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ABSTRACT

In this paper, we address the problem of joint scheduling andre-
source allocation in the downlink of an orthogonal frequency di-
vision multiple access (OFDMA)-based wireless network when the
per-user SNR is known only in distribution. In particular, we con-
sider sum-utility maximization over user schedules, powers, and code
rates, subject to an instantaneous sum-power constraint. We con-
sider both a “continuous” scenario where, during a time-slot, each
OFDMA subchannel can be time-shared among multiple users and/or
code rates, and a “discrete” scenario where no time-sharingis al-
lowed. For the non-convex optimization problem arising in the con-
tinuous case, we propose an efficient exact solution. For themixed-
integer optimization problem arising in the discrete case,we propose
a polynomial-complexity approximate solution and derive abound
on its optimality gap. We also provide a numerical study of goodput
maximization for the SNR distribution that results from theuse of
pilot-aided MMSE channel estimation.

1. INTRODUCTION

In the downlink of a wireless orthogonal frequency divisionmul-
tiple access (OFDMA) system, the base station (BS) deliversdata
to a pool of users whose channels vary in both time and frequency.
Since bandwidth and power resources are limited, the BS mustallo-
cate them efficiently. At the same time, the BS may need to ensure
quality-of-service (QoS) constraints, such as a minimum reliable rate
for each user. Clearly, the optimal allocation of resourcesis a func-
tion of the instantaneous channel state of all users at all subchannels.
However, it is difficult in practice to maintain perfect instantaneous
channel state information (CSI) at the BS, and so resource allocation
must be accomplished under imperfect CSI.

In this paper, we consider the problem of simultaneous user-
scheduling, power-allocation, and rate-optimization in an OFDMA
downlink system when the BS knows the per-user SNR only in dis-
tribution. In particular, we consider the problem of maximizing ex-
pected sum-utility subject to a constraint on sum-power under two
scenarios. In the first scenario, we allow multiple users and/or code
rates to time-share each subchannel and time slot, resulting in a non-
convex optimization problem. We solve this problem using a dual
optimization approach that yields an algorithm convergingexponen-
tially fast to the exact solution. In the second scenario, weallow
at most one user-rate combination to be allocated on any subchan-
nel, resulting in a mixed-integer optimization problem. Wediscuss
the connection between the two scenarios and propose an approx-
imate solution for the second problem using the solution obtained
in the first. For some cases, we show that the proposed solution
has zero optimality gap, while for the other cases, we bound the
optimality gap. Finally, we describe numerical results investigating

sum-goodput maximization in the OFDMA downlink where partial-
CSI is obtained through pilot-aided MMSE channel estimation. We
note that this paper is an abbreviated version of a longer paper [1]
that contains proofs and additional results.

We now discuss related work. The problem of OFDMA down-
link scheduling and resource allocation underperfectCSI has been
widely addressed in a number of publications (e.g., [2–5]).The
effect of imperfect CSI is studied for single-user OFDM in [6–8].
In [6], channel prediction was used to mitigate the effect ofoutdated
CSI on the performance of adaptive OFDM systems. The effect of
OFDM channel estimation error, as well as that of outdated CSI,
were studied for the variable bit-rate case in [7]. In [8], anoptimal
power loading algorithm for rate maximization was derived based on
average and outage capacity criteria, and it was concluded that the
outage rate of the system may be greatly reduced due to CSI error.
Multi-user OFDMA downlink performance under imperfect CSIhas
been studied in [9–11]. In [9], the authors considered the problem
of ergodic weighted sum-rate maximization for user-scheduling and
resource-allocation, and studied the impact of channel estimation er-
ror, where channel estimation error resulted from pilot-aided MMSE
channel estimation. In [10], a cross-layer design was proposed to
guarantee a fixed target-outage probability for slow-fading channels
when pilots are used to obtain CSI and the users have heterogeneous
delay requirements. In [11], the problem of total transmit power
minimization, subject to strict constraints on conditional expected
user capacities, was investigated. In contrast to these works, we fo-
cus on maximizing a more general concave goodput-based utility
subject to a sum-power constraint when the imperfect CSI comes in
the form of generic per-user SNR distributions.

2. SYSTEM MODEL

We consider a downlink OFDMA system withN subchannels and
K active users (N,K ∈ ℤ

+). During every channel use, one code-
word (from a generic signaling scheme) is transmitted usingeach
OFDMA subcarrier. The OFDMA subchannels between the BS and
each user are assumed to be non-interfering with gains that are time-
invariant over each codeword duration. Furthermore, the subchan-
nels of each given user are assumed to be statistically independent of
the channels of other users. Thus, the successful receptionof a trans-
mitted codeword depends on the corresponding subchannel’sSNR
,
powerp, and modulation and coding scheme (MCS)m. Here, we
assume that MCSm ∈ {1, . . . ,M} corresponds to a transmission
rate of rm bits per codeword and a codeword error probability of
the formame−bmp
 , wheream andbm are known constants. Be-
cause we treat the subchannel SNR
 as an exogenous parameter,
the codeword error probability is a function of the receivedSNRp
.

We denote the allocation decision variable byIn,k,m, where



In,k,m = 1 means that subchanneln is fully dedicated to userk at
MCSm, andIn,k,m = 0 means that subchanneln is totally unavail-
able to userk at MCSm. The subchannel resource constraint is then
expressed as

∑

k,m In,k,m ≤ 1 for all n. We denotepn,k,m ≥ 0 as
the power that would be expended on subchanneln if it was fully al-
located to the user/rate combination(k,m). Finally, we use
n,k to
denote thentℎ subchannel’s SNR for userk. We assume that the BS
does not know
n,k perfectly, but rather in distribution. Thus, our
scheduling and resource allocation (SRA) problem can be written as

SRA ≜ max
{pn,k,m≥0}

{In,k,m≥0}

E

{ N
∑

n=1

K
∑

k=1

M
∑

m=1

In,k,m ×

Un,k,m

(

(1− ame−bmpn,k,m
n,k )rm
)

}

s.t.
∑

k,m

In,k,m ≤ 1 ∀n and

∑

n,k,m

In,k,mpn,k,m ≤ Pcon. (1)

Here, the goodputg =
(

1 − ame−bmpn,k,m
n,k
)

rm represents the
expected number of bits per codeword that can be transmittedwith-
out error, and the utility functionUn,k,m(⋅) is used to transform
goodput into a quality-of-service (QoS) or fairness metric, e.g., max-
imin fairness or proportional fairness [12]. We allowUn,k,m(⋅) to be
any generic real-valued function that is twice differentiable, strictly-
increasing, and concave, with∣Un,k,m(0)∣ < ∞.

We consider two flavors of the SRA problem: a “continuous”
one (termed CSRA) where any subchannel is allowed to be shared
between multiple users-MCS combinations, i.e.,In,k,m ∈ [0, 1] for
all n, k,m, and a “discrete” one (termed DSRA) where subchannel
sharing is not allowed, i.e.,In,k,m ∈ {0, 1} ∀n, k,m. DefiningI
as theN ×K × M matrix with (n, k,m)th element asIn,k,m, the
CSRA problem concerns (1) forI ∈ ℐCSRA, where

ℐCSRA :=
{

I : I ∈ [0, 1]N×K×M ,
∑

k,m In,k,m ≤ 1 ∀n
}

, (2)

whereas the DSRA problem concerns (1) forI ∈ ℐDSRA, where

ℐDSRA :=
{

I : I ∈ {0, 1}N×K×M ,
∑

k,m In,k,m ≤ 1 ∀n
}

. (3)

In the next section, we discuss the CSRA and DSRA problems and
highlight the relationship between them.

3. OPTIMAL SCHEDULING AND RESOURCE
ALLOCATION

We first consider the CSRA problem, which is a non-convex op-
timization problem (due to the non-convex sum-power constraint).
Fortunately, it can be converted into a convex optimizationproblem
through the substitutionxn,k,m = In,k,m pn,k,m, wherexn,k,m is
the “actual” power allocated to userk at MCSm on subchanneln
after scheduling. Taking this approach, we obtain

CSRA = min
{xn,k,m≥0}

I∈ℐCSRA

∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m)

s.t.
∑

n,k,m

xn,k,m ≤ Pcon, (4)

whereFn,k,m(⋅, ⋅) is given by

Fn,k,m(y1, y2) (5)

=

{

−E
{

Un,k,m

(

(1− ame−bm
n,k y2/y1)rm
)

}

if y1 ∕= 0

0 otherwise.

We denote the optimalI andx for (4) asI∗
CSRA andx∗

CSRA, respec-
tively, and usep∗

CSRA to denote the correspondingp.
The convex problem (4) satisfies Slater’s condition atIn,k,m =

1
2KM

andxn,k,m = Pcon
N

In,k,m, ∀n, k,m. Hence, it can be solved
using a dual optimization approach with zero duality gap [13]. Using
� as the dual variable, the Lagrangian of (4) is

L(�, I,x) =
∑

n,k,m

In,k,m Fn,k,m(In,k,m, xn,k,m) +

(

∑

n,k,m

xn,k,m − Pcon

)

�, (6)

wherex denotes theN×K×M matrix[xn,k,m]. The unconstrained
dual problem then becomes

max
�≥0

min
xર0

I∈ℐCSRA

L(�, I,x) = L(�∗, I∗(�∗),x∗(�∗, I∗(�∗))), (7)

wherex ર 0 means thatxn,k,m ≥ 0 ∀n, k,m, wherex∗(�, I)
denotes the optimalx for a given� andI, whereI∗(�) denotes the
optimalI for a given�, and where�∗ denotes the optimal�. Then
we have, for any(n, k,m),

x∗
n,k,m(�, I) = In,k,m p∗n,k,m(�), (8)

where

p∗n,k,m(�) =

⎧



⎨



⎩

p̃n,k,m(�)
if 0 ≤ � ≤ ambmrm E{
n,k

U ′
n,k,m

(

(1− am)rm
)

}
0 otherwise,

(9)

and

� = E
{

U ′
n,k,m

(

(1− ame−bmp̃n,k,m(�)
n,k )rm
)

ambmrm
n,ke
−bmp̃n,k,m(�)
n,k

}

. (10)

To obtainI∗(�), first define

Vn,k,m(�, p∗n,k,m(�)) ≜ �p∗n,k,m(�)

−E
{

Un,k,m

(

(1− ame−bmp∗n,k,m(�)
n,k )rm
)

}

(11)

and

Sn(�) ≜

{

(k,m) : (k,m) = argmin
(k′,m′)

Vn,k′,m′(�, p∗n,k′,m′(�)),

andVn,k,m(�, p∗n,k,m(�)) ≤ 0
}

. (12)

AssumingSn(�) = {
(

ki(n),mi(n))}∣Sn(�)∣
i=1 , we have

I∗n,k,m(�) =

⎧

⎨

⎩

In,ki(n),mi(n)
if (k,m)=(ki(n),mi(n)) for
somei∈{1,...,∣Sn(�)∣}

0 otherwise.
(13)



Here, the vector(In,k1(n),m1(n), . . . , In,k∣Sn(�)∣(n),m∣Sn(�)∣(n)) is
any point in the unit-(∣Sn(�)∣−1) simplex, i.e., it belongs to the
space[0, 1]∣Sn(�)∣ and satisfies

∣Sn(�)∣
∑

i=1

In,ki(n),mi(n) = 1. (14)

Finally, �∗ (i.e., the optimal value of�) is such that�∗ ≥ 0 and
∑

n,k,m I∗n,k,m(�∗) p∗n,k,m(�∗) = Pcon.
Let us now define the total optimal allocated power for a given

value of� as follows:

X∗
tot(�) ≜

∑

n,k,m

x∗
n,k,m(�, I∗(�)). (15)

Then, the following lemma holds. (The proof is provided in [1].)

Lemma 1. The total optimal power allocation,X∗
tot(�), is a mono-

tonically decreasing function of�.

Note thatX∗
tot(�) may not be a continuous function of�. A

sample plot ofX∗
tot(�) and the corresponding value of Lagrangian,

i.e.,L(�, I∗(�),x∗(�, I∗(�))), is shown in Figure 1. From this fig-
ure, we observe thatX∗

tot(�) varies continuously in the region (of�)
where the optimal allocation,I∗(�), remains constant and takes a
jump (negative) whenI∗(�) changes. In particular, if∣Sn(�̃)∣ > 1
for somen and� = �̃, then multiple optimal allocations are possible
that satisfy (13). However, those different optimal allocations lead
to different power consumption levels. The power expended on sub-
channeln can be any value betweenmini∈Sn(�̃) p∗n,ki(n),mi(n)(�)
andmaxi∈Sn(�̃) p∗n,ki(n),mi(n)(�), causing a (negative) jump of

(

∑

n

min
i∈Sn(�̃)

p∗n,ki(n),mi(n)(�̃)−
∑

n

max
i∈Sn(�̃)

p∗n,ki(n),mi(n)(�̃)
)

inX∗
tot(�) (at� = �̃). In such cases, we allocate resources according

to I∗
CSRA ≜ �Imin(�∗) + (1− �)Imax(�∗), where

Imin
n,k,m(�∗) =

{

1 p∗n,k,m(�) = mini p
∗
n,ki(n),mi(n)(�)

0 otherwise,
, and

Imax
n,k,m(�∗) =

{

1 p∗n,k,m(�) = maxi p
∗
n,ki(n),mi(n)(�)

0 otherwise,
(16)

and� ∈ [0, 1] is chosen so that the sum-power constraint is met with
equality.

Based on the above discussion, we propose to use bisection-
search over{� ≥ 0} to find the�∗ at whichX∗

tot(�
∗) = Pcon,

stopping at the user-defined search interval�. Furthermore, we no-
tice thatp∗n,k,m(�) is a decreasing continuous function of� ((8)-(9))
and

∩

n,k,m{p∗n,k,m(�∗) /∈ ℝ ∖ [0, Pcon]} = ∅. Therefore, to obtain
�∗, the algorithm does not need to search the values of� for which
p̃n,k,m(�) combinations do not lie in[0, Pcon] for any (n, k,m).
Thus,�∗ ∈ [�min, �max], where

�max = max
n,k,m

ambmrmU ′
n,k,m

(

(1− am)rm
)

E{
n,k} and

�min = min
n,k,m

E
{

U ′
n,k,m

(

(1− ame−bmPcon
n,k )rm
)

ambmrm
n,ke
−bmPcon
n,k

}

(17)

are obtained by taking̃pn,k,m(�) → 0 and p̃n,k,m(�) → Pcon,
respectively, for all(n, k,m) in the right side of (10). Table 1 gives
the details of an algorithm that solves the CSRA problem.

We now discuss the DSRA problem and its relationship with
the CSRA problem. Because it optimizes over both continuous(p)
and discrete(I) variables, the DSRA problem can be recognized as
a mixed-integer optimization problem. Due to the high complex-
ity usually associated with mixed-integer optimization problems, we
propose an approximate solution to the DSRA problem based onan
algorithm with polynomial complexity inN , K, M .

Lemma 2. If the solution of the Lagrangian dual of the CSRA prob-
lem (7) for a given� is such thatI∗(�) ∈ {0, 1}N×K×M , and the
corresponding total power isX∗

tot(�) as in (15), then the solution to
the optimization problem

(ℙ∗, I∗) = argmax
{ℙર0}

I∈ℐDSRA

∑

n,k,m

In,k,m ×

E
{

Un,k,m

(

(1− ame−bmℙn,k,m
n,k)rm
)

}

s.t.
∑

n,k,m

In,k,mℙn,k,m ≤ X∗
tot(�)

satisfiesI∗ = I∗(�) and, for every(n, k,m),

ℙ
∗
n,k,m =

{

x∗
n,k,m(�,I∗(�))

I∗
n,k,m

(�)
if I∗n,k,m(�) ∕= 0

0 otherwise.
(18)

From the above lemma, we conclude that if a� exists such
that ∣Sn(�)∣ ≤ 1 ∀n andX∗

tot(�) = Pcon, then the DSRA prob-
lem is solved optimally by the CSRA solution. Recall thatX∗

tot(�)
is piece-wise continuous and a discontinuity (or “gap”) occurs at
� when multiple allocations achieving the same optimal valueof
Lagrangian exist. If the sum-power constraint,Pcon, lies in one of
such “gaps,” the optimal allocation for the CSRA problem is given
by a convex combination of two elements from the setℐDSRA, and
the CSRA solution is not admissible for DSRA. In such a case, we
are motivated to choose the sub-optimal DSRA solutionÎDSRA ∈
{Imin(�), Imax(�)} that yields highest utility. Table 1 provides de-
tails of the implementation of the proposed sub-optimal DSRA algo-
rithm. Now, the obvious question is:how often do these discontinu-
ities occur?They turn out to be isolated and thus at most countable:

Lemma 3. For any �̃ > 0, there exists a� > 0 such that for all
� ∈ (�̃−�, �̃+�)∖{�̃}, there exists an optimal allocation,I∗(�) ∈
ℐCSRA, that satisfiesI∗(�) ∈ {0, 1}N×K×M . Moreover, if�1, �2 ∈
(�̃− �, �̃), then there existsI∗(�1), I

∗(�2) ∈ {0, 1}N×K×M such
that I∗(�1) = I∗(�2). The same property holds if both�1, �2 ∈
(�̃, �̃+ �).

We now give theoretical bounds on the performances of pro-
posed CSRA and DSRA algorithms.

Lemma 4. Let�∗ ∈ [�, �̄] be the point where the proposed CSRA

algorithm stops,̂UCSRA(�, �̄) be the total utility obtained by the pro-
posed CSRA algorithm, andU∗

CSRA be the optimal CSRA solution.
Likewise, letÛDSRA(�, �̄) be the utility achieved by the proposed
DSRA algorithm and letU∗

DSRA be the utility of the optimal DSRA
solution. Then,

∣U∗
CSRA − ÛCSRA(�, �̄)∣ ≤ (�̄− �)Pcon (19)

and
∣U∗

DSRA − lim
�→�̄

ÛDSRA(�, �̄)∣

≤ (�∗ − �min)
(

Pcon −X∗
tot(I

min(�∗), �∗)
)

(20)

≤
{

0 if ∣Sn(�
∗)∣ ≤ 1 ∀n

(

�max − �min
)

Pcon otherwise
. (21)



Compared to the brute-force solution, i.e., by solving the power
allocation sub-problem for every possible choice ofI ∈ ℐDSRA

(with the same choice of�) and then selecting the best possible
I, the proposed DSRA algorithm reduces complexity by the factor
(KM+1)N−1KM

(KM+2)
. A detailed complexity analysis of the brute-force

approach and the proposed DSRA algorithm is provided in [1].

4. NUMERICAL EVALUATION

In this section, we numerically investigate the performance of the
proposed CSRA and DSRA algorithms in a particular application.
We choose the utility functionUn,k,m(x) = x for all (n, k,m), so
that the objective is to maximize sum-goodput of the system.Fur-
thermore, we consider an uncoded2m+1-QAM signaling scheme
with MCS indexm ∈ {1, . . . , 15}, rm = m + 1 bits per sym-
bol, and one symbol per codeword. For MCS indexm, we select
am = 1 andbm = 1.5/((m + 1)2 − 1) because the QAM sym-
bol error rate is proportional toexp(−1.5p
/((m + 1)2 − 1)) in
the high-(p
) regime and≈ 1 whenp
 = 0. We use the standard
OFDM model [14] to describe the (instantaneous) frequency-domain
observation made by thektℎ mobile user on thentℎ subchannel:

yn,k = ℎn,kxn + �n,k,

wherexn denotes the QAM symbol transmitted by the BS on the
ntℎ subchannel,ℎn,k is the gain of thektℎ user onntℎ subchannel,
and�n,k ∼ i.i.d CN (0, 1). Therefore, the exogenous subchannel-
SNR is given by
n,k = ∣ℎn,k∣2. The ktℎ user’s channel gains
hk = (ℎ1,k, . . . , ℎN,k)

T ∈ ℂ
N (in frequency-domain) are related

to the channel impulse responsegk = (g1,k, . . . , gL,k)
T ∈ ℂ

L via
hk = Fgk, whereF ∈ ℂ

N×L contains the firstL(< N) columns
of theN -DFT matrix, and wheregl,k ∼ CN (0, �2

g) are i.i.d over
(l, k). Here,�2

g is chosen such thatE{
n,k} = 1. In the sequel, we
useSNR ≜ Pcon

N
E{
n,k} to denote the average available SNR per

subchannel.
To model imperfect CSI, we assume that, prior to data trans-

mission, one pilot OFDM symbol is transmitted on every subchan-
nel, from which the corresponding subchannel estimate is computed.
In particular, for thektℎ user, the pilot observation vector is̃yk =√
ppilot hk + �̃k ∈ ℂ

N , where the average SNR per subchannel dur-
ing pilot transmission isSNRpilot = ppilot E{
n,k}. Conditioned
on the pilot observation vector,hk is jointly Gaussian with mean
E{hk∣ỹk}, and covariance matrixCov(hk∣ỹk). The resulting
n,k

is non-central chi-squared distributed with two degrees offreedom.
We will refer to the proposed CSRA and DSRA algorithms im-

plemented under imperfect CSI as “CSRA-ICSI” and “DSRA-ICSI,”
respectively. Their utilities will be compared to that of “CSRA-
PCSI,” i.e., CSRA implemented under perfect CSI, which serves
as an upper bound, andfixed-power random-user scheduling(FP-
RUS), which serves as a performance lower bound. FP-RUS sched-
ules, on each subchannel, one user selected uniformly from
{1, . . . ,K}, to which it allocates powerPcon/N and the fixed MCS
m that maximizes expected sum-goodput. In the plots, the number of
OFDM subchannels wasN = 64, the number of users wasK = 16,
the impulse response length wasL = 2, and� = 0.3/Pcon (recall
Table 1). In all plots, goodput values were empirically averaged over
1000 realizations.

Figure 2 plots the subchannel-averaged goodput achieved bythe
above-described scheduling and resource-allocation schemes for dif-
ferent grades of CSI. The average available subchannel-SNRwas
kept atSNR = 10 dB. In this curve, we see that asSNRpilot is in-
creased, the performance of CSRA-ICSI and DSRA-ICSI schemes

increase from that of FP-RUS to that achieved by the CSRA-PCSI
scheme. This is expected because, with increasingSNRpilot, the BS
uses more accurate channel-state information for scheduling and re-
source allocation, and thus achieves higher goodput. The plot also
shows that, even though the proposed CSRA algorithm solves the
CSRA problem optimally, and the proposed DSRA algorithm solves
the DSRA problem only approximately, their performances almost
coincide.

In Figure 3, the top plot shows the subchannel-averaged goodput
and the bottom plot shows the subchannel and realization-averaged
value of the bound (in (20)) on the optimality gap of the proposed
DSRA solution as a function ofSNR. The pilot SNR was kept at
SNRpilot = −10 dB. In the top plot, we see that, asSNR increases,
the difference between CSRA-PCSI and CSRA-ICSI (or, DSRA-
ICSI) increases. However, this difference grows slower than the
difference between the CSRA-PCSI and FP-RUS schemes. Interest-
ingly, even for high values ofSNR, the performances of CSRA-ICSI
and DSRA-ICSI remain almost identical. The bottom plot, which il-
lustrates the average value of(�∗−�min)

(

Pcon−X∗
tot(I

min, �∗)
)

over
all realizations and subchannels, shows that the loss in subchannel-
averaged goodput due to the sub-optimality of the proposed DSRA
solution under imperfect CSI is bounded by7× 10−3 bits/channel-
use even when the subchannel-averaged goodput of DSRA-ICSIis
of the order of tens of bits/channel-use. This suggests thatthe bound
we provide in Lemma 4 is quite tight at high values ofSNR.

5. CONCLUSION

In this paper, we considered the problem of joint schedulingand
resource allocation (SRA) in downlink OFDMA systems under im-
perfect channel-state information and an instantaneous sum-power
constraint. We considered two scenarios: 1) when subchannel shar-
ing is allowed, and 2) when it is not. For the first scenario, the
exact solution was found using a dual optimization approach. The
second scenario resulted in a mixed-integer programming problem
for which an approximate solution was found using the solution ob-
tained the first scenario. Practical implementations of theproposed
allocation strategies (for both scenarios) were given and their per-
formances were quantified. Numerical results were then presented
under a variety of settings. It was found that the proposed imperfect-
CSI-based algorithms offer a significant advantage over schemes that
do not use any CSI. Moreover, the performance of proposed algo-
rithms in the two scenarios were almost equal, which leads usto
conclude that, in OFDMA-based downlink communication systems
under imperfect CSI, it is unlikely that the performance gains that
result from time-sharing of multiple user-MCS combinations within
a single subchannel would justify the additional system-level com-
plexity that would be required to implement such time-sharing.
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Table 1: Algorithmic Implementations

Proposed CSRA algorithm

1. Set� = �min, �̄ = �max, and� =
�+�̄

2
.

2. For each subchanneln = 1, . . . , N :

(a) For each(k,m), use (9)-(10) to calculatep∗n,k,m(�), and use
(11) to calculateVn,k,m(�, p∗n,k,m(�)).

(b) CalculateSn(�) using (12).

3. Use (16) and setI∗(�) = I
min(�).

4. CalculateX∗
tot(�).

5. If X∗
tot(�) ≥ Pcon, set� = �, otherwise set̄� = �.

6. If �̄− � > �, go to step 2), else proceed.

7. If X∗
tot(�) ∕= X∗

tot(�̄), set� =
X∗

tot(�)−Pcon

X∗
tot(�)−X∗

tot(�̄)
, else� = 0.

8. The proposed allocation iŝICSRA = �I∗(�̄) + (1 − �)I∗(�)
and the correspondingx is x̂CSRA = �x∗(�̄, I∗(�̄)) + (1 −
�)x∗(�, I∗(�)).

Proposed DSRA algorithm

1. Use the algorithmic implementation of the proposed CSRA solution
in to findI

∗(�) andI∗(�̄).

2. For bothI = I
∗(�) andI = I

∗(�̄) (since they may differ)

(a) Set�l = �min, �u = �max, and� = �l+�u

2
.

(b) For eachn, calculatep∗n,k,m(�) where(k,m) is such that
In,k,m = 1.

(c) CalculateX∗
tot(I, �) ≜

∑
n,k,m In,k,mp∗n,k,m(�).

(d) If X∗
tot(I, �) > Pcon, set�l = �, else set�u = �.

(e) If �u − �l > �, go to step 2a), else proceed.

(f) If X∗
tot(I, �l) = X∗

tot(I, �u), set� = 0, otherwise set� =
X∗

tot(I,�l)−Pcon
X∗

tot(I,�l)−X∗
tot(I,�u)

.

(g) Set x̂I = �x∗(�u, I) + (1 − �)x∗(�l, I), and L̂I =
L(�, I, x̂I).

3. The proposed allocation iŝIDSRA = argminI∈{I∗(�), I∗(�̄)} L̂I

and the correspondingx is x̂DSRA = x̂
ÎDSRA

.


