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ABSTRACT

In this paper we characterize the maximally achievable diver-
sity order for noncoherent block communication over the dou-
bly dispersive channel, and propose affine precoders which
facilitate such maximum-diversity reception. In fact, we show
that, under mild channel conditions, almost any affine pre-
coder is sufficient to facilitate maximum-diversity reception,
regardless of precoding rate. By “noncoherent,” we mean that
the channel realization is unknown to both transmitter and re-
ceiver, and by “doubly dispersive,” we mean that the channel
exhibits both delay and Doppler spreading (i.e., the channel
has a time-varying nontrivial impulse response).

1. INTRODUCTION

In this paper, we consider reliable communication over dou-
bly dispersive (DD) channels, i.e., fading channels that ex-
hibit significant simultaneous delay and Doppler spread. We
are especially interested in the high-SNR regime, where the
performance is strongly dependent on the diversity order, i.e.,
the negative slope of the log-error-rate versus log-SNR curve.

For the case where the receiver has channel state informa-
tion (CSI) and that the channel follows a complex-exponential
basis expansion model (CE-BEM), Ma and Giannakis [1] char-
acterized the maximum achievable diversity order and pro-
posed a linear precoding scheme that facilitates maximum-
diversity reception. The assumptions of perfect receiver CSI
and a CE-BEM channel are quite restrictive, however, limit-
ing the practical impact of [1]. For example, CSI is not easy
to acquire and maintain in the doubly dispersive case, where
channel parameters can be multitudinous and quickly varying.

In response, we consider the more difficult problem of
noncoherent communicationover the DD channel, where nei-
ther the transmitter nor the receiver is assumed to have CSI.
In this case, the receiver must exploit (a priori known) struc-
ture in the transmitted signal in order to decode reliably in
the presence of channel uncertainty. Note that training-based,
blind, and semi-blind schemes all fall under the category of
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non-coherent communication. Similarly, the term “joint chan-
nel/symbol estimation” sometimes refers to noncoherent de-
coding, even though explicit channel estimates are not strictly
needed for data decoding.

For noncoherent communication over the DD channel,
there exists a large body of work on optimal and suboptimal
noncoherent reception strategies (e.g., [2–12]). For thiscase,
there also exist several articles on training sequence design
(e.g., [13–16]) with the aim of improving explicit channel es-
timates. But we are not aware of work addressing the general
problem of transmitter design (i.e., joint design of data and
training sequences) to improve the reliability of communica-
tion over the noncoherent DD channel.

In response, we first characterize the maximum achiev-
able diversity order for noncoherent communication over the
DD channel, and find (for wide-sense stationary uncorrelated
scattering (WSSUS) channels with limited time-frequency
spread) that the diversity order equals the product of tempo-
ral and spectral diversity orders, thereby coinciding withthe
maximum diversity order for coherent communication over
the DD channel [1, 17]. For our analysis, we leverage cer-
tain asymptotic results from the noncoherent pairwise error
probability (PWEP) analysis in [18, 19]. Next, we show that
(under mild channel conditions)almost anyaffine precoder
facilitates maximum diversity reception. We also show that
linear precoding [20, 21] does not facilitate maximum diver-
sity reception for commonly used symbol alphabets (e.g., un-
coded QAM or PSK). Recall that affine precoding [22] refers
to the general class of schemes which combine linear process-
ing of the information symbols with additive training. It isin-
teresting to note that, while the maximum-diversity precoder
proposed for the coherent case in [1] led to a high degree of
transmit-signal redundancy, the affine precoders considered
here are not rate-constrained in any way. Furthermore, while
the coherent results in [1] apply only to the subclass of DD
channels for which the CE-BEM holds, our noncoherent re-
sults apply to a much broader class of DD channels.

Notation: We denote the transpose by(·)T , the conjugate
transpose by(·)H , the determinant bydet(·), and the null
space of matrixA byN (A). We denote theM ×M identity
matrix byIM , theM × 1 zero-valued column vector by0M ,
and theM × N zero-valued matrix by0M×N . Finally, we



abbreviate “with probability one” as “w.p.1”.

2. SYSTEM MODEL

We consider block transmission of a codewordc = [cN−1,
cN−2, . . . , c0]

T ∈ C, whereC ⊂ C
N is a finite set of can-

didate codewords, through a doubly dispersive (DD) channel.
The DD channel is characterized by a time-varying discrete
impulse responsehn,ℓ, such that the received sample at time
n can be described as

rn =

Nh−1
∑

ℓ=0

hn,ℓcn−ℓ + wn. (1)

In (1), Nh denotes the channel length andwn denotes a sam-
ple of a zero-mean circular white Gaussian noise (CWGN)
process with varianceσ2.

We assume that the channel is Rayleigh fading and wide-
sense stationary (WSS). Thus,hℓ := [hN−1,ℓ, hN−2,ℓ, . . . ,
h0,ℓ]

T , the random vector defined by theN -sample trajectory
of theℓth channel tap, can be expressed (without loss of gen-
erality) using its Karhunen-L̀oeve (KL) expansion ashℓ =
Bℓθℓ, whereBℓ ∈ C

N×Nb is a fixed basis matrix such that
BH

ℓ Bℓ = INb
, and whereθℓ ∈ C

Nb is a zero-mean circular
Gaussian random vector. The parameterNb ≤ N quantifies
the degrees-of-freedom in the tap’s time-variation. In cases
of practical interest, the channel varies slowly enough that
Nb ≪ N . For evidence of this claim, Fig. 1 plots the effec-
tive1 degrees-of-freedom for the commonly assumed “Jakes’
channel,” i.e.,E{hn,ℓh

∗
n+m,ℓ} = J0(2πfDTsm), whereJ0(·)

denotes the zeroth-order Bessel function of the first kind,fD

denotes the single-sided Doppler spread in Hz andTs denotes
the channel-use interval in seconds. We furthermore assume
that our channel exhibits WSS uncorrelated scattering (WS-
SUS), so thatθ := [θT

0 , . . . ,θT
Nh−1]

T ∼ CN (0,Rθ), where
Rθ has full rankNhNb. In addition, we assume that each tap
has the same Doppler profile, so thatBℓ = B ∀ℓ.

UsingbH
n to denote the row ofB such thathn,ℓ = bH

n θℓ,
the model (1) can be rewritten, forn ∈ {0, . . . , N − 1}, as

rn = bH
n

Nh−1
∑

ℓ=0

cn−ℓθℓ + wn. (2)

The vectorr := [rN−1, . . . , r0]
T can then be written as

r = Cθ + w, (3)

where

w = [wN−1, . . . , w0]
T (4)

C =











cN−1b
H
N−1 · · · cN−Nh

bH
N−1

...
...

c1b
H
1 · · · c−Nh+2b

H
1

c0b
H
0 · · · c−Nh+1b

H
0











(5)

1We define the “effective degrees-of-freedom” as the number of eigenval-
ues inE{hℓh

H

ℓ
} which are larger than1/1000 of the principle eigenvalue.
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Fig. 1. Effective degrees-of-freedom versus normalized
single-sided Doppler spreadfDTs for Jakes’ channel at dif-
ferent block lengthsN .

For simplicity, we assume thatcn = 0 for n < 0, as oc-
curs when block transmissions are separated by zero-valued
guards with duration≥ Nh − 1. However, we note that such
guards may not be needed in the high-SNR regime, where
good estimates of{cn}n<0 are available from previously de-
tected blocks and thus do not pose a problem when detecting
the unknown codewordc.

We assume that the receiver knows the channel statistics,
i.e., B andRθ, but not the channel realization. In this case,
the (noncoherent) ML estimate ofc ∈ C has the well known
form [12,18]

ĉML = arg min
c∈C

rH
Φr − log det(σ−2CHC + R−1

θ )

Φ :=
(

CRθC
H + σ2IN

)−1

.

3. DIVERSITY-ORDER ANALYSIS

3.1. Pairwise Error Probability Analysis

In this section, we quantify the diversity order attained by
the noncoherent ML detector over the doubly dispersive (DD)
channel via pairwise error probability (PWEP) analysis, lever-
aging the work of Brehler and Varanasi [18] and Siwamog-
satham, Fitz, and Grimm [19].

Let ck denote thekth codeword inC, and let the corre-
sponding versions ofC, Φ, andQ := det(σ−2CHC+R−1

θ )
be denoted byCk, Φk, andQk, respectively. ThenEkl, the
event thatck is transmitted andcl 6=k is chosen by the ML
detector, becomes

Ekl = {rH
Φkr − log Qk > rH

Φlr − log Ql}. (6)

A closed-form expression for the PWEPPr{Ekl} has been
derived [18,19] for the high-SNR asymptotic case, i.e.,σ2 →



0. Adapted to the specifics of our model, the result can be
summarized as follows:

Lemma 1 (High-SNR PWEP [18,19]) If the matrix

Mkl := CH
k (IN − Cl(C

H
l Cl)

−1CH
l )Ck (7)

has full rankNhNb, then, asσ2 → 0,

Pr{Ekl} →

(

1

σ2

)−NhNb

det(RθMkl)
−1

(

2NhNb − 1

NhNb

)

. (8)

Lemma 1 establishes that the maximum achievable diver-
sity order equalsNhNb, and that achieving this maximum di-
versity order requires thatMkl be full rank for allk and all
l 6= k.

3.2. Maximum-Diversity Conditions

We now translate the full-rank condition onMkl to a more
convenient form.

Lemma 2 Mkl has full rankNhNb if and only if [Ck,Dlk]
has full rank2NhNb, whereDlk := Cl − Ck.

Proof : From (7), we see thatMkl shares the rank of
Π

⊥
l CkCH

k , whereΠ⊥
l := IN − Cl(C

H
l Cl)

−1CH
l accom-

plishes projection onto the null space ofCl. SinceCk ∈
C

N×NbNh , full rank Mkl occurs iff the following two con-
ditions are satisfied:Ck has full rankNbNh, and the column
space ofCk is contained in the null space ofCl, i.e., the
column spaces ofCk and Cl share no common subspace.
In other words,Mkl has full rank iff [Ck,Cl] has full rank
2NhNb. Furthermore, since rank is not affected by subtract-
ing the firstNhNb columns from the last, the rank of[Ck,Cl]
equals the rank of[Ck,Dlk]. ¥

Lemma 2 states that, for full diversity noncoherent de-
tection, the following must hold for allk and l 6= k: both
the codeword matrixCk and the codeword-difference matrix
Dlk must be full rank, and their column spaces must not in-
tersect. Notice that the full-rank condition requires thatN ≥
2NhNb. This latter condition specifies the maximum degree
of time-frequency spreading for which maximum-diversity
reception is possible. Notice that the conditionN ≥ 2NhNb

is stronger thanN > NhNb, the condition for an “under-
spread” channel.

3.3. Linear Precoding

We refer to the class of schemes in which the codewords are
generated according to

c = Ps, (9)

for generalP ∈ C
N×Ns , aslinear precoders[20,21]. In this

case, we associate thekth codewordck with thekth symbol
vectorsk ∈ S, whereS ⊂ C

Ns is a finite set.

Lemma 3 Linear precoding does not facilitate maximum-
diversity detection when∃sk, sl ∈ S and a ∈ C such that
sk = asl, i.e., whenS contains symbol vectors which differ
only by a scale factor.

Proof : With linear precoding,sk = asl implies Ck =
aCl, and hence[Ck,Dlk] = [Ck, (1 − a)Ck]. Since this
[Ck,Dlk] has rank of at mostNhNb, Lemmas 1 and 2 estab-
lish that this rank is insufficient for maximum-diversity detec-
tion. ¥

The situation described in Lemma 3 is common and arises,
e.g., whens is composed of uncoded QAM or PSK symbols.

3.4. Affine Precoding

We refer to the class of schemes in which the codewords are
generated according to

c = Ps + t, (10)

for generalP ∈ C
N×Ns and t ∈ C

N , asaffine precoders
[22]. Here again, we associate thekth codewordck with
the kth symbol vectorsk ∈ S, whereS ⊂ C

Ns is a fi-
nite set. The affine precoder described in (10) is parameter-
ized by a precoding matrixP and a (superimposed) train-
ing vectort. In this section, we demonstrate thatalmost any
choice of{P , t} is sufficient to facilitate maximum-diversity
detection under some mild channel conditions. Before stat-
ing our result, we definẽB as the matrix created from the top
N − Nh + 1 rows ofB, i.e.,

B̃ :=











bH
N−1

bH
N−2
...

bH
Nh−1











. (11)

Lemma 4 If N ≥ 2NhNb, if B̃ is full rank, and if[P , t] is
chosen randomly from a distribution whose support contains
an open ball inCN×(Ns+1), then[Ck,Dlk] is full rank w.p.1.
∀k and∀l 6= k.

Proof : See the appendix.¥
We now make some observations. First, Lemma 4 holds

for generalNs, i.e., for precoders of arbitrary rate. Second,
the rank condition oñB is quite mild, and states that the first
Nh − 1 samples (out ofN ≥ 2NhNb) of each tap trajectory
are not essential to experiencing theNb degrees-of-freedom in
tap time-variation. This is expected behavior for WSS chan-
nels. (Recall thatB satisfiedBHB = INb

.)

4. NUMERICAL EXAMPLES

Figure 2 plots average PWEP versus SNR (σ−2) for a ran-
domly chosen affine precoder forS = BPSK assuming an
energy-preserving two-tap (i.e.,Nh = 2) channel whose time
evolution is governed by Jakes’ model2 with fDTs = 0.003.

2Jakes’ model was described in Section 2.



By “average” PWEP, we mean that the PWEP is averaged
across symbol pairs. Our experiments assumedN = 8, for
which the channel model yieldsNb = 2 (see Fig. 1). To
demonstrate that the results hold for generalNs, Fig. 2 inves-
tigatesNs ∈ {6, 8, 10}, which covers the cases thatNs > N ,
Ns = N , andNs < N . In all cases, it can be seen that the
asymptotic slope of the average PWEP equals−NbNh = −4,
which confirms full-diversity reception.
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Fig. 2. Average PWEP versus SNR forS = BPSK,N = 8,
Nh = Nb = 2, and variousNs. The dashed line confirms the
asymptotic slope of−4.

5. CONCLUSION

In this paper, we have characterized the maximum diversity-
order that can be attained for noncoherent detection of dou-
bly dispersed block transmissions, and we have provided a set
of sufficient conditions under which this maximum diversity-
order can be attained. Specifically, we have shown that, when
the channel spreading is gentle enough to ensureN ≥ 2NbNh

(and when certain other mild channel conditions are satisfied),
almost anyaffine precoder will facilitate maximum-diversity
noncoherent ML detection. In addition, we have shown that
linear precoding does not facilitate maximum-diversity detec-
tion for certain commonly used symbol alphabets.

In the future, we plan to investigate the effect of various
constrained affine precoders, such as those with orthogonal
training (i.e.,tHP = 0) and those with systematic precod-

ing matrices (i.e.,P =
[

P ′

INs

]

). The latter would facilitate

near-ML sequential detection at very low complexity (e.g.,
O(N2) in [12]). We also plan to investigate the design of full-
diversity precoders with good finite-SNR performance (i.e.,
good coding gain).

6. APPENDIX

Our strategy is to characterize the[P , t] which cause[Ck,Dlk]
to be rank deficient, and show that these problematic[P , t]
are avoided w.p.1. In the sequel, we consider arbitraryk
and arbitraryl 6= k, and we use the abbreviationss = sk,
δ = sl − sk, and[C,D] = [Ck,Dlk].

Rank deficiency occurs when∃ [ α
β ] 6= 0 such that

[C,D] [ α
β ] = 0N . We would like to rewrite[C,D] [ α

β ]
so that the role of[P , t] is explicit. From the construction
of C, and from the partitionsα = [αT

0 ,αT
1 , . . . ,αT

Nh−1]
T

andβ = [βT
0 ,βT

1 , . . . ,βT
Nh−1]

T whereαℓ,βℓ ∈ C
Nb , we

rewrite[C,D] [ α
β ] = [F ,G] [ c

d ] with

F =

























bH
N−1α0· · · b

H
N−1αNh−1 0 · · · 0

0
. . .

.. .
. .. 0

...
... 0

.. .
. ..

. .. 0
...

. . . 0 bH
Nh−1α0· · · b

H
Nh−1αNh−1

...
. . .

.. . 0
. ..

...

0 · · · · · · · · · 0 bH
0 α0

























G=

























bH
N−1β0· · · b

H
N−1βNh−1 0 · · · 0

0
. . .

. . .
. .. 0

...
... 0

. . .
. ..

. .. 0
...

. . . 0 bH
Nh−1β0· · · b

H
Nh−1βNh−1

...
. . .

. . . 0
. ..

...

0 · · · · · · · · · 0 bH
0 β0

























.

for c defined in (10) andd := Pδ. Here we used the fact that
{dn = 0}n<0 and{cn = 0}n<0. UsingpH

n to denote the row
of P such thatcn = pH

n s, we can then write

[

c

d

]

=















sT 1
. . .

. . .
sT 1

δT 0
. . .

. . .
δT 0















[

p

t

]

p = [pH
N−1,p

H
N−2, . . . ,p

H
0 ]T

t = [tN−1, tN−2, . . . , t0]
T .

Putting these together, we have[C,D] [ α
β ] = [H,F ] [ p

t ]
with

H =

























bH
N−1(α0s

T + β0δ
T ) · · · bH

N−1(αNh−1s
T + βNh−1δ

T ) 0 · · · 0

0
. . .

. . .
. .. 0

...
... 0

. . .
. ..

.. . 0
...

. . . 0 bH
Nh−1(α0s

T + β0δ
T ) · · · bH

Nh−1(αNh−1s
T + βNh−1δ

T )
...

. . .
. . . 0

.. .
...

0 · · · · · · · · · 0 bH
0 (α0s

T + β0δ
T )

























and withF as defined earlier. Thus,[C,D] [ α
β ] = 0N be-

comes equivalent to[ p
t ] ∈ N ([H ,F ]).



Notice that, if[H,F ] 6= 0N×N(Ns+1), thenN ([H ,F ])

is a strict subspace ofCN(Ns+1). In this case, our assump-
tions on the distribution of[ p

t ] imply that the setN ([H ,F ])
has measure zero, so that[ p

t ] /∈ N ([H ,F ]) w.p.1. Thus, we
need to show that[H,F ] 6= 0 for all s, for all nonzeroδ, and
for all nonzero[ α

β ]. To do this, we consider two cases.
Case 1)α 6= 0: Here we show that[H,F ] 6= 0 by show-

ing thatF 6= 0. Sinceα 6= 0, we know thatαℓ 6= 0 for
someℓ. The assumption of full rank̃B then implies that
B̃αℓ 6= 0 for someℓ, which ensures thatbH

n αℓ 6= 0 for
somen ∈ {Nh − 1, . . . , N − 1}. The latter condition implies
F 6= 0. Clearly, this occurs for any{s, δ}.

Case 2)α = 0: Here it is evident thatβ 6= 0, F = 0,
and

H =

























bH
N−1β0δ

T · · · bH
N−1βNh−1δ

T 0 · · · 0

0
.. .

.. .
.. . 0

...
... 0

.. .
.. .

.. . 0
...

.. . 0 bH
Nh−1β0δ

T · · · bH
Nh−1βNh−1δ

T

...
.. .

.. . 0
.. .

...

0 · · · · · · · · · 0 bH
0 β0δ

T

























Thus, we need to show that there is no combination ofs,
nonzeroδ, and nonzeroβ that yieldsH = 0. But, since
δ 6= 0, the conditionH = 0 is equivalent toG = 0. Now,
sinceB̃ is full rank andβℓ 6= 0 for someℓ, we know that
bH

n βℓ 6= 0 for somen ∈ {Nh−1, . . . , N−1}, which ensures
that G 6= 0. Clearly, this occurs for anys and any nonzero
δ.
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