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ABSTRACT

Multicarrier modulation (MCM) over a doubly dispersive (DD)
channel yields complicated inter-carrier interference (ICI) and inter-
symbol interference (ISI) responses. With appropriately designed
MCM pulse shapes, however, ISI can be mostly suppressed, as can
ICI outside a small subcarrier radius. In this case, the channel can
be well described by a quasi-banded subcarrier coupling matrix.
Several sequence detectors (SDs) have been proposed to leverage
this quasi-banded structure, including linear, decision feedback
(DF), and maximum likelihood (ML) schemes. Relative to lin-
ear and DF schemes, the ML schemes offer superior performance,
but are significantly more complex, even when efficient Viterbi or
sphere-detection algorithms are used. In this paper, we propose a
new SD algorithm for the quasi-banded application with a frame
error rate (FER) that is nearly indistinguishable from ML and an
average complexity that is on par with DF SD.1

1. INTRODUCTION

Multi-carrier modulation (MCM) has been extensively studied as a
practical method for communication over channels which areboth
time dispersive and frequency dispersive, i.e., doubly dispersive
(DD). (See, e.g., the many references in [1].) The principlechal-
lenge faced when using MCM over these channels is effectively
combating a rich and quickly varying inter-symbol interference
(ISI) plus inter-carrier interference (ICI) response. Traditionally,
MCM systems have been designed to make ISI negligible, en-
abling block demodulation of ICI-corrupted multicarrier symbols.
More recently, MCM systems have been designed to also ensurea
sparse ICI response, so that a given subcarrier sees significant in-
terference only from a few neighboring subcarriers [2–5]. In these
systems, the DD channel is well described by a “quasi-banded”
subcarrier coupling matrix of the form shown in Fig. 1(a). Fur-
thermore, by turning edge subcarriers off, the subcarrier coupling
matrix can be made banded (rather than quasi-banded).

A number of sequence detection (SD) algorithms have been
designed to exploit this banded or quasi-banded channel struc-
ture. These schemes include linear [6–8], decision feedback (DF)
[5, 9, 10], iterative [3, 4], and maximum likelihood (ML) [11, 12]
schemes. The linear and DF schemes have the advantage of low
complexity, the ML schemes have the advantage of excellent per-
formance,and the iterative schemes fall somewhere in-between in
both performance and complexity.

In this paper, we propose a new approach to SD for quasi-
banded channels that yields a frame error rate (FER) close tothat
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of MLSD with a complexity close to that of DFSD. Our SD al-
gorithm combines a novel sequential decoding (SqD) algorithm
with a novel pre-processing algorithm, both specifically designed
for the quasi-banded channel. Specifically, we propose a new
channel-adaptive T-algorithm [13] and a fast implementation of the
MMSE-GDFE pre-processor [14]. As we discuss in Section 2.2,
other well-known SqD algorithms, such as the Schnorr-Euchner
sphere decoder (SE-SpD) and the Fano algorithm, do not behave
well on these quasi-banded channels. Numerical experiments are
conducted to evaluate the efficacy of the proposed SqD relative to
other algorithms.

The paper is organized as follows. Section 2 reviews MCM
and SqD, Section 3 presents our proposed algorithms, and Sec-
tion 4 presents numerical results. We use(·)T to denote the trans-
pose,(·)∗ the conjugate, and(·)H the conjugate transpose.IL de-
notes theL × L identity matrix, and[B]m,n denotes the element
in themth row andnth column of matrixB, where row/column
indices begin with zero. Similarly,[b]m denotes themth entry of
vectorb. Expectation is denoted byE{·}, the `2 norm by‖ · ‖,
the Kronecker delta byδl, and the modulo-N operation by〈·〉N .
Finally, R denotes the real field,C the complex field, andZ the
integers.

2. BACKGROUND

2.1. System Model

Equations (1)-(4) describe the baseband-equivalent operation of an
N -subcarrier QAM-based MCM system in a DD channel.

s(t) =
∞X

n=−∞

N−1X

k=0

sk,na(t − nTs)e
j2πkFs(t−nTs) (1)

x(t) =

Z Th

0

h(t, τ )s(t − τ )dτ + z(t) (2)

xl,m =

Z ∞

−∞
x(t) b∗(t − mTs)e

−j2πlFstdt, 0 ≤ l < N (3)

=
∞X

n=−∞

N−1X

k=0

hl,m,k,nsk,n + zl,m. (4)

The MCM transmitter uses time-frequency shifts of the pulsea(t)
to modulate the QAM data{sk,n} onto the transmitted waveform
s(t). In (1), Ts denotes the symbol spacing andFs the subcarrier
spacing. The channel, characterized by the time-varying impulse
responseh(t, τ ) and the noise waveformz(t), produces the re-
ceived signalx(t). The receiver then uses time-frequency shifts of
the pulseb(t) to generate the subchannel outputs{xl,m}. Equation



(4) relatesxl,m to sk,n using the pulse-shaped channel coefficients
{hl,m,k,n}, which are functions ofh(t, τ ), a(t) andb(t).

We assume a square QAM constellation of sizeQ2, with real
and imaginary components chosen from theQ-ary PAM constel-
lation S := {−Q−1

2
,−Q−1

2
+ 1, . . . , Q−1

2
}. By splitting the

complex-valued elements{xl,m}N−1
l=0 , {sk,m}N−1

k=0 , {zl,m}N−1
l=0 ,

and{hl,m,k,n}N−1
l,k=0 from (4) into their real and imaginary com-

ponents, we obtain the real-valued vector model (5), which will be
more convenient for SqD implementation.

xm =

∞X

n=−∞
Hm,nsm−n + zm. (5)

In particular, the vectorxm ∈ R
2N is constructed so that[xm]2l =

Re(xl,m) and[xm]2l+1 = Im(xl,m) for 0 ≤ l < N , while sm ∈
R

2N , zm ∈ R
2N , andHm,n ∈ R

2N×2N are constructed in a sim-
ilar manner. Note that the matrix sequence{Hm,n}∞n=−∞ spec-
ifies the impulse response relating the transmitted multicarrier-
symbol sequence{sn}∞n=−∞ to the time-m modulator outputxm;
the coefficients{Hm,n}n6=0 characterize the inter-symbol inter-
ference (ISI) while the off-diagonal elements ofHm,0 charac-
terize the inter-carrier interference (ICI). For brevity,we define
L := 2N .

While much of the theoretical MCM literature assumes con-
tinuous pulse shapes as in (1)-(3), practical MCM implementations
use pulse sequences{ak} and{bk} to modulate a chip-waveform
p(t) with approximate time supportTc = (NFs)

−1 and approxi-
mate frequency supportNFs, i.e.,a(t) =

P

k
akp(t − kTc) and

b(t) =
P

k
bkp(t − kTc). In this case, the significant entries in

Hm,0 lie within the “quasi-banded” region shown in Fig. 1(a),
where the “ICI radius”D depends on the pulse designs and chan-
nel spreading characteristics. This phenomenon motivatesthe par-
tition Hm,0 = H

(D)
m + H̄

(D)
m , whereH

(D)
m extracts the coeffi-

cients ofHm,0 inside the shaded region in Fig. 1(a), andH̄
(D)
m

extracts those outside. Using this partition, we rewrite (5) as

xm = H
(D)
m sm + H̄

(D)
m sm +

X

n6=0

Hm,nsm−n + zm

| {z }

:= wm

, (6)

whereH (D)
m sm contains the signal and “significant-ICI,” and where

wm contains the noise, ISI, and “insignificant-ICI.” With the proper
choice of pulse shapes (e.g., the max-SINR transmitter pulse shap-
ing scheme from [4]), we findE{wmwT

m} ≈ σ2
zIL, even with a

highly dispersive channel at relatively high SNR. In the sequel, we
suppress them andD notation in (6) to yield

x = Hs + w, (7)

whereH exhibits the quasi-banded structure in Fig. 1(a) andw is
white Gaussian noise.

2.2. Sequential Decoding

By definition, the MLSD solution to (7) for knownH is given by

ŝML = arg min
s∈SL

‚
‚x − Hs

‚
‚2

. (8)

The brute-force approach to findinĝs requiresO(QL) operations,
which is impractical for largeL. If H was banded with a band

DD + 1 2D + 1 2D

L = 2N

(a) (b)

Fig. 1. Channel matrices associated with MCM: (a) “quasi-
banded” channel matrix, (b) “V-shaped” channel matrix.

radius ofD, then the Viterbi algorithm could be used to solve (8)
with a complexity ofL(2D + 1)Q(2D+1) real MACs per frame
[12]. But, sinceH is only quasi-banded, a different approach is
needed. One could instead use, for example, a “tail-biting”MLSD
which hypothesizes an initial state at an arbitrary location within
the frame, runs the standard Viterbi algorithm from that state, and
forces a termination back to that state. Exhaustively searching
among theQ2D possible hypotheses yields a MLSD algorithm
with a complexity ofL(2D + 1)Q(4D+1) real MACs per frame.
These Viterbi-based algorithms, while much cheaper than brute
force search, will still be impractical in many applications.

As an alternative to brute-force and Viterbi MLSD, one might
consider sphere decoding (SpD) [15–17] or more general forms of
sequential decoding (SqD) [18]. For instance, modern SpD algo-
rithms have been claimed to yield ML (or nearly ML) estimates
with approximatelyO(L3) MACs per frameon average, and at
high SNR, regardless of constellation sizeQ [17]. In fact, we will
show that, by leveraging the quasi-banded structure ofH in (6), it
is possible to coax near-ML performance out of SqD with approx-
imatelyO(L2) MACs per frame atany SNR.

SqD consists of a pre-processing step which triangularizesH

and a tree-search step which searches forŝML. We provide back-
ground on these two steps below.

2.2.1. SqD Pre-Processing

The traditional SqD pre-processing stage uses the QR decomposi-
tion H = QR to transform (7) into the equivalent systemx′ =
QT x = Rs + w′, whereR is upper triangular andw′ is sta-
tistically equivalent tow. In this case, the detection problem (8)
can be equivalently restated asŝML = arg min

s∈SL ‖x′ − Rs‖2.
When the pre-processed channel matrixR is ill-conditioned, how-
ever, the complexity of SqD is known to grow significantly [19].

MMSE-GDFE pre-processing [14] was recently proposed as
an alternative. Intuitively, MMSE-GDFE pre-processing yields
better “conditioning,” and, practically, it has been observed to re-
duce SqD search time significantly. We now describe the standard
MMSE-GDFE pre-processing algorithm. Under the assumption
that s andw are zero-mean uncorrelated with covariance matri-
cesσ2

sIL andσ2
zIL, respectively, we defineγ := σ2

s/σ2
z and the

augmented channel matrix̃H :

H̃ :=

„
H
1√
γ
IL

«

= Q̃R̃ =

„
Q1

Q2

«

R̃. (9)

As shown in (9), we take the QR decompositioñH = Q̃R̃ and



partitionQ̃ into two square matrices. The transformed observation
ρ := QT

1 x is then used in the pre-processed detection problem

ŝPP = arg min
s∈SL

‚
‚ρ − R̃s

‚
‚2

. (10)

BecauseQ1 ∈ R
L×L is generally non-orthogonal, we cannot

claim thatŝPP = ŝML. However, it is interesting to note that the
errorn := ρ − R̃s, while signal dependent and non-Gaussian, is
white with covarianceσ2

zIL. Finally, it is important to note that,
whenH has the quasi-banded structure in Fig. 1(a),R̃ will have
the “V-shaped” structure in Fig. 1(b). In Section 3.1, we propose a
fast MMSE-GDFE implementation suitable for quasi-bandedH .

2.2.2. Tree Search

After pre-processing, the MLSD problem (10) corresponds toa
tree search over a tree with depthL, where every tree node has
Q children. A brute-force approach to tree search would entail
the examination of the Euclidean metric in (10) at each of theQL

leaf nodes. We are interested in search algorithms which prune
branches that are unlikely to contain the ML path, thus drastically
reducing the search complexity. Unlike their ML counterparts,
quasi-ML tree search algorithms can, in some cases, accidentally
discard the ML path, and hence return a suboptimal sequence esti-
mate. Thus, each quasi-ML algorithm achieves a particular trade-
off between performance and complexity.

Tree search algorithms can be categorized [18,19] as breadth-
first search (BrFS), depth-first search (DFS), or best-first search
(BeFS). BrFS includes, e.g., the M-algorithm [18], T-algorithm
[13], and Pohst sphere decoder [20]. DFS includes, e.g., theSchnor-
Euchner sphere decoder (SE-SpD) and its variants [15–17]; and
BeFS includes, e.g., the stack and Fano algorithms [19]. A recent
comprehensive comparison [19] found that a properly-designed
Fano algorithm achieved a better complexity/performance trade-
off than other SqD algorithms wheñR has a fully populated upper
triangle. WhenR̃ is V-shaped, however, we have found that the
Fano algorithm—and BeFS and DFS algorithms in general—do
not give a good complexity/performance tradeoff [1]. A thorough
explanation for this behavior is given in [1].

Some BrFS algorithms have a complexity that is relatively
insensitive to SNR and the structure ofR̃, suggesting that BrFS
might be advantageous in our application. The M-algorithm,for
example, has complexity that isinvariant to both SNR andR̃.
At high SNR, however, the M-algorithm is more expensive than
DFS and BeFS because it is not aggressive enough in branch prun-
ing. Hence, a better complexity/performance tradeoff could be
achieved by a BrFS algorithm that varies the number of branches
taken at each level. For example, at leveli, the T-algorithm only
extends paths from nodes whose Euclidean metrics are withinTi

of best Euclidean metric found at that level, whereTi is chosen to
achieve a particular complexity/performance tradeoff. While sev-
eral approaches to the design ofTi have been proposed, we are not
aware of any that make use of the channel realization as well the
SNR. In Section 3.2, we propose such an algorithm.

3. MCM SEQUENCE DETECTION

3.1. Fast MMSE-GDFE Pre-Processing

The MMSE-GDFE pre-processing originally proposed in [14] in-
volves QR decomposition with complexityO(L3). Here we pro-
pose anO(D2L) implementation of MMSE-GDFE pre-processing

that leverages the quasi-banded structure ofH . We note connec-
tions to the fast MMSE-DFE in [5], which was formulated for the
banded (as opposed to quasi-banded)H that occurs with inactive
edge subcarriers.

Recall the augmented channel matrixH̃ and its QR decompo-
sition in (9). Note that, whileH is quasi-banded,̃H is not. How-

ever, the matrixH̃
T
H̃ , which can be computed in(4D2 + 4D +

2)L multiply-accumulate (MAC) operations,is quasi-banded with
4D+1 active diagonals. Now, sincẽQ is an orthogonal matrix, we

know H̃
T
H̃ = R̃

T
R̃. Hence,R̃ can be obtained via Cholesky

factorization [21] ofH̃
T
H̃ in O(D2L) operations. Table 1 de-

tails the fast Cholesky factorizationA = GGT , whereA :=

H̃
T
H̃ and whereG := R̃

T
is the lower triangular Cholesky

factor. This fast computation of̃R can be shown to consume
(10D2 +11D +2)L− 1

3
(74D3 +133D2 +44D +3) MACs [1].

Next, we consider the implementation of the pre-processing

operationρ = QT
1 x. Multiplication of this equality byR̃

T
yields

R̃
T
ρ = R̃

T
Q

T
1 x = H

T
x := b. (11)

Due to quasi-bandedH , the vectorb can be computed in(2D +
1)L MAC operations. Fromb we can solve (11) forρ using for-

ward substitution inO(DL) additional operations, becausẽR
T

has the sparse “V-shaped” structure in Fig. 1(b). In total, this con-
sumes(6D + 2)L − 6D2 − 3D MAC operations. Combining
forward substitution with fast Cholesky decomposition, our fast
MMSE-GDFE preprocessing requires

`
14D2 + 21D + 6

´
L −

76
3

D3 − 53D2 − 53
3

D − 1 real MAC operations.
Though SqD pre-preprocessing normally includes lattice re-

duction and column ordering [17], these operations would destroy
the quasi-banded structure ofH and preclude the opportunity for
fast MMSE-GDFE pre-processing. Still, we might consider ann-
place circular shift in the column ordering, since this preserves the

quasi-banded nature of̃H
T
H̃ = R̃

T
R̃. Specifically, we order

the columns so that the last one has maximum norm. This en-
sures that the PAM symbol contributing the most energy tox is
placed at the root of the tree. Evaluating the column norms re-
quiresO(DN) operations. We have observed, numerically, that
this “circular ordering” scheme yields a modest improvement in
terms of the performance/complexity tradeoff.

3.2. Channel-Adaptive T-algorithm

The T-algorithm [13] is a BrFS algorithm which, at theith level,
discards any partial paths(i) := [si, si+1, . . . , sL−1]

T ∈ SL−i

whose partial-path metric

M(s(i)) :=

L−1X

k=i

˛
˛
˛ρk −

L−1X

l=k

r̃k,lsl

˛
˛
˛

2

. (12)

exceeds that of the “best” partial paths
(i)
? := arg min

s
(i) M(s(i))

by an amount≥ Ti. (Here, the root node corresponds to theLth

level and the leaf nodes to the0th level.) Clearly, the T-algorithm
will make a frame error if thetrue partial paths(i)

T is discarded at
any leveli ∈ {L − 1, L − 2, . . . , 0}.

In our adaptive T-algorithm, we setTi so that,when the true
path is not the best partial path, the true path will be discarded
with probability less thanεo

Pr
˘
M(s

(i)
T ) > M(s(i)

? ) + Ti

˛
˛M(s

(i)
T ) > M(s(i)

? )
¯

< εo.(13)



Table 1. Fast Cholesky factorization of quasi-bandedA.
Say thatA = GGT , whereG is lower triangular and
A ∈ R

L×L is quasi-banded with4D + 1 active diagonals.
for j = 0 : L − 4D − 1

vj:L−1 = [A]j:L−1,j

m1 = max{0, j − 2D − 1}
m2 = j + 2D − 1
for i = m1 : j − 1

vj:m2 = vj:m2− [G]j,i[G]j:m2,j

vL−2D−1:L−1 = vL−2D−1:L−1 − [G]j,i[G]L−2D−1:L−1,j

end
[G]j:m2,j = vj:m2/

√
vj

[G]L−2D−1:L−1,j = vL−2D−1:L−1/
√

vj

end
for j = L − 4D : L − 2D − 1

vj:L−1 = [A]j:L−1,j

m1 = max{0, j − 2D − 1}
for i = m1 : j − 1

vj:L−1 = vj:L−1− [G]j,i[G]j:L−1,j

end
[G]j:L−1,j = vj:L−1/

√
vj

end
for j = L − 2D : L − 1

vj:L−1 = [A]j:L−1,j

for i = 0 : j − 1
vj:L−1 = vj:L−1− [G]j,i[G]j:L−1,j

end
[G]j:L−1,j = vj:L−1/

√
vj

end

Note that this is different from simply settingTi so that true paths
are discarded with probabilityεo. In the latter case,Ti will increase—
thereby increasing search complexity—at low SNR. Intuition, how-
ever, tells us that it is not worthwhile to search extensively at low
SNR because, even if found, the ML path is likely to be in error.

With µ(i) := M(s
(i)
T ) −M(s

(i)
? ) we can rewrite (13) as

Pr
˘
µ(i) > Ti | µ(i) > 0

¯
< εo. (14)

We now analyze the random variableµ(i). To do this, we define

ρ(i) := [ρi, ρi+1, . . . , ρL−1]
T and construct̃R

(i) ∈ R
(L−i)×(L−i)

from the lastL − i rows and columns of̃R, i.e., [R̃
(i)

]j,k =

[R̃]j+i,k+i. This way, (12) can be written asM(s(i)) = ‖ρ(i) −
R̃

(i)
s(i)‖2. Defining the error vectore(i) := s

(i)
? − s

(i)
T and the

interference vectorn(i) := ρ(i) − R̃
(i)

s
(i)
T , we find

µ(i) = 2n
(i)T

R̃
(i)

e
(i) − ‖R̃(i)

e
(i)‖2. (15)

Since the statistics ofe(i) are difficult to characterize, we ap-
proximatee(i) by the simple error event most likely to occur at the
ith level, i.e., an error of the forme(i) = [0, . . . , 0,±1, 0, . . . , 0]T .

The partial metricM(s(i)) = ‖ρ(i) − R̃
(i)

s(i)‖2 suggests that

this error will occur at the index of the “weakest” column ofR̃
(i)

.
Thus we assume[e(i)]l = ±δl−li for li := arg minl ‖r̃(i)

l ‖,

wherer̃
(i)
l ∈ R

L−i denotes thelth column ofR̃
(i)

. In this case,

µ(i) = ±2n(i)T r̃
(i)
li

− ‖r̃(i)
li
‖2. Recall from Section 2.2 thatn is

zero-mean, white, and non-Gaussian, where the non-Gaussianity
is due to a contribution from not-yet-detected PAM symbols.To
proceed further, we approximaten as Gaussian with covariance
σ2

zIL, so thatµ(i) ∼ N
`
−‖r̃(i)

li
‖2, 4‖r̃(i)

li
‖2σ2

z

´
. Using the

Gaussian cdf, we can solve (14) forTi given a particularεo. Using

Bayes rule andQ(x) := 1√
2π

R∞
x

e−
x
2

2 dx, we find [1]

Ti = 2σz‖r̃(i)
li

‖Q−1

 

εoQ
 

‖r̃(i)
li
‖

2σz

!!

− ‖r̃(i)
li
‖2. (16)

4. NUMERICAL RESULTS

Uncoded QPSK symbols (i.e.,Q = 2) were communicated over
N = 64 MCM subcarriers (i.e.,L = 128), and the demodulator
outputxm from (4) was used to detect the transmitted sequence
sm. The max-SINR transmitter pulse (MSTP) MCM scheme from
[4] was used since it does an excellent job to ensureE{wmwT

m} ≈
σ2

zIL at the high spectral efficiency of1 QPSK-symbol/sec/Hz.
Realizations of a wide sense stationary uncorrelated scattering (WS-
SUS) Rayleigh fading channel were generated using Jakes method.
The channel had a uniform delay-profile with normalized delay
spreadNh = Th/Tc = 16 and normalized single-sided Doppler
spreadsfdTc ∈ {0.001, 0.003}. The receiver was assumed to
have perfect knowledge of±3 subcarriers of local ICI (i.e.,D =
6); ISI and residual ICI were treated as unknown interference.

MLSD, quasi-ML SqD, and MMSE-DFE were examined. In
each case, we first applied circular ordering and fast MMSE-GDFE
pre-processing to arrive at (10). This is justified for MLSD since
it has been shown [22] that̂sML = s ⇒ ŝPP = s with uncoded
QPSK. For MLSD, we solve (10) via SE-SpD, while for quasi-ML
SqD, we obtain an approximate solution to (10) via suboptimal tree
search. For the M-algorithm, we foundM = 8 to be the lowest
value that yielded near-ML performance over the SNR range of
interest, while, for the adaptive T-algorithm, we setεo = 10−5

and limited the maximum list size to8. For the Fano algorithm
from [19], we used a bias ofσ2

z/2 and a step size ofσ2
z .

Figure 2 shows the FER performance of various SqD algo-
rithms. With the exception of MMSE-DFE, all SqD algorithms
give near-ML performance. Note that the ML and SE-SpD traces
are identical. The MMSE-DFE error floor is consistent with that
observed in [5] for a max-SINR receiver-pulse MCM scheme.

Figure 3 compares the average complexity of the SqD algo-
rithms and the Viterbi algorithm (as used in [12]). There, “com-
plexity” is plotted on a log base-L scale, as in other near-ML SqD
studies (e.g., [17, 19]). For the SqD algorithms, we plot theaver-
age number of real MACs per frame needed to achieve the FERs
in Fig. 2, including those required for MSTP-MCM demodulation,
circular ordering, and fast MMSE-GDFE pre-processing.

Due to the V-shaped structure ofR̃, the SE-SpD and Fano al-
gorithms exhibit DFE-like complexity at high SNR but explosive
complexity at low SNR, while the M-algorithm has the same com-
plexity at all SNRs. Remarkably, the adaptive T-algorithm yields
DFE-like complexity at high SNR and better-than-M-algorithm
complexity at low SNR. This is a consequence of the fact that
the T-algorithm uses channel knowledge to intelligently guide its
search. Note that the Viterbi complexity is much larger thanthat of
BrFS and MMSE-DFE. Furthermore, the Viterbi complexity plot-
ted in Fig. 3, i.e.,L(2D + 1)Q(4D+1) = L3.39, corresponds to
the case whereD edge subcarriers are inactive; the “tail-biting”
MLSD proposed in Section 2.2, suitable for the general case,would
requireL(2D + 1)Q(4D+1) = L5.10 MACs per frame.

In conclusion, Fig. 3 shows that, by sacrificing a fraction-of-
a-dB in performance relative to MLSD, SqD can be implemented
with near-MMSE-DFE average complexity, even when all subcar-
riers are active.
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Fig. 2. Performance of several SqDs on doubly dispersed MSTP-MCM
with perfect knowledge of local ICI (i.e.,D = 6) at (a)fdTc = 0.001;
(b) fdTc = 0.003.
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