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ABSTRACT

Multicarrier modulation (MCM) over a doubly dispersive (DD
channel yields complicated inter-carrier interferen€d)&nd inter-
symbol interference (ISI) responses. With appropriatelsighed
MCM pulse shapes, however, ISI can be mostly suppressednas ¢
ICI outside a small subcarrier radius. In this case, the mblacan

be well described by a quasi-banded subcarrier couplingixmat
Several sequence detectors (SDs) have been proposed ragieve
this quasi-banded structure, including linear, decisieedback
(DF), and maximum likelihood (ML) schemes. Relative to lin-
ear and DF schemes, the ML schemes offer superior perfoenanc
but are significantly more complex, even when efficient \iter
sphere-detection algorithms are used. In this paper, wgopma
new SD algorithm for the quasi-banded application with anfea
error rate (FER) that is nearly indistinguishable from Mldam
average complexity that is on par with DF $D.

1. INTRODUCTION

Multi-carrier modulation (MCM) has been extensively sedias a
practical method for communication over channels whictbaté
time dispersive and frequency dispersive, i.e., doublpetisive
(DD). (See, e.g., the many references in [1].) The princgblal-
lenge faced when using MCM over these channels is effegtivel
combating a rich and quickly varying inter-symbol integiece
(ISI) plus inter-carrier interference (ICl) response. ditianally,
MCM systems have been designed to make ISI negligible, en-
abling block demodulation of ICI-corrupted multicarrigmnsbols.
More recently, MCM systems have been designed to also easure
sparse ICl response, so that a given subcarrier sees sigific
terference only from a few neighboring subcarriers [2-8}these
systems, the DD channel is well described by a “quasi-banded
subcarrier coupling matrix of the form shown in Fig. 1(a).r+u
thermore, by turning edge subcarriers off, the subcaroapling
matrix can be made banded (rather than quasi-banded).

A number of sequence detection (SD) algorithms have been
designed to exploit this banded or quasi-banded channed-str
ture. These schemes include linear [6-8], decision fedd{i2€E)
[5,9, 10], iterative [3, 4], and maximum likelihood (ML) [112]

schemes. The linear and DF schemes have the advantage of low

complexity, the ML schemes have the advantage of excellent p
formance,and the iterative schemes fall somewhere ind®tvin
both performance and complexity.

In this paper, we propose a new approach to SD for quasi-
banded channels that yields a frame error rate (FER) clog®to

1This work was supported by the National Science Foundatiéa C
REER grant CCR-0237037.

of MLSD with a complexity close to that of DFSD. Our SD al-
gorithm combines a novel sequential decoding (SqD) algarit
with a novel pre-processing algorithm, both specificallgigeed

for the quasi-banded channel. Specifically, we propose a new
channel-adaptive T-algorithm [13] and a fast implemeatatif the
MMSE-GDFE pre-processor [14]. As we discuss in Section 2.2,
other well-known SqgD algorithms, such as the Schnorr-Eechn
sphere decoder (SE-SpD) and the Fano algorithm, do not behav
well on these quasi-banded channels. Numerical expergrant
conducted to evaluate the efficacy of the proposed SqD veltui
other algorithms.

The paper is organized as follows. Section 2 reviews MCM
and SgD, Section 3 presents our proposed algorithms, and Sec
tion 4 presents numerical results. We (s€ to denote the trans-
pose,(-)* the conjugate, anfl)™ the conjugate transposg;, de-
notes thel, x L identity matrix, and B],» denotes the element
in the m'” row andn'™ column of matrix B, where row/column
indices begin with zero. Similarlyb],, denotes then'" entry of
vectorb. Expectation is denoted dg{-}, the ¢ norm by]|| - ||,
the Kronecker delta by;, and the modulaV operation by(-) x.
Finally, R denotes the real field; the complex field, an& the
integers.

2. BACKGROUND

2.1. System Model

Equations (1)-(4) describe the baseband-equivalent tipeiaf an
N-subcarrier QAM-based MCM system in a DD channel.

[eS] N-1

S(t) = Z Z sk,na(t - nTs)ejQTrkFS(tfnTS) (1)
T

z(t) = /O h(t,7)s(t — 7)dr + 2(t) @

Tim = / a(t)b"(t —mTs)e 2™ dt, 0 <1< N (3)
co N-1

= Z Z hl,m,k,nsk,n + Zl,m- (4)
n=—oo k=0

The MCM transmitter uses time-frequency shifts of the pulge

to modulate the QAM datésy. ., } onto the transmitted waveform
s(t). In (1), Ts denotes the symbol spacing afd the subcarrier
spacing. The channel, characterized by the time-varyimuise
responseh(t, 7) and the noise waveform(t), produces the re-
ceived signak(t). The receiver then uses time-frequency shifts of
the pulseé(t) to generate the subchannel outpiits .., }. Equation



(4) relatesr; ., to sk, Using the pulse-shaped channel coefficients
{hi,m,k,n },» Which are functions ok(t, 7), a(t) andb(t).

We assume a square QAM constellation of gi¥e with real
and imaginary components chosen from ¢ary PAM constel-
lation S = {-<1, -9 4 1,..., <1} By splitting the
complex-valued elementsrym }1v o', {8km g s 12m g s
and{hlm,k_yn}{f’k;lo from (4) into their real and imaginary com-
ponents, we obtain the real-valued vector model (5), whiithbe
more convenient for SqD implementation.

Ty = i HpnSm—n+ Zm. (5)

n=-—oo

In particular, the vectat.,,, € R?Y is constructed so thét,]o; =
Re(z1,m) and[zm]ai+1 = Im(z;,,) for 0 <1 < N, while s,,, €
RN, 2, € R*N andH.,,,, € R*M*2 are constructed in a sim-
ilar manner. Note that the matrix sequerd . } 5= _ . Spec-
ifies the impulse response relating the transmitted muitera
symbol sequencgs,, } 5> _ ., to the timesn modulator outputz.,;

the coefficients{ H . » } n0 Characterize the inter-symbol inter-
ference (ISI) while the off-diagonal elements HBf,, , charac-
terize the inter-carrier interference (ICl). For brevitye define

L :=2N.

While much of the theoretical MCM literature assumes con-
tinuous pulse shapes as in (1)-(3), practical MCM implemons
use pulse sequencés; } and{b, } to modulate a chip-waveform
p(t) with approximate time suppof. = (NFs) ' and approxi-
mate frequency suppoN Fy, i.e.,a(t) = >, arp(t — kT¢) and
b(t) = >, bep(t — KT.). In this case, the significant entries in
H o lie within the “quasi-banded” region shown in Fig. 1(a),
where the “ICI radius”D depends on the pulse designs and chan-
nel spreading characteristics. This phenomenon motivhésgar-

tition H,,,,0 = HP + A ,(5)7 where H'P) extracts the coeffi-
cients of H,, o inside the shaded region in Fig. 1(a), ahl f’)
extracts those outside. Using this partition, we rewrideab

Lm = H,(nD)Sm + H,(nD)Sm + Z Hmnls'rnfn + Zm, (6)
n#0

= W

whereH?’ s, contains the signal and “significant-ICl,” and where

w,, contains the noise, I1SI, and “insignificant-1CI.” With theoper

choice of pulse shapes (e.g., the max-SINR transmitteealiap-

ing scheme from [4]), we fin@{w.,wL} ~ ¢2I, even with a

highly dispersive channel at relatively high SNR. In theusggwe

suppress the: and D notation in (6) to yield
x = Hs +w, @)

whereH exhibits the quasi-banded structure in Fig. 1(a) ani$
white Gaussian noise.

2.2. Sequential Decoding
By definition, the MLSD solution to (7) for knowi#f is given by

8)

SyL = arg min Ha: — Hs||2.
sestL

The brute-force approach to findiggequiresO(Q™) operations,
which is impractical for largd.. If H was banded with a band
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Fig. 1. Channel matrices associated with MCM: (a) “quasi-
banded” channel matrix, (b) “V-shaped” channel matrix.

radius of D, then the Viterbi algorithm could be used to solve (8)
with a complexity of L(2D + 1)Q?P*Y real MACs per frame
[12]. But, sinceH is only quasi-banded, a different approach is
needed. One could instead use, for example, a “tail-bitMgSD
which hypothesizes an initial state at an arbitrary logatidthin
the frame, runs the standard Viterbi algorithm from thatestand
forces a termination back to that state. Exhaustively $dagc
among theQ?P possible hypotheses yields a MLSD algorithm
with a complexity ofL(2D + 1)Q“P+1) real MACs per frame.
These Viterbi-based algorithms, while much cheaper thaebr
force search, will still be impractical in many application

As an alternative to brute-force and Viterbi MLSD, one might
consider sphere decoding (SpD) [15-17] or more generaldafm
sequential decoding (SqD) [18]. For instance, modern Sgb-al
rithms have been claimed to yield ML (or nearly ML) estimates
with approximately®(L®) MACs per frameon average, and at
high SNR, regardless of constellation sigg17]. In fact, we will
show that, by leveraging the quasi-banded structu of (6), it
is possible to coax near-ML performance out of SqD with appro
imately O(L?) MACs per frame aainy SNR.

SqgD consists of a pre-processing step which triangulaiffes
and a tree-search step which searchesfgr We provide back-
ground on these two steps below.

2.2.1. 9D Pre-Processing

The traditional SqD pre-processing stage uses the QR da=imp
tion H = QR to transform (7) into the equivalent systesh =
QTxz = Rs + w’, whereR is upper triangular andv’ is sta-
tistically equivalent tow. In this case, the detection problem (8)
can be equivalently restated &g = arg min gz ||’ — Rs|.
When the pre-processed channel matiss ill-conditioned, how-
ever, the complexity of SgD is known to grow significantly J19
MMSE-GDFE pre-processing [14] was recently proposed as
an alternative. Intuitively, MMSE-GDFE pre-processinglgs
better “conditioning,” and, practically, it has been obhserto re-
duce SqD search time significantly. We now describe the arand
MMSE-GDFE pre-processing algorithm. Under the assumption
that s andw are zero-mean uncorrelated with covariance matri-
cesc2I ando?Iy, respectively, we defing := o2 /02 and the
augmented channel matrfl :
Ql »
(QQ) R

- (4)

As shown in (9), we take the QR decompositith = QR and

H
1
i

H

= QR = 9)



partition@ into two square matrices. The transformed observation

p = QT x is then used in the pre-processed detection problem
Spp = arg mian—RsHQ. (10)

seSL

BecauseQ, € R** is generally non-orthogonal, we cannot

claim thatspp = 5. However, it is interesting to note that the

errorn := p — Rs, while signal dependent and non-Gaussian, is

white with covariancer2I . Finally, it is important to note that,

when H has the quasi-banded structure in Fig. 1@)will have

the “V-shaped” structure in Fig. 1(b). In Section 3.1, wepwse a

fast MMSE-GDFE implementation suitable for quasi-band#d

2.2.2. Tree Search

After pre-processing, the MLSD problem (10) corresponda to
tree search over a tree with depth where every tree node has
Q@ children. A brute-force approach to tree search would kentai
the examination of the Euclidean metric in (10) at each of@tre
leaf nodes. We are interested in search algorithms whichepru
branches that are unlikely to contain the ML path, thus draky
reducing the search complexity. Unlike their ML countetpar

that leverages the quasi-banded structur&lofWe note connec-
tions to the fast MMSE-DFE in [5], which was formulated foeth
banded (as opposed to quasi-bandEb}hat occurs with inactive
edge subcarriers.

Recall the augmented channel matFxand its QR decompo-
sition in (9). Note that, whileéH is quasi-bandedH is not. How-
ever, the matrixfl - H, which can be computed i@D? + 4D +
2) L multiply-accumulate (MAC) operationss quasi-banded with
4D+1 active diagonals. Now, sin@@ is an orthogonal matrix, we
know H' H = R' R. Hence,R can be obtained via Cholesky

factorization [21] of EI" H in O(D?L) operations. Table 1 de-
tails the fast Cholesky factorizatioA = GGT, where A =

H"H and whereG = R is the lower triangular Cholesky

factor. This fast computation ai? can be shown to consume

(10D* +11D +2)L — 1(74D* +133D? + 44D + 3) MACs [1].
Next, we consider the implementation of the pre-processing

operationp = QT z. Multiplication of this equality byRT yields
R'p=R'QTz = H'z = b. (11)

Due to quasi-banded, the vectorb can be computed (2D +

quasi-ML tree search algorithms can, in some cases, accidentally 1) L MAC operations. Fronb we can solve (11) fop using for-

discard the ML path, and hence return a suboptimal sequestice e
mate. Thus, each quasi-ML algorithm achieves a particrdaiet
off between performance and complexity.

Tree search algorithms can be categorized [18, 19] as Ireadt
first search (BrFS), depth-first search (DFS), or best-fearch
(BeFS). BrFS includes, e.g., the M-algorithm [18], T-aifun
[13], and Pohst sphere decoder [20]. DFS includes, e.gS¢heor-
Euchner sphere decoder (SE-SpD) and its variants [15-1d)]; a
BeFS includes, e.g., the stack and Fano algorithms [19].cAne
comprehensive comparison [19] found that a properly-aesig
Fano algorithm achieved a better complexity/performamaeet
off than other SgD algorithms whel has a fully populated upper
triangle. WhenR is V-shaped, however, we have found that the
Fano algorithm—and BeFS and DFS algorithms in general—do
not give a good complexity/performance tradeoff [1]. A thagh
explanation for this behavior is given in [1].

Some BrFS algorithms have a complexity that is relatively
insensitive to SNR and the structure Bf suggesting that BrFS
might be advantageous in our application. The M-algoritfon,
example, has complexity that isvariant to both SNR andR.

At high SNR, however, the M-algorithm is more expensive than
DFS and BeFS because it is not aggressive enough in braneh pru
ing. Hence, a better complexity/performance tradeoff dcug
achieved by a BrFS algorithm that varies the number of brasich
taken at each level. For example, at leyethe T-algorithm only
extends paths from nodes whose Euclidean metrics are wviithin
of best Euclidean metric found at that level, wh&kas chosen to
achieve a particular complexity/performance tradeoff.il&/bev-
eral approaches to the desigriigthave been proposed, we are not
aware of any that make use of the channel realization as hell t
SNR. In Section 3.2, we propose such an algorithm.

3. MCM SEQUENCE DETECTION

3.1. Fast MM SE-GDFE Pre-Processing

The MMSE-GDFE pre-processing originally proposed in [1#] i
volves QR decomposition with complexit9(L?). Here we pro-
pose arO(D? L) implementation of MMSE-GDFE pre-processing

ward substitution inO(DL) additional operations, becauge’
has the sparse “V-shaped” structure in Fig. 1(b). In tokas, ¢on-
sumes(6D + 2)L — 6D* — 3D MAC operations. Combining
forward substitution with fast Cholesky decompositiony fast
MMSE-GDFE preprocessing requir¢d4D* + 21D + 6)L —
B D* — 53D — 2D — 1 real MAC operations.

Though SqD pre-preprocessing normally includes lattice re
duction and column ordering [17], these operations wouktrdg
the quasi-banded structure Bf and preclude the opportunity for
fast MMSE-GDFE pre-processing. Still, we might consideman
place circular shift in the column ordering, since this press the

quasi-banded nature df ' B = R’ R. Specifically, we order
the columns so that the last one has maximum norm. This en-
sures that the PAM symbol contributing the most energy: s
placed at the root of the tree. Evaluating the column norms re
quiresO(DN) operations. We have observed, numerically, that
this “circular ordering” scheme yields a modest improvetrian
terms of the performance/complexity tradeoff.

3.2. Channel-Adaptive T-algorithm

The T-algorithm [13] is a BrFS algorithm which, at thié level,
discards any partial pats(®) 801" e St
whose partial-path metric

] L—-1 L—-1
M(S(l)) = z’pk — ka,lsl
k=1 =k

exceeds that of the “best” partial pati’ := arg min ) M(s(?)
by an amount> T;. (Here, the root node corresponds to &
level and the leaf nodes to tié" level.) Clearly, the T-algorithm
will make a frame error if thérue partial paths$L) is discarded at
anyleveli € {L—1,L —2,...,0}.

In our adaptive T-algorithm, we s&; so that,when the true
path is not the best partial path, the true path will be discarded
with probability less tham,

[siy8i+1,-

2
| (12)

Pr{M(s{") > M(s) +Ti | M(s17) > M(s{))} < ed13)



Table 1. Fast Cholesky factorization of quasi-bandéd
Say thatd = GGT, whereG is lower triangular and
A e RL*E s quasi-banded withD + 1 active diagonals.
for j=0:L—-4D -1
vjp—1 = [AljiL-1,5
mi1 = max{0,j — 2D — 1}
mo=j+2D—1
fori=mi:j—1
Vjimy = Vjemg — [Gl5.i[Gljima 5
VL—2D—1:L—1 = VL—2D—1:L—1 — [G
end
[Gliima.i = Vjima //V5
Glr—2D-1:L-1,j = VL—2D—-1:L-1//0j
end
for j=L—-4D:L—-2D -1
V-1 = [AjiL-1,
mi1 = max{0,j — 2D — 1}

15,i[GlL—2D-1:0—-1,5

fori=mqi:5—1
VL1 = vj:n-1— [Gl3i[Gljn-1,
end
[GliiL—15 = viiL—1/\/05
end

for j=L—2D:L—1
vjin—1 = [AljiL—1,j
fori=0:5—-1
vjir—1 = vje-1— [Gl;ilGljn-1,5
end
[GljiL—1,5 = vjiL—1//v5

end

Note that this is different from simply settirig so that true paths
are discarded with probability,. In the latter casel; willincrease—
thereby increasing search complexity—at low SNR. Intuitiwow-
ever, tells us that it is not worthwhile to search extengillow
SNR because, even if found, the ML path is likely to be in error

With 4@ == M(s7) — M(s'”) we can rewrite (13) as

Pr{u(i) > Ty | p,(i) > 0} < €. (14)

We now analyze the random variaht&”). To do this, we define
P = [pi, pir1,...,pr—1)" and construck"” € RE-Dx(L=0)
from the lastL — 4 rows and columns of2, i.e., [R(i)]jﬁk =
[R];+ik+i. This way, (12) can be written as1(s?) = ||p) —
R™ s 2. Defining the error vectoe™ := 5" — s{” and the

(4) (4)

interference vecton” := p® — R'"s{", we find

M(i) _ 2n(z‘)TR(i)e(z‘) _ ”R(i)e(i)”g (15)
Since the statistics af are difficult to characterize, we ap-
proximatee'” by the simple error event most likely to occur at the
it level, i.e., an error of the form® = [0,...,0,41,0,...,0]%.
The partial metricM(s®) = [|p® — R"s(||* suggests that
this error will occur at the index of the “weakest” cqumnITa_fl .
Thus we assumée ], = +4§,_;, for I; := argmin, 7",
where#{") € RE~ denotes thé'" column of R In this case,
p = £2n @77 — ||7(V||2. Recall from Section 2.2 that is
zero-mean, white, and non-Gaussian, where the non-Gaitgsia
is due to a contribution from not-yet-detected PAM symbdis.
proceed further, we approximate as Gaussian with covariance
021, so thatu® ~ N (=[|77]12,4]#”|?02) . Using the

Gaussian cdf, we can solve (145 fBrgiven a particulat,. Using

CL‘2 .
Bayes rule an@(z) := \/%f;o e~ 7 dx, we find [1]

e 7]
T = 20,710 <EOQ <7 —l#7)%. (16)

z

4. NUMERICAL RESULTS

Uncoded QPSK symbols (i.eQ = 2) were communicated over
N = 64 MCM subcarriers (i.e.. = 128), and the demodulator
outputx,, from (4) was used to detect the transmitted sequence
Sm. The max-SINR transmitter pulse (MSTP) MCM scheme from
[4] was used since it does an excellent job to ensilfre., w?, } ~
021, at the high spectral efficiency df QPSK-symbol/sec/Hz.
Realizations of a wide sense stationary uncorrelatedesaoagt(WS-
SUS) Rayleigh fading channel were generated using Jakdmthet
The channel had a uniform delay-profile with normalized gela
spreadN;, = T}, /T. = 16 and normalized single-sided Doppler
spreadsfyT. € {0.001,0.003}. The receiver was assumed to
have perfect knowledge af3 subcarriers of local ICI (i.eD =

6); ISI and residual ICI were treated as unknown interference

MLSD, quasi-ML SqD, and MMSE-DFE were examined. In
each case, we first applied circular ordering and fast MMIHE-B
pre-processing to arrive at (10). This is justified for MLSDBcg
it has been shown [22] thé,. = s = $pp = s with uncoded
QPSK. For MLSD, we solve (10) via SE-SpD, while for quasi-ML
SqgD, we obtain an approximate solution to (10) via subodtirea
search. For the M-algorithm, we found = 8 to be the lowest
value that yielded near-ML performance over the SNR range of
interest, while, for the adaptive T-algorithm, we sgt= 10—°
and limited the maximum list size #®. For the Fano algorithm
from [19], we used a bias ef?/2 and a step size ef?.

Figure 2 shows the FER performance of various SgD algo-
rithms. With the exception of MMSE-DFE, all SqD algorithms
give near-ML performance. Note that the ML and SE-SpD traces
are identical. The MMSE-DFE error floor is consistent withtth
observed in [5] for a max-SINR receiver-pulse MCM scheme.

Figure 3 compares the average complexity of the SqD algo-
rithms and the Viterbi algorithm (as used in [12]). Thereprfe
plexity” is plotted on a log basé-scale, as in other near-ML SqD
studies (e.g., [17,19]). For the SqD algorithms, we plotdter-
age number of real MACs per frame needed to achieve the FERs
in Fig. 2, including those required for MSTP-MCM demodubatj
circular ordering, and fast MMSE-GDFE pre-processing.

Due to the V-shaped structure Bf, the SE-SpD and Fano al-
gorithms exhibit DFE-like complexity at high SNR but exples
complexity at low SNR, while the M-algorithm has the same eom
plexity at all SNRs. Remarkably, the adaptive T-algorithields
DFE-like complexity at high SNR and better-than-M-algiomit
complexity at low SNR. This is a consequence of the fact that
the T-algorithm uses channel knowledge to intelligentlidguits
search. Note that the Viterbi complexity is much larger ttiet of
BrFS and MMSE-DFE. Furthermore, the Viterbi complexitytplo
ted in Fig. 3, i.e.,.L(2D + 1)Q“P*Y = L33 corresponds to
the case wheré® edge subcarriers are inactive; the “tail-biting”
MLSD proposed in Section 2.2, suitable for the general cassald
requireL(2D + 1)Q“P+1) = 510 MACs per frame.

In conclusion, Fig. 3 shows that, by sacrificing a fractidn-o
a-dB in performance relative to MLSD, SgD can be implemented
with near-MMSE-DFE average complexity, even when all sabca
riers are active.
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