guar-
anteed. Even so, there exist many problems to which loopy BP has
been successfully applied, including LDPC decoding [5], Markov
field inference [14], and compressed sensing [4,6,15].

An important sub-problem within our larger bit-inference prob-
lem is the estimation of a vector of independent non-Gaussian vari-
ablesx that are linearly mixed viaΦ ∈ C

N×L to form z=Φx=
[z0, . . . , zN−1]

T, and subsequently observed as noisy measurements
y through possibly non-Gaussian pdfs{pYi|Zi

(. | .)}. In our case,
(2) specifies the non-Gaussian prior onxj and (1)—given the finite-
alphabet uncertainty insi—yields the non-Gaussian measurement
pdf pYi|Zi

. This “linear mixing” sub-problem is described by the
factor graph shown within the middle dashed box in Fig. 4, where
each node “yi” represents the measurement pdfpYi|Zi

and the node
to the right of each node “xj” represents the GM2 prior onxj .
Building on recent work on message passing algorithms for com-
pressed sensing [15], Rangan recently proposed a so-calledgeneral-
ized approximate message passing(GAMP) scheme that, for the sub-
problem described above, admits rigorous analysis asN,L→∞ [4].
The GAMP algorithm2 is summarized in Table 1.

3.2. Joint estimation and decoding using GAMP

We now detail our application of GAMP to joint channel-estimation
and decoding (JCED) under the GM2-HMM tap prior, frequently
referring to the factor graph in Fig. 4.

Because our factor graph is loopy, there exists considerable free-
dom in the message passing schedule. Roughly speaking, we choose

2To be precise, the GAMP algorithm in Table 1 is an extension ofthat
proposed in [4]. Table 1 handles circularcomplex-valueddistributions and
non-identicallydistributed signals and measurements.

definitions:
pZi|Yi

(z|y; ẑ, µz) =
pYi|Zi

(y|z) CN (z;ẑ,µz)
∫
z′ pYi|Zi

(y|z′) CN (z′;ẑ,µz)
(D1)

gout,i(y, ẑ, µ
z) = 1

µz

(

EZi|Yi
{z|y; ẑ, µz} − ẑ

)

(D2)

g′out,i(y, ẑ, µ
z) = 1

µz

(

varZi|Yi
{z|y;ẑ,µz}

µz − 1

)

(D3)

pXj
(x; r̂, µr) =

pXj
(x) CN (x;r̂,µr)

∫
x′ pXj

(x′) CN (x′;r̂,µr)
(D4)

gin,j(r̂, µ
r) =

∫

x
x pXj

(x; r̂, µr) (D5)
g′in,j(r̂, µ

r) = 1
µr

∫

x
|x− gin,j(r̂, µ

r)|2 pXj
(x; r̂, µr) (D6)

initialize:
∀j : x̂j(1) =

∫

x
x pXj

(x) (I1)
∀j : µx

j (1) =
∫

x
|x− x̂j(1)|2pXj

(x) (I2)
∀i : ûi(0) = 0 (I3)

for n = 1, 2, 3, . . .

∀i : ẑi(n) =
∑L−1

j=0 Φij x̂j(n) (R1)

∀i : µz
i (n) =

∑L−1
j=0 |Φij |2µx

j (n) (R2)
∀i : p̂i(n) = ẑi(n)− µz

i (n) ûi(n− 1) (R3)
∀i : ûi(n) = gout,i(yi, p̂i(n), µ

z
i (n)) (R4)

∀i : µu
i (n) = −g′out,i(yi, p̂i(n), µ

z
i (n)) (R5)

∀j : µr
j (n) =

(
∑N−1

i=0 |Φij |2µu
i (n)

)−1 (R6)

∀j : r̂j(n) = x̂j(n) + µr
j (n)

∑N−1
i=0 Φ∗ij ûi(n) (R7)

∀j : µx
j (n+1) = µr

j (n)g
′
in,j(r̂j(n), µ

r
j (n)) (R8)

∀j : x̂j(n+1) = gin,j(r̂j(n), µ
r
j (n)) (R9)

end

Table 1. The GAMP Algorithm

to pass messages from the left to the right of Fig. 4 and back again,
several times, stopping as soon as the messages converge. Each of
these full cycles of message passing will be referred to as a “turbo
iteration.” However, during a single turbo iteration, there may be
multiple iterations of message passingbetweenthe GAMP and MC
sub-graphs, which will be referred to as “equalizer” iterations. Fur-
thermore, during a single equalizer iteration, there may be multiple
iterations of message passingwithin the GAMP sub-graph, while
there is at most one forward-backward iterationwithin the MC sub-
graph. The message passing details are discussed below.

At the start of the first turbo iteration, there is total uncertainty
about the information bits, so thatPr{bm=1}= 1

2
. Thus, the initial

bit beliefs flowing rightward out of the coding/interleaving block are
uniformly distributed. Meanwhile, the pilot/training bits are known
with certainty, and thus takePr{bm=1}∈{0, 1}.

Coded-bit beliefs are then propagated rightward into the sym-
bol mapping nodes. Since the symbol mapping is deterministic, the
corresponding pdf factors take the formp(s(k) | c(l)) = δk−l. The
SPA then dictates that the message passed rightward from symbol
mapping node “Mi” is pMi→si(s

(k)) =
∏M

m=1 pci,m→Mi
(c

(k)
m ),



which is then copied forward as the message passed rightward from
nodesi (i.e.,pMi→si(s

(k)) = psi→yi(s
(k))).

Recall, from Section 3.1, that the symbol-belief passed right-
ward into the measurement node “yi” determines the pdfpYi|Zi

used

in GAMP. Writing this symbol belief asβi , [β
(1)
i , . . . , β

(2M )
i ]T

for β(k)
i , psi→yi(s

(k)), equation (1) implies the measurement pdf

pYi|Zi
(y|z) =

∑2M

k=1 β
(k)
i CN (y; s(k)z;µv). Then, defining

ξ
(k)
i (y, ẑ, µz) ,

β
(k)
i
CN (y;s(k)ẑ,|s(k)|2µz+µv)

∑
k′ β

(k′)
i
CN (y;s(k

′)ẑ,|s(k
′)|2µz+µv)

(3)

ζ(k)(µz) , |s(k)|2µz

|s(k)|2µz+µv (4)

ê(k)(y, ẑ, µz) ,
(

y

s(k) − ẑ
)

ζ(k)(µz) (5)

êi(y, ẑ, µ
z) ,

∑2M

k=1 ξ
(k)
i (y, ẑ, µz) ê(k)(y, ẑ, µz) (6)

µe
i (y, ẑ, µ

z) ,
∑2M

k=1 ξ
(k)
i (y, ẑ, µz)

(

|ê(k)(y, ẑ, µz)

− êi(y, ẑ, µ
z)|2 + µvζ(k)(µz)

s(k)

)

, (7)

whereξi , [ξ
(1)
i , . . . , ξ

(2M )
i ]T characterizes the posterior pmf onsi

under the channel modelzi ∼ CN (ẑ, µz), it can be shown that the
quantities in (D2)-(D3) of Table 1 become

gout,i(y, ẑ, µ
z) = 1

µz êi(y, ẑ, µ
z) (8)

g′out,i(y, ẑ, µ
z) = 1

µz

(µe
i (y,ẑ,µ

z)

µz − 1
)

. (9)

Likewise, definingγ0
j (µ

r) , (1 + µr/µ0
j )
−1 andγ1

j (µ
r) , (1 +

µr/µ1
j )
−1 andαj(r̂, µ

r) , 1/
(

1 + (Lapri
j · Lext

j (r̂, µr))−1), where

Lapri
j ,

λj

1−λj
is the apriori likelihood ratio

Pr{dj=1}

Pr{dj=0} on the hidden

state,Lext
j (r̂, µr) ,

CN (r̂;0,µ1
j+µr)

CN (r̂;0,µ0
j
+µr)

is GAMP’s extrinsic likelihood

ratio, andαj(r̂, µ
r) is the posteriorPr{dj = 1}, it can be shown

from (2) that the quantities in (D5)-(D6) of Table 1 become

gin,j(r̂, µ
r) =

(

αj γ
1
j +

(

1− αj

)

γ0
j

)

r̂ (10)

g′in,j(r̂, µ
r) = αj(1− αj)(γ

1
j − γ0

j )
2 |r̂|2/µr

+ αjγ
1
j + (1− αj)γ

0
j , (11)

Using (3)-(11), the GAMP algorithm in Table 1 is iterated until it
converges. In doing so, GAMP generates (a close approximation to)
both the conditional meanŝx and variancesµx , [µx

0 , . . . , µ
x
L−1]

T

given the observationsy, the soft symbol priorsβ, [β0, . . . ,βL−1]
T

and the sparsity priorλ. Conveniently, GAMP also returns both the
conditional meanŝz and variancesµz of the subchannel gainsz.

It should be noted that, due to unit-modulus property of the DFT
elementsΦij , step (R2) in Table 1 simplifies toµz

i (n)=
∑

j µ
x
j (n)

and (R6) simplifies toµr
j (n) = (

∑

i µ
u
i (n))

−1. The complexity
of GAMP is then dominated by either the matrix-vector products
∑

j Φij x̂j(n) in (R1) and
∑

i Φ
∗
ij ûi(n) in (R7), which can be im-

plemented using aN log2 N -multiply FFT whenN is a power-of-
two, or by the calculation of{êi, µe

i}
N−1
i=0 in (6)-(7), which requires

O(N2M ) multiplies. Thus, GAMP requires onlyO(N log2 N +
N2M ) multiplies per iteration.

After the messages within the GAMP sub-graph have converged,
tap-state beliefs are passed rightward to the MC sub-graph. In par-
ticular, the SPA dictates that GAMP pass the extrinsic likelihood
ratiosLext

j . Since the MC sub-graph is non-loopy, only one iteration
of forward-backward message passing (see [14]) is sufficient, after
which the resulting tap-state likelihoods are passed leftward back to

GAMP, where they are treated as tap-state priorsλ in the next equal-
izer iteration. This interaction between the GAMP and MC blocks is
essentially the structured-sparse reconstruction scheme in [6].

When the tap-state likelihoods passed between GAMP and MC
have converged, the equalizer iterations are terminated and messages
are passed leftward from the GAMP block. For this, SPA dictates

psi←yi(s) = CN (yi; sẑi, |s|
2µz

i + µv), (12)

where(ẑi, µz
i ) play the role of soft channel estimates. Furthermore,

the SPA implies thatpMi←si(s) = psi←yi(s).
Next, beliefs are passed leftward from each symbol-mapping

nodeMi to the corresponding bit nodesci,m. They take the form
pci,m←Mi

(c)= 1
pci,m→Mi

(c)

∑

k:c
(k)
m =c

pMi←si(s
(k))pMi→si(s

(k))

for pairs(i,m) that do not correspond to pilot/training bits.
Finally, messages are passed leftward into the coding/interleaving

block. Doing so is equivalent to feeding extrinsic soft bit estimates to
a soft-input/soft-output (SISO) decoder/deinterleaver, which treats
them as priors. Since SISO decoding is a well-studied topic [5], we
will not give details here. It suffices to say that, once the extrin-
sic outputs of the SISO decoder have been computed, they are re-
interleaved and passed rightward from the coding/interleaving block
to begin another turbo iteration. These turbo iterations continue un-
til either the decoder detects no bit errors, the soft bit estimates have
converged, or a maximum number of iterations has elapsed.

4. NUMERICAL RESULTS

We now present numerical results comparing our GAMP-based JCED
scheme to decoupled channel-estimation and decoding (DCED) based
on pilot-aided linear MMSE (LMMSE) channel estimates, LASSO
channel estimates [2], and perfect channel state information (CSI).

Setup: For all results, we used irregular LDPC codes with code-
word length∼ 10000 and average column weight3, generated (and
decoded) using the publicly available software [16], with random
interleaving. We focus on the case ofN =1024 subcarriers and16-
QAM (i.e., M =4) operating at a spectral efficiency ofη=2 bpcu.
For bit-to-symbol mapping, we used multilevel Gray-mapping. In
some simulations, we usedNp>0 pilot-only subcarriers andMt=0
interspersed training bits, whereas in others we usedNp = 0 and
Mt > 0. WhenNp > 0, the pilot subcarriers were placed randomly
and modulated with (known) QAM symbols chosen uniformly at
random. WhenMt > 0, unit-valued training bits were placed at the
most significant bits (MSBs) of uniformly spaced data-subcarriers.

Realizations of the tap vectorx[q]were generated from 802.15.4a
outdoor-NLOS impulse responses and SRRC pulses, as described in
Section 2.3. All reported results are averaged over≥ 1000 channel
realizations (i.e.,& 107 info bits).

The GM2-HMM prior parameters used by GAMP were fit from
10000 realizations of the tap-vectorx using the procedure described
in Section 2.3. For JCED-GAMP, we used amaximumof 20 turbo
iterations,5 equalizer iterations,15 GAMP iterations, and25 LDPC
decoder iterations, although these maxima were seldom reached.

The following procedure was used to implement DCED from a
given set of tap estimates{x̂[q]}Qq=1. First, the subcarrier estimates
ẑ[q] =Φx̂[q] were computed, from which the (genie-aided empiri-
cal) variancêµz[q], ‖ẑ[q] − z[q]‖22/N was calculated. Then, us-
ing the soft channel estimates{ẑ[q], µ̂z[q]}Qq=1, leftward SPA-BP
on the factor graph in Fig. 4 was performed exactly as described in
Section 3.2. LMMSE tap estimates were computed viax̂lmmse[q] =

AH[q]
(

A[q]D(ρ)AH[q]+µvI
)−1

ypt[q], wherespt[q]∈S
Np are the
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Fig. 5. BER versus number of pilot subcarriers
Np, for Eb/No = 11 dB, Mt = 0 training bits,
η=2 bpcu, and16-QAM.
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ing bitsMt, for Eb/No = 10 dB, Np = 0 pilots
subcarriers,η=2 bpcu, and16-QAM.

pilot symbols,ypt[q]∈C
Np are the pilot subcarrier observations,ρ is

the PDP,A[q],D(spt[q])Φpt, andΦpt∈C
Np×L is constructed from

the pilot rows and the firstL columns of theN -DFT matrix. LASSO
tap estimateŝxlasso[q] were computed by the celebrated SPGL1 al-
gorithm [17] usingA[q] and a genie-optimized tuning parameter.

Figure 5 shows bit error rate (BER) versus the number of pilot
subcarriersNp at Eb/No = 11 dB and a fixed spectral efficiency
of η = 2 bpcu. In this and other figures, “GAMP-# MC-5,” refers
to JCED-GAMP with # turbo iterations and 5 equalizer iterations,
whereas “GAMP-#” alone indicates that the MC block was discon-
nected (i.e., there was no attempt to exploit tap clustering).

The curves in Fig. 5 exhibit a “notched” shape because, asNp

increases, the code rateR must decrease to maintain the fixed spec-
tral efficiencyη = 2 bpcu; while an increase inNp generally makes
channel estimation easier, the reduction inR makes data decoding
more difficult. For all schemes under comparison, Fig. 5 suggests
that the choiceNp≈224 is optimal under the chosen operating con-
ditions. Overall, we see GAMP significantly outperforming both
LMMSE and LASSO even after one turbo iteration. Moreover, we
see a noticeable gain from the use of the MC block during the first
two turbo iterations, and after turbo convergence if too few pilots are
used (i.e.,Np < 224).

Figure 6 showsBER versusEb/No usingNp = 224 pilot sub-
carriers (as suggested by Fig. 5) andMt =0. There, we see LASSO
performing about5 dB from perfect-CSI, and LMMSE performing
significantly worse. Remarkably, we see GAMP performing within
1 dB of the perfect-CSI bound (and within1.5 dB after only2 turbo
iterations). The proximity of the perfect-CSI and GAMPBER traces
confirms that the proposed GM2-HMM prior does an excellent job
of capturing the lag-dependent clustered-sparse characteristics of the
true channel taps. Consistent with Fig. 5, we see that GAMP ben-
efits significantly from the use of the MC block during the initial
turbo iterations, and less significantly after turbo convergence.

AlthoughNp > 0 pilot subcarriers are required for DCED chan-
nel estimation, JCED can function withNp = 0 as long asMt > 0
interspersed training bits are used. To examine the latter case, Fig. 7
showsBER versusMt atEb/No=10 dB, a fixed spectral efficiency
of η = 2 bpcu, andNp = 0. There we see that there is a relatively
wide tolerance onMt, although the valueMt ≈ 450 appears best
when convergence speed is taken into account. Moreover, we can
see a small but noticeable BER improvement when the MC block
is used. More importantly, by comparing theBER performance in
Fig. 7 to that in Fig. 6 atEb/No = 10 dB, we see that theBER is
about6 times lower in Fig. 7. Thus, we conclude that placing train-
ing bits at MSBs is more efficient than placing them at dedicated
pilot subcarriers.
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