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ABSTRACT

The scale-lag Rake receiver is designed for wideband sgstem
ploying direct-sequence spread spectrum with a large biaitiahw
to-center frequency ratio, such that the typical narrowdtidappler

spread assumptions do not apply to mobile channels, and is ca

pable of exploiting the diversity that results from molyilitWe
derive autocorrelation expressions for scale-lag Rakearatiaco-
efficients and explore the effectiveness of principal congods
combining (PCC) to reduce receiver complexity while mamta
ing performance. Such analysis applies, for example, t@-ult
wideband (UWB) radio frequency channels and underwateewid
band acoustic channels.

1. INTRODUCTION

Wideband systems are defined by a ratio of single-sided hitiaw
to center frequency in excess of 0.20. Itis important to tizaethe
combined effects of multipath and mobility on wideband eyss
are quite different than those on their narrowband couatésp
For example, in narrowband systems with a dense ring ofeseast
surrounding the receiver, mobility imparts a spreadindnefdignal

in the frequency-domain that is commonly referred to as DaEpp
spreading [1]. In wideband communication systems emptpyin

low data rate direct sequence spread spectrum (DSSS)—the fo

cus of this manuscript—the effects of mobility in the mustip
mobile environment are not well described by frequency-agiom
spreading, but rather tsrale spreading.’ By scale spreading, we
mean that several copies of the transmitted signal comhitteea
receiver, each with a different dilation of the time suppafrthe
original signal. In addition, each copy may be temporalliaged
by a different amount.

In this paper, we investigate the correlation structuretffier
wideband channel, specifically for the fingers of the wideban
scale-lag Rake receiver [2] [3]. While the channel coriefat
structure for the time-varying narrowband case has bedrstuel-
ied (e.g., ring-of-scatters model [1]), relatively litheork has been
done in classifying mobility in wideband channels. We shbatt
the Rake fingers are approximately stationary and that eaon
herence is inversely proportional to the temporal-scateasping
induced by relative velocity between the transmitter, inereand
scatterers. Thaormalized scale spread captures, in a single para-
meter, the rate of scale-lag Rake finger fluctuation, jushasor-
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tium.
INote that scale-spreading is actually a general concepappiies to
both narrowband and wideband systems. For example, clmtiggntime
scale of a sinusoidal signal is equivalent to shifting tigmal in frequency.

malized Doppler spread captures the rate of variations lirona
band channels. We also investigate incorporating prihapen-
ponents combining (PCC) [4] into the scale-lag Rake recdive
reduce receiver complexity.

2. SYSTEM MODEL

2.1. Transmit Signal
The wideband DSSS signature waveform is
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where{c;} is the length, PN chip sequencey(t) is the unit-
energy chip waveform, and, is the chip duration. The symbol
duration isTs = N,T, seconds and the system bandwidth is de-
fined to beW = 1/T,. A PN sequencdc;} with chips chosen
from a ternary alphabef—c, 0, c} may be used to model time-
hopping [5] or episodic signaling [6] without affecting thealy-
sis. The chip amplitude is chosen such thd[c;] = 1. In this
paper, we consider only baseband signaling; thus, all Egral
parameters are real valued.

We linearly modulate the DSSS waveforn{t) with a se-
quence ofN,, bits {b,} to obtain the transmitted signa(t).
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2.2. Wideband Channel

Analogous to the spreading function in narrowband chantiets
wideband channel output can be modelled by the linear toansf
mation [2] defined by:

0= [[wn (i

where s(t) is the input signalw(¢) is additive white Gaussian
noise with two-sided power spectral density\df /2, and. (a, 7)

is the wideband channel kernel. Note that the wideband chan-
nel transformation isot shift-invariant; hence, sinusoids amet
eigenfunctions. The wideband channel kerfiék, 7) quantifies
the scale-lag spreading produced by the channel—the Variab
corresponds to the dilation introduced by the channel, laadari-
abler corresponds to the propagation delay.
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2.3. Definitions

In practice, the wideband channel kera®({a, 7) has finite sup-
port: {(a,7) : Gmin < @ < Gmax, 0 < T < Tmax}, Whereamin
and amax are the minimum and maximum dilation, respectively,
andmax is the delay spread. By convention, the time delay of the
shortest path is zero. In this paper, we assume that thel sigrea
tion Ts is much larger than the delay spread, (7&.;> Tmax. This

is a reasonable assumption for systems with large proaegain.

If we consider a system composed of a mobile receiver, fixed
reflectors, and a fixed transmitter, the minimum dilation arak-
imum dilation ar€amin = 1 — Umax/c @ndamax = 1 + vmax/c,
respectively, wherenm.x is the maximum mobile velocity. How-

and the time-bandwidth producff'"—ax =ma T W . Note the simi-
larity to the narrowband normalized Doppler frequencyeapir[1]:
faTs =

Umax

max T fe, Wheref. is the carrier frequency.

2.4. Scale-Lag Rake Receiver

To demodulate thé™ bit, the scale-lag Rake receiver projects the

received signat(¢) onto basis{xﬁ?,n(t)}:
riin = (@50 (1), (1), (6)
= (iln(t), L{s(t)}) +win @)
wherew'?, = (z . (1), w(t)) are the noise coefficients. The

ever, we note that the wideband kernel can be used to model anyalues ofm andn range ove—M < m < M and0 < n <

dynamic geometry between the transmitter, scatters, araive,
e.g., a turbulent underwater environment with scatterengmg at
different speeds.

An important system parameter is the widebacale spread:
Ymax 1= mEtmin — g /¢ = amax — 1, Which defines the max-
imum deviation from unit temporal dilation applied by thede+
band channel kernel.
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Fig. 1. (a) Transmitted wideband signal. (b) Signal dilateduby

The scale-lag resolution properties of a wideband DSSS sig-
nal z(t) are related to the total signal bandwidti and symbol
durationTs. An often used rule-of-thumb is that the minimum re-
solvable lag of a linear Rake receiverlis = 1/W [1]. A similar
rule-of-thumb can be suggested for tiiimum resolvable dila-
tion, which will be defined next.

Consider the inner product af(t) with x(t) dilated bya:

— X

(10-8(2))

Leta = a, result in a dilation by one chip period, (illustrated by
Fig. 1) or in other words, lei, satisfy the relation

1 t

a

(4)

aoTs_Ts = To = ao:1+1/Np. (5)
The expected value of the inner product (4) evaluated &t a,
vanishes if and only if the pulse-shape has zero DC compg¢8ent
Hence, we define, as theminimum resolvable dilation. Equiva-
lently, v, := a, — 1 is thescale resolution of the wideband DSSS
signalz(t). We havey, = T, /T, = 1/TsW = 1/N,, i.e., the
scale resolution is the inverse of the time-bandwidth pctdtio-
gether, the scale-lag resolution properties of the widdda8SS
signal imply that{zm (), zm,n (t)) & Fm-mYn-n, Where
Emnt) 1= o (S
function.

A useful quantity is thenormalized scale spread: % which
can be written in terms of the velocity, speed of signalopga;biam,

), and#,, is the Kroneker delta

N, where M and N are chosen so that a significant portion of
the energy is retained after projection. The basis funstfonthe
scale-lag Rake receiver are shift-dilates of the transahigignal
in order to match the scale-lag spreading of the channek Natt
the basis is time-shifted bif. to despread thé" bit.

From the input-output relationship of the wideband kerg| (
we can write the projection coefficienfs'?,,} as

rmn Zb/[,a‘r

/xgn)n(t)%x (7“72‘”‘”[3 )dt dadt + wffl),n, (8)
~0, for i7#j, since Tgs>>Tmax
~ / L(a,T)
/mm n(t) \}Em (M)dtdadT + w,(n)n7 9)
- / £(a,7) R e L
hGD
+wi,, (10)
= by, + w< i (11)
wherex(a, ) := [ z( (tj) dt is the ambiguity function

of the waveforme(t) (S|m|Iar to [7]).

To consolidate the notation, we stack the projection coeffi-
cients {r'",,} for the i*" bit into a (2M + 1)(N + 1) x 1 di-
mensional vector;, and similarly define the channel vectbg
and noise vectow;. .

The scale-lag Rake generates the decision statisfior the
it" bit by linearly combining the projection coefficients

bi = fZ Ti,
r; = bih; +w;.

12)
(13)
The choice of combining vectgf, is discussed in Sec. 4.

3. CHANNEL AUTOCORRELATION
In this section, we investigate the channel autocorreiatio

Ry (i,i+ j) == E[h;h],;]. Assuming the wideband channel ker-
nel is uncorrelated across scale and 2Jag i.e.,

2This simplifying assumption is analogous to the uncoreelatoppler-
lag spreading assumption made in narrowband systems [8].



E[L (a,7)L(a',7")] = ¥(a,T)d(a—a')5(T—7"), where¥ (a, T)
is thewideband scattering function, we obtain the elements of the
expected outer product,
|
n Toa

Tmax 1+'Yma><
i) 7 (i+ )
Bp = [
1
X(agl7 nToa, 4’7’;1(0, l)TS)X(%7 4rflgz+3)(a 1)TS>:|dCLdT,

“Ymax
(14)

After we make the change of variables= (a — 1) /7, and7 :=
7/T,, the analysis in Appendix A allows us to approximate (14)
with

ERD hC)] & ~oT, / o
J0

JYmax
Yo

\I’(]‘ — YoV, 7_—,I'O)

m’,n  Ymax
Yo
X(m—=7,n—F—)x(m' =7, n' 7= (i+)7)dyd7, (15)
where we define the functiop(7, 7) as
1
X(7,7) = E[cf]/ Xp(1, (F + 29)T,)dz, (16)
0

with xp(a, 7) := [ p(t) 7zp (77 dt asthe pulse ambiguity func-
tion. The variabley is the scale deviation normalized to the min-
imum resolvable scale deviation, afids delay normalized to the

minimum delay resolution. The functiop(7, 7) approximates the
expected ambiguity functionE[x(a, 7) %X( *01, T ) Note
that the correlation approximation (15) depends only onnidie
malized scale sprea&éjy"oﬁ and the normalized delay spreépf.

For the unit-energy second-derivative Gaussian pulse

\/ﬁT\f?_W [1—2(nfolt — T0/2))?]

exp (—(mfo(t —T1,/2))%) , (17)
itis shown in Appendix B that for larg&/, and with f, := 2/T5,

4 1
1 _ - -
7(’7777—) = E E Uk/ IEke 2ﬂ2('yz+7—)2dl’,
k=0 0

p(t) =

(18)

(19)

wherevy = 12— 967272 + 647174, vy = 2567#7 7 — 192> ™
vy = 24 (167*7°5° — 4n°5%), v = 25671 75°, v4 = 647"y

To gain insight into the time-variation of the channel, we nu
merically evaluate the autocorrelation sequelﬂpé,?)nh“ ) | for

m/,n/
m =m' = 0,andn = n’ = 0 and indicate the results for differ-
ent values of normalized scale spre@ as solid lines in Fig. 2.
We assume a ring-of-scatterers model such that the scatferic-
tion ¥ (a, 7) is flat across lag and has a “bathtub” shape in scale

[9]. The dashed lines in Fig. 2 correspond to damped zenataro
Bessel functions of the first kindy (47r V;‘;Xj) e’%j, which
closely approximate the autocorrelation sequence of ahaiae
channel with normalized scale spreadieéf— The first zero cross-
ing of a Bessel functior (x) occurs at approxmatety = 3n/4;

it follows that the coherence time of the wideband channabis
proximately% T, seconds. Note that the channel coherence
Yo

3We wish to point out that other zero-DC component signals ey
used, such as the modified duobinary pulse [1].
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Fig. 2. (Solid lines) Channel coefficient autocorrelation seqeen
E[hﬁ,??nhifj’n,] form =m' =0, andn = n’ = 0. (Dashed lines)
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Damped Bessel function approximatios; (47r 7;*;* j) e
The normalized delay spreadigj—x =1.

is inversely proportional to the normalized scale sprégagd =
wmax T, W, as velocity increases, scale spreading causes greater
channel variation. This is reminiscent of the role the ndized
Doppler spread plays for narrowband systems.

For reference, a normalized scale spread of 0.001 would be
found in an RF system with mobile velocity of 10 km/hr, data
rate of 10 kbps, and bandwidth of 1 GHz, or in an RF system
with velocity of 100 km/hr, data rate of 1 Mbps, and bandwidth
10 GHz. Larger scale spreading results from increasingcitglo
or bandwidth and/or decreasing data rate.

3.1. Autoregressive Model for Scale-Lag Channel Coefficigs

The correlation expression (15) reveals that the channeffico
cients are approximately wide-sense stationary. Thus, efieel
the stationary correlatioR, (j) := R, (0, j) for generating time
series realizations of the channel.

We have observed tha®,(j) can be approximately dlago-
nalized by a common set of eigenvectoR; (j) ~ UA(j)U
Suppose that none of the correlation matrice§y, (7)}52, has

more thanKm.x non-zero eigenvalues{\. ()} . If we as-
sume that the channel coefficients are zero-mean jointlys&an
processes, then channel coefficient realizations can berafed
by filtering a set ofi(,nax uncorrelated white noise processes. The
k*" noise process is filtered by an autoregressive (AR) model tha

is fit to thek™" eigenvalue sequend@\ (j)}52,. For example, let
{ar(1)}* be the ARN, model parameters computed from the
Yule-Walker equation. Define, (i) = qx (¢) — ZlN:kl ak(Dzk (i —
1), wheregy (7) is white gaussian noise of suitable variance. Now
define the vectog; := [21(), 22(4), . . ., Zx.., ()] such that the
channel realization is

hi = UKmaxZZ7 (20)

whereU g, collects theK .« principal eigenvectors fror®y.



4. PRINCIPAL COMPONENTS COMBINING

In [3], we showed that the channel correlation ma#ix(0) pro-
duces a relatively small number of non-negligible eigemgalcom-
pared to the number of scale-lag channel coefficients. Famex
ple, Fig. 3 shows the eigenvalue spread of the system in Fig. 2
From (20), the channel dynamics are focused in a low-dinoaiasi
subspace spanned by the principal eigenvectors, whichvates
the use of principal components combining (PCC) [4] to reduc
receiver complexity. The PCC vectdf, is the SNR maximiz-
ing (BER minimizing) vector constrained to lie in the subspa
spanned by thé(,.. principal eigenvectors aR;, (0): [4]

fi=Ux,©®0"Ug, hi,
————

Zi

(21)
U Kpce

whereU g, collects theK,.. principal eigenvectors oR;, (0),
and® is any Kpcc X Kpec orthogonal matrix. The valu&,. is a
design choice that trades-off complexity and performance.

Imax — (.01

B | / Yo
Imax — (0,001
Yo

Imax — ().0001 |
o

o

dB

6 7

5
Eigenvalue

Fig. 3. Eigenvalues of channel autocorrelation mafx (0) nor-
malized to unit energy.

For operational convenience, the PCC vector can be applied

in two stages: first, the scale-lag Rake received veetds pro-
jected onto the principal eigenvector subspage: = U;T(pccm;

second, the projection is maximal ratio combindg: = 277;.
The projection matridU k.. describes the channel statistics (scale
spread, delay spread), which change slowly and thus cansilg ea
learned by the receiver (e.g., [10]). The parameggrsepresent
the channel realization, which changes quickly, and henes be
tracked using, e.g., decision-directed LMS or RLS. We wdt-p
form a study of adaptive solutions in future work.

In Fig. 4, we show the bit error rate (BER) performance of
the PCC with perfect channel knowledge for increasing \sahfe
Kp—the number of principal components used in the receiver.
The BER expression can be found in [9]. Recall from Fig. 3 that
R (0) gives four non-negligible eigenvalues; hence, the scaje-I
Rake exploits full channel diversity fak > 4, as evidenced in
Fig. 4.

5. CONCLUSION

In this paper, we studied the correlation structure of thgefia of

the scale-lag Rake receiver and showed that the time-\fiyiab

of the channel is captured in timermalized scale spread parame-

ter % We also suggested incorporating PCC into the scale-lag
Rake as a means of reducing complexity while maintaining per
formance. The analysis applies to radio-frequency UWBesgst

Average BER
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Fig. 4. BER performance of scale-lag Rake receiver using PCC
with various values of<. Normalized scale spreadl%% =0.01,
and normalized delay spreadﬁgl =1.

and wideband acoustic systems, where narrowband assursptio
are invalid.

A. AVERAGE AMBIGUITY FUNCTION PRODUCT
APPROXIMATION

The approximation of (14) is based on the approximation ef th
expected ambiguity function produ€fx (a, 7)x(a’, 7")]. The use
of a random spreading code simplifies the computation

1

N2 Z Elcicjerc]

P gkl

Xp(a7 T+ (a’i - j)TO)XP(a,7 7—/ + (a/k - Z)TO)7 (22)
wherex, (a,7) = [p(t)J=p (5

E[x(a,7)x(a’,7')] =

£=7) dt is the ambiguity function
of the pulse shape. The number of summation terms in (22)&an b
reduced by noting that

El¢f] i=j=k=1,

Ec)? i=j4,k=1i#k,
Elciciera] = E[E) i=k, j=1,i#], (23)

E[c])? i=1j=k i#],

0 else.

Hence, we need only compute the non-zero terms outlinedn (2
We will find that only the second case will produce a non-riggle
contribution. In the following, we make the change of valésb
a=1+ Nip to facilitate the approximation.

The absolute value of the sum of the terms in (22) for the case
1= j = k = lis upper bounded by

Np—-1 .,
Elci] 5 5T, Y 3T
> 5 P (13 o (14 4 5
E 4 1 ’ /
~ ][\?Z] ‘Xp(LT-‘rfC’_YTo)XP(LT +x’_7T°)|dm (24)
p 0
E[cj] (25)

Ny



The approximation in (24) is tight whemanda’ are near unity
and the number of chip¥, is large. The inequality in (25) follows
from the pulse having bounded energy, ixg,(a,7) < 1,Va,r.
Hence, for a large numbéy,, of chips, the sum of the terms in the
first case of (23) is negligible.

For the second casé= j, k = [, i # k, we have

E[C?P ol 5iT, 5 1, AkT,
3 o (i) (L i)
’ 1 1
B [ oL+ et Tde [ (1 + oy T )de
J0 J0
~ E[x(a, )] E[x(a’, 7")] (26)
For the third case, = k, j = [, i # j, we have
E}[C?]2 5 ~i . .
> =kl (14w (G + - )T)
i,jAi P
Y (T
Xp (H‘N—pﬂ' +(N—p +1 —J)To)
E[C?]2 ~i . .
=3 g o (L HE i T)
Q¥
6 (LG 4= )T, @7
- 2BEP 2B 29)
S B Np

As before, the approximation in (27) is tight wheranda’ are
close to unity. Since the pulse is time-limitedd seconds, the
function x, (1, z) is non-zero only whenz| < T,. Therefore,
giveny andr, for eachi € 1,2,..., N, — 1, there is at most two
values ofj such thaf 7- +ﬁ,—; + ¢ — j| < 1. This observation,
combined with the fact thaty,(a,7)| < 1, Va,, leads to the
inequality in (28). Thus, for a large numbai, of chips, the sum
of the terms in the third case is negligible. Similarly, thensof
the terms in the fourth case= [, j = k, ¢ # j can be shown to
be negligible.

In summary, we have that the ambiguity function is approxi-
mately uncorrelated across scale and lag when the numbhbipasf ¢
N, is large,

E[x(a,7)x(a’, )] & E[x(a, 7)] E[x(d’, 7")],

1 1
~ E[cj]? / Xp(1,7 + 27T,)da / Xo(1, 7' + 27 T, )da,
0 0

__fa—-1 7\ _(d -1 7

() (5 E)
wherex (7, 7) is defined in (16), and wherg := (a — 1)N, =
(a— 1)/ andy’ := (a’ = )N, = (a’ — 1) /7.

The approximation (29) is tight since we assume thaind
a’ are near unity and the number of chips, is large. Hence,

after making the approximatioﬁélgi ~1l4+my, —(a—1)and

mloag’ 7 W DTs o nT, — 7 —i(a — 1)Ts, we have that the
correlation (14) can be approximated by (15)

(29)

“Note thata” ~ 1 4+ m~,, andl/a ~ 1 — (a — 1).

B. AMBIGUITY FUNCTION FOR SECOND-DERIVATIVE
GAUSSIAN CHIP PULSE

The closed-form ambiguity function expression for the eniergy
2nd_derivative Gaussian pulse is quickly derived by using &ars
val's theorem to perform the inner product calculation ia fre-

guency domain:
jo %p (t - T) p(t)dt,
/;00 Vaexp(—j2r7)P(af)P*(f)df, (31)

Xp (a7 T) = (30)

where the Fourier transfori( f) of the pulsep(t) is
VRV 2 (ifc;zjm

\/g \/ 7'l'fo2 fo ’

We complete the square of the argument of the exponentiallin (

and make use of the expression of the fourth Gaussian moment t
write the solution as

xola ) = f(a) <4ﬂ494(a, ) 120%%(a, 7) (1 + a?)

2 2
3(1 2,2 _7Tg(a,7')
+( +a’)>exp< 1+CL2 )

P(f) (32)

(33)

wheref(a) = 4, /u—ifm and g(a,7) = for + (a — 1) foTo/2.
The expression fog(7, 7) = E[c?] [ xp(1, (7 +27) T, )dz,

using the2™?-derivative Gaussian pulse follows from the closed-
form expression of the pulse ambiguity function (33).
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