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ABSTRACT

We propose a soft noncoherent equalizer for coded transmissions
over unknown time- and frequency-selective, or doubly selective,
channels. Such a soft equalizer can be used in conjunction with a
soft decoder as part of a turbo reception scheme. Like a number
of existing designs, ours is motivated by the use of the expectation
maximization (EM) algorithm to estimate the unknown channel pa-
rameters, and manifests as an iteration between soft channel esti-
mation and soft coherent equalization. As a departure from the ex-
isting designs, which assume a Gauss-Markov (i.e., autoregressive)
channel and employ a trellis whose number-of-states grows expo-
nentially in the channel length, we use a basis expansion (BE) model
for the channel and a soft tree-search in place of the trellis, leverag-
ing recent ideas from the MIMO literature. The complexity of our
schemes grows only linearly in the block length and quadratically in
the number of BE coefficients. Numerical experiments show perfor-
mance that is close to genie-aided bounds and robust to mismatch in
channel-fading rate.

1. INTRODUCTION

In this paper, we consider the problem of decoding a data sequence
transmitted over anunknown time- and frequency-selective channel,
i.e., doubly selective (DS) channel. In particular, we are interested
in the case of coded transmissions with possibly long codewords (as
with LDPC or turbo codes). A practical and near-optimal strategy
for equalization in this scenario follows from the turbo principle [1],
which suggests to iterate between separate soft equalization and soft
decoding steps. In this case, the equalizer’s role becomes that of
producing posterior bit probabilities from the received samples and
any extrinsic information previously supplied by the decoder.

Optimal soft noncoherent equalization can in principle be ac-
complished using either forward-backward [2] or fixed-lag process-
ing [3], but doing so requires the computational equivalent of calcu-
lating a channel estimate for every possible symbol sequence. Thus,
researchers have focused on practical yet sub-optimal alternatives. In
one approach, approximations to the soft outputs are computed using
reduced-state averages enabling a trellis where a low-order Gauss-
Markov channel assumption facilitates per-branch linear prediction
or Kalman filtering [3–6]. In another approach, soft noncoherent
equalization is broken into two steps: soft channel estimation and
coherent soft equalization, which are usually iterated [7–11]. The
latter approach is connected to, and in many cases a direct applica-
tion of, the expectation-maximization (EM) algorithm [12].

A potential drawback of the aforementioned practical approaches
is the use of trellis with at leastQNH−1 states, whereQ is the al-
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phabet size andNH is the channel spread (measured in symbols).
For channels with moderate-to-long spreads, the number of required
states can be impractically large. Another potential drawback of the
aforementioned practical approaches is the use of low-order Gauss-
Markov models, i.e., autoregressive (AR) models, for channel vari-
ation. While such models are known to accurately model the “time-
domain” channel trajectories encountered in single-carrier systems,
they are not accurate models for the “frequency-domain” channel
trajectories encountered in multi-carrier systems, where, e.g., one
subcarrier may be deeply faded while adjacent subcarriers are not.

In this paper, we propose an EM-based soft noncoherent equal-
ization algorithm that is well suited to long and quickly varying
channel responses. Our approach is appropriate for, e.g., underwa-
ter acoustic as well as radio-frequency (RF) channels. Compared to
previously described literature, our approach differs principally in
two regards: 1) in place of trellis techniques, we use soft tree search,
and 2) in place of the Gauss-Markov model, we use a generic ba-
sis expansion model [13, 14]. Our use of soft tree-search builds on
recent ideas from the multiple-input multiple-output (MIMO) litera-
ture (e.g., [15,16]), yielding a flexible and efficient tradeoff between
performance and complexity, and our generic BE model allows ac-
curate modeling of many channel classes, including time-domain,
frequency-domain, and sparse channels (see, e.g., [17]). Ourcom-
bination of soft tree-search and BE channel modeling yields a soft
noncoherent equalizer whose complexity is linear in the block length
and quadratic in the number of BE coefficients.

As in [8–10], we employ the “Bayesian” EM algorithm [12]
to iteratively estimate the unknown channel parameters while treat-
ing the unknown bits as “missing data”. In doing so, posterior bit
probabilities are generated as a by-product. Numerical experiments
with LDPC-coded transmissions over a DS Rayleigh-fading chan-
nel show our receiver performing within 2 dB of genie-aided perfor-
mance bounds. Additional experiments demonstrate the robustness
of our scheme to mismatch in the assumed Doppler spread.

Finally, we mention two related works. The noncoherent equal-
izer in [11] also iterates between soft coherent equalization and soft
BE-coefficient estimation, but chooses LMMSE equalization over
MAP equalization. In contrast, [18] does not split noncoherent equal-
ization into separate coherent-equalization and BE-coefficient esti-
mation steps; rather, it implements noncoherent equalization directly
using a tree search with a noncoherent metric.

2. SYSTEM MODEL

At the transmitter, we assume that information bits{b(j)
m } are rate-R

coded, interleaved, and mapped to2Q-ary QAM symbols. Groups
of Ns information symbols are then combined with pilot and guard
symbols to form symbol blocks of lengthN ≥ Ns. (For brevity,



we omit the details of the pilot pattern; see [17,18] for pilot details.)
We denote thejth symbol block bys(j) = [s(j)

0 , . . . , s(j)

N−1]
T and

the corresponding coded bit vector byx(j) = [x(j)

0 , . . . , x(j)

NsQ−1]
T .

The symbol are then linearly block-modulated by either a single-
carrier scheme or a multi-carrier scheme, represented byG ∈ C

Nt×N

with Nt ≥ N , to form the transmitted signalt(j) , [t(j)

0 , . . . , t(j)

Nt−1]
T

= Gs(j). The construction ofG will be described later.
At the channel output, the samples in thejth received block

r(j) , [r(j)

0 , . . . , r(j)

Nr−1]
T are assumed to take the form

r(j)
n =

Nh−1
X

l=0

h(j)

n,lt
(j)

n−l + v(j)
n , (1)

whereh(j)

n,l is the time-n response of the channel to an impulse ap-
plied at time-(n− l), whereNh is the discrete channel delay spread,
and where{v(j)

n } is zero-mean circular white Gaussian noise (CWGN)
with covarianceσ2.

The received vectorr(j) is then linearly (single- or multi-carrier)
demodulated via matrixΓ ∈ C

N×Nr to yield

y
(j) = ΓH

(j)
G

| {z }

, H
(j)

s
(j) + z

(j). (2)

In (2), z(j) = Γv(j) andH
(j) ∈ C

Nr×Nt is a convolution ma-
trix constructed from the channel’s time-varying impulse response
according to[H(j)]n,n−l = h(j)

n,l. ThusNr = Nt + Nh − 1 and
H

(j) is banded with bandwidthNh. Note thatH (j) represents the
composite effect of modulation, channel propagation, and demodu-
lation. When the single- or multi-carrier scheme is appropriately de-
signed,H (j) can be closely approximated by a “circularly banded”
matrix [19] with bandwidthNH :

• In the single-carrier case,G = IN (soNt = N ) and

Γ =

»

INh−1 0 INh−1

0 IN−Nh+1 0

–

.

ThusH (j), with bandwidthNH = Nh, contains the impulse
response coefficients{h(j)

n,l}.

• In the multi-carrier case,G = D(g)F H
t , whereF H

t ∈ C
Nt×N

is a period-N unitary IDFT matrix cyclically extended in the
row dimension, and whereD(g) is a diagonal matrix cre-
ated from a time-domain transmission pulseg ∈ C

Nt . Then
Γ = F rD(γ), whereF r ∈ C

N×Nr is a period-N unitary
DFT matrix cyclically extended in the column dimension, and
γ ∈ C

Nr is a time-domain reception pulse. With appropriate
design ofg andγ [19], the frequency-domain channel matrix
H (j) has bandwidthNH = ND , ⌈2fDTsN⌉ wherefD de-
notes the single-sided Doppler spread (in Hz), andTs denotes
the channel-use interval (in sec). The off-diagonal elements
of H (j) induce inter-carrier interference (ICI).

We assume that the lastNH − 1 symbols ins are guards, so that
H (j) acts causally on the firstN − NH + 1 symbols.

The receiver infers the information bits{b(j)
m } using the “turbo”

principle: “soft” information on the coded bitsx(j), in the form of
log-likelihood ratios (LLRs), is iteratively refined through alternat-
ing soft-equalization and soft-decoding steps, as shown in Fig. 1.
Our equalizer is “noncoherent” in that it operates without externally
provided channel state information.

The equalizer employs anNb-term basis expansion (BE) model
for the variation of the composite channel over the block. In particu-
lar, the dth “cyclic” diagonal of H (j), i.e.,

coherent
soft tree
search

soft
channel

estimation

soft-input
soft-output

decoder
θ̂

Π

Π−1

y {b̂m}

{L(xk|y, θ̂)}

{L(xk)}

Fig. 1. Turbo receiver with EM-based soft noncoherent equalizer.

h
(j)

d ,
ˆ

[H (j)]0,−d, [H (j)]1,1−d, . . . , [H (j)]N−1,N−1−d

˜T
for

modulo-N indices, is modeled as

h
(j)

d ≈ Bη
(j)

d , d = 0, . . . , NH − 1, (3)

whereB ∈ C
N×Nb is a matrix of basis vectors andη(j)

d ∈ C
Nb

is a vector of BE coefficients. While an error-free approximation
is possible whenNb = N , significant reduction in receiver com-
plexity is possible whenNb ≪ N . Note that, with single-carrier
modulation, the BE models channel variation in the time domain,
so thatNb = ND suffices (with appropriate choice ofB). With
multi-carrier modulation, the BE models channel variation in the fre-
quency domain, so thatNb = Nh suffices. In either case, we have
NbNH = NhND.

Under the BE approximation (3), the received vectory(j) from
(2) becomes

y
(j) = A

(j)
θ

(j) + z
(j), (4)

whereθ(j) , [η(j)T
0 , . . . , η(j)T

NH−1]
T ∈ C

NbNH and

A
(j)

,
ˆ

D0(s
(j))B, . . . ,DNH−1(s

(j))B
˜

. (5)

In (5) we useDd(·) to denote the diagonal matrix constructed from
thedth cyclic down-shift of its vector argument.

3. SOFT NONCOHERENT EQUALIZATION

Before going into the details, we give a high-level description of
our soft noncoherent equalizer. At each turbo iteration, the equalizer
generates (an approximation of) the posterior LLRs
{L(x(j)

k |y(j))}NsQ−1
k=0 from the prior LLRs{L(x(j)

k )}NsQ−1
k=0 ob-

tained from the decoder; on the first turbo iteration, the prior LLRs
are set to zero. Since calculation of the posterior-LLRs is compli-
cated by the fact that the channel stateθ(j) is unknown, we take the
practical approach ofjointly estimating the channelθ(j) and coded
bits x(j) using the Bayesian EM algorithm [8], which iteratively

computes the channel estimatêθ
(j)

MAP , arg max
θ̂
(j) p(θ̂

(j)
|y(j))

and generates the posteriors{L(x(j)

k |y(j), θ̂
(j)

MAP)} as a by-product.
Because this procedure is invariant to the block indexj, we suppress
the “(j)” notation in the sequel.

3.1. Equalization via the Bayesian EM Algorithm

We now detail the application of the EM algorithm to soft nonco-
herent equalization using the system model of Section 2. Given the
iteration-i parameter estimatêθ[i], the “incomplete data”y, and the



“missing data”s, the iteration-(i+1) parameter estimate generated
by the Bayesian EM algorithm is (fori ≥ 1) [12]

θ̂[i + 1] , arg max
θ̂

E
˘

ln p(y, s|θ̂)
˛

˛ y, θ̂[i]
¯

+ ln p(θ̂). (6)

The posterior probabilities of̂θ[1], θ̂[2], θ̂[3], . . . are known to be
non-decreasing, implying that the EM estimates will converge to
θ̂MAP whenp(θ|y) is unimodal inθ. The “Bayesian” version of the
EM algorithm requires a prior on the unknown parameterθ, and we
assume thatθ ∼ CN (θ̄, Rθ) for our application.

Assuming independence between data and channel, i.e.,p(s|θ) =
p(s), we can writep(y, s|θ) = p(y|s, θ)p(s), wherey|s, θ ∼

CN (Aθ, σ2I) andp(s) =
QN−1

n=0 p(sn). Plugging the assumed
pdfs into (6) and simplifying yields

θ̂[i+1] = arg min
θ̂

1
σ2 E

˘

‖y − Aθ̂‖2
˛

˛y, θ̂[i]
¯

+ ‖θ̂ − θ̄‖2

R
−1
θ

(7)

where we takêθ[0] = θ̄. Zeroing the partial derivative w.r.t̂θ gives

θ̂[i + 1] =
`

C + σ2
R

−1
θ

´−1`

Ā
H

y + σ2
R

−1
θ θ̄

´

(8)

= θ̄ +
`

C + σ2
R

−1
θ

´−1`

Ā
H

y − Cθ̄
´

(9)

for Ā , E{A |y, θ̂[i]} andC , E{AHA |y, θ̂[i]}. Collecting the
posterior quantities̄sn , E{sn|y, θ̂[i]} andcn , E{|sn|

2 |y, θ̂[i]}

into the vectors̄s , [s̄0, . . . , s̄N−1]
T andc , [c0, . . . , cN−1]

T , we
can recall (5) and write

Ā =
ˆ

D0(s̄)B, . . . ,DNH−1(s̄)B
˜

(10)

C = Ā
H

Ā −

2

6

4

∆0 0

. . .
0 ∆NH−1

3

7

5

(11)

∆d , B
H

“

Dd(s̄)HDd(s̄) −Dd(c)
”

B. (12)

To calculatēs andc, we use the definitions

s̄n =
X

s∈S

s Pr{sn = s|y, θ̂[i]} (13)

cn =
X

s∈S

|s|2 Pr{sn = s|y, θ̂[i]}, (14)

whereS is the symbol constellation, and calculate the symbol pos-
teriors{p(sn|y, θ̂[i])}N−1

n=0 from the bit LLRs, defined as

L(xk|y, θ̂[i]) , ln
Pr{xk = 1|y, θ̂[i]}

Pr{xk = 0|y, θ̂[i]}
. (15)

For example, it can be shown thats̄n = tanh{ 1
2
L(x2n|y, θ̂[i])} +

j tanh{ 1
2
L(x2n+1|y, θ̂[i])} and cn = 2 with QPSK, i.e.,S =

{±1 ± j}. Then, to calculate the LLRs, one can (in principle)
use [15]

L(xk|y, θ̂[i]) = ln

P

x:xk=1 exp µ(x|θ̂[i])
P

x:xk=0 exp µ(x|θ̂[i])
(16)

µ(x|θ̂[i]) , ln p(y|x, θ̂[i])p(x) (17)

= − 1
σ2 ‖y − Aθ̂[i]‖2 + l

T
x, (18)

for x = [x0, . . . , xNsQ−1]
T andl , [L(x0), . . . , L(xNsQ−1)]

T .

We can identify (13)–(18) as the “expectation-step” and (9)–(12)
as the “maximization-step” of the EM recursion. The E-step calcu-
lates the posterior symbol quantitiess̄ andc assuming the channel
estimateθ̂[i], and the M-step updates the channel estimate based on
the output of the E-step. We can also interpret the EM-based non-
coherent equalizer as iterating between “soft” channel estimation,
i.e., calculation ofθ̂[i] from LLRs andy, and soft coherent tree
search, i.e., calculation of LLRs from̂θ[i] andy, as illustrated in
Fig. 1. The LLRs used in the first EM iteration,{L(xk)}NsQ−1

k=0 ,
come from the decoder, and the the LLRs produced in the last EM
iteration,{L(xk|y, θ̂[K])}NsQ−1

k=0 , are passed to the decoder.

3.2. Modifications for Practical Implementation

One can observe two principal challenges for practical implemen-
tation of the EM-based equalizer described in Section 3.1. First,
calculation of the posterior LLRs{L(xk|y, θ̂[i])}NsQ−1

k=0 via (16) is
computationally impractical. So, we apply the “max-log” approxi-
mationln

P

x:xk=1 exp µ(x|θ̂[i]) ≈ maxx:xk=1 µ(x|θ̂[i]) to (16),
as in [15], giving

L(xk|y, θ̂[i]) ≈ max
X [i]∩{x:xk=1}

µ(x|θ̂[i]) − max
X [i]∩{x:xk=0}

µ(x|θ̂[i]), (19)

whereX [i] denotes the set of bit sequences{x} having dominant
posterior probabilityp(x|y, θ̂[i]). Then, the (usually very small) set
X [i] can be efficiently found viacoherent tree search based on the
M-algorithm [16]. This procedure has complexityO(M2QNNbNH),
whereM is the search breadth.

The second challenge results from the matrix inversion in (9).
To reduce complexity, we make the approximation

cn ≈ |s̄n|
2, (20)

which leads to∆d ≈ 0 ∀d and thusC ≈ ĀHĀ. We justify this by
claiming that, as the turbo iterations proceed, the symbol estimates
become more reliable, thereby reducing the symbol variancecn −
|s̄n|

2 and satisfying (20). (In Section 4, we demonstrate the effect of
(20) numerically.) With this approximation, (9) simplifies to

θ̂[i+1] = θ̄ +
`

Ā
H

Ā+σ2
R

−1
θ

´−1
Ā

H(y−Āθ̄), (21)

allowing the application of the efficient sequential-Bayes recursion
summarized in Table 1. (A similar recursion was derived in our pre-
vious work [18] onnoncoherent tree search.)

set {Σ−1
−1, θ̂−1[i]} , {σ−2Rθ, θ̄};

for n = 0, 1, 2, . . . , N − 1,
an = [s̄nbH

n , · · · , s̄n−NH+1b
H
n ]H ;

dn = Σ
−1
n−1an;

αn = (1 + aH
n dn)−1;

Σ
−1
n = Σ

−1
n−1 − αndndH

n ;
θ̂n[i] = θ̂n−1[i] + αn(yn − aH

n θ̂n−1[i])dn;
end

Table 1. N -step recursion to computêθ[i] via the temporary vectors
θ̂0[i], . . . , θ̂N−1[i]. Here,bH

n denotes thenth row of B.

The simplified EM implementation described above consumes
O(KN(NbNH)2) complex multiplications perN -block, which is
linear in the block size and quadratic in the number of BE parameters
NbNH . The number of EM iterations,K, is typically small (e.g.,
K = 3 for our numerical results).



3.3. Modifications for Improved Performance

We now propose one final modification to the equalization algorithm.
Though (18) specifies the use of the priors{L(xk)}NsQ−1

k=0 at ev-
ery EM iteration, we have observed that performance improves sig-
nificantly if the most recently calculated posteriors{L(xk|y, θ̂[i −

1])}NsQ−1
k=0 are used in place of the priors in (18) for iterationsi ≥ 2.

4. NUMERICAL RESULTS

For the numerical experiments, Jakes method [20] was used to gen-
erate realizations of a wide-sense stationary uncorrelated scattering
(WSSUS) Rayleigh fading channel with uniform delay-power pro-
file σ2

l = N−1
h and temporal autocorrelationρm = J0(2πfDTsm).

Here, fD denotes the single-sided Doppler spread (in Hz),Ts de-
notes the channel use interval (in sec), andJ0(·) denotes the0th-
order Bessel function of the first kind. The valuesfDTs = 0.002
andNh = 3 were assumed unless otherwise noted.

The transmitter employed rate-R = 1
2

irregular low density par-
ity check (LDPC) codes with average column-weight3, generated
via publicly available software [21]. The coded bits were mapped
to QPSK symbols (i.e.,Q = 2) and partitioned into data blocks
of length Ns, each of which was merged withNp leading pilots
andNh − 1 trailing zeros to form a transmission block of length
N = Ns+Np+Nh−1. So that each codeword spannedJ = 32 data
blocks,(JQNs, RJQNs)-LDPC codes were employed. Through-
out, we used block lengthN = 64 with Np = 6 pilots andNs = 56
information symbols per block. Though our BE-based soft nonco-
herent equalizer can be applied to either single- or multi-carrier com-
munication, we consider only single-carrier experiments here. This
restriction enables comparison to noncoherent equalizers that use a
low-order Gauss-Markov channel model to facilitate Kalman chan-
nel estimation (e.g., [22]).

Our soft noncoherent equalizer used a Karhunen-Lóeve (KL) BE
channel model [14] withNb = 3 to model the channel’s time vari-
ation. In other words,B was constructed column-wise from the
Nb principal eigenvectors ofRh , E{hdhH

d } and diagonalRθ

was constructed from theNb principal eigenvalues ofRh. Since
the channel was Rayleigh, we usedθ̄ = 0. The LDPC decoder of
MacKay and Neal [23] was used with a maximum of60 “inner” iter-
ations, and equalization/decoding were iterated using a maximum of
8 “outer” iterations. We specify themaximum number of iterations
because the receiver breaks out of both the inner and outer loops as
soon as the LDPC syndrome check indicates error-free decoding.

In Fig. 2, the soft noncoherent equalizer proposed in Section 3,
which we henceforth refer to as

• coherent tree-search coupled with soft BE-channel estimation
afterK iterations: “(cT+sBE)K ,”

was compared to several other soft noncoherent equalizers:
• coherent tree-search coupled withexact soft BE-channel es-

timation afterK iterations: “(cT+esBE)K ,”
• coherent tree-search using a soft BE-channel estimatenon-

iteratively: “cT+sBE,”
• coherent tree-search using a soft Gauss-Markov estimatenon-

iteratively: “cT+sGM,”
and two genie-aided performance bounds:

• coherent tree-search based on aperfect estimate of the chan-
nelH : “cT+pH,”

• coherent tree-search based on a BE-channel estimate con-
structed usingperfect LLR feedback: “cT+pllrBE.”

We now elaborate on the procedurescT, sBE, esBE, sGM, pH,
andpllrBE mentioned above. As discussed in Section 3.2,coherent
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Fig. 2. BER vs.Eb/No for various equalization schemes under
fDTs = 0.002.

tree search (cT) uses the M-algorithm to sequentially maximize the
metric ln p(x|y, Ĥ) for externally suppliedĤ—a direct applica-
tion of the MIMO technique [16]. In all cases, we employed a search
breadth ofM = 64 for the M-algorithm, andK = 3 EM iterations.
Soft BE-channel estimation (sBE) uses the simplified EM-recursion
(21), whileexact soft BE-channel estimation (esBE) uses the “ex-
act” recursion (9). Finally,soft Gauss-Markov channel estimation
(sGM) refers to the Kalman technique proposed in [22], for which
we employed a first-order Gauss-Markov model.

Figure 2 shows that the proposed(cT+sBE)3 approach, a sim-
plification of the expensive(cT+esBE)3 approach, gives almost iden-
tical performance. Furthermore, the proposed(cT+sBE)3 performs
only 2 dB from the perfect-CSI boundcT+pH and only1.7 dB from
the perfect-LLR-feedback boundcT+pllrBE. The tracescT+sBE
andcT+sGM can be used to compare between the use of BE versus
Gauss-Markov channel models; it can be seen that they are almost
the same except high SNR, where the BE approach shows slightly
better performance. For the frequency-domain channels experienced
in multi-carrier applications, we would expect to see a much bigger
difference between BE and GM. To see the gain from multiple EM
iterations, one can compare(cT+sBE)3 (whereK = 3) to cT+sBE
(whereK = 1); about0.5 dB improvement can be observed. No
additional gains were observed forK > 3.

Though the proposed noncoherent equalization scheme operated
without knowledge of the channel state, it did assume knowledge
of channel distribution in the form of the BE coefficient covari-
ance matrixRθ. We now examine the robustness of the scheme
to knowledge of Doppler spreadfDTs, the most important parame-
ter in the construction ofRθ, by comparing the BER-versus-fDTs

performance of the equalizer with perfect knowledge offDTs to one
which assumes the fixed valuefDTs = 0.002. For this experiment,
we fixedEb/No = 8 dB. Figure 3 demonstrates that the proposed
equalization scheme is robust to mismatch in Doppler-spread: the
“mismatched” scheme stays close to the “matched” scheme over the
entire range of tested Doppler spreads. Note that, asfDTs decreases,
the BER for the matched scheme increases due to a lack of diversity;
while the BER increase atfDTs = 0.0001 may at first seem large,
Fig. 2 shows that it is equivalent to a loss of1 dB SNR. Likewise, the
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Fig. 3. BER vs. truefDTs for fDTs-matched and fixed-fDTs (i.e.,
mismatched) reception atEb/No = 8 dB.

BER for the matched scheme increases sharply withfDTs due to the
limitations of theNb = 3 BE model. Similar behavior was observed
for other soft noncoherent equalizers in [17].

5. CONCLUSION

In this paper, we proposed a soft noncoherent equalizer for unknown
DS channels for use in a turbo receiver. Our design was based on the
use of the Bayesian EM algorithm to estimate the channel parame-
ters, and it manifested as iterations between a soft coherent equalizer
and a soft channel estimator. The receiver modeled the channel via
basis expansion (BE), and performed soft coherent equalization via
soft tree search. These two operations were accomplished using fast
algorithms whose overall complexity grows linearly in the block size
and quadratically in the number of BE parameters. Numerical stud-
ies show that our equalizer performs within2dB from genie-aided
bounds and remains robust to mismatch in assumed Doppler spread.
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