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/Multicarrier System Model: \

Modulation:

oo N-—1

s(t) = D Y [sulkalt — nTy)e? 0T

n=—oo k=0

Doubly dispersive channel:

Demodulation:

]k = / 2(£) b* (¢ — mT,)e 92mhFs(t=mTs)
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/ Discrete-time Vector Representation:

noise z(t)
T,
symbols —™ s(t) LTV z(t) — ™ equalize/ [ ™ symbols
— mod [—* demod — — .
Sm — channel - »| decode | —» Sm

00
Ly = § Hm,nsm—n + zZm

n=—aoo

“ISI4ICI channel”’

S, € CV multi-carrier symbol vector
H,,, € CY" sub-carrier coupling matrix at time-m and lag-n
x,, € CN multi-carrier observation vector

z, € CN noise vector
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/Quasi-Banded Model: \

With properly chosen pulse shapes a(t) and b(t), and with a smoothly
varying channel, we can make the approximation

00
Ly = § Hm,nsm—n + 2z,

n=—oo

~ Hm,osm + zZm

where H,, o is quasi-banded with 2D 4- 1 active diagonals:

NI

Sm  Zm

In other words, IS|I becomes negligible and ICl is effectively limited to a
radius of D subcarriers.
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/In fact, with knowledge of the channel statistics, the pulses {a(t), b(t)}\
can be designed to make the approximation accurate (without
compromising spectral efficiency). Example max-SINR pulse designs:
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/Efficient Symbol Detection: \
Prior art:
1. Linear (e.g., MMSE, ZF) [Rugini/Banelli/Leus SPL 05] O(D?N)
2. DFE [Rugini/Banelli/Leus SPAWC 05] O(D?N)
3. lterative [Schniter TSP 04] O(D*N)
4. ML (e.g., Viterbi) [Matheus/Kammeyer GLOBE 97] O(MPDN)

where M is the constellation size.

Can we get ML-like performance with DFE-like complexity?

Yes, via sequential decoding (i.e., tree search or closest point
lattice search)!

- /




Phil Schniter The Ohio State University

Two-step procedure:

equential Decoding (SqD):

1. Pre-processing (to expose tree structure),
D+1 D 2D+1 2D

=

2. Efficient (possibly sub-optimal) tree search.

Both steps should leverage quasi-banded structure of ICl matrix for
complexity reduction.

- /
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/SqD Pre-Processing: \
1. QR (traditional method): For H = QR with unitary Q and upper
triangular R,
du. = arg min |z — Hs||* = arg min || Q" —Rs||?
seSN sESN N~
/
x

Problem: R may be ill-conditioned, in which case sub-optimal tree
search tends to be costly. [Murugan/El-Gamal TIT 06]

2. MMSE-GDFE [Damen/El-Gamal CISS 04]: For

(7_11/%”) (QQ) R with unitary ( 1) and upper triangular R,

Spp = arg mi% | Q{{az —Rs|> # sw
p
Note: spp = SmL under QPSK & BPSK [Hwang/Schniter ALL 05].

- /
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/Fast MMSE-GDFE Pre-Processing: \
Steps:
H
1. Compute (7_1%”) (7_1%”) O(D*N)
H
2. Cholesky factorize (7—1%11\,) (7_117211\7) = R"R O(D*N)
3. Compute b:= H"z = R"p O(DN)
4. Forward substitute to get p from b O(DN)

Note: Similar to fast MMSE-DFE from [Rugini/Banelli/Leus SPAWC
05] but designed for quasi-banded (rather than banded) matrices.
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/Additional Pre-Processing? \

e Additional pre-processing stages, such as lattice reduction and
column ordering (e.g., V-BLAST), are common in SqD. However,
most of them destroy the quasi-banded structure we need for fast
MMSE-GDFE, and so are not appropriate in our application.

e A simple circular shift in the column order is admissible. We find
that rotating the strongest column into the rightmost position in R
yields a small improvement in the performance/complexity of the
subsequent tree search.
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KI’ ree Search: \

Now we focus on solving

spp = arg min ||p — Rs||* with “V-shaped” R,

seSN

i.e., efficiently searching a tree with M* leaf nodes.

Options:
1. Depth-first search (e.g., Schnorr-Euchner sphere decoder)
2. Best-first search (e.g., Fano alg, stack alg)

3. Breadth-first search (e.g., M-alg, T-alg, Pohst sphere decoder)

- /
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/Depth-first Search: \

e Proceed down tree by following min-cost branch at each level. Keep
first full path (i.e., DFE estimate) as a reference. Then, back up
one level at a time and re-examine any discarded branches which
have a chance at beating the reference. Reset reference if a better
one is found, and repeat.

e Very efficient at high SNR, because DFE estimate is nearly ML and
few paths need to be re-examined. At low SNR, many paths must
be re-examined, leading to a complexity explosion.

e Additional problem with V-shaped R: Symbol errors are not always
visible in down-stream observations, meaning that back-tracking will
need to go very deep to uncover errors.

- /
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/Error masking in V-shaped R: \
Recall p = Rs + n:
0 2D+1 2D
BN < —

- -
N —4D — 2 N—2D—1J N —-2D -1
The symbol sy_sp_1 does not affect {pg, ..., pn_ap_2}!

- /

14




Phil Schniter The Ohio State University

/Best-First Search: \

e Maintain a sorted list of best partial paths (of possibly different
lengths). At each iteration, replace best partial path with it's
children and re-sort list. Terminate with best partial path is a full
path.

e The Fano alg adds a user-selected bias towards longer paths,
facilitating a performance/complexity trade-off. With a large
enough bias, Fano becomes DFE.

e Fano alg known for excellent performance with fully populated
upper triangular R, but V-shaped R leads to inefficient search, due
in part to the fact that the Fano bias rewards the extension of paths
with early errors, e.g., errors in Sy_ap_1.

- /
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/Breadth-First Search: \

e Proceed down the tree level-by-level, extending only the best partial
paths at each level. Terminate when the last level is reached.

e The complexity of breath-first search is relatively insensitive to SNR
and to the structure of R.

e The M-alg investigates a fixed number of branches per level. This
involves a compromise, however, since there is typically no single
number that works well in all situations.

e The T-alg investigates the paths whose metrics are within some
threshold T of the best path’'s metric at the current level. Several

methods to choose T' have been proposed, e.g., experimentally or
based on SNR.
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/ChanneI—Adaptive T-Algorithm: \

e We propose a new variant of the T-alg, where T}, the threshold at
the i'" level, is adjusted based on the channel realization and noise
variance.

e The main idea is to discard the true path with probability at most ¢,
when the true path is not the best partial path. In other words, T} is
chosen such that

Pr{M(s{) > M(s?) +T; | M(s¥) > M(s{)} < e,

Note: Simply setting 7} so that the true path is discarded with
probability at most ¢, would allow too high a search complexity with
difficult channels.

e The key to efficient search is to know when to give up; difficult
channels are not worth expensive searches!

- /
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/ChanneI—Adaptive T-Algorithm: \

e We assume that the event M (sy’) > M (s?) is dominated by the
case that s and s{” differ in a single element at the weakest
column of R™. We also assume that p® — R"s{’ is Gaussian.
Under these assumptions, the threshold

i — r i
1, = 2l 0 (o (el )) oy
O-Z

ensures that

Pr{M(s{) > M(s?) + T; | M(s?) > M(s{")} = e,.
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/Numerical Experiments:

We examine:
e Effect of residual-ICl on the performance of ML estimates.
e Relative performance of various SqDs.
e Relative complexity of various SqDs.

e Effect of imperfect channel knowledge on the performance of
various SqDs.
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/Simulation Setup: \
e Uncoded QPSK.
e N = 64 subcarriers.

e WSSUS Jakes channel with 16 taps and f,;T,. € {0.001,0.003}, e.g.,
10 GHz carrier, 12.5us delay spread, {138,414} km/hr.

e CP-, ZP-, and Strohmer-OFDM use 1 = 0.8 symbols/sec/Hz, while
our TOMS scheme uses 17 = 1 symbol/sec/Hz.

e Algorithms employed an ICl radius of D = 3.
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/Frame Error Rate: \
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/Average Complexity (MACs/frame): \
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/FER with Imperfect Channel Estimates:
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via pilot-aided reduced-rank MMSE estimation of local-ICl coefficients.

~
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/Conclusions: \

Pulse shaping can be used to make residual ICI/ISI have a negligible
effect on ML performance.

Pulse shaping can have a degrading effect on MMSE-DFE
performance, probably as a result of increasing the sensitivity to
error propagation.

Sequential decoding can yield FERs indistinguishable from that of
ML with average complexity on par with MMSE-DFE.

The banded ICl matrix enables a fast SqD algorithm, but also
causes problems for many traditional tree searches (e.g., best-first
and depth-first varieties).

The proposed SqD alg works well with pilot-aided channel estimates.
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