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ABSTRACT non-coherent communication. Similarly, the term “joinaoh

. ) ) ) ~nel/symbol estimation” sometimes refers to noncoherent de
In this paper we characterize the maximally achievablerdive coding, even though explicit channel estimates are natbtri
sity order for noncoherent block communication over the-doupeeded for data decoding.

bly dispersive channel, and propose affine precoders which 5, oncoherent communication over the DD channel,
facilitate such maximum-diversity reception. Infact, W@®  here exists a large body of work on optimal and suboptimal
that, under mild channel conditions, almost any affine preq, nconerent reception strategies (e.g., [2-12]). Forcttie
coder is sufficient to facilitate maximum-diversity redept  ihere also exist several articles on training sequenceydesi
regardiess of pr?co‘?"”g, rate. By “noncoherent, we meain the(e.g., [13-16]) with the aim of improving explicit channatle
the channel realization is unknown to both transmitter @d r ;,2tas But we are not aware of work addressing the general

ceiver, and by “doubly dispersive,” we mean that the channél,pjem of transmitter design (i.e., joint design of datd an
exhibits both delay and Doppler spreading (i.e., the channgy,ining sequences) to improve the reliability of commanic

has a time-varying nontrivial impulse response). tion over the noncoherent DD channel.
In response, we first characterize the maximum achiev-
1. INTRODUCTION able diversity order for noncoherent communication over th

DD channel, and find (for wide-sense stationary uncorrélate

In this paper, we consider reliable communication over douScattering (WSSUS) channels with limited time-frequency
bly dispersive (DD) channels, i.e., fading channels that exSPread) that the diversity order equals the product of tempo

hibit significant simultaneous delay and Doppler spread. W&l and spectral diversity orders, thereby coinciding vifté
are especially interested in the high-SNR regime, where th@aximum diversity order for coherent communication over

performance is strongly dependent on the diversity order, i 1€ DD channel [1,17]. For our analysis, we leverage cer-
the negative slope of the log-error-rate versus log-SNReur tain asymptotic results from the noncoherent pairwisererro

For the case where the receiver has channel state inform [Ogab'“t%d(PY]VEP) ?naly§|§ n [I18, 19]. Ne;(fp we shov(\j/ that
tion (CSI) and that the channel follows a complex-exporanti under mild channel conditiong)imost anyaffine precoder

basis expansion model (CE-BEM), Ma and Giannakis [1] Chaf;_;lcilitates maximum diversity reception. We also show that

acterized the maximum achievable diversity order and pro-Inear precoding [20, 21] does not facilitate maximum diver

posed a linear precoding scheme that facilitates maximun‘?—iti; rfjceztli\(/l)n fon Sc&mgonl)ilﬁed s%/_mbol alprégbetszée.g.{ un
diversity reception. The assumptions of perfect receiv@r C coded QAM or )- Recall that affine precoding [22] refers

and a CE-BEM channel are quite restrictive, however, limit-t0 the general class of schemes which combine linear process

ing the practical impact of [1]. For example, CSl is not eaS)/ng of_the mformat;}on symboli with a_dd|t|ve(;_ra|n|r_19. ltirs d
to acquire and maintain in the doubly dispersive case, whergresting to note that, while the maximum-diversity prezo

channel parameters can be multitudinous and quickly vgryin proposed for the coherent case in [1] led to a high degree of

In response, we consider the more difficult problem Oftransmlt-5|gnal redundancy, the affine precoders corsider

L . here are not rate-constrained in any way. Furthermore ewhil
noncoherent communicati@aver the DD channel, where nei- y way W

ther the transmitter nor the receiver is assumed to have CStPe coherent res_ults in [1] apply only to the subclass of DD
. . . o channels for which the CE-BEM holds, our noncoherent re-
In this case, the receiver must exploit (a priori known) Gtru

) : . . ; . sults apply to a much broader class of DD channels.
ture in the transmitted signal in order to decode reliably in ) T :
Notation We denote the transpose by, the conjugate

the presence of channel uncertainty. Note that trainirspth .
P y A franspose by(-)¥, the determinant bylet(-), and the null

blind, and semi-blind schemes all fall under the category ospace of matrixd by A’(A). We denote the x M identity

This work was supported by the National Science Foundati®REER matrix by s, the M x 1 Zel’O'Va|U_ed column VePtor ks
grant CCR-0237037 and the Office of Naval Research. and theM x N zero-valued matrix by, . Finally, we




abbreviate “with probability one” as “w.p.1". 16 ‘ ‘ I
2. SYSTEM MODEL Jﬁ
We consider block transmission of a codewerd= [cy_1,
cN_2,...,c0]T € C, whereC c CV is a finite set of can- * j |
didate codewords, through a doubly dispersive (DD) channel = 4| A
The DD channel is characterized by a time-varying discrete ;
impulse responsg,, ¢, such that the received sample at time o |
n can be described as
Np—1 J SR
n = n0Cn— n- 2r - ‘
T ; hpeCn—e +w 1) . ,
In (1), N, denotes the channel length amg denotes a sam- io” 107 o, i0? 10

ple of a zero-mean circular white Gaussian noise (CWGN)
process with variance?.

We assume that the channel is Rayleigh fading and wideFig. 1. Effective degrees-of-freedom versus normalized
sense stationary (WSS). Thus; := [An_1¢,hn_24,...,  single-sided Doppler spreafhT; for Jakes’ channel at dif-
ho.¢]T, the random vector defined by thé-sample trajectory  ferent block lengthsy.
of the /" channel tap, can be expressed (without loss of gen-
erality) using its Karhunen<eve (KL) expansion ak, =
B,0,, whereB, € CVN*Ns s a fixed basis matrix such that
Bf B, = Iy,, and whered, ¢ C» is a zero-mean circular
Gaussian random vector. The paramé¥gr< N quantifies

For simplicity, we assume that, = 0 for n < 0, as oc-
curs when block transmissions are separated by zero-valued
guards with duratior> N, — 1. However, we note that such
the degrees-of-freedom in the tap’s time-variation. Inesas guards may not be needed in the high-SNR regime, where
good estimates ofc,, },,<( are available from previously de-

of practical mtergst, the cha_nnel varies slowly enought thatected blocks and thus do not pose a problem when detecting
Ny, < N. For evidence of this claim, Fig. 1 plots the effec-
the unknown codeword.

tive! degrees-of-freedom for the commonly assumed “Jakes hat th ver k he ch | -
channel.” i.e. E{h, oh” V= Jo(2n foTym), wheredo(-) . We assume that the receiver nows the channel statistics,
N OARJD= T v i.e., B and Ry, but not the channel realization. In this case,

denotes the zeroth-order Bessel function of the first kjiad, the (noncoherent) ML estimate ofe € has the well known
n];%rm [12,18]

denotes the single-sided Doppler spread in HzZEndenotes
the channel-use interval in seconds. We furthermore assu
that our channel exhibits WSS uncorrelated scattering (WS- ¢y, =  argminr? ®r — logdet(c"2C*”C + R, )
SUS), so thad := (67 ,...,0% _]” ~ CN(0, Ry), where ee€

Ry has full rankN, Np,. In addition, we assume that each tap

has the same Doppler profile, so ttit = B V/.
Usingb” to denote the row oB such thats,, , = b7 8,
the model (1) can be rewritten, fare {0,..., N — 1}, as

Np—1
rao= b D en i+ wp. )
£=0
The vectorr := [ry_1,...,70]7 can then be written as
r = CO+w, 3)
where
w = [wy_1,...,wolt 4)
en—1bN CN- N BN
© = cll'){{ C_Nh’._;'_gb{{ ©)
Cobg C—Nh+1bgl

1We define the “effective degrees-of-freedom” as the numbeigefwal-
ues inE{h,hH } which are larger tham /1000 of the principle eigenvalue.

d = (CRGCH+02IN>_1.

3. DIVERSITY-ORDER ANALYSIS

3.1. Pairwise Error Probability Analysis

In this section, we quantify the diversity order attained by
the noncoherent ML detector over the doubly dispersive (DD)
channel via pairwise error probability (PWEP) analysisetev
aging the work of Brehler and Varanasi [18] and Siwamog-
satham, Fitz, and Grimm [19].

Let ¢;, denote thekt™ codeword inC, and let the corre-
sponding versions af’, ®, andQ := det(c 2C" C+ R, ")
be denoted by}, ®, andQy, respectively. Therky,;, the
event thatc;, is transmitted ana;., is chosen by the ML
detector, becomes

Ep = {r"®r —log Qi > r" & —logQ}. (6)

A closed-form expression for the PWHR{E},;} has been
derived [18,19] for the high-SNR asymptotic case, i.—



0. Adapted to the specifics of our model, the result can béemma 3 Linear precoding does not facilitate maximum-
summarized as follows: diversity detection whefs;,s; € S anda € C such that
s = asy, i.e., whenS contains symbol vectors which differ

Lemma 1 (High-SNR PWEP [18, 19]) If the matrix only by a scale factor.

My, = Cf(IN _ Cl(c{fcl)—lc{f)ck (7)  Proof : With linear precoding,s;, = as; implies C, =
aC}, and hencdCy, Dy;] = [Cy, (1 — a)Cy]. Since this
has full rank N, N, then, ass? — 0, [Ck, Dyi] has rank of at mos¥; N, Lemmas 1 and 2 estab-

NN lish that this rank is insufficient for maximum-diversitytde-
P} — (%) det(Roby)t (PN 1) (g tion.m
H o2 Ok NN, ' The situation described in Lemma 3 is common and arises,

. . . . e.g., whens is composed of uncoded QAM or PSK symbols.
Lemma 1 establishes that the maximum achievable diver-

sity order equalsvy, IV, and that achieving this maximum di- . .
versity order requires thaZ; be full rank for allk and all 3.4. Affine Precoding

1 # k. We refer to the class of schemes in which the codewords are
generated according to
3.2. Maximum-Diversity Conditions c= Ps+t, (10)

We now translate the full-rank condition dW/;; to a more  for generalP ¢ CN*N: andt € CV, asaffine precoders
convenient form. [22]. Here again, we associate th&" codewordc;, with
th Ns i s

Lemma 2 My, has full rank Ny N, if and only if [C., D] the k** symbol \_/ectorsk €S, Whe_reS_C C Isa fi

nite set. The affine precoder described in (10) is parameter-
has full rank2 N, Ny, whereDyy, := C; — C,. . . . ) .

ized by a precoding matriy? and a (superimposed) train-
Proof : From (7), we see thadf,; shares the rank of ing vectort. In this section, we demonstrate tfznost any
I} C,CH, wherellj" .= Iy — C(CHC))~'C} accom- choice of{ P, t} is sufficient to facilitate maximum-diversity
plishes projection onto the null space 6f. SinceC, <  detection under some mild channel conditions. Before stat-
CN*NoNu full rank M1, occurs iff the following two con-  ing our result, we defing? as the matrix created from the top
ditions are satisfiedC; has full rankN, N, and the column N — Nj, + 1 rows of B, i.e.,

space ofC), is contained in the null space @, i.e., the bﬁ_l

column spaces o€, and C; share no common subspace. ) szv )

In other words,M,; has full rank iff [C, C;] has full rank B = . (11)
2Ny, N,. Furthermore, since rank is not affected by subtract- :

ing the firstlV;, N, columns from the last, the rank i, C/] bﬁh_l

equals the rank oC'y, D] @ Lemma 4 If N > 2N, Ny, if B is full rank, and if[P, ¢] is
Lemma 2 states that, for full diversity noncoherent de_chosen randomly from a distribution whose support contains
tection, the following must hold for alt and! # k: both y P

i N X (Ns+1 H
the codeword matrixC';, and the codeword-difference matrix 32 gﬁzglbjé”l;m N+, then[Cy, D] is full rank w.p.1.,
Dy, must be full rank, and their column spaces must not in- )
tersect. Notice that the full-rank condition requires that- Proof : See the appendi il
2N, N,. This latter condition specifies the maximum degree  We now make some observations. First, Lemma 4 holds
of time-frequency spreading for which maximum-diversity for generallV;, i.e., for precoders of arbitrary rate. Second,
reception is possible. Notice that the conditidn> 2N, N,  the rank condition oB is quite mild, and states that the first

is stronger thanV > N, N,, the condition for an “under- N; — 1 samples (out ofV > 2N} N,) of each tap trajectory

spread” channel. are not essential to experiencing thigdegrees-of-freedom in
tap time-variation. This is expected behavior for WSS chan-

We refer to the class of schemes in which the codewords are

i 4. NUMERICAL EXAMPLES
generated according to

©) Figure 2 plots average PWEP versus SNR ) for a ran-
’ domly chosen affine precoder f& = BPSK assuming an
energy-preserving two-tap (i.€V;, = 2) channel whose time
evolution is governed by Jakes’ moél&ith fpT, = 0.003.

c = Ps

for generalP ¢ CV*":, aslinear precoderg20, 21]. In this
case, we associate thé&" codeworde;, with the k' symbol
vectors;, € S, whereS ¢ C™- is a finite set. 2Jakes’ model was described in Section 2.




By “average” PWEP, we mean that the PWEP is averaged

across symbol pairs. Our experiments assuiNed- 8, for
which the channel model yieldy, = 2 (see Fig. 1). To
demonstrate that the results hold for gené¥al Fig. 2 inves-
tigatesN; € {6, 8, 10}, which covers the cases thislt > N,

6. APPENDIX

Our strategy is to characterize t, t] which causéC,, D]
to be rank deficient, and show that these problen{d®ict|
are avoided w.p.1. In the sequel, we consider arbitfary

N, = N, andN, < N. In all cases, it can be seen that theand arbitraryl # k, and we use the abbreviatioss= sy,

asymptotic slope of the average PWEP equal§ N, = —4,
which confirms full-diversity reception.

10 <~y e of C, and from the partitonsx = [of, af ,...,af, _4]"
) andg = [87,87,...,8%, _,]” whereay, 8, € CN*, we
rewrite[C, D] [3] = [F, G] [ §] with
b g bR an, 10 - 0 T
0 - S
0 0
F= H H
0 bNh—1OéO' e bNh—laNh—l
0 :
.0 - e . 0 bé{ao
_b%—lﬁo' e b%qﬂm—l 0 T 0 ]
10788 1‘0 1‘2 ‘ 1‘6 1‘8 ‘ 22 £4 26 0 0 :
SNR (dB)
e 0 . ; - . ; 0
0 bN,L_LBo' "bN;L—lﬁN;L—l
Fig. 2. Average PWEP versus SNR f&f = BPSK, N = 8§, 0 . :
N;, = Ny = 2, and variousV,. The dashed line confirms the H'
asymptotic slope of-4. L 0 0 b By |

0 = s, — s, and[C7D] = [Ck,le].

Rank deficiency occurs wherd[3] # 0 such that
[C,D][3] = Oy. We would like to rewrite[C, D] [3]
so that the role of P, t] is explicit. From the construction

for ¢ defined in (10) and := PJ. Here we used the fact that
{d,, = 0},<0 and{c,, = 0},,<o. Usingp’! to denote the row

5. CONCLUSION of P such that,, = pZ’s, we can then write

In this paper, we have characterized the maximum diversity- ST_ 1
order that can be attained for noncoherent detection of dou- -
bly dispersed block transmissions, and we have providetl a se [C] — T 5 1 [p}
of sufficient conditions under which this maximum diversity d 9 ) 0 ¢
order can be attained. Specifically, we have shown that, when ' T E
the channel spreading is gentle enough to endure 2N, N}, o 0
(and when certain other mild channel conditions are satisfie p = [p¥_, p% , ... p"T
almost anyaffine precoder will facilitate maximum-diversity _ T
t = [thl,tN727...,t0] .

noncoherent ML detection. In addition, we have shown that

linear precoding does not facilitate maximum-diversitfede ~ Putting these together, we ha{€, D] [3] = [H, F][}]
tion for certain commonly used symbol alphabets. with

In the future, we plan to investigate the effect of various
constrained affine precoders, such as those with orthogonals | a,sm+ g,67) --b# (aw, 157+ 8y, 167 0 0

training (i.e.,t” P = 0) and those with systematic precod- 0 g 0
: 0 0

ing matrices (i.e.P = [ 11;: }). The latter would facilitate” = 0 b (s B8T) e b (s 4 By 167)
near-ML sequential detection at very low complexity (e.g., fl 0 v '
O(N?)in[12]). We also plan to investigate the design of full-
diversity precoders with good finite-SNR performance (i.e.and with F' as defined earlier. Thu$C, D][3] = Oy be-
good coding gain). comes equivalent to} | € N'([H, F)).

by (cos” + By0")



Notice that, if[H, F] # Onxn(n,+1), thenN([H, F])

is a strict subspace @&~ (™:+1)_ In this case, our assump-

tion
has
nee

s on the distribution of% ] imply that the setV'([H, F))
measure zero, so th&t ¢ N ([H, F]) w.p.1. Thus, we
d to show thdiH , F'] # 0 for all s, for all nonzeray, and

for all nonzerg 3]. To do this, we consider two cases.
Case 1)a # 0: Here we show thatH , F'] # 0 by show-

ing that F* # 0. Sincea # 0, we know thata, # 0 for

some/. The assumption of full raniB then implies that

Ba

. # 0 for some/, which ensures tha o, # 0 for

somen € {N, —1,..., N —1}. The latter condition implies
F = 0. Clearly, this occurs for anys, §}.

Case 2)a = 0: Here it is evident thaB # 0, F = 0,

and

[ bN_ 180" "'b%—lﬁAh—léT 0 e 0

0 .. 0
0 : : 0
' 0 by, 188" b, 18, 16"
: 0 :
L 0 0 bl 3,67

Thus, we need to show that there is no combinatiors,of

non

zerod, and nonzerg3 that yieldsH = 0. But, since

6 # 0, the conditionH = 0 is equivalent toG = 0. Now,
since B is full rank and3, # 0 for some/, we know that

bl 3, # 0forsomen € {Nj, —1,..., N —1}, which ensures
ghatG = 0. Clearly, this occurs for ang and any nonzero
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