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ABSTRACT phabet size and&Vy is the channel spread (measured in symbols).
Ilfgr channels with moderate-to-long spreads, the number of required
states can be impractically large. Another potential drawback of the
aforementioned practical approaches is the use of low-order Gauss-
arkov models, i.e., autoregressive (AR) models, for chann@l va

We propose a soft noncoherent equalizer for coded transmissio
over unknown time- and frequency-selective, or doubly selective
channels. Such a soft equalizer can be used in conjunction with

soft decoder as part of a turbo reception scheme. Like a numb ion. Whil h model K " el del the “ti
of existing designs, ours is motivated by the use of the expectatio lon.. M 1€ such models areé known lo accurately model the ‘ime-
omain” channel trajectories encountered in single-carrier systems,

maximization (EM) algorithm to estimate the unknown channel pa- i ; dels for the “f q i oh |
rameters, and manifests as an iteration between soft channel esq?-e.y at\re_ no accura; e rgq els I?r e requtency- orrraln channe
mation and soft coherent equalization. As a departure from the elrajec Ores encountered in multi-carrier Systems, where, €.g., one
isting designs, which assume a Gauss-Markov (i.e., autoregr)essivﬁcham_er may be deeply faded while adjacent subcarriers are not.
channel and employ a trellis whose number-of-states grows expo- " this paper, we propose an EM-based soft noncoherent equal-

nentially in the channel length, we use a basis expansion (BE) mod#ation algorithm that is well suited to long and quickly varying

for the channel and a soft tree-search in place of the trellis, leveragn@nnel responses. Our approach is appropriate for, e.g.wade

ing recent ideas from the MIMO literature. The complexity of our (€ @coustic as well as radio-frequency (RF) channels. Compared to
schemes grows only linearly in the block length and quadratically iPréviously described literature, our approach differs principally in
the number of BE coefficients. Numerical experiments show perfortWo regards: 1) in place of trellis techniques, we use soft tree search,

mance that is close to genie-aided bounds and robust to mismatch@?d 2) in place of the Gauss-Markov model, we use a generic ba-
channel-fading rate. sis expansion model [13, 14]. Our use of soft tree-search builds on

recent ideas from the multiple-input multiple-output (MIMO) litera-
ture (e.g., [15,16]), yielding a flexible and efficient tradeoff betwee
1. INTRODUCTION performance and complexity, and our generic BE model allows ac-
In this paper, we consider the problem of decoding a data Sequencurate modeling_of many channel classes, including time-domain,
transmitted c;ver annknown time- and frequency-selective channel ﬁ%quency-domam, and sparse channels (see, e.g., [17]) cabur
’ ﬁination of soft tree-search and BE channel modeling yields a soft

1€, doubly selective (DS) c_ha_nnel. I_n partlc_ular, we are intereste oncoherent equalizer whose complexity is linear in the block length
in the case of coded transmissions with possibly long codewords (a§nd quadratic in the number of BE coefficients

with LDPC or turbo codes). A practical and near-optimal strategy As in [8-10], we employ the “Bayesian” EM algorithm [12]

for equalization in this scenario follows from the turbo principle [1], iteratively estimate the unknown channel parameters while treat-
which suggests to iterate between separate soft equalization and sb(}t y . e " pa - X
mng the unknown bits as “missing data”. In doing so, posterior bit

decoding steps. In this case, the equalizers role becomes that 8robabilities are generated as a by-product. Numerical experiments
producing posterior bit probabilities from the received samples anWith LDPC-coded transmissions over a DS Rayleigh-fading chan-

any extrinsic information previously supplied by the decoder. nel show our receiver performing within 2 dB of genie-aided perfor
Optimal soft noncoherent equalization can in principle be aC_man(:e bounds Additi%nal ex griments demongstrate-the roE stm—ass
complished using either forward-backward [2] or fixed-lag process unas. P u

ing [3], but doing so requires the computational equivalent of calcu-Of our sclreme o m|§match n lthe :ssurlrged I?]oppler Sf]read' |
lating a channel estimate for every possible symbol sequence. Thus, l_:lna y, we mention two related works. The noncoherent equal-
researchers have focused on practical yet sub-optimal alternaive izer in [11] also iterates between soft coherent equalization and soft
one approach, approximations to the soft outputs are computed usi -coefflCl_ent _estlmatlon, but chooses LMMS.E equalization over
reduced-state averages enabling a trellis where a low-order GauddAP equalization. In contrast, [18] does not splitnoncoherent equal-

Markov channel assumption facilitates per-branch linear predictioff@tion into separate coherent-equalization and BE-coefficient esti-

or Kalman filtering [3-6]. In another approach, soft noncoherenfhation steps; rather, |_t|mplements noncoher_ent equalization directly

equalization is broken into two steps: soft channel estimation anfSind @ tree search with a noncoherent metric.

coherent soft equalization, which are usually iterated [7-11]. The

latter approach is connected to, and in many cases a direct applica-

tion of, the expectation-maximization (EM) algorithm [12]. 2. SYSTEMMODEL
A potential drawback of the aforementioned practical approach

e . . . o
is the use of trellis with at leagp™# —! states, where) is the al- At the transmitter, we assume that information Kti§)’ } are rateR

coded, interleaved, and mapped2d-ary QAM symbols. Groups

This work supported by National Science Foundation CAREE&g  Of N, information symbols are then combined with pilot and guard
CCR-0237037 and Office of Naval Research grant NO0014-0Z€D- symbols to form symbol blocks of lengtN > N,. (For brevity,




we omit the details of the pilot pattern; see [17, 18] for pilot details.) (L(ely, 8)
We denote thg'" symbol block bys = [s5’,...,s% ,]" and et Ml g -
the corresponding coded bit vector oy’ = [, ..., 2 ,_,]". seareh 7&{ L )
The symbol are then linearly block-modulated by either a single-¥ | A softinput | {bm }
i i i N¢x N 0 soft-output —m
carrier scheme or a multi-carrier scheme, representéd byC"* decoder
with N; > N, to form the transmitted signal” = [t§”, ... 3 _]" soft {L(an)} ] f"\*
= G's"). The construction o& will be described later. Channel =i 1e I ==
At the channel output, the samples in tji& received block —
r@ & ey )" are assumed to take the form
i thl ROHD | 4 ), B Fig. 1. Turbo receiver with EM-based soft noncoherent equalizer.
=0 ’
whereh!)) is the timen response of the channel to an impulse ap-h’ 2 [[H9]o_a,[H"]11-a,..., [HD|n—1,n-1-4]" for

plied at time{n —[), whereN, is the discrete channel delay spread, moduloV indices, is modeled as
and whergv{’} is zero-mean circular white Gaussian noise (CWGN)

with covariancer?. L’ ~ Bn{’, d=0,...,Ny—1, 3)
The received vectar? is then linearly (single- or multi-carrier) _
demodulated via matrik € CV*"* to yield where B € CY*™t is a matrix of basis vectors angfj’ € C™

is a vector of BE coefficients. While an error-free approximation

v = ws(]) +217. @ is possible whenV,, = N, significant reduction in receiver com-
Ny 216 plexity is possible whernV, < N. Note that, with single-carrier
modulation, the BE models channel variation in the time domain,
In (2), 2% = Tv® andHP € C"*M* is a convolution ma-  so thatN, = Np suffices (with appropriate choice d@). With
trix constructed from the channel’s time-varying impulse responsenulti-carrier modulation, the BE models channel variation in the fre-
according toH ], ,,—; = hij)l ThusN, = N: + N, —1and  quency domain, so tha¥, = N, suffices. In either case, we have

H @ is banded with bandwidttV,,. Note thatH ) represents the NyNug = N Np.
composite effect of modulation, channel propagation, and demodu- Under the BE approximation (3), the received veaér from
lation. When the single- or multi-carrier scheme is appropriately de¢2) becomes
signed,H ) can be closely approximated by a “circularly banded”
matrix [19] with bandwidthVy, : y = AVY + 2V, (4)
e In the single-carrier cas€& = In (SoN; = N) and whereg) 2 [ngj)T’ L W%LT_JT c CVMo N and
r— In, 1 0 In,
|l 0 In-nyt1 O 7 AV 2 [Dy(s)B,...,Dn,-1(s")B]. (5)

ThusH', with b_andvv(ld)thNH = Ni, contains the impulse | (5) we useD,(-) to denote the diagonal matrix constructed from
response coefficienigh,); }. thed'” cyclic down-shift of its vector argument.

e Inthe multi-carrier casez = D(g)F{’, whereF{! ¢ CNt*N
is a periodA unitary IDFT matrix cyclically extended in the
row dimension, and wher®(g) is a diagonal matrix cre-
ated from a time-domain transmission puise C™*. Then
T = F,D(y), whereF, € CN*"r is a periodA unitary
DFT matrix cyclically extended in the column dimension, and

3. SOFT NONCOHERENT EQUALIZATION

Before going into the details, we give a high-level description of
our soft noncoherent equalizer. At each turbo iteration, the equalizer

~ € C"" is a time-domain reception pulse. With appropriate gene(rgtes(j) (%TQ_Ppprox'mat'OU of) the (j)posjiftﬁg'glr LLRs

design ofg and~ [19], the frequency-domain channel matrix {I.‘(xk v heZ from the prior LLRS{.L("E’? )}io .Ob_

HY has bandwidtiVy — No 2 [2foT, N where o de- tained from the decoder; on the first turbo iteration, the prior LLRs
are set to zero. Since calculation of the posterior-LLRs is compli-

gated by the fact that the channel staté is unknown, we take the

practical approach gbintly estimating the channé’ and coded

" hat the ladt ) bols | 4 o bits 2/ using the Bayesian EM algorithm [8], which iteratively

e assume that the u — 1 symbols ins are guards, so that NN A9 G

HY acts causally on the firs¢ — N + 1 symbols. computes the channel estimafi, = ari])maxé(” PO ly™)

The receiver infers the information bifé{?’} using the “turbo”  and generates the posteridis(z;[y”, )} as a by-product.
principle: “soft” information on the coded bits”’, in the form of =~ Because this procedure is invariant to the block inflexe suppress
log-likelihood ratios (LLRs), is iteratively refined through alternat- the ““’” notation in the sequel.
ing soft-equalization and soft-decoding steps, as shown in Fig. 1.

Our gqualizer is “noncoherent” ip that it operates without externallyz 1 Equalization via the Bayesian EM Algorithm
provided channel state information.

The equalizer employs aN,-term basis expansion (BE) model We now detail the application of the EM algorithm to soft nonco-
for the variation of the composite channel over the block. In particuherent equalization using the system model of Section 2. Given the
lar, the dt" “cyclic’  diagonal of HY, i.e., iteration4 parameter estimat[:], the “incomplete datay, and the

notes the single-sided Doppler spread (in Hz), @ndenotes
the channel-use interval (in sec). The off-diagonal element
of H“ induce inter-carrier interference (ICI).



“missing data’s, the iteration(i+ 1) parameter estimate generated

by the Bayesian EM algorithm is (far> 1) [12]

argm;}xE{ lnp(y,s|é) ’ y,é[z]} + lnp(é). (6)

6li+1] £

The posterior probabilities (1], §[2], §[3], ... are known to be

non-decreasing, implying that the EM estimates will converge t

Owse Whenp(8|y) is unimodal ind. The “Bayesian” version of the
EM algorithm requires a prior on the unknown parameéteand we
assume tha® ~ CN (0, Ry) for our application.

Assuming independence between data and channeh(is¢f,) =
p(s), we can writep(y, s|0) = p(y|s,0)p(s), wherey|s,0 ~
CN(AB,5°I) andp(s) Hf:_olp(sn). Plugging the assumed
pdfs into (6) and simplifying yields

0li+1] =

argmin {1y ~ A07]y,01i} + 6 - 813, (1)

where we také[0] = 6. Zeroing the partial derivative w.ié& gives
(C+o*R;") ' (A"y + o°R;'0)
0+ (C+0°R;") '(A"y — CO)

0li +1)

®)
9)

for A 2 E{A |y, 0][i]} andC £ E{AA |y, 8][i]}. Collecting the
posterior quantities,, £ E{s,|y, 8[i]} andc,, £ E{|s.|? |y, [i]}

into the vectors 2 [5o,...,5v-1]" andc 2 [co,...,cn-1]", we
can recall (5) and write
A = [Do(é)B,...,DNHfl(g)B] (10)
JANG) 0
C = A"A- . (11)
0 ANy 1
Ay 2 BY (Dd(s)HDd(s) - Dd(c)) B. (12)
To calculates andc, we use the definitions
S = Zs Pr{s, = s|y, [i]} (13)
seS
cn = Y |5 Pr{s, = sly, 6[i]}, (14)
seES

whereS is the symbol constellation, and calculate the symbol pos-

teriors{p(sn»|y, 8[i]) }2-, from the bit LLRs, defined as

oy, Prle = 11y, 0[]}

L(zxly, 6]i)) Pr{z; = Oly, 8[i]}

(15)

For example, it can be shown that = tanh{3 L(z2.|y, 0[i)} +
jtanh{3L(z2n11]y,0[i])} andc, = 2 with QPSK, i.e.,S =

{£1 £ j}. Then, to calculate the LLRs, one can (in principle)

use [15]
s Y1 oxp p(@01i])
L(zk|y,0[i]) = In S oxp 2(@I00]) (16)
p(x|0[i]) £ Inp(y|z, O[i])p(x 17)
= —Zlly — A0 + "=, (18)

forxz = [l‘o, . ,ZL‘NSQ71]T andl £ [L(mo), ey L(ZL'NSQfl)}T.

We can identify (13)—(18) as the “expectation-step” and (9)—(12)
as the “maximization-step” of the EM recursion. The E-step calcu-
lates the posterior symbol quantitiésand ¢ assuming the channel
estimatef)[i], and the M-step updates the channel estimate based on
the output of the E-step. We can also interpret the EM-based non-
coherent equalizer as iterating between “soft” channel estimation,

d’.e., calculation ofé[i] from LLRs andy, and soft coherent tree
search, i.e., calculation of LLRs froi] andy, as illustrated in
Fig. 1. The LLRs used in the first EM iteratiofiL (z)} o5,
come from the decoder, and the the LLRs produced in the last EM
iteration, { L (zx|y, 9[K])} r=$ ', are passed to the decoder.

3.2. Modifications for Practical Implementation

One can observe two principal challenges for practical implemen-
tation of the EM-based equalizer descriped in Section 3.1. First,
calculation of the posterior LLREL (z |y, 8[i]) }n=3 " via (16) is
computationally impractical. So, we apply the “max-log” approxi-
maFionln Z?}:.Zkzl exp pu(x|0[i]) ~ maxg.q.,—1 p(z|0[i]) to (16),

as in [15], giving

L(zly, 01i])

~ max p(x|0[i]) — max wéi, 19
where X'[i] denotes the set of bit sequendes} having dominant
posterior probability(x|y, é[i}). Then, the (usually very small) set
X[i] can be efficiently found viaoherent tree search based on the
M-algorithm [16]. This procedure has complexif( M 29 N N, Ny ),
wherelM is the search breadth.
The second challenge results from the matrix inversion in (9).
To reduce complexity, we make the approximation
cn & |5a)?, (20)
which leads taA; ~ 0 Vd and thusC' ~ A™ A. We justify this by
claiming that, as the turbo iterations proceed, the symbol estimates
become more reliable, thereby reducing the symbol variance
|5, | and satisfying (20). (In Section 4, we demonstrate the effect of
(20) numerically.) With this approximation, (9) simplifies to
0li+1] =0+ (A" A+o°R, ") ' A" (y—A8), (21)
allowing the application of the efficient sequential-Bayes recursion
summarized in Table 1. (A similar recursion was derived in our pre-
vious work [18] onnoncoherent tree search.)

set {31, 6_1[i]} £ {s %Ry, 6};
forn=0,1,2,...,N — 1,

an, = [gnb71;17 o 7§n7NH+1b71;I]H ;

d, =3 a.;

Qp = (1 + ayIL{dn)il;

st =320t — and,df;

é”[l] = én—1[i] + ozn(yn - agénflm)dn;
end

Table 1. N-step recursion to compufe{i] via the temporary vectors
Qo[i],...,0N_1]i]. Here,b denotes the'" row of B.

The simplified EM implementation described above consumes
O(KN(N,Ng)?) complex multiplications peN-block, which is
linear in the block size and quadratic in the number of BE parameters
Ny Ng. The number of EM iterationsy, is typically small (e.g.,

K = 3 for our numerical results).



3.3. Modifications for Improved Performance

We now propose one final modification to the equalization algorithm —H—cT+sGM
Though (18) specifies the use of the pridis(z;)} 19" at ev- :fgﬁ%‘é)a
ery EM iteration, we have observed that performance improves sic 107F —— (cT+esBE)1]
nificantly if the most recently calculated posteri¢ds(x |y, 6[i — cT+pllrBE
1))} =¢~" are used in place of the priors in (18) for iteratians 2. = cT+pH

4. NUMERICAL RESULTS E

For the numerical experiments, Jakes method [20] was used to ge

erate realizations of a wide-sense stationary uncorrelated scatteril 5
(WSSUS) Rayleigh fading channel with uniform delay-power pro-

file o7 = N, ' and temporal autocorrelatign, = Jo (27 foTsm).

Here, fp denotes the single-sided Doppler spread (in Hz)de-

notes the channel use interval (in sec), ahd ) denotes the*"- 10 : : : :
order Bessel function of the first kind. The valugsls = 0.002 2 3 4 5 6 7 8 9 10

and N, = 3 were assumed unless otherwise noted. Eb/No(dB)

The transmitter employed rate-—= % irregular low density par-
ity check (LDPC) codes with average column-weightgenerated
via publicly available software [21]. The coded bits were mappedrig. 2. BER vs. E;, /N, for various equalization schemes under
to QPSK symbols (i.e.Q = 2) and partitioned into data blocks f,7, = 0.002.
of length V5, each of which was merged witlv,, leading pilots
and N, — 1 trailing zeros to form a transmission block of length
N = N:+N,+N,—1. Sothat each codeword spannke- 32data  tree search (cT) uses the M-algorithm to sequentially maximize the
blocks, (JQN, RJQN,)-LDPC codes were employed. Through- metric In p(x|y, H) for externally suppliedd—a direct applica-
out, we used block length" = 64 with N, = 6 pilots andN; = 56 tion of the MIMO technique [16]. In all cases, we employed a search
information symbols per block. Though our BE-based soft noncopreadth ofd\/ = 64 for the M-algorithm, ands’ = 3 EM iterations.
herent equalizer can be applied to either single- or multi-carrier comsoft BE-channel estimation (SBE) uses the simplified EM-recursion
munication, we consider only single-carrier experiments here. Thig1) while exact soft BE-channel estimation (esBE) uses the “ex-
restriction enables comparison to noncoherent equalizers that useygt” recursion (9). Finallysoft Gauss-Markov channel estimation
low-order Gauss-Markov channel model to facilitate Kalman chan(sGgm) refers to the Kalman technique proposed in [22], for which
nel estimation (e.g., [22]). we employed a first-order Gauss-Markov model.

Our soft noncoher_entequalizer used a Karhunéave (KL) BE Figure 2 shows that the proposgaT+sBE)® approach, a sim-
channel model [14] withV,, = 3 to model the channel’s time vari- piification of the expensivieT+esBE)® approach, gives almost iden-
ation. In Othel’ WordSB was ConStI‘UCted Column'Wise from the tical performance_ Furthermore’ the propo@e’ﬂq—sBE)3 performs
Ny, principal eigenvectors oR;, £ E{hqh} and diagonalRs  only 2 dB from the perfect-CSI bouneT+pH and only1.7 dB from
was constructed from th&/, principal eigenvalues o2,.. Since  the perfect-LLR-feedback bouncT+plIrBE. The tracescT+sBE
the channel was Rayleigh, we us@d= 0. The LDPC decoder of andcT+sGM can be used to compare between the use of BE versus
MacKay and Neal [23] was used with a maximuntofinner”iter-  Gauss-Markov channel models; it can be seen that they are almost
ations, and equalization/decoding were iterated using a maximum @he same except high SNR, where the BE approach shows slightly
8 “outer” iterations. We specify theaximum number of iterations  petter performance. For the frequency-domain channels expedenc
because the receiver breaks out of both the inner and outer 100ps gsmulti-carrier applications, we would expect to see a much bigger
soon as the LDPC syndrome check indicates error-free decoding. gifference between BE and GM. To see the gain from multiple EM

In Fig. 2, the soft noncoherent equalizer proposed in Section 3terations, one can compafeT+sBE)? (where K = 3) to cT+sBE

which we henceforth refer to as (where KX = 1); about0.5 dB improvement can be observed. No
e coherent tree-search coupled with soft BE-channel estimatiogdditional gains were observed far > 3.
after K iterations: (cT+sBE)"” Though the proposed noncoherent equalization scheme operated
was compared to several other soft noncoherent equalizers: without knowledge of the channel state, it did assume knowledge
e coherent tree-search coupled witkact soft BE-channel es-  of channel distribution in the form of the BE coefficient covari-
timation afterk’ iterations: (cT+esBE)X ) ance matrixRes. We now examine the robustness of the scheme
e coherent tree-search using a soft BE-channel estimate  to knowledge of Doppler spreafh T, the most important parame-
iteratively: “cT+sBE," ter in the construction oRy, by comparing the BER-versugT

e coherenttree-search using a soft Gauss-Markov estimate

erformance of the equalizer with perfect knowled s toone
iteratively: “cT+sGM,” P a p ggr

which assumes the fixed valygTs = 0.002. For this experiment,

and two genie-aided performance bounds: we fixed B, /N, = 8 dB. Figure 3 demonstrates that the proposed
o coherent tree-search based opesfect estimate of the chan-  equalization scheme is robust to mismatch in Doppler-spread: the
nel H: “cT+pH, “mismatched” scheme stays close to the “matched” scheme over the

o coherent tree-search based on a BE-channel estimate COByire range of tested Doppler spreads. Note thafp @5 decreases,
structed usingerfect LLR feedback: “cT+plIrBE. the BER for the matched scheme increases due to a lack of diversity;

We now elaborate on the procedureE, sBE, esBE, sGM, pH, while the BER increase gb7s = 0.0001 may at first seem large,

andpllrBE mentioned above. As discussed in Section 8oBerent Fig. 2 shows that it is equivalent to a losslaiB SNR. Likewise, the
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Fig. 3. BER vs. truefpT for foTs-matched and fixedpTs (i.e.,
mismatched) reception &, /N, = 8 dB.
[12]

BER

for the matched scheme increases sharply yth, due to the

limitations of theN, = 3 BE model. Similar behavior was observed [13]
for other soft noncoherent equalizers in [17].

5. CONCLUSION

In this paper, we proposed a soft noncoherent equalizer for wrkno
DS channels for use in a turbo receiver. Our design was based on tl

use of the Bayesian EM algorithm to estimate the channel parame-

(14]

]

ters, and it manifested as iterations between a soft coherent equalizer
and a soft channel estimator. The receiver modeled the channel via
basis expansion (BE), and performed soft coherent equalization vid6l
soft tree search. These two operations were accomplished using fast
algorithms whose overall complexity grows linearly in the block size
and quadratically in the number of BE parameters. Numerical stud7]
ies show that our equalizer performs withidB from genie-aided
bounds and remains robust to mismatch in assumed Doppler spread.
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